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Abstract

Background: Changes in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating

the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a

genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-driven biases. These biases

prevent effective comparison of chromatin interactions aimed at identifying genomic regions differentially

interacting between, e.g., disease-normal states or different cell types. Several methods have been developed for

normalizing individual Hi-C datasets. However, they fail to account for biases between two or more Hi-C datasets,

hindering comparative analysis of chromatin interactions.

Results: We developed a simple and effective method, HiCcompare, for the joint normalization and differential

analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the

differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using

locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets

and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences

while preserving the detection of genomic structures, such as A/B compartments.

Conclusions: HiCcompare is able to remove between-dataset bias present in Hi-C matrices. It also provides a user-

friendly tool to allow the scientific community to perform direct comparisons between the growing number of pre-

processed Hi-C datasets available at online repositories. HiCcompare is freely available as a Bioconductor R package

https://bioconductor.org/packages/HiCcompare/.
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Background
The 3D chromatin structure of the genome is emerging

as a unifying regulatory framework orchestrating gene

expression by bringing transcription factors, enhancers

and co-activators in spatial proximity to the promoters

of genes [1–4]. Changes in chromatin interactions shape

cell type-specific gene expression [5–8], as well as misre-

gulation of oncogenes and tumor suppressors in cancer

[9–11] and other diseases [3]. Identifying changes in

chromatin interactions is the next logical step in under-

standing genomic regulation.

Evolution of Chromatin Conformation Capture (3C)

technologies into Hi-C sequencing now allows the detec-

tion of “all vs. all” long-distance chromatin interactions

across the whole genome [6, 12]. Soon after public Hi-C

datasets became available, it was clear that technology-

and DNA sequence-driven biases substantially affect

chromatin interactions [13]. The technology-specific

biases include the cutting length of a restriction enzyme

(HindIII, MboI, or NcoI), cross-linking conditions,

circularization length, etc. The DNA sequence-driven

biases include GC content, mappability, nucleotide com-

position. Discovery of these biases led to the develop-

ment of methods for normalizing individual datasets [6,

13–16]. Although normalization of individual datasets
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improves reproducibility within replicates of Hi-C data

[13, 15], these methods do not consider biases between

multiple Hi-C datasets.

Accounting for the between-dataset biases is critical

for the correct identification of chromatin interaction

changes between, e.g., disease-normal states, or cell

types. If between dataset biases (due to technology,

batch effects, processing, etc.) are left unchecked, biases

can be mistaken for biologically relevant differential in-

teractions. While DNA sequence-driven biases affect

two datasets similarly (e.g., GC content of genomic re-

gions tested for interaction differences is the same),

technology-driven biases are poorly characterized and

affect chromatin interactions unpredictably between

Hi-C libraries. Importantly, another source of chromatin

interaction differences stems from large-scale genomic

rearrangements, such as copy number variations [17], a

frequent event in cancer genomes [18]. Accounting for

such biases is needed for the accurate detection of differ-

ential chromatin interactions between Hi-C datasets.

We developed an R package, HiCcompare, for the

joint normalization and comparative analysis of proc-

essed Hi-C datasets. Our method is based on the obser-

vation that chromatin interactions are highly stable [7,

19–21], suggesting that the majority of them can serve

as a reference to build a rescaling model. We present

the novel concept of the MD plot (Minus, or difference

vs. Distance plot), a modification of the MA plot [22].

The MD plot allows for visualizing the differences be-

tween interacting chromatin regions in two Hi-C data-

sets while explicitly accounting for the linear distance

between interacting regions. The MD plot concept nat-

urally allows for fitting the local regression model, a pro-

cedure termed loess, and jointly normalizing the two

datasets by balancing biases between them. The

distance-centric view of chromatin interaction differ-

ences allows for detecting statistically significant differ-

ential chromatin interactions between two Hi-C

datasets. We show improved performance of differential

chromatin interaction detection when using the jointly

vs. individually normalized Hi-C datasets. Our method is

broadly applicable to a range of biological problems,

such as identifying differential chromatin interactions

between tumor and normal cells, immune cell types, and

normal tissues/cell types.

Implementation
HiCcompare is implemented as a Bioconductor R pack-

age. All functions are written in R and vectorized where

possible for the greatest computational speed. The big-

gest advantage of loess - the ability to model any biases

in the data without explicitly specifying them - comes at

the cost of increased computation. The Bioconductor

BiocParallel package was used to implement parallel

processing for the normalization and comparison steps

on a chromosome-specific basis. If enough cores are

available, such as on a computing cluster, each chromo-

some’s normalization and comparison steps can be sent

to their own processor for analysis, improving the total

run time (Additional file 1: Figure 3.1).

Additionally, the package includes vignettes with test

data and documentation for all functions, as well as code

to generate the results referenced in this manuscript.

The general workflow of a HiCcompare analysis is dia-

grammed in the flow chart (Fig. 1). HiCcompare can be

run interactively on a laptop to analyze a single pair of

chromatin interaction matrices or utilized in a script for

analyzing the entire genome in parallel on a cluster.

HiCcompare is released under the MIT open-source

software license.

Results and discussion
Hi-C data representation and properties

HiCcompare focuses on the joint analysis of multiple

Hi-C datasets represented by chromatin interaction

matrices, where rows and columns represent genomic

regions (bins), and cells contain interaction counts (fre-

quencies). A chromosome-specific Hi-C matrix is a

square matrix of size N ×N, where N is the number of

genomic regions (bins) of size X on a chromosome. The

size X of the genomic regions defines the resolution of

the Hi-C data. Each cell in the matrix contains an inter-

action frequency IFi, j, where i and j are the indices of

the interacting regions. The values on the diagonal trace

represent interaction frequencies (IFs) of self-interacting

regions. Each off-diagonal trace of values represents

interaction frequencies for a pair of regions at a given

unit-length distance. The unit-length distance is

expressed in terms of resolution of the data (the size of

genomic regions, typically measured in millions (thou-

sands) of base pairs, MB (KB)). The concept of consider-

ing interaction frequencies at each off-diagonal trace is

central for the joint normalization and differential chro-

matin interaction detection (Fig. 2).

The interaction frequency drops as the distance between

interacting regions increases. Numerous attempts have

been made to parametrically model the inverse relationship

between chromatin interaction frequency and the distance

between interacting regions. However, Hi-C data are af-

fected by technology- and DNA sequence-driven biases

[13–15], unpredictably altering chromatin interaction fre-

quencies. Consequently, parametric approaches fail to

model interaction frequencies across the full range of dis-

tances [12], confirmed by our observations (Additional file

1: Figure 2.1). For this study, data in the sparse upper tri-

angular format from the GM12878, K562, and RWPE1 cell

lines were used (Supplemental Methods, Additional file 1).
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It is also important to note that HiCcompare is designed

to analyze pre-processed Hi-C data, unlike many other tools

which require the user to deal with the raw sequencing

data. There are a growing number of Hi-C libraries, already

processed into matrix format, available for download on

many public repositories such as GEO. HiCcompare is spe-

cifically designed to make it easy for the user to perform

their own analyses on these pre-processed Hi-C matrices.

Visualization of the differences between two Hi-C

datasets

The first step of the HiCcompare procedure is to con-

vert the data into what we refer to as an MD plot. The

MD plot is similar to the MA plot (Bland-Altman plot)

commonly used to visualize gene expression differences

[22]. M is defined as the log difference between the two

data sets M = log2(IF2/IF1), where IF1 and IF2 are inter-

action frequencies of the first and the second Hi-C data-

sets, respectively. D is defined as the distance between

two interacting regions, expressed in unit-length of the

X resolution of the Hi-C data. In terms of chromatin

interaction matrices, D corresponds to the off-diagonal

traces of interaction frequencies (Fig. 2). Because chro-

matin interaction matrices are sparse, i.e., contain an ex-

cess of zero interaction frequencies, and it cannot be

determined if a zero IF represents missing data or a true

absence of interaction, by default only the non-zero pair-

wise interaction are used for the construction of the MD

Fig. 1 HiCcompare flow chart. Processed Hi-C libraries in the form of

sparse upper triangular matrices are the starting data type for

HiCcompare. Data is then plotted on the MD plot, and a loess

model is fit to remove bias between the libraries. Next, the filtering

threshold needs to be determined. Finally, the libraries can be

compared for differences and plotted again on the MD plot

Fig. 2 Distance-centric (off-diagonal) view of chromatin interaction

matrices. Each off-diagonal vector of interaction frequencies

represents interactions at a given distance between pairs of regions.

Triangles mark pairs of genomic regions interacting at the same

distance. Data for chromosome 1, K562 cell line, 50 KB resolution,

spanning 0–7.5 Mb is shown
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plot. However, if the user wishes to include partial zero

interactions, i.e. with a zero value in one of the matrices

and a non-zero IF in the other the option is available.

Elimination of biases in jointly, but not individually,

normalized Hi-C data

Discovery of biases in Hi-C data led to the development

of numerous methods for normalizing individual data-

sets [6, 14–16]. Although normalization of individual

datasets improves reproducibility of replicated Hi-C data

[13, 15], these methods focus on correcting biological

and internal biases and do not explicitly account for

biases between multiple Hi-C datasets. When the goal is

to compare two Hi-C libraries it can be assumed that

many of these internal and biological biases affect both

libraries similarly and thus their correction is less im-

portant. It is the between-dataset biases that are particu-

larly problematic when comparing Hi-C datasets

between biological conditions (Section 4, Additional file

1). To detect chromatin interaction differences due to

biology, not biases, it is critical to use a normalization

method that removes the between-dataset biases.

To assess the between-dataset biases, we visualize two

Hi-C datasets on a single MD plot. Visualizing replicates

of Hi-C data (Gm12878 cell line) showed the presence of

biases in the individually normalized datasets (Fig. 3 and

Section 4, Additional file 1), suggesting that the perform-

ance of individual normalization methods may be

sub-optimal when comparing multiple Hi-C datasets.

To account for between-dataset biases, we developed a

non-parametric joint normalization method that makes

no assumptions about the theoretical distribution of the

chromatin interaction frequencies. It utilizes the

well-known loess (locally weighted polynomial regression)

smoothing algorithm - a regression-based method for fit-

ting simple models to segments of data [23]. The main ad-

vantage of loess is that it accounts for any local

irregularities between the datasets that cannot be modeled

by parametric methods. Thus, loess is particularly appeal-

ing when normalizing two Hi-C datasets, as the internal

biases in Hi-C data are poorly understood (Fig. 3).

The HiCcompare joint normalization procedure pro-

ceeds by first plotting the data on the MD plot, then

loess regression [23] is performed with D as the pre-

dictor for M. The fitted values are then used to

normalize the original IFs:

log2
bIF1D

� �
¼ log2 I F1Dð Þ þ f Dð Þ=2

log2
bIF2D

� �
¼ log2 I F2Dð Þ− f Dð Þ=2

8
<

:

where f(D) is the predicted value from the loess regres-

sion at a distance D. The log2ð
bIFÞ values are then anti-

Fig. 3 MD plot data visualization and the effects of different normalization techniques. MD plots of the differences M between two replicated

Hi-C datasets (GM12878 cell line, chromosome 11, 1 MB resolution, DpnII and MboI restriction enzymes) plotted vs. distance D between

interacting regions. a Before normalization, b after loess joint normalization, c ChromoR, d Iterative Correction and Eigenvector decomposition

(ICE), e Knight-Ruiz (KR), f Sequential Component Normalization (SCN). The general shift of the data above M = 0 is due to one of the Hi-C

libraries having more total reads. The trends emphasized by the loess curve imposed on the data are due to distance dependent between-

dataset biases which only HiCcompare’s joint normalization procedure can successfully remove
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logged to obtain the normalized IFs. Note that for both

Hi-C datasets the average interaction frequency remains

unchanged, as IF1 is increased by the factor of f(D)/2

while IF2 is decreased by the same amount. Any normal-

ized IFs with values less than one are not considered in

further analyses. The joint normalization was tested

against five methods for normalizing individual Hi-C

matrices, ChromoR [24], ICE [15], KR [16], SCN [14],

MA [25] (Supplemental Methods, Additional file 1).

Existing Hi-C data at high resolutions (e.g., 10 kb)

still suffer from a limited dynamic range of chromatin

interaction frequencies, with the majority of them being

small or zero, especially at large distances between

interacting regions. This sparsity places limits on loess

joint normalization, as it builds a rescaling model from

many non-zero pairwise comparisons. A way to allevi-

ate this limitation is to consider interactions only

within a range of short interaction distances, where

genomic regions interact more frequently, and the pro-

portion of zero interaction frequencies is the lowest.

Our evaluation of loess joint normalization showed it

performs best at resolutions between 1 MB and 50 KB

(Section 4 & Section 7, Additional file 1). The issue of

sparsity limiting the usefulness of loess normalization

will be alleviated as sequencing techniques continue to

improve and Hi-C datasets with deeper sequencing be-

come available.

Excluding potentially problematic regions from the joint

normalization

Some between-dataset biases may occur due to

large-scale genomic rearrangements and copy number

variants (CNVs), a frequent case in tumor-normal com-

parisons [18]. Similar to removing other biases, the joint

loess normalization removes CNV-driven biases by de-

sign, allowing for the detection of chromatin interaction

differences within CNV regions. However, CNVs intro-

duce large changes in chromatin interactions [17], which

may be of interest to consider separately. Therefore, un-

less cells/tissues with normal karyotypes are compared,

we provide optional functionality for the detection and

removal of genomic regions containing CNVs from the

joint normalization. The QDNAseq [26] R package is

used to detect and exclude CNVs from the HiCcompare

analysis. Alternatively, CNV regions can be detected sep-

arately and provided to HiCcompare as a BED file. Add-

itionally, the HiCcompare package includes the

ENCODE blacklisted regions for hg19 and hg38 genome

assemblies, which can be excluded from further analysis.

Detecting differential chromatin interactions

After joint normalization, the chromatin interaction

matrices are ready to be compared for differences.

Again, the MD plot is used to represent the differences

M between two normalized datasets at a distance D. The

jointly normalized M values are centered around 0 and

are approximately normally distributed across all dis-

tances (Supplemental Methods, Additional file 1). M

values can be converted to Z-scores using the standard

approach:

Zi ¼
Mi−

�M

σM

where �M is the mean value of all M’s on the chromo-

some and σM is the standard deviation of all M values

on the chromosome and i is the ith interacting pair on

the chromosome.

During Z-score conversion, the average expression of

each interacting pair is considered. Due to the nature of

M, a difference represented by an interacting pair with

IFs 1 and 10 is equivalent to an interacting pair of IFs 10

and 100 with both differences producing an M value of

3.32. However, the average expression of these two dif-

ferences is 5.5 and 55, respectively. Differences with

higher average expression are supported by the larger

number of sequencing reads and are therefore more

trustworthy than the low average expression differences.

Thus, we filter out differences with low average expres-

sion by setting the Z-scores to 0 when average expres-

sion (A) is less than a user set value of A (Supplemental

Methods, Additional file 1). Filtering takes place such

that the �M and σM are calculated using only the M

values remaining after filtering. The Z-scores can then

be converted to p-values using the standard normal

distribution.

Analyzing Hi-C data for differences necessarily in-

volves testing of multiple hypotheses. Multiple testing

correction (False Discovery Rate (FDR)) is applied on a

per-distance basis by default, with an option to apply it

on a chromosomal basis. If a method other than FDR is

desired, all other standard multiple testing corrections

are available for the user to choose from.

As there is no “gold standard” for differential chroma-

tin interactions, we created such a priori known differ-

ences by introducing controlled changes to replicate

Hi-C datasets [27]. To introduce these a priori known

differences, we start with two replicates of Hi-C data

from the same cell type. It is assumed that any differ-

ences in these replicates are due to noise or technical

biases. Next, we randomly sample a specified number of

entries in the contact matrix. These sampled entries are

where the changes will be introduced. The IFs for each

of these entries in the two matrices are set to their aver-

age value between the replicates, and then one of them

is multiplied by a specified fold change. This introduces

a true difference at an exact fold change between the

two replicates. The benefit of using joint normalization
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vs. individually normalized datasets was quantified by

the improvement in power of detecting the pre-defined

chromatin interaction differences. Standard classifier

performance measures (Section “Availability and re-

quirements”, Additional file 1), summarized in the Mat-

thews Correlation Coefficient (MCC) metric, were

assessed. HiCcompare is able to detect most of the

added differences with a relatively low number of false

positives across the range of fold changes (Table 1, Sec-

tion “Availability and requirements”, Additional file 1).

Differential regions overlap with CTCF sites

We hypothesized that regions, detected as differentially

interacting, most likely represent biologically relevant

boundaries of topologically associated domains changing

between two conditions. As such, we investigated

whether differentially interacting regions are enriched in

CTCF binding sites, an insulator protein known to bind

at TAD boundaries [28]. To test that, we compared

Hi-C data from GM12878 and K562 cell lines at 100 MB

resolution using HiCcompare. A total of 2365 interac-

tions were identified as interacting differentially (FDR <

0.05) which represented 2783 distinct 100 KB genomic

regions. We found that a total of 130,675 CTCF binding

sites overlapped with these regions. The amount of over-

laps observed was significant (permutation p-value =

0.002), confirming our hypothesis that the differentially

interacting regions detected by HiCcompare play an im-

port biological role in chromatin structural organization.

Example HiCcompare analysis using mouse neuronal

differentiation

As an example case for the usage of HiCcompare, we

performed an analysis to compare the 3D structure of

the chromatin between mouse embryonic stem cells

(ESC), neural progenitor cells (NPC), and neurons. The

data was obtained from a study by Fraser et al. [29] de-

posited on GEO [GSE59027]. The Hi-C matrices for

each cell type were downloaded at 100 KB resolution

and read into HiCcompare. We performed three com-

parisons between the cell types, ESC vs. NPC, NPC vs.

neuron, and ESC vs. neuron. In each comparison, the

data were normalized, low average expression

interactions were filtered out, and the differences be-

tween the cell types were detected. We also performed a

functional enrichment analysis of genes located in differ-

entially interacting regions.

As expected, the ESC vs. neuron had the largest num-

ber of differentially interacting regions at 951 (FDR <

0.05). The ESC and NPC had 279 differentially interact-

ing regions, and the NPC and neuron had only 127 dif-

ferentially interacting regions. These differences

expectedly suggest that the undifferentiated ESCs and

fully differentiates neuronal cells have many chromatin

interaction differences, while the intermediate neural

progenitor cells have less differences when compared

with either ESCs or neuron cells. These observations

suggest that the chromatin structure plays a key role in

the process of cell differentiation.

The enrichment analysis for the ESC vs. the neuron

found genes enriched in protein binding function, ion

channel regulator activity, and “Axon guidance” pathway

among others (Additional file 2). The enrichment of

these pathways outlines the ESC-to-neuron differenti-

ation processes that are governed by changes in the 3D

structure of the genome. When comparing the ESC and

NPC cells, genes were found to be enriched in

voltage-gated calcium channel activity, ion transporters,

and serotonin metabolic processes (Additional file 3).

The enrichment results between the NPC and neuron

had fewer results but included IgG receptor activity and

binding and cytoskeletal protein binding (Additional file

4). These results indicate that the changes in the chro-

matin structure contain functionally relevant genes for

the cell differentiation process.

The results of this HiCcompare analysis show that our

methods are capable of detecting biologically meaningful

differences in chromatin conformation when comparing

different cell types. Together with the results of Fraser

et al. [29], the HiCcompare results indicate that the cel-

lular differentiation process involves structural changes

of the chromatin, likely leading to the changes in gene

expression and the associated biological pathways.

Comparison with diffHiC

The diffHiC pipeline was designed to process raw Hi-C

sequencing datasets and detect chromatin interaction

differences using the generalized linear model frame-

work developed in the edgeR package [25]. We com-

pared the results of Hi-C data analyzed in the diffHiC

paper (human prostate epithelial cells RWPE1

over-expressing the EGR protein or GFP [18]) with the

results obtained by HiCcompare. Because diffHic takes

unaligned Hi-C data as input it was not possible to dir-

ectly compare our method to diffHic using introduced

known changes. An additional point to consider for the

use of diffHic is that since it is based on the negative

Table 1 Evaluation of the effect of normalization on differential

chromatin interaction detection

Fold change HiCcompare MA ICE SCN KR ChromoR

2 0.847 0.823 0.835 0.768 0.748 0.149

3 0.973 0.934 0.802 0.721 0.764 0.380

4 0.995 0.98 0.953 0.881 0.868 0.532

Matthews Correlation Coefficient of detecting 200 controlled differences in

jointly (HiCcompare) vs. individually normalized Gm12878 datasets,

chromosome 1, 1 MB resolution. Matrices were normalized with methods

corresponding to column labels; differences were detected using HiCcompare
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binomial GLM methods of edgeR, it requires replicates

(or multiple samples per condition) in order to more ac-

curately estimate the negative binomial dispersion par-

ameter. Due to the high costs and relative newness of

Hi-C technology, many public datasets do not have any

(or very few) replicates thus hampering the estimation of

the dispersion factor.

To compare HiCcompare with diffHic we performed a

HiCcompare analysis on the RWPE1 Hi-C data [18]. This

was compared to the analysis performed in the diffHic

paper [25]. We performed the analysis at a 1 MB reso-

lution as described in the diffHic paper. diffHic detected a

total of 5737 significant differences (FDR < 0.05), while

HiCcompare tended to be more conservative, detecting

680 differences (FDR < 0.05) and 5215 differences when

multiple testing correction was not applied (p-value <

0.05). Of the 680 differences, 208 overlapped with the re-

gions detected by diffHic. Surprisingly, although diffHiC

used CNV correction in their analysis, 2567 (44.7%) of the

detected differentially interacting regions overlapped with

CNV regions detected in our analysis, and/or blacklisted

regions. diffHic tended to detect differentially interacting

regions with smaller fold changes as compared to HiC-

compare, and at shorter distances between interacting re-

gions, while HiCcompare can detect differences across the

full range of distances (Section 6, Additional file 1). These

results suggest that detecting chromatin interaction differ-

ences represented in the MD coordinates, as implemented

in HiCcompare, may be useful in detecting large chroma-

tin interaction differences across the full range of dis-

tances, potentially having a more significant biological

effect.

Comparison with FIND

The recently published FIND tool uses a spatial Poisson

process to detect differences between two Hi-C experi-

mental conditions [30]. FIND is presented as a tool for

high-resolution Hi-C data and treats interactions as

spatially dependent on surrounding interactions. In

order to compare HiCcompare with FIND, we per-

formed a comparative analysis between Hi-C data from

K562 and GM12878 cells lines (Section 7, Additional file

1) as done in the FIND paper [30]. The maximum reso-

lution of each Hi-C matrix was calculated using the cal-

culate_map_resolution.sh function from Juicer [31].

Briefly, two replicates for each cell line were obtained

(see Methods), and the replicate contact matrices were

combined for the HiCcompare analysis. HiCcompare

was used to jointly normalize the data between the cell

lines and then detect differences. HiCcompare analyses

were performed at 1 MB, 100 KB, 50 KB, 10 KB, and

5 KB resolutions. Additionally, the analyses of GM12878

and K562 were used to compare the run times of HiC-

compare and FIND (Section 7, Additional file 1).

The number of differences detected by HiCcompare at

5 KB resolution was much lower than the number FIND

detected (~ 150,000) [30]. The drop off of the number of

differential interactions detected at high resolution by

HiCcompare can be explained by the sparsity and the

limited dynamic range of interaction frequencies at 5 KB

resolution. Additionally, the large number of differences

detected by FIND at 5 KB resolution are questionable

given that the maximum resolution of the K562 and

GM12878 data was found to be ~ 39 KB and ~ 9 KB, re-

spectively (Section 7, Additional File 1).

The differentially interacting regions detect by HiC-

compare at different resolutions were intersected with

gene locations, and a KEGG pathway enrichment ana-

lysis was performed. The enrichment analysis showed

that many of the differential regions contained genes in-

volved in the immune system (Table 2). We also found

that the enrichment analyses of HiCcompare-detected

differences at each resolution were relatively consistent

further indicating the strength of HiCcompare at detect-

ing biologically relevant differences across data resolu-

tions. Despite the differences in resolution of data used

for differential analysis (5 kb for FIND and 50 kb - 1 Mb

for HiCcompare) the enrichment analysis of

HiCcompare-detected differences identified pathways re-

lated to the immune system, similar to the results of the

FIND analysis. These observations suggest that both

methods can detect biologically significant differences.

To compare the performance of FIND and HiCcom-

pare when a priori known differences were introduced

we used replicated data for GM12878 cells. The

GM12878 replicates are expected to contain minimal

differences, thus suitable for introducing a priori con-

trolled changes and applying both tools in order to de-

tect them. For the data to be entered into FIND, we

used the VC squared normalization method from Juicer

as described in the FIND paper and the raw data was en-

tered into HiCcompare. We performed this analysis at a

resolution of 1 MB (we encountered issues due to

Table 2 Gene enrichment results for HiCcompare analyses

Pathway 1 MB 100 KB 50 KB

Systemic lupus erythematosus 3.807e-06 6.302e-17 1.025e-02

Antigen processing and presentation 3.807e-06 6.808e-01 9.974e-01

Staphylococcus aureus infection 8.170e-03 2.354e-01 7.604e-01

Viral myocarditis 8.170e-03 1.038e-01 9.657e-01

Allograft rejection 8.170e-03 1.518e-01 9.974e-01

Viral carcinogenesis 3.327e-02 3.659e-08 3.273e-01

Pathways in cancer 9.162e-01 2.236e-02 9.409e-01

KEGG pathways and their corresponding FDR-corrected p-values for the

enrichment analyses of HiCcompare-detected differences at 1 MB, 100 KB, and

50 KB resolutions. Differentially interacting regions detected by HiCcompare

were intersected with gene locations, and the overlapping genes were tested

for enrichment using EnrichR [37]
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extremely long run times of FIND when attempting

comparisons at higher resolutions) with fold changes of

2, 3, and 5 for the true changes. HiCcompare success-

fully detected the majority of the controlled changes

while FIND detected smaller differences and was missing

most of the introduced controlled changes (Section 7,

Additional File 1). Additionally, we found that the run

time of FIND on Hi-C matrices at resolutions between

100 KB and 10 KB was extremely long (> 72 h) even

when run in parallel on 16 cores, while HiCcompare was

able to complete an analysis within minutes (Additional

file 1: Figure 3.1). These results further strengthen the

notion that HiCcompare detects large chromatin inter-

action differences potentially having a larger biological

impact on genome structure, and does it across the full

range of distances.

Preservation of A/B compartments

A/B compartments are the best known genomic struc-

tures that can be detected from Hi-C data [6]. To under-

stand the consequences of the joint vs. individual

normalization methods on the detection of A/B com-

partments we compared principal components defining

compartments in raw vs. normalized data. The concord-

ance of compartment detection was evaluated using

three metrics: 1) the Pearson correlation coefficient be-

tween the vectors of principal components (PCs) de-

tected from raw and normalized data, 2) the overlap of

signs of PCs defining A (positive) and B (negative) com-

partments, and 3) the Jaccard overlap statistics. A/B

compartments detected following joint normalization

were the most similar to those detected in the raw data

(Table 3). These results suggest that the joint HiCcom-

pare normalization preserves properties of Hi-C data

needed for the accurate detection of A/B compartments.

Summary and future directions

HiCcompare can be used to compare processed Hi-C li-

braries between two biological conditions. HiCcompare

represents a user-friendly method for the scientific com-

munity to begin analyzing the differences in the 3D

genome while making use of publicly available datasets.

HiCcompare can also easily be integrated into the exist-

ing juicer [31], HiC-Pro [17], and other Hi-C

pre-processing pipelines for those generating and analyz-

ing new Hi-C experiments. A future extension of HiC-

compare is planned to make use of Hi-C experiments

where multiple replicates or samples are available for

each group.

Conclusions
This work introduces three novel concepts for the joint

normalization and differential analysis of Hi-C data, im-

plemented in the HiCcompare R package. First, we

introduce the representation of the differences between

two Hi-C datasets on an MD plot, a modification of the

MA plot [22]. Importantly, we consider the data on a

per-distance basis, allowing the data-driven

normalization of global biases without distorting the

relative distribution of interaction frequencies of the

interacting regions. Second, we implement a

non-parametric loess normalization method that mini-

mizes bias-driven differences between the datasets.

There is compelling evidence that non-parametric

normalization methods, such as quantile- and loess

normalization, are particularly suitable for removing

between-dataset biases [32, 33], confirmed by our appli-

cation of loess to the joint normalization of Hi-C data.

Third, we develop and benchmark a simple but rigorous

statistical method for the differential analysis of Hi-C

datasets.

The importance of joint normalization when compar-

ing Hi-C datasets has been demonstrated using MA

normalization introduced in the diffHiC R package [25].

MA normalization uses a similar concept of representing

measures from two datasets on a single plot [25], except

it uses the Average chromatin interaction frequency as

the X-axis instead of the Distance. MA normalization

performed second to HiCcompare (Table 1 and Section

5, Additional File 1). This may be due to the power-law

decay of interaction measures leading to the limited dy-

namic range of average chromatin interaction

Table 3 Similarity between A/B compartments detected following various normalization methods

Comparison Mean Absolute Correlation Mean Percentage Jaccard A Jaccard B

Loess vs. Raw 0.9954 0.8537 0.7971 0.7823

MA vs. Raw 0.9950 0.8539 0.7881 0.7706

ICE vs. Raw 0.9795 0.7850 0.6731 0.6277

KR vs. Raw 0.9489 0.7771 0.5945 0.5000

SCN vs. Raw 0.9309 0.8083 0.6134 0.5495

ChromoR vs. Raw 0.8093 0.6810 0.5210 0.4803

“Correlation” - Pearson correlation coefficient between principal components defining A/B compartments in raw vs. normalized Hi-C data; “Prop. Match Sign” - the

proportion of regions with matching signs defining A/B compartments; “Jaccard A/B” - Jaccard overlap statistics between A/B compartments, respectively. All

values represent averages over all chromosomes
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frequencies and making fitting a loess curve difficult. In-

stead, the more balanced representation of chromatin

interaction differences M (Y-axis) as a function of dis-

tance D (X-axis) improves the performance of the loess

fit for the joint normalization and the subsequent detec-

tion of chromatin interaction differences.

The discrepancy of differential chromatin interaction de-

tection between diffHiC and HiCcompare (Section 6, Add-

itional File 1) could arise from multiple factors. diffHiC’s

implementation of MA normalization favors differences at

shorter distances and small fold changes while HiCcom-

pare’s loess fitting through the MD plot allows for the de-

tection of large chromatin interaction differences across the

full range of interaction frequencies (Section 6, Additional

File 1). diffHiC operates on log counts per million

(logCPM) while HiCcompare uses log interaction frequency

counts. diffHiC uses enzyme cut sites to define bins when

partitioning the genome while HiCcompare uses fixed bin

sizes. diffHiC uses median inter-chromosomal interaction

frequency to filter low-abundance bin pairs while HiCcom-

pare filters based on average IFs of the chromosome being

considered. Finally, the RWPE1 data analyzed by diffHiC is

relatively sparse even at 1 MB resolution, potentially inter-

fering with HiCcompare’s statistical analyses. In summary,

diffHiC and HiCcompare may provide complementary

views on chromatin interaction differences, with HiCcom-

pare being better suited for removing the between-datasets

biases and the detection of biology-driven chromatin inter-

action differences.

In our comparison with FIND (Section 7, Additional

file 1), we found that HiCcompare performed better than

FIND on data at resolutions between 1 MB and 10 KB.

As most publicly available Hi-C data is too sparse to

make meaningful inferences at resolutions greater than

this, HiCcompare looks to be the better choice for de-

tecting differences on most currently available data. In

the case of extremely high-resolution Hi-C data, FIND

may be able to pull out more significant differences be-

tween two experimental conditions albeit at the expense

of significantly longer run times. Comparing our gene

enrichment results for GM12878 vs. K562 with those

presented in [30], both methods were able to detect dif-

ferences in regions involved in the immune system as

would be expected to occur for these cell types.

Despite the ability of Hi-C technology to simultan-

eously capture all genomic interactions, current reso-

lution of Hi-C data (1 MB - 1 KB) remains insufficient

to resolve individual cis-regulatory elements

(~100b-1 KB). Alternative techniques, such as

ChiA-PET [34], Capture Hi-C [1] have been designed

to identify targeted 3D interactions, e.g., between pro-

moters and distant regions. These data require special-

ized normalization [35] and differential analysis [36]

methods. Our future goals include extending the loess

joint normalization method for chromosome conform-

ation capture data other than Hi-C.

Availability and requirements
HiCcompare is available as an open-source R package

on Bioconductor and can be installed using the standard

Bioconductor installation procedures as described at

https://bioconductor.org/packages/HiCcompare/. The

development of HiCcompare can be followed on GitHub

at https://github.com/dozmorovlab/HiCcompare. HiC-

compare is freely available under the MIT open-source

software license. HiCcompare is platform independent,

and the only requirements are the R and Bioconductor

computing environments.

Additional files

Additional file 1: Supplementary materials for the paper. This PDF file

contains supplemental methods (Section 1), a computation performance

evaluation of HiCcompare (Section 3), additional validation of methods

used in HiCcompare, and extended comparisons with diffHic and FIND

(Section 6 & 7). (PDF 5878 kb)

Additional file 2: Table of gene enrichmend results for ESC vs neuron.

This excel file contains a worksheet for the GO MF, GO BP, and KEGG

pathway analysis results for the gene enrichment analysis between the

ESC and neuron discussed in the results section. (XLSX 46 kb)

Additional file 3: Table of gene enrichment results for ESC vs NPC.

This excecl file contains a worksheet for the GO MF, GO BP, and KEGG

pathway analysis results for the gene enrichment analysis between the

ESC and NPC discussed the in the results section. (XLSX 15 kb)

Additional file 4: Table of gene enrichment results for NPC vs Neuron.

This excecl file contains a worksheet for the GO MF results for the gene

enrichment analysis between the NPC and Neuron. The GO BP and KEGG

pathway analysis did not return any significant results and thus are not

included here. (XLSX 11 kb)
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