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Abstract: The investigation of chaotic systems containing hidden and coexisting attractors has
attracted extensive attention. This paper presents a four-dimensional (4D) novel hyperchaotic system,
evolved by adding a linear state feedback controller to a 3D chaotic system with two stable node-
focus points. The proposed system has no equilibrium point or two lines of equilibria, depending
on the value of the constant term. Complex dynamical behaviors such as hidden chaotic and
hyperchaotic attractors and five types of coexisting attractors of the simple 4D autonomous system
are investigated and discussed, and are numerically verified by analyzing phase diagrams, Poincaré
maps, the Lyapunov exponent spectrum, and its bifurcation diagram. The short unstable cycles in the
hyperchaotic system are systematically explored via the variational method, and symbol codings of
the cycles with four letters are realized based on the topological properties of the trajectory projection
on the 2D phase space. The bifurcations of the cycles are explored through a homotopy evolution
approach. Finally, the novel 4D system is implemented by an analog electronic circuit and is found to
be consistent with the numerical simulation results.

Keywords: hyperchaos; hidden attractor; coexisting attractors; bifurcation; circuit implementation

1. Introduction

The research of chaotic systems has been a topic of interest due to their many engi-
neering applications [1,2]. In 1979, Rössler put forward the concept of hyperchaos and
proposed the hyperchaotic Rössler system [3]. As we know, for an autonomous dynamical
system, the minimum dimension of the phase space to produce hyperchaos should be at
least four. Hyperchaotic systems have two or more positive Lyapunov exponents; thus,
they have extensive application values and more complex dynamic behaviors than ordinary
chaotic systems [4]. The investigation of hyperchaotic systems has attracted much attention
and achieved fruitful results [5,6]. A 4D hyperchaotic system was proposed by adding a
nonlinear controller to the first equation of the Lorenz chaotic system [7], and hyperchaos
can also be generated from the generalized Lorenz Equation [8]. A hyperchaotic system
constructed from the Lü system was found to produce many kinds of scroll chaotic attrac-
tors [9]. A 5D hyperchaotic system based on a modified generalized Lorenz system with
three positive Lyapunov exponents was reported [10]. An effective method to construct
hyperchaotic systems with multiple positive Lyapunov exponents was formulated [11]. A
7D hyperchaotic system with five positive Lyapunov exponents was constructed, which
can exhibit complex dynamical behaviors [12].

Recent research has involved categorizing periodic and chaotic attractors as either
self-excited or hidden [13]. Most famous chaotic and hyperchaotic systems, such as the
classical Lorenz, Chen, Lü, and Sprott systems [14–17], have more than one equilibrium
point, and their chaotic attractors with typical parameter values are self-excited. The basin
of attraction of a self-excited attractor is known to intersect with small neighborhoods of un-
stable equilibria, whereas that of a hidden attractor intersects with no open neighborhoods

Fractal Fract. 2022, 6, 306. https://doi.org/10.3390/fractalfract6060306 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6060306
https://doi.org/10.3390/fractalfract6060306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4218-2466
https://orcid.org/0000-0003-0169-8618
https://doi.org/10.3390/fractalfract6060306
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6060306?type=check_update&version=2


Fractal Fract. 2022, 6, 306 2 of 24

of equilibria. Chaotic systems without equilibrium points [18–22], with only stable equilib-
ria [23,24], and with an infinite number of equilibria [25–27] have hidden chaotic attractors.
The first hidden chaotic attractor with stable equilibria was investigated in a generalized
Chua system [28]. Since then, different types of chaotic and hyperchaotic systems with
hidden attractors have been reported on extensively. A quadratic hyperjerk system with
no equilibrium was introduced, which can produce hidden chaotic attractors [29]. Hidden
hyperchaotic attractors with three positive Lyapunov exponents were generated in a 5D
hyperchaotic Burke–Shaw system with only one stable fixed point [30]. A 5D system with
self-excited attractors and two types of hidden attractors with the variation of parameters
was proposed [31]. A 6D coupled hidden attractor system was introduced, and the basins
of attraction were analyzed [32].

Many complex dynamical systems have complicated characteristics of coexisting
attractors, which is referred to as multistability. A nonlinear dynamical system with such
behaviors can produce two or more attractors at the same time according to the initial
values of the system. Recent research indicates that the multistability of a dynamical system
is related to the existence of hidden attractors. Coexisting attractors and multistability have
been widely studied in the literature. A 3D chaotic system with multiple attractors was
found, the complex dynamical behaviors of the system were derived, and the circuit to
realize the chaotic attractor of the system was given [33]. Furthermore, a 4D chaotic system
with a plane as the equilibrium and coexisting attractors was analyzed [34]. A 4D system
including chaotic or hyperchaotic attractors with no equilibrium point, a line of equilibrium
points, and unstable equilibrium points, was constructed [35] and was found to exhibit
multistability between different attractors. Multistability and coexisting attractors was
discovered in a 4D chaotic system with only one unstable equilibrium [36] and multiple
unstable equilibrium points [37]. An extended Lü system containing coexisting chaotic,
periodic, and point attractors for different initial values was introduced [38]. Complex
coexisting attractors can also be generated in a 4D chaotic laser system [39], a cyclic
symmetry chaotic system [40], and a 4D memristor chaotic system [41].

As mentioned in the above literature, there are few examples of hyperchaotic systems
which have both hidden and coexisting attractors. This paper proposes a 4D system
which can generate a hidden hyperchaotic attractor when it has no equilibrium point
and five types of coexisting attractors for different initial values. The short unstable
periodic orbits embedded in the hidden hyperchaotic attractor are encoded and calculated
systematically, and the cycles whose period changes with the parameter values are explored
through the homotopy evolution approach. The proposed system is implemented by an
analog electronic circuit, and the results are in good agreement with the phase portraits
from the numerical simulation, which testifies to its feasibility. It should be noted that,
compared to previous hyperchaotic systems with no equilibria, the proposed 4D system has
richer and more complex dynamic characteristics; the most salient features are its multiple
coexisting attractors and multistability. It is obvious that our proposed hyperchaotic system
with coexisting hidden attractors and riddled basins exhibits some behaviors previously
unobserved, which satisfies the relevant criteria put forward by Sprott for the publication
of a new chaotic system [42].

The rest of this paper is organized as follows. Section 2 describes the mathematical
model of the new 4D hyperchaotic system and shows some of its basic dynamical properties.
In Section 3, the complex dynamical structure of the proposed hyperchaotic system is
further revealed by common nonlinear analysis tools, and various types of coexisting
attractors are discussed. A periodic orbit analysis for the new system using the variational
method is presented in Section 4. A corresponding analog circuit for the implementation
of the novel 4D system is designed in Section 5. Section 6 presents the conclusions and
recommendations for future work.
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2. The Novel 4D Hyperchaotic System

Consider a 3D chaotic system [24],

dx
dt

= a(y− x) + kxz

dy
dt

= −cy− xz (1)

dz
dt

= −b + xy,

where a, b, c, and k are parameters. When (a, b, c, k) = (10, 100, 11.2,−0.2), the system
has a hidden chaotic attractor with two stable equilibrium points. The dynamical prop-
erties, periodic orbit analysis, and circuit realization of the 3D chaotic system have been
investigated [24].

Based on the method for constructing new 4D hyperchaotic systems proposed by
Li et al. [43], we can make the original 3D system become 4D by adding a linear state
feedback controller to the first equation of system (1) so as to meet the minimal dimension
required for generating hyperchaos. This creates the opportunity to possess two positive
Lyapunov exponents along with one zero and one negative Lyapunov exponent. Thus, we
obtain a 4D autonomous system,

dx
dt

= a(y− x) + kxz + w

dy
dt

= −cy− xz (2)

dz
dt

= −b + xy

dw
dt

= −my,

where x, y, z, and w are state variables, and a, b, c, k, and m are the real parameters. Setting
the right side of each equation of system (2) to zero, the equilibrium points can be easily
calculated. Obviously, when b 6= 0, system (2) has no equilibrium point, and Hopf,
pitchfork, or homoclinic bifurcations that usually take place in dynamical systems with
equilibrium points will not occur. When b = 0, system (2) has two lines of equilibria,
(0, 0, z, 0) and (w

a , 0, 0, w). System (2) has no equilibrium point when b 6= 0, and the basin
of attraction of the hyperchaotic attractor does not intersect with small neighborhoods of
equilibria. However, system (2) has infinite equilibria when b = 0, although the basin of
attraction of the chaotic attractor may intersect with the equilibrium points in some regions
in this situation, and an infinite number of the other equilibrium points are located outside
the basin of attraction. Thus, system (2) belongs to the new category of hidden attractors,
which is unique because of the existence of two different types of hidden attractors. We
discuss the new system with no equilibrium point.

When the parameters of system (2) are taken as (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1)
and the initial conditions (x0, y0, z0, w0) are set as (1, 1, 1, 1), the system has a hidden
hyperchaotic attractor, with phase portraits as depicted in Figure 1. The corresponding four
Lyapunov exponents can be calculated using the method of Ramasubramanian et al. [44]:
L1 = 0.7796, L2 = 0.1058, L3 = 0, L4 = −12.7177, as shown in Figure 2. The Kaplan–Yorke
dimension is characterized by its Lyapunov exponents, DKY = 3 + (L1 + L2 + L3)/|L4| =
3.0696, which indicate that the hidden hyperchaotic attractor has a fractal dimension.
Figure 3 also displays different sections of 2D Poincaré maps for system (2) under the
current parameters.
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Figure 1. Three-dimensional projections of the hyperchaotic attractor of system (2): (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1). (a) x-y-z phase space; (b) x-z-w phase space; (c) x-y-w phase space; (d) y-z-w
phase space.
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Figure 2. Four Lyapunov exponents of system (2) for (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1).
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Figure 3. Two-dimensional Poincaré maps of the hyperchaotic attractor of system (2); (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) on section z = 0; (b) on section x = 0.

The dynamical properties of system (2) can be examined as follows:
(1) Symmetry and invariance. System (2) is invariant under the coordinate transforma-

tion (x, y, z, w)→ (−x,−y, z,−w), i.e., it has rotational symmetry around the z-axis, which
means that any orbit that is not itself invariant under the transformation must have its
conjugate orbit;

(2) Since the divergence of system (2) is defined as

∇ ·V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
+

∂
·

w
∂w

= −a + kz− c, (3)

the system is dissipative under the condition −a + kz− c < 0. Consequently, each volume
containing the trajectory of the system eventually converges to zero at an exponential rate
−a + kz− c;

(3) A well-known prominent characteristic of hyperchaotic dynamics is its sensitive
dependence on initial values. When the parameters of system (2) are fixed at (a, b, c, k, m) =
(10, 100, 2.7,−0.2, 1) and the initial values change slightly, the time-series diagram of the
system generated from two very close initial values within the simulation time t = 200 is
as plotted in Figure 4.
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Figure 4. Cont.
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Figure 4. Time-sequence diagrams of system (2); (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1):
(a) (x0, y0, z0, w0) = (1, 1, 1, 1); (b) (x0, y0, z0, w0) = (1.001, 1, 1, 1); (c) green and brown represent
initial values of (a,b), respectively.

3. Complex Dynamical Structure of the Proposed Hyperchaotic System

The new system (2) exhibits abundant complicated dynamical characteristics in a wide
range of parameters, which can be explored by numerical analysis. We fixed parameters
a, c, k, and m while varying b. Using nonlinear analysis tools such as phase diagrams,
Lyapunov exponents, and bifurcation diagrams, the system can show periodic solutions,
quasi-periodic solutions, chaos, and hyperchaos for different parameters. Coexisting attrac-
tors refer to the multistability phenomena for certain parameter values, where different
attractors exist depending on different initial conditions. Interestingly, compared with
similar chaotic systems, when taking different parameters and initial values, system (2) can
display various types of coexisting attractors.

3.1. Lyapunov Exponents, Bifurcation Diagram, and C0 Complexity Analysis

To explore the influence of b on the dynamics of the new 4D system, we fixed param-
eters (a, c, k, m) = (10, 2.7,−0.2, 1), and varied b in the interval [0, 120]. As we know,
the main dynamical properties of system (2) can be analyzed by its Lyapunov expo-
nent spectrum and bifurcation diagram. We took the initial values as (x0, y0, z0, w0) =
(1.67610,−0.37856, 3.69140, 1.45851). Figure 5a,b show the changes of four Lyapunov expo-
nents with the increase of b, and Figure 5c gives the corresponding bifurcation diagram
with respect to b. It can be observed that the Lyapunov exponent spectrum well coincides
with the bifurcation diagram. It can be clearly seen from Figure 5 that system (2) indeed
produces hyperchaotic attractors with two positive Lyapunov exponents for a wide range
of b. Three-dimensional projections of attractors for some typical values of b, are shown
in Figure 6, and the corresponding Lyapunov exponents and fractal dimensions are tabu-
lated in Table 1, from which the intricate topological structure and abundant hyperchaotic
dynamic properties of system (2) can be seen.

Table 1. Lyapunov exponents and Kaplan–Yorke dimension of system (2) with a = 10, c = 2.7,
k = −0.2, and m = 1.

b L1 L2 L3 L4 DKY Dynamics

10 0 −0.0377 −0.4173 −11.6842 1.0 Periodic
20 0.0483 0 −0.2258 −11.9110 2.24 Chaos
38 0 −0.0227 −0.0243 −12.0242 1.0 Periodic
42 0 0 −0.1340 −11.9278 2.0 Quasi-periodic
50 0.0182 0 −0.2922 −11.7656 2.06 Chaos

120 0.9302 0.0850 0 −12.8638 3.08 Hyperchaos
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Figure 5. Dynamics of system (2) versus parameter b ∈ [0, 120] with (a, c, k, m) = (10, 2.7,−0.2, 1):
(a,b) Lyapunov exponent spectrum; (c) bifurcation diagram.

The C0 complexity analysis relating to different parameters in new system (2) was
also investigated, as shown in Figure 7. Compared with Figure 5, we can see that when
the system is in a periodic state, the value of the C0 complexity is small, whereas when the
system is in a chaotic state or hyperchaotic state, the value of C0 fluctuates between 0.1
and 0.4, which is significantly larger than that of the periodic state. Therefore, there is a
positive correlation between the C0 complexity measure and Lyapunov exponents, which
can reflect the dynamic characteristics and complexity of the system.
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Figure 6. Some representative dynamical behaviors of system (2) with parameters (a, c, k, m) =

(10, 2.7,−0.2, 1) and different values of b: (a) b = 10; (b) b = 20; (c) b = 42; (d) b = 120.
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Figure 7. C0 complexity curve of the new system (2). (a) Versus b for a = 10, c = 2.7, k = −0.2, m = 1;
(b) versus k for a = 10, b = 100, c = 2.7, m = 1; (c) versus m for a = 10, b = 100, c = 2.7, k = −0.2.
The initial values were set as (1.67610,−0.37856, 3.69140, 1.45851).

3.2. Coexisting Attractors

As discussed above, system (2) shows many complex dynamics, such as hyperchaos,
chaos, and quasi-periodic and periodic motions. Several coexisting attractors of system (2)
will be present under some appropriate parameters, indicating that hidden multistability
emerges. A system with coexisting attractors is very sensitive to the initial values, noise,
and system parameters. Importantly, under sudden disturbance, the state of the system
can easily change and switch from an ideal state to another state that may be undesirable.
However, multistability can make systems more flexible without adjusting parameters,
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and can be used with the correct control strategy to induce switching between various
coexistence states. The coexisting attractors of system (2) satisfying different initial values
may exhibit various dynamical behaviors.

3.2.1. Coexistence of Chaotic and Periodic Attractors

When we take the parameters (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1), the dynamic behav-
ior of system (2) may change greatly in the long run:

(a) For initial values (x0, y0, z0, w0) = (1, 1, 1, 1), the Lyapunov exponents can be
calculated as L1 = 0.037, L2 = 0, L3 = −0.2098, and L4 = −11.9386, and the fractal
dimension of the system is estimated to be 2.1765. A hidden chaotic attractor with no
equilibrium point can be revealed, whose 2D phase portrait is shown in Figure 8a;

(b) For initial values (x0, y0, z0, w0) = (−0.9,−1,−8,−1.7), the trajectory of the system
converges to a stable periodic orbit, as shown in Figure 8b. The Lyapunov exponents of the
system are found to be L1 = 0, L2 = −0.0144, L3 = −0.6047, and L4 = −11.5121, and the
Kaplan–Yorke dimension is 1.0.

Hence, for parameters (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1), system (2) has intricate
dynamics with coexisting chaotic and periodic attractors, as shown in Figure 8c.
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Figure 8. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1);
(a) chaotic attractor; (b) periodic attractor; (c) coexisting attractors. The yellow line represents
chaotic attractor and the black line represents periodic attractor.

3.2.2. Coexistence of Quasi-Periodic and Periodic Attractors

When we take the parameters (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1) and change the initial
values, the dynamic behavior of system (2) may produce different coexisting attractors:

(a) For initial values (x0, y0, z0, w0) = (0.885798, 0.890960,−7.338199, 1.357681), the
Lyapunov exponents of system (2) are calculated as L1 = 0, L2 = 0, L3 = −0.7809, and
L4 = −11.3183, and the Kaplan–Yorke dimension of the system can be estimated as 2.0.
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Because there are two zeros and two negative Lyapunov exponents, system (2) experiences
dynamical motion, which is called a quasi-periodic attractor, as depicted in Figure 9a;

(b) For initial values (x0, y0, z0, w0) = (−0.8,−0.8,−6.8,−1.8), the trajectory of the
system converges to a periodic orbit, as shown in Figure 9b. The Lyapunov exponents are
found to be L1 = 0, L2 = −0.004, L3 = −0.5976, and L4 = −11.4953, and the Kaplan–Yorke
dimension is 1.0.

Hence, for parameters (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1), quasi-periodic and periodic
attractors of system (2) coexist, as shown in Figure 9c.
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Figure 9. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1); (a) quasi-
periodic attractor; (b) periodic attractor; (c) coexisting attractors. The red line represents quasi-
periodic attractor and the blue line represents periodic attractor.

3.2.3. Coexistence of Chaotic and Quasi-Periodic Attractors

Let the parameters (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2) and choose initial values (1, 2, 5.2, 1).
The corresponding Lyapunov exponents are L1 = 0.0177, L2 = 0, L3 = −0.1730, and
L4 = −11.9126, which means the attractor is chaotic. The corresponding fractal dimen-
sion is 2.0876. The projection of this chaotic attractor onto the 2D phase space is presented in
Figure 10a.

Choosing the same parameter values and taking initial values (1, 1, 1, 1), the four
Lyapunov exponents are L1 = 0, L2 = 0, L3 = −0.1686, and L4 = −11.9045, which implies
that system (2) has a quasi-periodic attractor, whose projection onto the 2D phase space is
presented in Figure 10b.

Thus, for parameters (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2), system (2) has complex
dynamics with coexisting chaotic and quasi-periodic attractors, as illustrated in Figure 10c.
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Figure 10. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2);
(a) chaotic attractor; (b) quasi-periodic attractor; (c) coexisting attractors. The purple line repre-
sents chaotic attractor and the yellow line represents quasi-periodic attractor.

3.2.4. Coexistence of Hidden Periodic Attractors

Fixing the parameters (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2) and choosing initial val-
ues (−0.05, 0.15,−0.04,−3.77), system (2) has a periodic attractor with projection onto
the x–z plane, as presented in Figure 11a. The four Lyapunov exponents are L1 = 0,
L2 = −0.0688, L3 = −0.0699, and L4 = −12.0132.

Choosing initial values (−0.61,−0.38,−1.33,−0.79), one obtains the corresponding
Lyapunov exponents L1 = 0, L2 = −0.0234, L3 = −0.0245, and L4 = −12.1119, which also
implies a periodic attractor. The projection of the periodic attractor onto the 2D phase space is
displayed in Figure 11b and has a different topology from the periodic attractor in Figure 11a.

Thus, we can conclude that two periodic attractors in system (2) coexist with parame-
ters (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2), as depicted in Figure 11c.
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Figure 11. Two coexisting hidden periodic attractors of system (2); (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2);
(a) periodic attractor; (b) another periodic attractor; (c) coexisting periodic attractors. The black line
and the green line correspond to the periodic attractor shown in (a,b), respectively.

3.2.5. Coexistence of Hidden Hyperchaotic Attractors

Fixing the parameters (a, b, c, k, m) = (10, 70, 2.7,−0.2, 5) and taking the initial values
(1,−1, 1, 4), system (2) has an asymmetrical hidden hyperchaotic attractor with projection
onto the x–z plane, as shown in Figure 12a. The four Lyapunov exponents are L1 = 0.2069,
L2 = 0.1033, L3 = −0.1665, and L4 = −12.0257. The corresponding fractal dimension
is 3.0119.

Based on the symmetry about the z-axis of system (2), if we choose initial values
(−1, 1, 1,−4), the other asymmetrical hidden hyperchaotic attractor can be obtained, whose
2D phase portrait is shown in Figure 12b. The two attractors have the same Lyapunov
exponents and fractal dimension.

Choosing the same parameters and taking initial values (1, 1, 1, 1), the four Lyapunov
exponents are L1 = 0.4159, L2 = 0.2456, L3 = 0, and L4 = −12.6681, and the Kaplan–Yorke
dimension is 3.0521. A symmetrical hidden hyperchaotic attractor can be found, whose
projection onto the 2D phase space is presented in Figure 12c.

Through the above analysis, we can observe that system (2) simultaneously has three co-
existing hidden hyperchaotic attractors under parameters (a, b, c, k, m) = (10, 70, 2.7,−0.2, 5),
as shown in Figure 12d. The basins of attraction of three coexisting hidden hyperchaotic
attractors can also be calculated, as shown in Figure 13, where the yellow area denotes the
basin of attraction of a symmetrical hyperchaotic attractor, while the red and blue areas
represent the basin of attraction of an asymmetrical hyperchaotic attractor presented in
Figure 12a,b, respectively. Riddled basins can be observed in Figure 13, which means that the
dynamical behaviors of the proposed 4D system are extremely sensitive to the initial values.
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Figure 12. Three coexisting hidden hyperchaotic attractors of system (2); (a, b, c, k, m) =

(10, 70, 2.7,−0.2, 5); (a) asymmetrical hyperchaotic attractor; (b) the other asymmetrical hyperchaotic
attractor; (c) symmetrical hyperchaotic attractor; (d) coexisting hyperchaotic attractors. The green line,
the red line and the blue line correspond to the hyperchaotic attractor shown in (a–c), respectively.

Figure 13. Basins of attraction in the x(0)–y(0) initial plane with z(0) = w(0) = 0.
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4. Analysis of Unstable Cycles for New 4D Hyperchaotic System via
Variational Approach

In this section, we employ the variational calculation approach for the unstable peri-
odic orbit search and establish an appropriate symbolic encoding for the found cycles. We
also analyze the continuous deformations of cycles by the homotopy evolution method,
which shows applicable flexibility under different circumstances. We aim to accurately find
the encircling way of the orbit in the new 4D hyperchaotic system and develop an effective
way to classify periodic orbits. Several short periodic orbits in system (2) are located, and
the evolution law of the period of cycle alteration with parameters is discussed, which
indicates that the proposed method is effective at analyzing unstable periodic orbits.

4.1. Variational Method for Calculations

Strange attractors in hyperchaotic systems are densely covered by countless unstable
periodic orbits. Therefore, extracting unstable cycles usually has an important influence
on understanding their properties. Many numerical methods are employed to extract the
periodic orbits of various systems [45]. We utilized the variational method in this paper,
which has shown its reliability and efficiency [46]. The basic physical idea is to make an
initial loop guess about the shape of the periodic orbit, and then gradually evolve it into a
real periodic orbit. Initialization is important in the variational calculations, as it determines
whether the calculated periodic orbit is the one of interest, and it can be implemented by
various means [47].

Using the variational method to locate periodic orbits, a discretization equation,

∧A −∧v
∧
a 0

(δ
∼
x

δλ

)
= δτ

(
λ
∧
v−

∧
∼
v

0

)
, (4)

can be derived to solve for δ
∼
x and δλ, so as to achieve the location of the cycle and

period [46]. Compared to other numerical methods, as a result of the use of a continuum of
points, the variational method has the advantage of numerical stability. Furthermore, we
do not need to choose a Poincaré section beforehand. The variational method can be used
to calculate the stable or unstable periodic orbits of various systems [48–50]. In addition,
the continuous deformation of cycles with the variation of parameters can be studied based
on the variational method, and the bifurcation phenomenon can be observed by analyzing
whether the number or stability of cycles has changed. Next, we use the variational method
to extract the unstable cycles in system (2).

4.2. Extracting Unstable Cycles in a Hidden Hyperchaotic Attractor

We calculated the unstable cycles embedded in a hidden hyperchaotic attractor with
parameters (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1) by the variational method. Symbols were
used to encode them for cycles with different topological structures, so that all of the cycles
could be located without duplication or being missing based on symbolic dynamics [51].
When utilizing the variational method for initialization, the segments of trajectories with
similar shapes were obtained through numerical integration, and they were manually
connected to close, so as to become a loop. By this approach, several cycles with different
complexity were found. Figure 14 shows two periodic orbits with the simplest topology;
they have certain symmetry with each other and the shortest periods of the same size.
Figure 15 shows four more intricate periodic orbits, which are composed of two building
blocks of periodic orbits with different topologies.

Motivated by this observation, we marked the cycles in Figure 15a,b as 03 and 12,
respectively; thus, the cycle in Figure 14a is cycle 2, and that in Figure 14b is cycle 3. We did
not find cycle 0 or 1, which means that they were pruned. With the help of four basic orbital
segments, longer periodic orbits can also be encoded and calculated. Figure 16 shows six
cycles with topological length 3. In total, we found 18 periodic orbits within topological
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length 3, which are listed in Table 2. It is worth noting that the symmetry of system (2) can
also be seen from Table 2. The two cycles of commutative symbols 0 and 1, or 2 and 3, are
conjugate to each other, and they have the same periods.
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Figure 14. Two shortest periodic orbits in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 2; (b) cycle 3.
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Figure 15. Four periodic orbits with topological length 2 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 03; (b) 12; (c) 01; (d) 23.

According to the above encoding rules, other complex long periodic orbits can also be
calculated as follows. We generated the initial loop guess based on the symbol sequence
corresponding to the cycle, and employed the variational method to verify whether the
cycle existed. Figure 17 shows an unstable cycle with a topological length of 8, with
corresponding symbol encoding 02130101. The successful search of such complex periodic
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orbits also shows the effectiveness of our encoding method in calculating various periodic
orbits embedded in a hidden hyperchaotic attractor.
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Figure 16. Unstable cycles with topological length 3 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 001; (b) 003; (c) 023; (d) 021; (e) 223; (f) 012.
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Figure 17. Cycle 02130101 with topological length 8 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1).

Table 2. Eighteen unstable periodic orbits embedded in the hidden hyperchaotic attractor of system
(2) for (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1); listed are the topological length, itinerary p, period Tp,
and four coordinates of a point on the cycle.

Length p Tp x y z w

1 2 0.858233 0.851259 3.599482 −8.032931 −39.656931
3 0.858233 −0.851259 −3.599482 −8.032931 39.656931

2 03 1.362034 −4.076805 −1.813737 1.109695 −14.135359
12 1.362034 4.076805 1.813737 1.109695 14.135359
01 1.194275 5.206540 7.525051 −17.639962 1.385740
23 1.830597 0.626331 −0.321247 −4.302274 1.490707

3 001 1.732553 −5.282481 3.245260 0.268165 −34.418329
011 1.732553 5.282481 −3.245260 0.268165 34.418329
003 1.821191 −4.653735 2.777113 −2.962048 −38.837657
112 1.821191 4.653735 −2.777113 −2.962048 38.837657
132 2.211630 11.320228 14.639216 −16.413004 25.186818
023 2.211630 −11.320228 −14.639216 −16.413004 −25.186818
021 1.968277 −6.298304 3.295041 5.572765 −20.401797
013 1.968277 6.298304 −3.295041 5.572765 20.401797
223 2.766255 1.453074 −0.422130 2.547336 1.463103
233 2.766255 −1.453074 0.422130 2.547336 −1.463103
012 2.207939 4.137109 5.676602 −5.643553 −9.306008
031 2.207939 −4.137109 −5.676602 −5.643553 9.306008

4.3. Homotopy Evolution of Cycle Variation with Different Parameters

With the change of different parameters, the number of periodic orbits and their
stability can undergo changes, which means that bifurcations may occur [52]; the variational
approach is convenient to study various bifurcation behaviors. We studied the evolution of
unstable cycles of system (2) when parameters were altered, and the homotopy evolution
method could be conveniently used for the initialization [53]. For a dynamical system, when
the parameters alter little, most short cycles experience slight deformation unless bifurcation
occurs. Therefore, the periodic orbits previously calculated with given parameters could
be taken as the initial loop guess for the next calculations. Initializing in this way, the
calculations of cycles were very efficient.

First, the bifurcations of periodic orbits were investigated by varying a while fixing
b = 100, c = 2.7, k = −0.2, and m = 1. We used the previously calculated cycle 2 as
the initial loop guess to calculate cycle 2 for the next a value. Figure 18a illustrates the
homotopy evolution cases. We found that when a < 5 or a > 20, the calculation of cycle 2
by the variational method was no longer convergent. Thus, we can conclude that the
system experiences periodic orbit bifurcations at a = 5 and a = 20.
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Figure 18. Homotopy evolution of cycle 2 with respect to different parameters: (a) four a values;
(b) b values; (c) c values; (d) k values; (e) m values.

Then, we studied the continuous deformation of cycle 2 with respect to the b value
in the same way, fixing a = 10, c = 2.7, k = −0.2, and m = 1. Figure 18b shows the
deformation of cycle 2 with the b value. We also found that the periodic orbit bifurcations
occurred when b = 52. Similarly, we changed c, k, and m, respectively, and fixed the
remaining parameters to study the continuous deformation of cycle 2; the homotopy
evolution processes are shown in Figure 18c–e. Table 3 lists the periods Tp of cycle 2 at
different parameter values. By symmetry, it is obvious that cycle 3 has a similar deformation
as the variation of parameters. The above discussion demonstrates that if we take a new
set of parameters, new periodic orbits corresponding to the new period will appear, and
some of the periodic orbits in Table 2 will no longer exist due to periodic orbit bifurcations.

Finally, we explored the evolution rule between the orbital period and different
parameters. From Table 3, it can be concluded that the larger the parameters a, b, c, and m,
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the smaller the periods, and as k increases, the period becomes larger. We confirm that this
conclusion is applicable to all of the other short cycles calculated in system (2).

Table 3. Periods Tp of cycle 2 for different parameters.

a Tp b Tp c Tp k Tp m Tp

5 1.082797 60 0.953492 −2 0.880703 −0.5 0.705715 −40 0.996271
10 0.858233 80 0.911549 0 0.873372 −0.3 0.821457 −20 0.968155
15 0.729400 120 0.811395 2 0.864607 0.1 0.964986 10 0.799075
20 0.610639 140 0.771540 4 0.833397 0.5 1.140899 30 0.611363

5. Circuit Design and Realization of New System

The circuit implementation can verify the feasibility and validity of a new chaotic
system. The electronic synthesis of a novel antimonotic hyperjerk system was proposed
based on an analog computing approach [54]. We employed Multisim simulation software
to build a circuit. We selected four channels, corresponding to four state variables of the
new system, to observe whether the results of the phase diagrams were consistent with the
output of the actual circuit. The main task was to design and implement the hyperchaotic
system and verify the circuit that realized the coexistence of chaotic and periodic attractors.
Since the state variables of system (2) were beyond the dynamic range of the device, a
proportional transformation was required to set the amplitude scaling factor to 10, where
X = 1

10 x, Y = 1
10 y, Z = 1

10 z, and W = 1
10 w. Therefore, system (2) was rewritten as

·
X = a(Y− X) + 10kXZ + W
·
Y = −cY− 10XZ (5)
·
Z = −0.1b + 10XY
·

W = −mY.

We implemented a time-scale transformation of Equation (5), with the time scale factor
set to τ0 = 1

R0C0
= 1000. A new time variable τ was used instead of t, and t = τ0τ. As

shown in Figure 1, a hyperchaotic attractor exists under the parameters (a, b, c, k, m) =
(10, 100, 2.7,−0.2, 1). The proposed circuit design is depicted in Figure 19, in which three
analog multipliers (the output gain was 0.1) were used to realize 3 nonlinear terms, 12
AD712AH operational amplifiers, 4 capacitors, and 25 resistances to realize the addition,
integration, and inversion operations. The power supply voltage was ±18 V. Based on
Kirchhoff’s law, the corresponding circuit equations can be derived as

·
X =

R5

R2R6C1
Y− R5

R1R6C1
X− R5

R3R6C1
0.1XZ +

R5

R4R6C1
W

·
Y = − R11

R9R12C2
Y− R11

R10R12C2
0.1XZ (6)

·
Z =

R17

R16R18C3
V1 +

R17

R15R18C3
0.1XY

·
W = − R22

R21R23C4
Y.

The values of each device in the circuit can be obtained by comparing Equations (5) and
(6); we set V1 = −1 V, R3 = 5 kΩ, R9 = 37.037 kΩ, Ci = 100 nF (i =1,2,3,4), Ri = 10 kΩ
(i = 1, 2, 6, 7, 8, 12, 13, 14, 16, 18, 19, 20, 23, 24, 25), Rj = 100 kΩ (j = 4, 5, 11, 17, 21, 22), and
Rk = 1 kΩ (k = 10, 15). The results obtained by Multisim 14.0 with initial conditions
(X(0), Y(0), Z(0), W(0)) = (1 V, 1 V, 1 V, 1 V) are shown in Figure 20, and it can be clearly
seen that the results are consistent with the phase diagrams from the numerical simulation.
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When the system parameters change to a = 10, b = 12, c = 2.7, k = −0.2, and
m = 1, system (2) has coexisting chaotic and periodic attractors. We implemented a scale
transformation of z, reducing it by a factor of 5, to obtain

·
X = a(Y− X) + 5kXZ + W
·
Y = −cY− 5XZ (7)
·
Z = −0.2b + 0.2XY
·

W = −mY.

Figure 19. Circuit diagram of the implementation of system (2).
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(a) (b)

(c)

Figure 20. Two-dimensional phase portraits of the new system in Multisim of the circuit with
a = 10, b = 100, c = 2.7, k = −0.2, and m = 1: (a) X–Z plane; (b) X–Y plane; (c) Y–W plane.

We modified the values of several resistors, R3 = 10 kΩ, R10 = 2 kΩ, R15 = 60 kΩ,
R16 = 50 kΩ, and R17 = 120 kΩ, while keeping the other devices in the circuit unchanged;
two coexisting attractors can now be observed with initial conditions
(X(0), Y(0), Z(0), W(0)) = (1 V, 1 V, 1 V, 1 V) and (X(0), Y(0), Z(0), W(0)) = (−0.9 V,
−1 V, −8 V, −1.7 V), as illustrated in Figure 21. Obviously, the circuit modeling findings
are in good agreement with Figure 8, which shows the validity and practicability of the
proposed system.

(a) (b)

Figure 21. Phase portraits of coexisting attractors in Multisim of the circuit with a = 10, b = 12,
c = 2.7, k = −0.2, and m = 1: (a) hidden chaotic attractor; (b) hidden periodic attractor. Scales of
horizontal and vertical axes are 5 and 2 V/div, respectively.
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6. Conclusions

In this study, we constructed a novel 4D hyperchaotic system by linearly adding a
new state variable to a new hidden chaotic system with two stable equilibrium points. The
proposed system could generate hidden hyperchaotic attractors and various types of coex-
isting attractors, depending on the choice of parameters and initial values; this showed the
diversity and complexity of the dynamical behavior of the system. The numerical analyses
of phase diagrams, time-sequence diagrams, basins of attraction, Lyapunov exponents, and
bifurcation diagrams were also been discussed, further confirming the coexistence of these
attractors and riddled basins. The C0 complexity analysis related to the main parameters
of the new system was also explored, which identified the dynamic characteristics and
complexity of the system. In addition, by using the variational method, the unstable cycles
embedded in the hidden hyperchaotic attractor were calculated and encoded accordingly.
The periodic orbit bifurcations were analyzed based on the continuous deformation of cycles.
The feasibility of the novel 4D hyperchaotic model was verified by an analog circuit, which
was in good qualitative agreement with the results obtained by numerical simulations.

Although the four-letter encoding of unstable periodic orbits embedded in the hidden
hyperchaotic attractor was presented in this paper, the symmetric reduction of a given
dynamical system is still an interesting problem to investigate, and may reduce the number
of letters used to encode periodic orbits. In addition, the analysis of the dynamics and
various attractors of the newly proposed 4D system with two lines of equilibria is also
worthy of further research. More mathematical investigations, including other types of
bifurcations and periodic orbits of the new system, will be carried out in our future work.
We believe that this kind of autonomous 4D system with hidden hyperchaotic attractors
and many coexisting attractors have potential application in physics and engineering, such
as in lasers, robotics, secure communications, control systems, random signal generation,
and information encryption. The research in this paper could provide some enlightenment
for the more systematic study of 4D hyperchaotic systems.
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45. Cvitanović, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G. Chaos: Classical and Quantum; Niels Bohr Institute: Copenhagen,

Denmark, 2012; pp. 131–133.
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