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From a computational point of view, in nonlinear dynamical systems, attractors can be regarded
as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a
standard computational procedure, in which after a transient process a trajectory, starting from

a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation,

therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does

not intersect with small neighborhoods of equilibria. While classical attractors are self-excited,
attractors can therefore be obtained numerically by the standard computational procedure. For
localization of hidden attractors it is necessary to develop special procedures, since there are no
similar transient processes leading to such attractors.

At first, the problem of investigating hidden oscillations arose in the second part of Hilbert’s
16th problem (1900). The first nontrivial results were obtained in Bautin’s works, which were
devoted to constructing nested limit cycles in quadratic systems, that showed the necessity of
studying hidden oscillations for solving this problem. Later, the problem of analyzing hidden
oscillations arose from engineering problems in automatic control. In the 50–60s of the last
century, the investigations of widely known Markus–Yamabe’s, Aizerman’s, and Kalman’s con-

jectures on absolute stability have led to the finding of hidden oscillations in automatic control
systems with a unique stable stationary point. In 1961, Gubar revealed a gap in Kapranov’s
work on phase locked-loops (PLL) and showed the possibility of the existence of hidden oscil-
lations in PLL. At the end of the last century, the difficulties in analyzing hidden oscillations
arose in simulations of drilling systems and aircraft’s control systems (anti-windup) which caused
crashes.

Further investigations on hidden oscillations were greatly encouraged by the present authors’
discovery, in 2010 (for the first time), of chaotic hidden attractor in Chua’s circuit.

This survey is dedicated to efficient analytical–numerical methods for the study of hidden
oscillations. Here, an attempt is made to reflect the current trends in the synthesis of analytical
and numerical methods.
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Hidden Attractors in Dynamical Systems

1. Introduction. Self-Excited and

Hidden Oscillations

In the first half of the last century during the ini-
tial period of the development of the theory of
nonlinear oscillations [Timoshenko, 1928; Krylov,
1936; Andronov et al., 1966; Stoker, 1950], much
attention was given to the analysis and synthe-
sis of oscillating systems, for which the problem
of the existence of oscillations can be solved with
relative ease. These investigations were encouraged
by the applied research on periodic oscillations
in mechanics, electronics, chemistry, biology and
so on (see, e.g. [Andronov et al., 1966; Strogatz,
1994]; (at the end of 19th century, this research was
begun in Rayleigh’s works devoted to the study of
string oscillations in musical instruments [Rayleigh,
1877]). The structure of many applied systems
considered was such that the existence of oscilla-
tions was “almost obvious” — the oscillation was
excited from an unstable equilibrium (so called self-
excited oscillation). From a computational point
of view this allows one to use a standard compu-

tational procedure, in which after a transient pro-

cess, a trajectory, starting from a point of unstable

manifold in a neighborhood of equilibrium, reaches

a state of oscillation, therefore one can easily

identify it.
Later, in the middle of 20th century, in applied

systems except for self-excited periodic oscillations,
numerically chaotic oscillations [Ueda et al., 1973;
Lorenz, 1963] were found to be also excited from
an unstable equilibrium and can be computed by
the standard computational procedure. Nowadays,
thousands of publications have been devoted to
the computation and analysis of self-excited chaotic
oscillations.

Note that for the computation of oscillations by
the standard computational procedure, it is neces-
sary that the oscillation has an attraction domain.
By such property of domain, this computational
procedure can reach the oscillation and identify it.
An attracting oscillation and an attracting set of
oscillations below will be called an attractor. Here
the ideology of transient process is transferred nat-
urally from the control theory into computational
mathematics and the computational process of self-
excited attractors.

A further study showed that the self-excited
periodic and chaotic oscillations did not give
exhaustive information about the possible types
of oscillations. In the middle of 20th century, the

examples of periodic and chaotic oscillations of
another type were found, later called [Leonov et al.,
2011c] hidden oscillations and hidden attractors, of

which the basin of attraction does not intersect with

small neighborhoods of equilibria. Numerical local-
ization, computation, and analytical investigation
of hidden attractors are much more challenging
problems, since here there is no possibility to use
information about equilibria for organization of
similar transient processes in the standard com-
putational procedure. Thus, the hidden attractors
cannot be computed by using this standard pro-
cedure. Furthermore, in this case it is unlikely
that the integration of trajectories with random
initial data furnishes hidden attractor localization
since a basin of attraction can be very small and
the dimension of hidden attractor itself can be
much less than the dimension of the considered
system.

At first, the problem of analyzing hidden oscil-
lations arose in the second part of Hilbert’s 16th
problem (1900) for two-dimensional polynomial
systems [Hilbert, 1901–1902]. The first nontrivial
results were obtained in Bautin’s works [Bautin,
1939, 1949, 1952], which were devoted to construct-
ing nested limit cycles in quadratic systems and
showed the necessity of studying hidden oscillations
for solving this problem.

Later, the problem of analyzing hidden oscilla-
tions arose from engineering problems in automatic
control. In the middle of the last century, Kapranov
studied [Kapranov, 1956] qualitative behavior of
PLL systems, widely used nowadays in telecom-
munications and computer architectures, and esti-
mated stability domains. In these investigations,
Kapranov assumed that in PLL systems there
were self-excited oscillations only. However, in 1961,
Gubar’ [1961] revealed a gap in Kapranov’s work
and showed analytically the possibility of the exis-
tence of hidden oscillations in two-dimensional
system of phase-locked loop: thus, from a compu-
tational point of view, the system considered was
globally stable (all the trajectories tend to equilib-
ria), but, in fact, there was a bounded domain of
attraction only.

In 1950–60’s the investigations of widely known
Markus–Yamabe [1960], Aizerman [1949], and
Kalman [1957] conjectures on absolute stability
have led to the finding of hidden oscillations in auto-
matic control systems with a unique stable station-
ary point and with a nonlinearity, which belongs
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to the sector of linear stability (see, e.g. [Krasovsky,
1952; Pliss, 1958; Fitts, 1966; Bernat & Llibre,
1996; Bragin et al., 2011; Leonov & Kuznetsov,
2013a]).

At the end of the last century the difficulties of
numerical analysis of hidden oscillations arose [Lau-
vdal et al., 1997] in simulation of aircraft’s control
systems (anti-windup scheme) and caused aircraft
crashes.

In the second half of the twentieth century,
the problems considered stimulated a large number
of various investigations. Hilbert’s sixteenth prob-
lem stimulated the development of bifurcation the-
ory and the theory of normal forms and Aizerman
problem stimulated the development of the theory
of absolute stability. The most complete bibliogra-
phy is available in [Reyn, 1994; Chavarriga & Grau,
2003; Li, 2003; Liberzon, 2006], involving more than
two thousand references.

Further investigations of hidden oscillations
were greatly encouraged by the authors’ discovery,
in 2010 (for the first time), of chaotic hidden attrac-

tor in generalized Chua’s circuit [Kuznetsov et al.,
2010; Leonov et al., 2010c] and later discovery of
chaotic hidden attractor in classical Chua’s circuit

[Leonov et al., 2011c]. It should be remarked that
for the last thirty years, several thousand publica-
tions, in which a few hundreds of attractors were
discussed, have been devoted to Chua’s circuit and
its various modifications. However, up to now these
Chua’s attractors were self-excited.

The present survey is dedicated to some effi-
cient analytical–numerical methods for the study of
oscillations. Here, an attempt is made to reflect the
current trends in synthesis of analytical and numer-
ical methods.

The analytical methods considered are focused
on the creation of constructive computational algo-
rithms and applying the powerful computer tech-
niques to solve complex mathematical problems.
Here, following Poincaré’s advice “to construct the

curves defined by differential equations” [Poincaré,
1881], which after the appearance of modern com-
puters became even more actual and assumed a
new sense, the main attention is focused on the
development of constructive methods for scientific

visualization [Earnshaw & Wiseman, 1992] “to gain

understanding and insight into the data” and “to
promote a deeper level of understanding of the data

under investigation and to foster new insight into

the underlying processes”.

With this aim, in this work, new approaches are
developed.

• The method of asymptotic integration of Lien-

ard equation. This method is based on substan-
tial extension to the classical method, in which
smooth mappings of phase plane on the Poincaré
sphere are used. Here, we use various classes of
such mappings, each of which acts on a separate
part of the phase plane. Such an approach per-
mits one to obtain new results, by far smaller
number of analytical formulas, and preserve geo-
metric visualization, and explains the main steps
of the proof by a few pictures.

• The modification of harmonic linearization and

describing function methods for the critical case

(when the generalized Routh–Hurwitz conditions

are satisfied). In engineering practice, for the
analysis of the existence of periodic solutions,
classical harmonic linearization and describing
function methods are widely used. However, these
classical methods are not strictly mathemati-
cally reasonable and can lead to incorrect results
(e.g. as for the critical case in Aizerman’s and
Kalman’s conjectures). The special modification
of these methods, based on the method of small
parameter, permits one to obtain the strict justi-
fication of the existence of periodic solution and
to define the initial data of this solution.

• The effective computational procedures of attrac-

tors’ localization. The harmonic linearization
method, the classical method of small parame-
ter, and numerical methods together allow one
to perform the localization of an attractor by a
multistep procedure with the use of harmonic lin-
earization method at the first step. The proposed
procedure, based on the continuation principle,
permits one to follow numerically from the trans-
formation of a starting periodic solution, defined
analytically, to a periodic solution or chaotic
attractor. Here, it is important for a local attrac-
tion domain of the considered solution to be
preserved.

Consider classical examples of visualization of
self-excited oscillations.

Example 1.1 [Rayleigh’s string oscillator]. In
studying string oscillations Rayleigh [1877] discov-
ered first that in two-dimensional nonlinear dynam-
ical system can arise undamped vibrations without
external periodic action (limit cycles). Consider the
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Fig. 1. Localization of limit cycle in Rayleigh system.

localization of limit cycle in Rayleigh system

ẍ − (a − bẋ2)ẋ + x = 0, (1)

for a = 1, b = 0.1. In Fig. 1, a limit cycle is localized
by two trajectories (each trajectory begins in red,
and ends in green), attracting to the limit cycle.

The extension of Eq. (1) is a well-known
van der Pol equation.

Example 1.2 [Van der Pol oscillator]. Consider
oscillations arising in an electrical circuit — the van
der Pol oscillator [van der Pol, 1926]:

ẍ + µ(x2 − 1)ẋ + x = 0, (2)

and make a computer simulation for the parameter
µ = 2 (see Fig. 2).

Example 1.3 [Belousov–Zhabotinsky (BZ) reac-
tion]. In 1951, Belousov discovered first oscillations
in chemical reactions in a liquid phase [Belousov,
1959]. Consider one of the Belousov–Zhabotinsky
dynamic models

εẋ = x(1 − x) +
f(q − x)

q + x
z

ż = x − z,

(3)

and fulfill a computer simulation with standard
parameters f = 2/3, q = 8 × 10−4, ε = 4 × 10−2.

Figure 3 shows the effect of stiffness of the
system (an abrupt change in the direction of

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Fig. 2. Numerical localization of limit cycle in van der Pol
oscillator.

trajectories), which substantially complicates
numerical analysis of such systems [Hairer & Wan-
ner, 1991].

Now consider classical three-dimensional
dynamic models, where unlike in two-dimensional
systems, except for the periodic ones the chaotic
oscillations can arise.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

Fig. 3. Numerical localization of limit cycle in Belousov–
Zhabotinsky (BZ) reaction.
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Fig. 4. Numerical localization of chaotic attractor in Lorenz system.

Example 1.4 [Lorenz system]. Consider Lorenz
system [Lorenz, 1963]

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz,

(4)

and make its simulation with standard parameters
σ = 10, β = 8/3, ρ = 28 (see Fig. 4).

Example 1.5 [Chua system]. Consider the behavior
of classical Chua circuit [Chua, 1992].

In the dimensionless coordinates a dynamic
model of this circuit is as follows

ẋ = α(y − x) − αf(x),

ẏ = x − y + z,

ż = −(βy + γz).

(5)

Here the function

f(x) = m1x + (m0 − m1)sat(x)

= m1x +
1

2
(m0 − m1)(|x + 1| − |x − 1|)

(6)

characterizes a nonlinear element, of the system,
called Chua’s diode; α, β, γ, m0, m1 are param-
eters of the system. In this system, the strange
attractors discovered [Matsumoto, 1990] were called
then Chua’s attractors. To date all the known clas-
sical Chua’s attractors are excited from an unsta-
ble equilibria. This makes it possible to compute
various Chua’s attractors [Bilotta & Pantano, 2008]
with relative ease. For simulation of this system, we
use the following parameters α = 9.35, β = 14.79,
γ = 0.016, m0 = −1.1384, m1 = 0.7225 (see Fig. 5).

For all the above examples, the limit cycles and
attractors are excited from an unstable equilibrium.
From a computational point of view, in this case,
it is possible to use a numerical method in which
after a transient process, a trajectory, starting from
a point of unstable manifold in a neighborhood of
unstable equilibrium, reaches a state of attractor,
and therefore it can be easily identified.

This series of examples can be extended to
the cases of other well-known systems (see [Tim-
oshenko, 1928; Andronov et al., 1966; Stoker, 1950;
Chance et al., 1973; Strogatz, 1994; Jones et al.,
2010] and others). We now consider problems where
hidden oscillations occur.
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Fig. 5. The numerical localization of chaotic attractor in Chua’s circuit.

2. 16th Hilbert’s Problem

2.1. Limit cycles of two-dimensional

quadratic systems.

Hilbert–Kolmogorov’s problem

In 1900, David Hilbert posed the problem to inves-
tigate the number and possible dispositions of limit
cycles in two-dimensional polynomial systems in
relation to the degree of the considered polynomials.

. . . This is the question as to the maximum

number and position of Poincaré ’s boundary cycles

(cycles limits) for a differential equation of the first

order and degree of the form dx/dy = Y/X, where

X and Y are rational integral functions of the nth

degree in x and y . . .
This is the second part of 16th Hilbert Prob-

lem [Hilbert, 1901–1902], which Smale [1998] refor-
mulated later in the following way: Is there a bound

K = H(n) on the number of limit cycles of the form

K < nq for the polynomial system

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (7)

where n is the maximum of the degree of polynomi-

als Pn and Qn and q is a universal constant.

For more than a century, in attempting to
solve this problem, numerous analytical results were
obtained (see, references in [Reyn, 1994]). But the
problem is still far from being resolved even for a
simple class of quadratic systems.

The important direction of the study of
Hilbert’s sixteenth problem is a proof of finiteness of
the number of limit cycles. The history of this proof
for polynomial systems on a plane is connected with
the well-known work of Dulac [1923]. However, later
in Dulac’s proof, gaps were found [Ilyashenko, 1985].
These gaps were corrected by Bamon [1985] (for
quadratic polynomial systems) and, independently,
by Ilyashenko [1991] and by Ecalle [1992] (for gen-
eral polynomial systems).

The creation of effective methods for the con-
struction of systems with limit cycles was initiated
by Bautin [1949, 1952]. In his works, for the con-
struction of nested limit cycles, an effective analyti-
cal method was proposed based on determining the
sequential symbolic expressions of Lyapunov values
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G. A. Leonov & N. V. Kuznetsov

(called also focus values, Lyapunov quantities, Lya-

punov coefficients, Poincaré–Lyapunov constants).
The sequential computation of Lyapunov values,
used by Bautin, allowed him to discriminate first
a class of quadratic systems, in which three nested
limit cycles (here inner cycle is obviously a hidden
oscillation) can be found in the neighborhood of
degenerate focus by small perturbations of system
coefficients [Bautin, 1952] (such cycles are naturally
called small or small-amplitude limit cycles). Next,
Petrovskii and Landis [1955] asserted that quadratic
system can have less than or equal to three limit
cycles. But later they reported a gap in the proof
[Petrovskii & Landis, 1959]. Quadratic systems were
found with four limit cycles [Chen & Wang, 1979;
Shi, 1980] (three nested small limit cycles, obtained
by Bautin’s technique, and one large (or normal-
amplitude) limit cycle, surrounding another focus
equilibrium).

So, up to now, the best result of possible esti-
mation for number H(2) of limit cycles in quadratic
system is H(2) ≥ 4 and it is finite (for cubic sys-
tems H(3) ≥ 13 [Li et al., 2009], and in the work
[Han & Li, 2012] a lower estimate is given for the
Hilbert number H(n): it grows at least as rapidly
as (2ln2)−1(n + 2)2ln(n + 2) for all large n).

The appearance of modern computers permits
one to use numerical simulation of complicated non-
linear dynamical systems and to obtain new infor-
mation on a structure of their trajectories. However,
the possibilities of “simple” approach, based on the
construction of trajectories by numerical integra-
tion of the considered differential equations, turned
out to be highly limited.

In studying the 16th Hilbert problem, the
numerical search and the construction of limit
cycles are a rather complicated problem by reason of
the presence of nested limit cycles (which, as a rule,
are constructed analytically with the use of small
perturbations and bifurcation analysis), the effects
of trajectory rigidity [Leonov et al., 2011a], and a
large dimension of the considered space of system’s
parameters. The latter was shown, for example, in
the task posed by academician Kolmogorov and
described by Arnold in [Arnold, 2005]: To estimate

the number of limit cycles of square vector fields on

plane, Kolmogorov had distributed several hundreds

of such fields among a few hundreds of students

of Mechanics and Mathematics Faculty of Moscow

State University as a mathematical practice. Each

student had to find the number of limit cycles of a

field. The result of this experiment was absolutely

unexpected : not a single field had a limit cycle! A

limit cycle is conserved when the field coefficients

are slightly changed. Hence, systems with one, two,
three (and even, as would become known later, four)
limit cycles form open sets in a space of coefficients

such that in the case of a random choice of poly-

nomial coefficients the probabilities of entering into

these sets are positive. The fact that this did not

happen suggests that the above-mentioned probabil-

ities are obviously small.

The result of this experiment also demonstrates
the need to develop purposeful methods to search
periodic oscillations, that is, both analytical and
numerical methods with the use of the full power
of current computational techniques.

Here, we are concerned with the Kol-
mogorov problem and will elucidate whether two-
dimensional quadratic dynamical systems exist for
which the students might have revealed and visual-
ize limit cycles in their tutorial exercise described
above.

2.2. Quadratic systems reduction

A two-dimensional quadratic system may be writ-
ten as

ẋ = a1x
2 + b1xy + c1y

2 + α1x + β1y,

ẏ = a2x
2 + b2xy + c2y

2 + α2x + β2y,
(8)

where aj, bj , cj , αj , βj are real numbers.
System (8) can be reduced to a more conve-

nient form. For this purpose, the following simple
assertions will be proved.

Proposition 1. Without loss of generality, it can be

assumed that c1 = 0.

For the proof, the linear change x → x + νy,
y → y is made. Here ν is a real solution of the
following equation

−a2ν
3 + (a1 − b2)ν

2 + (b1 − c2)ν + c1 = 0. (9)

The equation always has a real solution if a2 �= 0.
If a2 = 0, then after the change of variables

{x, y} → {y, x} it can be obtained that c1 = 0 and
Proposition 1 is proved.

Proposition 2. Suppose, c1 = 0, β1 �= 0. Then,
without loss of generality, it can be assumed that

α1 = 0.

The proof of this assertion is based on the use of
the following linear change x → x, y → y−α1x/β1.
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Hidden Attractors in Dynamical Systems

Proposition 3. Let c1 = 0, α1 = 0, a1 �= 0, b1 �= 0,
β1 �= 0. Then, without loss of generality, it can be

assumed that

c1 = α1 = 0, a1 = b1 = β1 = 1.

The proof is by the following linear change

x → β1

b1
x, y → a1β1

b2
1

y, t → b1

a1β1
t.

By Propositions 1–3, it can be assumed that

c1 = α1 = 0, a1 = b1 = β1 = 1. (10)

Then in the place of system (8), we can consider

ẋ = x2 + xy + y,

ẏ = a2x
2 + b2xy + c2y

2 + α2x + β2y.
(11)

Further, the indices of coefficients of system (11)
will be omitted.

Other widely used reductions of quadratic
systems can be found in [Ye et al., 1986].

2.3. Transformation of

two-dimensional quadratic

system to discontinuous

Lienard system

Here it will be considered, the nonlinear transfor-
mation of quadratic system to Lienard system (or
Lienard equation), which in many cases allows to
effectively investigate limit cycles (see, e.g. [Lynch,
2010; Borodzik & Żo�la̧dek, 2008; de Maesschalck &
Dumortier, 2011; Yang & Han, 2012]).

Consider a quadratic system, and reduce it to
special Lienard equation. The transformation of
quadratic systems to Lienard equation can be found
in [Cherkas & Zhilevich, 1970; Ye et al., 1986; Cop-
pel, 1989, 1991; Albarakati et al., 2000]. Here, the
authors follow the works [Leonov, 1997, 1998, 2006].

At first, prove the following

Proposition 4. The half-plane

Γx>−1 = {x > −1, y ∈ R
1}

is positively invariant with respect to system (11).

The assertion follows from the fact that ẋ(t) =
x(t)2 = 1 for x(t) = −1.

System (11) can be reduced to the Lienard
system

ẋ = u, u̇ = −f(x)u − g(x) (12)

by the change of variables
(

y +
x2

x + 1

)

|x + 1|q → u, x → x. (13)

Here

f(x) = Ψ(x)|x + 1|q−2,

Ψ(x) = (2c − b − 1)x2 − (2 + b + β)x − β,

g(x) = Φ(x)
|x + 1|2q

(x + 1)3
,

Φ(x) = −x(x + 1)2(ax + α)

+ x2(x + 1)(bx + β) − cx4

(14)

and q = −c.
By the transformation reverse to (13), sys-

tem (12) takes the form

ẋ = (x2 + xy + y)
|x + 1|q
(x + 1)

,

ẏ = (ax2 + bxy + cy2 + αx + βy)
|x + 1|q
(x + 1)

.

(15)

By Proposition 4, the trajectories of this sys-
tem are also the trajectories of system (11) on the
left and right of line {x = −1}.

Further, a method of asymptotic integration
is described [Leonov, 2010a], which permits one
to obtain a rather simple existence criteria of
limit cycles of system (12) and the corresponding
quadratic system.

2.4. Asymptotic integration method

for discontinuous Lienard

equation

Classical analysis of nonlocal qualitative behavior of
two-dimensional systems is based on the use of var-
ious smooth mappings, of the whole phase space on
a sphere, under which the infinitely distant points
are mapped on a great circle (Poincaré compactifi-
cation, Poincaré–Lyapunov compactification) (see,
e.g. [Bautin & Leontovich, 1976; Dumortier et al.,
2006]). This allows to consider a system behavior
on the closed disk. The analysis of behavior of crit-
ical points at infinity (by special changes, infinite
points are mapped into finite ones and a standard
local analysis can be applied), the local analysis of
critical points, and the analysis of invariants permit
one to consider the appearance of limit cycles.
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G. A. Leonov & N. V. Kuznetsov

Consider another effective approach for investi-
gation of two-dimensional quadratic systems. This
approach is based on the extension of the classi-
cal method, in which smooth mappings of phase
plane on the Poincaré sphere are applied and in this
case, various classes of such maps are used, each of
which acts on a separate part of phase plane. Such
an approach permits one to obtain new results by
far smaller number of analytical formulas and to
preserve geometric visualization, so the main steps
of the proof are explained by a few figures. Fur-
ther, this approach will be applied to quadratic sys-
tems. It can also be extended to other classes of
two-dimensional systems.

Here, a main scheme of applying the method of
asymptotic integration to system (12) is presented.
For the description of this method, Lienard sys-
tem (12) with functions (14), where q ∈ (−1, 0),
is considered.

Suppose that for large |x| the following relations

Ψ(x)

x2
= A + O

(

1

|x|

)

,
Φ(x)

x4
= B + O

(

1

|x|

)

,

Ψ(−1) = P, Φ(−1) = Q

are satisfied. It is well known that system (12) is
equivalent to the first order equation

F
dF

dx
+ f(x)F + g(x) = 0. (16)

Introduce the following transformations of
Eq. (16):

(1) z = (x + 1)q+1 : {x ≥ 0} → {z ≥ 1}, G(z) =

F (z
1

q+1 − 1),
(2) z = (x+ 1)q−1 : {x∈ (−1, 0]}→ {z ≥ 1}, G(z) =

F (z
1

q−1 − 1),
(3) z = |x + 1|q+1 : {x ≤ −2} → {z ≥ 1}, G(z) =

F (−z
1

q+1 − 1),
(4) z = |x + 1|q−1 : {x ∈ [−2,−1)} → {z ≥ 1},

G(z) = F (−z
1

q−1 − 1).

In these cases Eq. (16) can be transformed in
the following way:

(1) GdG +
1

(q + 1)

Ψ(z
1

q+1 − 1)

z
2

q+1

Gdz

+
1

(q + 1)

Φ(z
1

q+1 − 1)

z
4

q+1

zdz = 0,

(17)

(2) GdG +
1

(q − 1)
Ψ(z

1
q−1 − 1)Gdz

+
1

(q − 1)
Φ(z

1
q−1 − 1)zdz = 0, (18)

(3) GdG − 1

(q + 1)

Ψ(z
1

q+1 − 1)

z
2

q+1

Gdz

+
1

(q + 1)

Φ(z
1

q+1 − 1)

z
4

q+1

zdz = 0, (19)

(4) GdG − 1

(q − 1)
Ψ(z

1
q−1 − 1)Gdz

+
1

(q − 1)
Φ(z

1
q−1 − 1)zdz = 0. (20)

For the large z, Eq. (17) is close to the equation

GdG +
A

(q + 1)
Gdz +

B

(q + 1)
zdz = 0, (21)

Eq. (19) to the equation

GdG − A

(q + 1)
Gdz +

B

(q + 1)
zdz = 0, (22)

Eq. (18) to the equation

GdG +
P

(q − 1)
Gdz +

Q

(q − 1)
zdz = 0, (23)

and Eq. (20) to the equation

GdG − P

(q − 1)
Gdz +

Q

(q − 1)
zdz = 0. (24)

Suppose,

P 2 > 4Q(q − 1), P > 0. (25)

For parameters A and B, the following cases are
considered:

(1) A > 0, B > 0 (26)

(2) A < 0, B > 0, A2 < 4B(q + 1). (27)

For Eqs. (23) and (24) under condition (25) the
disposition of solutions is shown in Fig. 6.

For Eq. (21) under condition (26), the dispo-
sition of solutions is shown in Fig. 7 and under
condition (27) in Fig. 8.

For Eq. (22) under condition (26) the dispo-
sition of solutions is shown in Fig. 9 and under
condition (27) in Fig. 10.
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Hidden Attractors in Dynamical Systems

Fig. 6.

Fig. 7.

The solutions G(z) of Eqs. (17)–(20) with the
large initial data G(1) = R ≫ 1 are close to the
solutions of Eqs. (21)–(24). Therefore, from Figs. 6–
10, a behavior of trajectories of system (12) can be
obtained, as shown in Fig. 11.

Fig. 8.

Here conditions (25)–(27) are responsible
for the behavior of solutions of linear systems
(17)–(20). For sufficiently large initial data, a sepa-
rating solution can be obtained in the bands −2 <
x < −1 and −1 < x < 0 and in the rest of the
plane there are trajectories, which make a turn and
are clutched by separating solutions in bands.

For trajectories’ behavior considered above the
following assertions can be proved.

Consider a certain fixed number δ > 0. Take
sufficiently large number R > 0, and introduce the
following denotations

λ = − A

2(q + 1)
, ω =

√

4B(q + 1) − A2

2(q + 1)
.

Lemma 1. Let conditions (27) be satisfied. Then

for the solution of system (12) with the initial data

x(0) = r, u(0) = R there exists a number T > 0
such that
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G. A. Leonov & N. V. Kuznetsov

Fig. 9.

x(T ) = r, u(T ) < 0, x(t) > r, ∀ t ∈ (0, T ),

R exp

(

λπ

ω
− δ

)

< |u(T )| < R exp

(

λπ

ω
+ δ

)

.

The estimation of negative F (Z) on [1, Z] is
similar to that of positive F (Z) on this interval.

Take a certain number c < −1.

Lemma 2. Let conditions (27) be satisfied. Then

for the solution of system (12) with the initial data

x(0) = r, u(0) = −R, there exists a number T > 0
such that

x(T ) = r, u(T ) > 0, x(t) < r, ∀ t ∈ (0, T ),

R exp

(

λπ

ω
− δ

)

< u(T ) < R exp

(

λπ

ω
+ δ

)

.

Lemma 3. Let conditions (26) be satisfied. Then

for the solution of system (12) with the initial data

x(0) = 0, u(0) = R, there exists a number T > 0
such that

Fig. 10.

x(T ) = 0, u(T ) < 0, x(t) > 0, ∀ t ∈ (0, T ),

−δR < u(T ) < 0.

Lemma 4. Let conditions (26) be satisfied. For

the solution of system (12) with the initial data

x(0) = r, u(0) = −R, there exists a number T > 0
such that

x(T ) = r, u(T ) > 0, x(t) < r, ∀ t ∈ (0, T ),

0 < u(T ) < δR.

Lemma 5. Let conditions (25) be satisfied. Then

for the solution of system (12) with the initial data

x(0) = 0, u(0) = −R, there exists a number T > 0
such that

x(T ) = 0, 0 < u(T ) < δR,

x(t) ∈ (−1, 0), ∀ t ∈ (0, T ).

A similar assertion occurs for the case x < −1.

Fig. 11.
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Hidden Attractors in Dynamical Systems

Lemma 6. Let condition (25) be satisfied. Then

for the solution of system (12) with the initial data

x(0) = r, u(0) = R, there exists a number T > 0
such that

x(T ) = r, −δR < u(T ) < 0,

x(t) ∈ (r,−1), ∀ t ∈ (0, T ).

The proofs of lemmas are based on the qualita-
tive behavior of trajectories, which was considered
above (for details, see [Leonov, 2010a; Leonov &
Kuznetsova, 2010]).

Asymptotic analysis, of the existence of sepa-
rating solutions in the bands −2 < x < −1 and
−1 < x < 0, is an extension of the approach to
the study of critical saddle point at infinity under
the mapping on the Poincaré sphere [Artes et al.,
2008]. The ideas used were proposed in [Leonov,
2009a, 2010a] and further developed in [Leonov &
Kuznetsov, 2010].

2.5. Global analysis: Boundedness

of solutions, existence of one

and two limit cycles

For quadratic system (11) there occur the relations

A = 2c − b − 1, B = −a + b − c,

P = 1 + 2c, Q = −c, q = −c.

It follows that for any c > 0, the relation (25) is
satisfied.

Using the asymptotic integration method, for
the above values A and B, the following results can
be obtained.

Formulate first the boundedness conditions of
trajectories of system (11) [Leonov, 2010b].

Theorem 1. Let c �= 0, c �= −1, c �= b − a. Then

for the boundedness on (0,+∞) of any solution of

system (11) with initial data from Γx>−1, it is nec-

essary that c ∈ (0, 1).

Theorem 2. Let c �= 0, c �= −1, c �= b − a. Then

for the boundedness on (0,+∞) of all solutions of

system (11) with initial data from Γx>−1, it is nec-

essary and sufficient that

c ∈ (0, 1) (28)

and

either 2c > b + 1, c < b − a, (29)

either 2c ≤ b + 1, 4a(c − 1) > (b − 1)2. (30)

Here, conditions (29) of Theorem 2 correspond
to conditions (26), and conditions (30) to condi-
tions (27). Therefore, the behavior of trajectories is
the same as shown in Fig. 11.

By the conditions of the boundedness of solu-
tions, given in Theorems 1 and 2, the existence cri-
teria of one and two large limit cycles can be for-
mulated.

Theorem 3. Suppose that conditions (28), and

(29) or (30) are satisfied and the function g(x) has

one zero x = 0 on the interval (−1,+∞), which

corresponds to unstable equilibrium of system (12).
Then system (11) has a limit cycle in the half-plane

Γx>−1.

Theorem 4. Suppose that conditions (28) and (30)
are satisfied and the function g(x) has only two

zeros x = 0 and x = x1 ∈ (−∞,−1), which corre-

spond to unstable equilibria x = u = 0 and x = x1,
u = 0 of system (12). Then system (11) has two

limit cycles. One of them is situated in the half-

plane Γx>−1, another in the half-plane Γx<−1.

Note that in the case when conditions (29) are
satisfied, system (12) has no unstable equilibrium
in the half-plane Γx<−1.

Consider the constructive conditions under
which the function g(x) has only two zeros: x = 0
and x = x1 ∈ (−∞,−1).

Proposition 5. Let the conditions of Theorem 3 or

Theorem 4 be valid. In order that g(x) has only two

zeros, x = 0 and x1 ∈ (−∞,−1), it is necessary and

sufficient that the inequality

α < λ(a, b, c, β) (31)

is satisfied. Here λ is a minimal root of the equation

△(λ) = −4cλ3 + (−β2 + (2b + 6c)β + 27c2

+ (12a − 18b)c − b2)λ2

− 2(−β3 + (−3c − a + 4b)β2

+ (−5b2 + 9bc + 2ba − 3ac)β − ab2

+ 2b3 − 9abc + 6a2c)λ

+ (−β4 + (2b − 4c + 2a)β3 + (12ac − b2

− a2 − 4ab)β2 + (2a2b − 12a2c + 2ab2)β

− a2b2 + 4a3c). (32)
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G. A. Leonov & N. V. Kuznetsov

Proof. It is obvious that in the case when condi-
tions (25), and (26) or (27) are valid the relations

sign

(

lim
x→−1+0

g(x)

)

= sign Q = −1,

sign

(

lim
x→+∞

g(x)

)

= sign B = +1,

sign

(

lim
x→−∞

g(x)

)

= −sign B = −1,

sign

(

lim
x→−1−0

g(x)

)

= −sign Q = +1

are satisfied. This implies the existence of two zeros
x = 0 and x = x1. For these zeros to be unique, it
is necessary and sufficient that the polynomial

−Φ(x)

x
= (x + 1)2(ax + α)

− (x + 1)(bx + β) + cx3 (33)

has only one real root.
Rewrite polynomial (33) as

ãx3 + b̃x2 + c̃x + d̃,

ã = a − b + c, b̃ = α + 2a − b − β,

c̃ = 2α + a − β, d̃ = α.

From Cardano’s formulas it follows that the unic-
ity condition of real root of this polynomial is the
following inequality

△ = 4̃c3ã − c̃2b̃2 − 18ãb̃c̃d̃ + 27ã2d̃2 + 4b̃3d̃ > 0.

If one represents the left-hand side of this inequal-
ity in the form of polynomial of degree 3 in α, then
polynomial (32) can be obtained. Obviously, in the
case when (31) is valid, where λ is a minimal root of
equation △(λ) = 0, the inequality △(α) > 0 is sat-
isfied. This implies the assertion of Proposition 5.
�

Proposition 6. If β > 0, then the equilibrium x =
y = 0 is Lyapunov unstable.

Proposition 7. Let the conditions of Proposition 5

be valid. For the equilibrium x = x1, y = 0 to be

Lyapunov unstable, it is necessary and sufficient

that p < −1, where p is a minimal root of the

equation

(2c − b − 1)P̃ 2 − (2 + b + β)P̃ − β = 0

and

α <
1

(p + 1)2
(−a(p + 1)2p

+ (bp + β)(p + 1)p − cp3). (34)

Note that from the conditions of Proposition 5,
it follows that α < 0.

By Theorem 3 or 4, together with Proposi-
tion 5, in the space of parameters the sets Ω1 and
Ω2 can be selected with one and two limit cycles,
respectively. It is obvious that these sets have infi-
nite Lebesgue measure and the sets Ω1 and Ω2, well
described here, are not small.

Below, an extension of Lienard’s theorem will
be given. For this purpose, in system (12) on the
functions f(x) and g(x), the following conditions
will be imposed.

Suppose, the functions f and g are differen-
tiable on (−1,+∞) and for certain numbers ν1 ∈
(−1, 0) and ν2 ∈ (0,+∞) the following relations

g(x) < 0, ∀x ∈ (−1, 0),

g(x) > 0, ∀x ∈ (0,+∞),

lim
x→−1

∫ x

0
g(z)dz = lim

x→+∞

∫ x

0
g(z)dz = +∞,

f(x) > 0, ∀x ∈ (−1, ν1) ∪ (ν2,+∞),
∫ ν2

ν1

f(z)dz ≥ 0

(35)

are satisfied.

Theorem 5 [Leonov, 2006, 2008a, 2010a]. Let con-

ditions (35) be satisfied and the equilibrium x = u =
0 be unstable. Then system (12) has a limit cycle.

This theorem can be proven by asymptotic inte-
gration method or by Lyapunov direct method.

It is also obvious that Theorem 3 is a corollary
of Theorem 5.

2.6. Visualization of limit cycles in

quadratic system

Let us apply Theorem 3 to solving the Hilbert–
Kolmogorov problem and give some numerical
examples. Suppose that a = −1, b = 0, c = 3/4,
β = 1. Then (31) and (32) in system (11) yields

△ = −3α3 +
155

16α2
− 9α − 28, λ ≈ −1.156.

In this case for α < −1.2, conditions (31), (28),
and (29) are satisfied, and one can visualize a limit
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Hidden Attractors in Dynamical Systems

Fig. 12. Localization of large limit cycles.

cycle. For α = −2,−10,−100,−1000, the limit
cycles are shown in Fig. 12.

Naturally, any student could obtain these
results, if Kolmogorov might give her/him a task
with such parameters. In this case, the limit
cycles “are well seen”. They were obtained by
virtue of the following goal-oriented operations.
For various types of Lienard equations, describing
the dynamics of mechanical, electromechanical,
and electronic systems, the existence conditions
of globally stable limit cycles were well known
[Cesari, 1959; Lefschetz, 1957; Migulin et al., 1978].
Therefore, when it became clear that quadratic

system can be reduced to special Lienard equa-
tion, the following natural step consists of an
attempt to extend these results (see [Leonov,
2006, 2008b]) to the previous classical investiga-
tions [Cesari, 1959; Lefschetz, 1957; Bogolyubov &
Mitropolskii, 1961; Migulin et al., 1978]. Such an
extension allows one to obtain the existence of
limit cycle conditions, which select a set of infi-
nite Lebesgue measure in parameters space of
quadratic system (11). Remark that this set is not
“small”.

Theorem 4 on a global behavior of trajecto-
ries on phase plane is well combined with the local
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G. A. Leonov & N. V. Kuznetsov

analysis of “small” limit cycles, which will be pre-
sented below.

2.7. Local analysis: Computation

of Lyapunov values and small

limit cycles

2.7.1. Lyapunov values definition

The computation of Lyapunov value was proposed
in the classical investigations of Poincaré [Poincaré,
1885] and Lyapunov [Lyapunov, 1892], devoted
to the analysis of stability of degenerated (or
weak) focus equilibrium. A sign of Lyapunov value
defines winding/unwinding of solutions of systems
in small neighborhoods of equilibrium and stabil-
ity/instability of equilibrium.

In the middle of last century, Bautin proposed
first the effective method, based on the computation
and sequential perturbation of Lyapunov values, for
the construction of polynomial systems with nested
limit cycles, and gave an example of quadratic sys-
tem with three nested limit cycles [Bautin, 1949,
1952]. After that, the analysis of Lyapunov val-
ues became one of the central problems in consid-
ering limit cycles in the neighborhood of equilib-
rium of two-dimensional dynamical systems (see,
e.g. [Marsden & McCracken, 1976; Lloyd, 1988; Yu,
1998; Giné & Santallusia, 2004; Dumortier et al.,
2006; Christopher & Li, 2007; Yu & Chen, 2008; Li
et al., 2008; Borodzik & Żo�la̧dek, 2008; Yu & Cor-
less, 2009; Li et al., 2012; Giné, 2012; Shafer, 2009]
and others).

Probably because of different translations of
Bautin’s works from Russian and the large number
of scientists who simultaneously started to develop
his technique by various methods there are several
terms (Liapunov or Lyapunov quantities or coeffi-

cients, Poincaré or Poincaré–Lyapunov constants,
focus values, foci values and others), which are being
used for the characterization of behavior of degen-
erate focus. The present authors believe that it is
natural to use the term Lyapunov values or Lya-

punov focus values since they are further extensions
of the term eigenvalue, and the first approach to
introducing Lyapunov values was based on the con-
struction of the Lyapunov function (it is described
below).

Note that although scholars began to consider
the problem of symbolic computation of Lyapunov
values (the expressions in terms of coefficients of
the right-hand side of the considered dynamical

system) in the first half of the last century, sub-
stantial progress in the study of Lyapunov values
became possible only in the past decade by virtue
of the use of modern software tools of symbolic
computation. While general expressions for the first
and second Lyapunov values (in terms of coeffi-
cient expansion of right-hand side of the consid-
ered dynamical system) were obtained in the 40–
50s of the last century in the works [Bautin, 1949;
Serebryakova, 1959], the general expression of the
third Lyapunov value was computed only in 2008
[Kuznetsov & Leonov, 2008a; Leonov et al., 2011a]
and occupies more than four pages.

Introduce Lyapunov values following
[Kuznetsov & Leonov, 2008b; Kuznetsov, 2008;
Leonov et al., 2011a,a]. Consider a two-dimensional
system of autonomous differential equations

dx

dt
= f10x + f01y + f(x, y),

dy

dt
= g10x + g01y + g(x, y),

(36)

where x, y ∈ R and f(0, 0) = 0, g(0, 0) = 0. Suppose
that the functions f(·, ·) and g(·, ·) are sufficiently
smooth and their expansions begin with the terms
of at least second order, namely

f(x, y) =

n
∑

k+j=2

fkjx
kyj + o((|x| + |y|)n)

= fn(x, y) + o((|x| + |y|)n),

g(x, y) =

n
∑

k+j=2

gkjx
kyj + o((|x| + |y|)n)

= gn(x, y) + o((|x| + |y|)n).

(37)

Let the first approximation matrix A(0,0) =
(

f10 f01

g10 g01

)

of the system have two purely imaginary
eigenvalues. In this case, without loss of generality
(i.e. there is a nonsingular linear change of vari-
ables), it can be assumed that f10 = 0, f01 =
−1, g10 = 1, g01 = 0. Then system (36) takes the
form

dx

dt
= −y + f(x, y),

dy

dt
= x + g(x, y).

(38)
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Hidden Attractors in Dynamical Systems

Consider, following Poincaré method, the inter-
section of trajectory of system (38) with the straight
line x = 0. At time t = 0, the trajectory (x(t, h),
y(t, h)) starts from the point (0, h) (h is sufficiently
small)

(x(0, h), y(0, h)) = (0, h). (39)

Denote by T (h) a return time of trajectory (x(t, h),
y(t, h)), which is a time between two successive
intersections of the trajectory with the straight line
x = 0. Note that for sufficiently small h the return
time can be found and it is finite since the right-
hand side of system (38) and its linear part differ
by o(|x|+ |y|) in the neighborhood of zero (and the
return time for linear system is 2π). Then

x(T (h), h) = 0 (40)

and y(T (h), h) can be sequentially approximated by
a series in terms of powers of h:

y(T (h), h) = h + L̃2h
2 + L̃3h

3 + · · · . (41)

Here the first nonzero coefficient L̃m is called Lya-
punov value. It indicates an influence of nonlinear
terms f(x, y) and g(x, y) on the behavior of tra-
jectories of system (38) in a small neighborhood of
stationary point. Lyapunov value defines a stabil-
ity or instability of stationary point and describes
a winding or unwinding of trajectory (Fig. 13). It
can be shown (see, e.g. [Lyapunov, 1892]) that the
first nonzero coefficient has a necessarily odd num-
ber m = (2k + 1). The value L̃2k+1 is called kth
Lyapunov value

Fig. 13. Focus stationary point and Lyapunov value.

Lk = L̃2k+1

and the equilibrium is called a weak focus of
order k.

In the case when the complex eigenvalues of the
first approximation matrix of system have a real
part, the notion of Lyapunov value is defined simi-
larly. In this case, a notion of zero Lyapunov value
L0 = L̃1 is introduced such that

y(T (h), h) = (1 + L̃1)h + o(h).

Note that L̃1 describes an exponential increase of
system solutions, caused by the real parts of eigen-
values (similarly to Lyapunov exponents or charac-
teristic exponents [Leonov & Kuznetsov, 2007b]).

In addition, following Lyapunov [1892], in the
case when a linear system has two purely imaginary
roots and the rest of roots is negative, a similar
procedure for the study of stability can be used for
systems of larger dimension.

At present, there are various methods for com-
puting Lyapunov values and for the computer real-
izations of these methods. The methods considered
differ in the complexity of algorithms, the compact-
ness of the obtained symbolic expressions, and a
space in which the computations are performed.
Two main ideas, on which the methods are based,
are the construction of approximations of system
solutions for the analysis of Poincaré map and the
construction of a local Lyapunov function.

For simplicity of computations, various changes
of variables and the reduction to normal forms are
often applied for the original system first. This per-
mits one to simplify computations and to obtain
more compact expressions for Lyapunov values of
the transformed system (see, e.g. [Serebryakova,
1959; Gasull et al., 1997; Yu, 1998]). However, the
analysis of original system in non-original space
becomes less demonstrative.

The modern computers and symbolic compu-
tations allow one to effectively use these methods
and to find Lyapunov values in the form of sym-
bolic expressions, depending on the expansion coef-
ficients of the right-hand sides of system (38) (see,
e.g. [Lloyd, 1988; Gasull et al., 1997; Roussarie,
1998; Yu, 1998; Chavarriga & Grau, 2003; Lynch,
2010; Giné, 2007; Christopher & Li, 2007; Leonov &
Kuznetsov, 2007a; Yu & Chen, 2008; Kuznetsov &
Leonov, 2008b; Kuznetsov, 2008]).

Here, two constructive methods are considered
for the computation of Lyapunov values, which
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G. A. Leonov & N. V. Kuznetsov

permit one to compute Lyapunov values in the ini-
tial “physical” space (this is often important for
the study of applied problems). The advantages
of these methods are an ideological simplicity and
visualization.

2.7.2. Direct method for computation of Lya-
punov values in Euclidean coordinates and in the
time domain

Direct method for the computation of Lyapunov
values was suggested in [Kuznetsov & Leonov,
2008b; Leonov et al., 2011a]. It is based on the con-
struction of solution approximations (as a finite sum
in powers of initial datum) in the original Euclidean
coordinates and in the time domain.

This approach can also be applied to the prob-
lem of distinguishing the isochronous center (see,
e.g. [Gasull et al., 1997; Sabatini & Chavarriga,
1999; Chavarriga & Grau, 2003; Giné, 2007; Pear-
son & Lloyd, 2009; Feng & Yirong, 2012]) since it
permits one to find an approximation of return time
of trajectory as a function of the initial data.

In the case when smoothness condition (37) is
satisfied, the functions x(t, h) and y(t, h) can be
presented as

x(t, h) = xhn(t, h) + o(hn)

=
n

∑

k=1

x̃hk(t)hk + o(hn),

y(t, h) = yhn(t, h) + o(hn)

=

n
∑

k=1

ỹhk(t)hk + o(hn).

(42)

Here xh1(t, h) = x̃h1(t)h = −h sin(t), yh1(t, h) =
ỹh1(t)h = h cos(t) and x̃hk(t), ỹhk(t) can be found
sequentially by virtue of the following.

Lemma 7. Consider the following system

dx̃hk(t)

dt
= −ỹhk(t) + uf

hk(t),

dỹhk(t)

dt
= x̃hk(t) + ug

hk(t).

(43)

For the solutions of system (43) with the initial

data

x̃hk(0) = 0, ỹhk(0) = 0 (44)

the equations

x̃hk(t) = ug
hk(0) cos(t)

+ cos(t)

∫ t

0
cos(τ)((ug

hk(τ))′ + uf
hk(τ))dτ

+ sin(t)

∫ t

0
sin(τ)((ug

hk(τ))′ + uf
hk(τ))dτ

− ug
hk(t),

ỹhk(t) = ug
hk(0) sin(t)

+ sin(t)

∫ t

0
cos(τ)((ug

hk(τ))′ + uf
hk(τ))dτ

− cos(t)

∫ t

0
sin(τ)((ug

hk(τ))′ + uf
hk(τ))dτ

(45)

are valid.

Here uf
hk(t), ug

hk(t) can be found by the substitu-

tion of x(t, h) = xhk−1(t, h) + o(hk−1), y(t, h) =
yhk−1(t, h) + o(hk−1) into f and g

f(xhk−1(t, h) + o(hk−1), yhk−1(t, h) + o(hk−1))

= uf
hk(t)hk + o(hk),

g(xhk−1(t, h) + o(hk−1), yhk−1(t, h) + o(hk−1))

= ug
hk(t)hk + o(hk).

Consider return time T (h) for the initial datum
h ∈ (0,H], and define that T (0) = 2π. It can be
proved that T (h) is n times differentiable function.
Thus

T (h) = 2π + ∆T = 2π +

n
∑

k=1

T̃kh
k + o(hn), (46)

where T̃k = 1
k!

dkT (h)
dhk (the so-called period constants

[Giné, 2007]).
Substitute relation (46) for t = T (h) on the

right-hand side of the first equation of (42), and
denote the coefficients of hk by x̃k. Then the series
x(T (h), h) can be obtained in terms of powers
of h:

x(T (h), h) =
n

∑

k=1

x̃kh
k + o(hn). (47)

In order to express the coefficients x̃k by the coef-
ficients T̃k, it is assumed that in the first equation
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Hidden Attractors in Dynamical Systems

of (42) t = 2π + τ . Then

x(2π + τ, h) =
n

∑

k=1

x̃hk(2π + τ)hk + o(hn). (48)

Here by smoothness condition (37)

x̃hk(2π + τ) = x̃hk(2π) +

n
∑

m=1

x̃
(m)

hk (2π)
τm

m!

+ o(τn), k = 1, . . . , n.

Substitution of this representation in (48) for τ =
∆T (h) and grouping together of coefficients with
the same power of h give

h : 0 = x̃1 = x̃h1(2π),

h2 : 0 = x̃2 = x̃h2(2π) + x̃′
h1(2π)T̃1,

h3 : 0 = x̃3 = x̃h3(2π) + x̃′
h1(2π)T̃2 +

1

2
x̃′

h2(2π)T̃1

+
1

2
x̃′′

h1(2π)T̃ 2
1,

...

hn : 0 = x̃n = x̃hn(2π) + x̃′
h1(2π)T̃n−1 + · · ·

(here ′ denotes a derivative with respect to time t).
Hence, it is possible to determine sequentially coef-
ficients T̃k=1,...,n−1 via the coefficients fij and gij

since in the expression for x̃k there is only one
addend x̃′

h1(2π)T̃k−1 = −T̃k−1, which includes T̃k−1,

and the rest of the expression depends on T̃1≤m<k−1.
By a similar procedure, the coefficients ỹk in

the expansion

y(T (h), h) =

n
∑

k=1

ỹkh
k + o(hn) (49)

can be obtained.
Substituting the following representation

ỹhk(2π + ∆T (h))

= ỹhk(2π) +

n
∑

m=1

ỹ
(m)

hk (2π)
∆T (h)m

m!

+ o((∆T (h))n), k = 1, . . . , n

into the expression

y(2π + ∆T (h), h)

=

n
∑

k=1

ỹhk(2π + ∆T (h))hk + o(hn), (50)

gives

y(T (h), h) =
n

∑

k=1

ỹkh
k + o(hn).

By equating the coefficients of the same power of h

h : ỹ1 = ỹh1(2π),

h2 : ỹ2 = ỹh2(2π) + ỹ′h1(2π)T̃1,

h3 : ỹ3 = ỹh3(2π) + ỹ′h1(2π)T̃2 +
1

2
ỹ′h2(2π)T̃1

+
1

2
ỹ′′h1(2π)T̃ 2

1,

...

hn : ỹn = ỹhn(2π) + ỹ′h1(2π)T̃n−1 + · · · ,
we can sequentially define ỹi=1,...,n.

Here the expressions ỹh1(2π) = 1 and
T̃k=1,...,n−1, and the functions ỹhk=1,...,n(t) are
defined above.

Note that for n = 2m + 1, if ỹk = 0 for
k = 2, . . . , 2m, then ỹ2m+1 �= 0 is mth Lyapunov
value:

Lm = ỹ2m+1.

The algorithm considered is constructive and
can easily be realized in a symbolic computation
package. The realization of this method in MatLab
can be found in [Kuznetsov, 2008]. Note also that
this approach can easily be used to the general case
of the linear part of system (38).

Example 6. Consider the Duffing equation repre-
sented as the system

ẋ = −y, ẏ = x + x3. (51)

It is well known that all trajectories of this sys-
tem are periodic (i.e. Li = 0). Analyze the period
of periodic trajectories of this system. For x0 = 0,
y0 = hy

y(t)2 + x(t)2 +
1

2
x(t)4 = h2

y. (52)

For the return time T (hy), from the relation
dt/dy = (x + x3)−1 it follows that

T (hy)

= 4

∫ hy

0

dy
√

−1+
√

1+ 2h2
y − 2y2

√

1+ 2h2
y − 2y2
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G. A. Leonov & N. V. Kuznetsov

=

∫ π/2

0

−hy sin(z)dz
√

−1 +
√

1 + 2h2
y sin2 z

√

1 + 2h2
y sin2 z

= 2π − 3π

4
h2

y +
105π

128
h4

y −
1155π

1024
h6

y + o(h6
y).

The same result can be obtained by the considered
above method considered. Below, we represent the
approximations of solution, obtained by the above
described algorithm:

x̃h1(t) = −sin(t), ỹh1(t) = cos(t);

x̃h2(t) = ỹh2(t) = 0;

x̃h3(t) =
1

8
cos(t)2 sin(t) − 3

8
t cos(t) +

1

4
sin(t),

ỹh3(t) = −3

8
t sin(t) +

3

8
cos(t) − 3

8
cos(t)3.

Here the Lyapunov values are equal to zero by
virtue of (52) and a periodic solution is approxi-
mated by a series with nonperiodic coefficients.

2.7.3. Poincaré method based on

Lyapunov function construction

Another method for computation of Lyapunov val-
ues was suggested by Poincaré [1885] and was
then developed by Lyapunov [1892]. The method
consists in sequentially obtaining time-independent
integrals for the approximations of system. Since
the expression

V2(x, y) =
(x2 + y2)

2

is an integral of the first approximation of sys-
tem (38) and the system is sufficiently smooth, in
a certain small neighborhood of zero point, one can
sequentially construct the Lyapunov function of the
form

V (x, y) =
x2 + y2

2
+ V3(x, y) + · · · + Vk(x, y).

(53)

Here Vk(x, y) =
∑

i+j=k Vi,jx
iyj are homoge-

neous polynomials with the unknown coefficients
{Vi,j}i+j=k,i,j≥0 and k ≤ n + 1. For the derivative
V (x, y) in virtue of system (38) with provision for
representation (37), it can be obtained that

V̇ (x, y) =
∂V (x, y)

∂x
(−y + fn(x, y))

+
∂V (x, y)

∂y
(x + gn(x, y))

+ o((|x| + |y|)n+1).

Denoting in the obtained expression, the homoge-
neous terms of order k via Wk(x, y) and taking
into account that as per the relation V̇2(x, y) =
xf(x, y) + yg(x, y) = o((|x| + |y|)2), the relation
V̇ (x, y) = o((|x| + |y|)2) is valid, it can be found

V̇ (x, y) = W3(x, y) + · · · + Wn+1(x, y)

+ o((|x| + |y|)n+1). (54)

Here

Wk(x, y) =

(

x
∂Vk(x, y)

∂y
− y

∂Vk(x, y)

∂x

)

+ uk(x, y),

where the coefficients of uk(x, y) depend on
{Vij}i+j<k and {fij , gij}i+j<k.

These coefficients can be found sequentially
(via the coefficients of expansions of the functions
f and g and the coefficients {Vi,j}i+j<k obtained
at the previous steps of the procedure) in such
a way that the derivative of V (x, y) by virtue of
system (38)

V̇ (x, y) =
∂V (x, y)

∂x
(−y + f(x, y))

+
∂V (x, y)

∂y
(x + g(x, y)) (55)

takes the form

V̇ (x, y) = w1(x
2 + y2)2 + w2(x

2 + y2)3

+ · · · + o((|x| + |y|)k+1). (56)

Here the coefficients wi depend only on the coeffi-
cients of the expansions of f and g.

To define the coefficients {Vij}i+j=k for odd
k = 2m + 1, it is necessary, generally speaking,
to solve a nonhomogeneous linear system (obtained
from the equation W2m+1(x, y) = 0) of (k+1) equa-
tions with respect to (k + 1) unknown coefficients,
which always has a unique solution. For k = 3,
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Hidden Attractors in Dynamical Systems











V30

V21

V12

V03











= −











0 1 0 0

−3 0 2 0

0 −2 0 3

0 0 −1 0











−1 









f20

g20 + f11

f02 + g11

g02











.

To define the coefficients {Vij}i+j=k for even
k = (2m + 2), it is necessary, generally speak-
ing, to solve a nonhomogeneous linear system
(obtained from the relation W2m+2(x, y)−wm(x2 +
y2)m+1 = 0) of (k + 1) equations with respect to

(k + 2) unknown coefficients: (k + 1) coefficients
{Vij}i+j=k and wm. For the unknown coefficients
to be defined uniquely, the equations

V(m+1)(m+1) = 0, if m odd,

V(m)(m+2) + V(m+2)(m) = 0, if m even,

can be added [Lynch, 2010]. Note that the rela-
tion W2m+2(x, y) = 0 leads to a linear system, the
matrix rank of which is equal to 2m + 1 (unlike for
odd k). For k = 4

















V4,0

V3,1

w4

V1,3

V0,4

















= −

















0 1 −1 0 0

−4 0 0 0 0

0 −3 −2 3 0

0 0 0 0 4

0 0 −1 −1 0

















−1

×



















f30 + V21g20 + 3V30f20

V21g11 + 3V30f11 + 2V12g20 + 2V21f20 + f21 + g30

V21g02 + V12f20 + 3V30f02 + 2V12g11 + 2V21f11 + 3V03g20 + g21 + f12

2V21f02 + 3V03g11 + V12f11 + g12 + f03 + 2V12g02

g03 + 3V03g02 + V12f02



















.

Sequentially defining the coefficients of the form
Vk for k = 3, 4, . . . from (55) and (56), one can
obtain a coefficient wm, which is the first non-zero
coefficient (2πwm is equal to the mth Lyapunov
value [Frommer, 1928]). This coefficient is called
a Lyapunov or Poincaré–Lyapunov constant [Saba-
tini & Chavarriga, 1999; Chavarriga & Grau, 2003].
If such a constant wm �= 0 is obtained, then in a
certain small neighborhood of zero the derivative
V (x, y) as per the system has constant sign (its
sign coincides with the sign of wm), and V (x, y)
is sign definite (i.e. the function constructed satis-
fies locally the conditions of Lyapunov theorem on
stability and instability)

V (x, y) =
x2 + y2

2
+ o((|x| + |y|)2),

V̇ (x, y) = wm(x2 + y2)m+1

+ o((|x| + |y|)2m+2).

A known modification of the Poincaré–Lyapunov
method is a transition to complex variables (see,
e.g. [Schuko, 1968; Gasull et al., 1997; Li et al., 2008;
Huang et al., 2008]).

2.7.4. Lyapunov values of Lienard system

Consider system (36), where g10 is an arbitrary
number.

Suppose that

f10 = 0, f01 = −1, f(x, y) ≡ 0,

g01 = 0, g(x, y) = gx1(x)y + gx0(x)

and

gx1(x) = g11x + g21x
2 + · · · ,

gx0(x) = g20x
2 + g30x

3 + · · · .
Then one gets a Lienard system in general form

ẋ = −y, ẏ = g10x + gx1(x)y + gx0(x). (57)

Note, in order that the matrix of linear approxi-
mation of system has two purely imaginary eigen-
values, the following condition is necessary to be
satisfied

g10 > 0. (58)

Since the methods for the computation of Lyapunov
values are described above for the systems with
simple linear part (g10 = 1), one can transform
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G. A. Leonov & N. V. Kuznetsov

system (57) to the required form by the following
change of variables

t →
√

1

g10
t, x →

√

1

g10
x.

This change of variables does not change y
[see (57)], namely

y = −

√

1

g10
dx

√

1

g10
dt

= −dx

dt

and, therefore, representation of y (49) is just as
before. It means that the expressions for Lyapunov
values for the systems before and after the change
of variables coincide.

For the case of Lienard system of general form
under condition (58), the expressions for the Lya-
punov values Li=1,...,4 will be given below.

The first Lyapunov value is as follows

L1 =
π

4(g10)5/2
(g21g10 − g11g20).

If g21 = g11g20

g10
, then L1 = 0 and it can be

obtained,

L2 =
−π

24(g10)9/2
(3g11g10g40 − 3g41g10

2

+ 5g20g10g31 − 5g30g11g20).

If g41 = 3g11g10g40+5g20g10g31−5g30g11g20

3g10
2 , then

L2 = 0 and it can be obtained

L3 =
−π

576(g10)15/2
(63g40g10

3g31 − 70g20
3g10g31 − 105g50g10

2g11g20 + 105g20g10
3g51 − 45g61g10

4

− 105g30g10
2g20g31 − 63g30g10

2g11g40 + 105g30
2g10g11g20 + 70g20

3g30g11 + 45g11g10
3g60).

If g61 is obtained from the equation L3 = 0, then

L4 =
−π

17280(g10)21/2
(945g11g10

5g80 + 2835g20g71g10
5 − 4620g20

3g51g10
3 + 3080g20

5g31g10

+ 1701g30
2g11g40g10

3 + 8820g30g20
3g31g10

2 − 1215g30g11g60g10
4 − 2835g70g10

4g11g20

− 2835g30g20g51g10
4 − 1701g30g40g31g10

4 − 8820g30
2g10g20

3g11 + 4620g20
3g50g10

2g11

+ 1701g40g10
5g51 + 5670g30g50g10

3g11g20 + 4158g30g10
2g20

2g40g11 − 945g81g10
6 − 3080g20

5g30g11

+ 2835g30
2g20g31g10

3 − 2835g30
3g10

2g11g20 − 2835g50g20g31g10
4 − 1701g50g11g40g10

4

− 4158g20
2g40g31g10

3 + 1215g60g10
5g31).

It should be noted that the expressions for
the subsequent Lyapunov values of Lienard system
[Leonov & Kuznetsova, 2009] and the expressions
for Lyapunov values of general systems [Kuznetsov,
2008], which are obtained by computer, are so far

complicated, that they can be used only in the cre-

ation of the corresponding software libraries.

2.7.5. Lyapunov values and small limit

cycles in quadratic systems

Remark that in the general case, if L1,...,n−1 = 0 and
Ln �= 0, then, using the well-known Bautin tech-
nique [Bautin, 1952], n small limit cycles can be
constructed by small perturbation of system coeffi-
cients (see, e.g. [Lynch, 2010]).

Consider formula (41)

y(T (h), h) − h = L0h + L1h
3 + · · · , (59)

and suppose that L0 = 0 and the first nonzero Lya-
punov value L1 > 0. Then, using a dependence
of Li on coefficients of the considered system by
Bautin’s technique [Bautin, 1952] (with the help
of small perturbation of coefficients of the consid-
ered system), an effort can be made to satisfy the
inequalities

L0 < 0, L1 > 0, |L0| ≪ |L1|

for the perturbed system. For example, the pos-
sibility of such sequential perturbations is easily
observed for the Lyapunov values of general Lienard
system, which are given above — in the expression
for Li there is a unique addend with g2i,1 in the first
degree.
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Hidden Attractors in Dynamical Systems

In this case, for sufficiently small initial data
h = y0

I the trajectories of the perturbed system are
wound around a stationary point, while for certain
initial data h = y0

II (y0
II ≫ y0

I) the trajectories of
the system are unwound. Thus, for such perturba-
tions, a “small” unstable limit cycle can be obtained
around zero equilibria.

Similarly, perturbating a few first Lyapunov
values, due to the smallness of perturbations and
the continuous dependence of solutions on param-
eter in the perturbed system, a few “small” limit
cycles can be obtained.

However, for specific systems when the number
of considered coefficients is bounded, the question
arises whether the independent perturbations of
sequential Lyapunov values are possible (the ques-
tion, which till now is not solved in the general
case). Illustrate this on the example of quadratic
systems. Suppose that at the point of equilibrium
x = y = 0, a matrix of linear approximation of
reduced quadratic system (11) has two purely imag-
inary eigenvalues, that is, L0(0) = 0 (weak focus of
at least first order). Then the following relations

α < 0, β = 0 : L0(0) = 0 (60)

are satisfied.
By the reduction of quadratic system to

Lienard system with functions (14) and the
obtained expressions for Lyapunov values, for sys-
tem (11), the expressions for Lyapunov values are
obtained. The first Lyapunov value is as follows

L1(0) =
−π

4(−α)5/2
(α(bc − 1) − a(b + 2)).

Determine the conditions under which L1(0) =
0, L2,3(0) �≡ 0. From the above, we get

α =
a(2 + b)

bc − 1
< 0, β = 0

L2(0) =
π

24(−α)7/2

(b − 3)

(bc − 1)
((cb + b − 2c)(cb − 1)

− a(c − 1)(1 + 2c)2)

(61)

or

bc = 1, a = 0, α < 0, β = 0

L2(0) =
π

24(−α)7/2

(b − 1)(b − 3)(2 + b)(b2 + α)

b3
.

(62)

Then the equilibrium x = 0, y = 0 of system (11)
is a weak focus of at least second order (if b = −2
and c = −1/2, then L2 = L3 ≡ 0).

Determine the conditions under which L1(0) =
L2(0) = 0, L3(0) �≡ 0. This results in

b = 3, α =
a(2 + b)

bc − 1
< 0, β = 0

L3 =
π

160(−α)9/2
(c − 2)((c − 1)(1 + 2c)2a

− (c + 3)(3c − 1))

(63)

or

b =
√
−α, bc = 1, a = 0, α < 0, β = 0

L3(0) = − π

4608(−α)17/2
(α + 2)(α2 − 16)(α + 6)

× (67α2 − 614α + 964).

(64)

If system coefficients are chosen so that
L1,2,3 = 0, then L4,5,... = 0.

For quadratic system, this technique allows one
to construct three nested small limit cycles (C(2) =
3) in the case when the coefficients of the system are
chosen so that L1,2 = 0 and L3 �= 0 (a weak focus of
third order) or to construct two small limit cycles —
one around each of two weak focuses of first order
[Leonov, 2011].

For a cubic system, 11 small limit cycles at one
point can be constructed (C(3) ≥ 11) [Żo�la̧dek,
1995], and in general C(n) ≥ n2 − 1 for even n
[Qiu & Yang, 2009]. An approach to get an upper
bound for C(n) is discussed in [Giné, 2009].

Note also that the conditions (62) and (64) are
not compatible with the conditions of Theorem 2.

2.8. Large and small limit cycles

Consider the main results on configuration
and maximal number of limit cycles in quadratic
system. The distribution of limit cycles of quadratic
systems has only one or two nests. At least one
of the two nests contains only unique limit cycle
[Zhang, 2002].

In quadratic system there are no limit cycles
around a degenerated focus of third order [Li, 1986;
Cherkas, 1986]. Nowadays a widely-known conjec-
ture is that in quadratic system the maximum pos-
sible number of limit cycles is 4 (H(2) = 4) but to
date a rigorous proof of this hypothesis is absent.
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G. A. Leonov & N. V. Kuznetsov

At present, in the frame of the proof of this hypoth-
esis, investigations are performed concerning the
systematization and analysis of various cases of
qualitative behavior in quadratic systems, but these
investigations are yet to be completed (see [Artes &
Llibre, 1997; Schlomiuk & Pal, 2001; Schlomiuk &
Vulpe, 2005; Artes et al., 2006, 2008]).

Let us proceed to the visualization of limit
cycles in quadratic systems with weak focuses, using
the above results on a global behavior of trajectories
and the local analysis of weak focuses.

Recall that relations (28) and (30) yield the
inequalities b > −1, a < 0. Then, taking into
account (61), one can obtain

bc > 1 (65)

and therefore by (28)

b > 1. (66)

In the case of weak focus the second Lyapunov value
L2(0) is positive for b < 3 or in view of (66)

b ∈ (1, 3). (67)

Hence by (65) c satisfies the inclusion

c ∈
(

1

3
, 1

)

(68)

and condition (31) is valid. Note that by (67)
and (68) the first inequality in (30) is satisfied.

Thus, the conditions of Propositions 5 and 7
are satisfied and at zero point there is a weak focus.
Then g(x) has only two zeros x = 0 and x1 < −1
and both equilibria of system (11) are unstable. In
this case, by Theorem 4, if relations (30), (61), (65),
(67), and (68) are satisfied, then system (11) has
two limit cycles.

For small perturbation of the parameters

β ∈ (0, ε)

α ∈
(

a(2 + b)

bc − 1
,
a(2 + b)

bc − 1
+ δ

)

,
(69)

where 0 < ε ≪ δ ≪ 1, two large limit cycles persists
and two additional small limit cycles in the neigh-
borhood of zero are born. Thus, if conditions (30),
(65), (67), (68), and (69) are satisfied, system (11)
has four limit cycles (two small and two large). The
domain, defined by these conditions, has an infinite
Lebesgue measure. However this domain is small
with respect to parameters β and α.

Note that the domain of unperturbed parame-
ters is three-dimensional. It has the form

{

b ∈ (1, 3), c ∈
(

1

3
, 1

)

, bc > 1,

a(c − 1) >
(b − 1)2

4

}

. (70)

In Fig. 14 are shown two large limit cycles
(additional two small cycles at zero point can
be obtained by small perturbations of parameters
of system (11)). Here system coefficients are the
following

a = −35, b = 1.6, c = 0.7,

α = −1050, β = 0

and in the domain of closeness of trajectories, one
can see one stable (on the right) and one unstable
(on the left) limit cycles.

In the limit case b = 3, one gets L2 = 0 and
by (63) L3 is negative for all a and c, satisfying (30)
and (68). It means that by a small positive pertur-
bation µ

b ∈ (3 − µ, 3), (71)

the condition L2 > 0 can be satisfied and the third
small limit cycle at zero point can be obtained.

Note that in the case b = 3, condition (65) is
satisfied if (68) is taken into account. The results
obtained mean that system (11) has four limit
cycles (three small at zero point and one large at
the point x1 < −1) if (30), (71), (68), and (69) are
satisfied. Here 1 ≫ µ ≫ δ ≫ ε ≥ 0. The domain of
unperturbed parameters, corresponding to the con-
ditions described above, is two-dimensional. It has
the form

{

c ∈
(

1

3
, 1

)

, a(c − 1) > 1

}

. (72)

This domain involves entirely the domain, defined
by famous Shi’s theorem [Shi, 1980].

2.9. Nonlocal theory on the

existence of nested large limit

cycles in quadratic system

The above stated method of asymptotic integration
of Lienard system permits one to obtain the exis-
tence criteria of two large limit cycles and the fur-
ther development of this method to formulate an
existence criterium of three large cycles.
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2.5
x 10

5

Fig. 14. Two large limit cycles.

Consider system (11). Suppose that the rela-
tions

c ∈
(

1

3
, 1

)

, c �= 1

2
α = −ε−1,

b > a + c, 2c < b + 1,

4a(c − 1) > (b − 1)2

(73)

are satisfied, where ε is a small positive parameter.

Theorem 6 [Leonov, 2011]. Let system (11) have

asymptotically stable equilibrium x = y = 0. Then

for sufficiently small ε, system (11) has three limit

cycles: one of them is situated to the left of straight

line {x = −1, y ∈ R
1} and two to the right of this

straight line.

Proof. Below a sketch of the proof is given. Since
the number ε is sufficiently small, condition (31)
is satisfied. Since inequalities (28) and (30) are
valid, the behavior of the trajectories is as shown
in Fig. 11. It follows the existence of limit cycle to
the left of the straight line {x = −1, u ∈ R

1}.
Show that to the right of this straight line,

there is the trajectory γ, a behavior of which is
shown in Fig. 15. From Fig. 15, here there are two
limit cycles: one is between the trajectories Γ and
γ, the second limit cycle is between the trajectories
γ and ρ.

For the proof of the existence of such trajec-
tory γ, further development of asymptotic integra-
tion method will be given. Consider the first order
equation

F
dF

dx
+ f(x)F + g(x) = 0. (74)

This equation is equivalent to system (12). Having
performed the change F =

√
−αG, we obtain

G
dG

dx
+

f(x)√
−α

G +
g(x)

−α
= 0. (75)

Further, the solution of Eq. (75) is considered
with the initial data G(0) = R = ε−0.01.

Fig. 15.
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G. A. Leonov & N. V. Kuznetsov

1. Case c ∈ (1/2, 1). By the change z = (x + 1)k,
k = q + 1/2, Eq. (75) is reduced to the form

GdG +
f(z

1
k − 1)

k
√−α

z
1
k
−1Gdz

+
g(z

1
k − 1)

k(−α)
z

1
k
−1dz = 0. (76)

For z ∈ [νR, 2R], where ν = ε0.001, the following
relation occurs

g(z
1
k − 1)

(−α)
z

1
k
−2 = 1 + O(ε0.009/k),

f(z
1
k − 1)z−

q
k = 2c − b − 1 + O(ε0.009/k).

(77)

By the change z = (x + 1)q, Eq. (75) becomes

GdG +
f(z

1
q − 1)

q
√−α

z( 1
q
−1)Gdz

+
g(z

1
q − 1)

q(−α)
z( 1

q
−1)dz = 0. (78)

For z ∈ [νR, 2R],

g(z
1
q − 1)

(−α)
z
−2+ 1

q = −1 + O(ε0.009/(−q)),

f(z
1
q − 1)z

−1+ 2
q = 1 + 2c + O(ε0.009/(−q)).

(79)

Equations (76) and (78) are equivalent to the
second order equations

z̈ +
f(z

1
k − 1)

k
√
−α

z
1
k
−1ż +

g(z
1
k − 1)

k(−α)
z

1
k
−1 = 0 (80)

and

z̈ +
f(z

1
q − 1)

q
√
−α

z
1
q
−1ż +

g(z
1
q − 1)

q(−α)
z

1
q
−1 = 0, (81)

respectively. By (77) and (79), one obtains that
an approximation of solutions, with respect to ε,
of these equations with the initial data z(0) = 0,
ż(0) = R are the following functions

z1(t) =
R

ω1
sin ω1t ω1 =

1√
k
,

z2(t) =
R

ω2
sin ω2t ω2 =

1√−q
.

(82)

For Eqs. (80) and (81), we consider Lyapunov type
functions

V1 = (ż1)
2 +

∫ z

0

g(y
1
k − 1)

k(−α)
y

1
k
−1dy

and

V2 = (ż2)
2 +

∫ z

0

g(y
1
q − 1)

q(−α)
y

1
q
−1dy,

respectively. For these functions the following
relations

V̇1(t) = −2
f(z

1
k − 1)

k
√
−α

z
1
k
−1(ż)2 (83)

V̇2(t) = −2
f(z

1
q − 1)

q
√
−α

z
1
q
−1

(ż)2 (84)

are satisfied.
Relation (83) is valid for the solutions of

Eq. (80), relation (84) for those of (81).
From (77), (82), (83) or from (79), (82), (84) it

follows that for small ε on the intervals [0, π/ω1] and
[0, π/ω2], the increments of the functions V1 and V2

along the solutions of Eqs. (80) and (81) with the
initial data z(0) = 0, ż(0) = R have the following
asymptotic

V1

(

π

ω1

)

− V1(0) ≈ −2k− q
2k (2c − b − 1)√−α

R2+ 1
2k

×
∫ π

0
(sin τ)

1
2k (cos τ)2dτ,

V2

(

π

ω2

)

− V2(0) ≈
2(−q

1+q
−2q )(1 + 2c)√

−α
R

2− 1
q

×
∫ π

0
(sin τ)−

1
q (cos τ)2dτ.

Since R = ε−0.01, 2k = 2q + 1 < −q, for small ε the
inequality

V1

(

π

ω1

)

− V1(0) > R
3c−1

2c(1−2c)

(

V2

(

π

ω2

)

− V2(0)

)

is satisfied.

2. Case c ∈ (1/3, 1/2). Make the following
change z = (x + 1)1−c, x > 0. In this case, Eq. (75)
can be represented as

GdG +
f(z1/(1−c) − 1)

(1 − c)
√
−α

z
c

1−c Gdz

+
g(z1/(1−c) − 1)

(1 − c)(−α)
z

c
1−c dz = 0. (85)
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Hidden Attractors in Dynamical Systems

Fig. 16. Trajectory γ.

For z ≥ νR, the estimates

g(z1/(1−c) − 1)

−α
z

c
1−c = z−

c
1−c + ε(b − a − c)z

+ O(ε)z−
c

1−c

f(z1/(1−c) − 1)z
c

1−c = (2c − b − 1) + O(ε0.09/1−c)

are satisfied.
In this case for the solution of Eq. (85) with

G(1) = R the following asymptotic estimates

G(z)2 ≈ R2 − 2

2c − 1
(1 − z

1−2c
1−c ) − 2ε(b − a − c)

(1 − c)
z2

≈ R2 − 2ε(b − a − c)

(1 − c)
z2

are valid. This implies that for the difference
G(1)2 − R2 the relation

G(1)2 − R2 ≈
∫ z0

1

2(−2c + b + 1)

(1 − c)
√
−α

×
√

R2 − 2ε(b − a − c)z2

(1 − c)
dz,

where

z0 = R

√

1 − c

2ε(b − a − c)
, (G(1) < 0)

is satisfied. Then

G(1)2 − R2 ≈ π(−2c + b + 1)R2

√
2(1 − c)(b − a − c)

, G(1) < 0.

Apply the reasoning of Case 1 to the solution
of Eq. (76) with G(1) = R. Then

G(1)2 − R2 ≈ 2(c
1−c
2c )(1 + 2c)√

−α
R2+ 1

c

×
∫ π

0
(sin τ)

1
c (cos τ)2dτ, G(1) < 0.

From the estimates, obtained in Cases 1 and 2,
it follows that a behavior of trajectory of sys-
tem (12) with initial data x(0) = 0, u(0) = R

√−α,
is the same as γ shown in Fig. 16.

This establishes Theorem 6. �

Fig. 17. Visualization of four limit cycles [Kuznetsov et al., 2013].
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G. A. Leonov & N. V. Kuznetsov

Below, it will be demonstrated that an addi-
tional perturbation of zero equilibria, permits one
to obtain here four limit cycles.

2.10. Solution of Kolmogorov’s

problem. Visualization of

four limit cycles

For the visualization of four limit cycles in quadratic
system, we use the values of parameters of the sys-
tem from set (70). At first, perturbing α, the third
limit cycle can be obtained and then, by perturb-
ing β, the fourth limit cycle.

For the set of coefficients b = 2.7, c = 0.4, coeffi-
cients a = −10, α = −437.5, β = 0.003 are selected.
In this case, three large limit cycles are observed
around zero point and one large limit cycle to the
left of the straight line x = −1 (Fig. 17).

3. Hidden Oscillations in Applied

Models

In applied systems, the finding of hidden oscilla-
tions, which cannot be detected by standard sim-
ulation, has shown that for them to be studied,
it is necessary to develop special effective meth-
ods [Lauvdal et al., 1997]: “Since stability in sim-

ulations does not imply stability of the physical

control system (an example is the crash of the

YF22 [Boeing ]), stronger theoretical understand-

ing is required.” Consider a few examples of such
systems.

3.1. Phase-locked-loop circuits

The phase-locked loop (PLL) systems were invented
in the 1930s–1940s [Bellescize, 1932; Wendt & Fre-
dentall, 1943] and were widely used in radio and
television (demodulation and recovery, synchroniza-
tion and frequency synthesis). Nowadays, PLL can
be produced in the form of single integrated cir-
cuit and the various modifications of PLL are
used in a variety of modern electronic applica-
tions (radio, telecommunications, computers, and
others). Various methods for the analysis of phase-
locked loops have been well developed by engi-
neers and are considered in many publications (see,
e.g. [Viterbi, 1966; Gardner, 1966; Lindsey, 1972;
Shakhgil’dyan & Lyakhovkin, 1972]) but the prob-
lems of the construction of adequate nonlinear
models and the nonlinear analysis of such models
which are still far from being resolved, turn out

to be difficult, and require to use special meth-
ods of the qualitative theory of differential, dif-
ference, integral, and integro-differential equations
[Leonov et al., 1996; Suarez & Quere, 2003; Mar-
garis, 2004; Leonov, 2006; Kudrewicz & Wasowicz,
2007; Leonov et al., 2009; Kuznetsov et al., 2011c;
Leonov et al., 2011d, 2012b].

Below, it will be illustrated some difficul-
ties arising in the analysis of comparatively sim-
ple nonlinear two-dimensional dynamical model
of PLL.

In the middle of the last century, the investi-
gations of dynamical models of phase synchroniza-
tion systems were begun. Kapranov [1956] obtained
the conditions of global stability for the following
two-dimensional PLL model (with the filter of type

W (p) = ap+β
p+α )

ż = −αz − (1 − aα)(ϕ(σ) − γ),

σ̇ = z − a(ϕ(σ) − γ),
a, α, γ ≥ 0,

(86)

where ϕ(σ) is a 2π-periodic characteristic of the
phase detector.

In 1961, Gubar’ [1961] revealed a gap in the
proof of Kapranov’s results and indicated system
parameters for which a semistable periodic solu-
tion can exist. Such a semistable trajectory can-
not be found numerically by the standard com-
putation procedure, thus from the computational
point of view the system considered was globally
stable (all the trajectories tend to equilibria), but,
in fact, there is a bounded domain of attraction
only.

Following [Leonov et al., 1996], the qualitative
analysis of system (86) will be considered below.

Theorem 7. Any bounded in R
2 for t ∈ [0,+∞)

solution of system (86) tends to a certain equilib-

rium as t → +∞.

Further, without loss of generality, it is assumed
that −minσϕ(σ) = maxσ ϕ(σ) = 1. Then from
Theorem 7 it follows that for γ > 1 (i.e. in the
absence of equilibria) all the solutions of sys-
tem (86) are unbounded. In this case, the synchro-
nization does not occur under any initial conditions
z(0), σ(0).

Suppose that on the set [0, 2π) there are exactly
two zeros of the function ϕ(σ)− γ : σ = σ1, σ = σ2.
Besides ϕ′(σ1) > 0, ϕ′(σ2) < 0.

Consider the case γ < 1. In this case, in phase
space, the curve z = a(ϕ(σ) − γ) and on this curve
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z

σσ−2π
2

σ−2π
1

σ
1

σ
2

σ+2π
1

Fig. 18. Vector field on the curve z = a(ϕ(σ)− γ).

z z
z(t),σ(t)~ ~~ ~

z(t),σ(t)~ ~

σ
2

z(t),σ(t)~ ~

V(z,σ)=C

σ
0

σ
1

Fig. 19. Separatrices of saddle point.

equilibria z = 0, σ = σ0, where ϕ(σ0) = γ play an
important role (Fig. 18).

Consider the equilibrium z = 0, σ = σ2. In the
neighborhood of this point the characteristic poly-
nomial of first approximation linear system is as
follows

p2 + (α + aϕ′(σ2))p + ϕ′(σ2). (87)

The inequality ϕ′(σ2) < 0 implies that the char-
acteristic polynomial (87) has one positive and one
negative zero and the stationary point z = 0, σ = σ2

is a saddle.
In this case, only two trajectories of sys-

tem (86) — the separatrices of saddle — tend to
equilibrium z = 0, σ = σ2 as t → +∞. Denote
them as z̃(t), σ̃(t) and ˜̃z(t), ˜̃σ(t) (Fig. 19).

The following assertion can be proved.

Theorem 8. The relations

z̃(t) < 0, ∀ t, (88)

lim
t→−∞

z̃(t) = −∞, lim
t→−∞

σ̃(t) = +∞ (89)

are satisfied.

The proof of this theorem is based on the consider-
ation of Lyapunov function in the form V (z, σ) =
z2/2 + (1 + aα)

∫ σ
0 (ϕ(θ) − γ)dθ.

Consider now the behavior of separatrix ˜̃z(t),
˜̃σ(t). In this case, there are more opportuni-
ties of qualitative behavior, than those given by
relations (88), (89) for the separatrix z̃(t), σ̃(t).

Three cases are possible:

(1) There exists a number τ such that ˜̃z(τ) =

a(ϕ(σ̃(τ)) − γ), ˜̃σ(τ) ∈ (σ2 − 2π, σ1), ˜̃z(t) >
a(ϕ(˜̃σ(t)) − γ), ∀ t ∈ (τ,+∞). In Fig. 20 are
shown the separatrices of saddle z = 0, σ = σ2

and the curve z = a(ϕ(σ) − γ).
(2) For all t ∈ R

1, the relation ˜̃z(t) > 0 is satisfied
(see Fig. 21) and

lim
t→−∞

˜̃z(t) = 0,

lim
t→−∞

˜̃σ(t) = σ2 − 2π.

(3) For all t ∈ R
1, the relation ˜̃z(t) > 0 is satisfied

(see Fig. 22) and

lim
t→−∞

˜̃σ(t) = −∞.

z

σ
1

σ
2

σσ−2π
2

Fig. 20. Behavior of separatrix in Case 1.
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z

σ
1

σσ−2π
1

σ
0

η(t),θ(t)
~ ~

z(t),σ(t)~ ~~ ~

Fig. 21. Behavior of separatrix in Case 2.

In this case, there are two possibilities:

(3a) As t → −∞, the separatrix tends to infin-
ity as the coordinate z tends to infinity:

lim
t→−∞

˜̃z(t) = +∞. (90)

As was shown first by Tricomi [1933],
this case always occurs for a = 0.

(3b) As t→−∞, the separatrix remains
bounded with respect to coordinate z
(limt→−∞

˜̃z(t) ≤ const) and tends to the
graph of a certain periodic function {z =
G(σ), G(σ + 2π) = G(σ)} (Fig. 23). The
curve z = G(σ) corresponds to an unsta-
ble trajectory, to which the separatrices of
saddles tend (from below) as t → −∞.

For ϕ(σ) = sign sin(σ), this effect was dis-
covered first in the work [Gubar’, 1961]. In this
case, the piecewise-linearity property of nonlinear-
ity allows one to integrate a system on linearity
intervals and then to apply Andronov’s point-
transformation method to the investigation of limit
cycle existence.

From Theorems 7 and 8 and the above stated
properties of the separatrix of the saddle ˜̃z(t), ˜̃σ(t),
the conclusion can be made that for γ ∈ [0, 1],

z

σ
1

σσ−2π
1

σ
0

z(t),σ(t)~ ~~ ~

z(t),σ(t)~ ~

Fig. 22. Behavior of separatrix in Case 3.

σσ
1

σ
2

σ−2π
2

σ−4π
2

σ−6π
2

zz=G(σ)

Fig. 23. Separatrices and the unstable cycle z = G(σ) in
Case 3b.

the following topologies of the phase space are
possible:

(1) The separatrices z̃(t), ˜̃σ(t) and ˜̃z(t), ˜̃σ(t) are
the boundaries of the domains of attraction of
locally asymptotically stable equilibrium z = 0,
σ = σ1 (Fig. 24). In the displacement along
σ by 2π these domains become the domains
of attraction of stationary solutions z = 0,
σ = σ1 + 2kπ.

The trajectories, placed outside these
domains bounded by separatrices, tend to
infinity as t → +∞.

(2) The separatrix ˜̃z(t), ˜̃σ(t) is a heteroclinic tra-
jectory in R

2, i.e.

lim
t→−∞

˜̃z(t) = lim
t→+∞

˜̃z(t) = 0,

lim
t→+∞

˜̃σ(t) = σ2, lim
t→−∞

˜̃σ(t) = σ2 − π.

In this case the attraction domains of asymp-
totically stable equilibria are also bounded by
separatrices but in the semiplane {z ≤ 0} the
unstable “corridors” are absent (Fig. 24).

(3) The phase space is partitioned into the domains
of attraction of stable equilibria (this corre-
sponds to Case 3a — see Fig. 25). The bound-
aries of these domains are separatrices of saddle
equilibria (Fig. 26).

(4) The phase space is partitioned into the domains
of attraction of stable equilibria with the
boundaries, consisting of separatrices of sad-
dles, and a domain, placed above the curve
{z = G(σ)}. In this domain, all trajectories
tend to infinity as t → +∞. This corresponds
to Case 3b (Fig. 27).

It is clear that under any initial data z(0),
σ(0) the synchronization corresponds to the global
asymptotic stability of system (86). This property
corresponds to Case 3 (Fig. 26).
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σ−2π
1

σ−2π
0σ−4π

1
σσ

1
σ

0

z

Fig. 24. The attraction domains bounded by separatrices.

σ

z

σ−2π
1

σ−4π
1

σ−2π
0

σ +2π
0

σ
0 σ

1

σ +2π
1

Fig. 25. Bifurcation of heteroclinic trajectory.

The loss of stability because of continuous
dependence of trajectories with respect to system
parameters can be caused only by two global bifur-
cations: the appearance of heteroclinic trajectory
(Case 2, Fig. 21) or the appearance of semistable
trajectory of the form {z = G(σ)} (so-called sec-
ond order cycle) (Case 4, Fig. 28). Further, one
can consider bifurcation of hidden oscillation: sta-
ble and unstable periodic trajectories are bifurcated

from the semistable periodic trajectories. If stable
and unstable periodic solutions are very close to one
another, then from a computational point of view,
all the trajectories tend to equilibria, but, in fact,
there is a bounded domain of attraction only.

Approximate computation of the bifurcation
curves for the considered model was in [Belyustina
et al., 1970] by the use of the above-described
qualitative-numerical method.

σ

z

σ−2π
1

σ−4π
1

σ−2π
0

σ +2π
0

σ
0 σ

1

σ +2π
1

Fig. 26. Global asymptotic stability.
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η

σσ
2

σ
1σ−2π

2
σ−4π

2
σ−6π

2

Fig. 27. Stability domains bounded by the cycle z = G(σ).

η

σσ
2

σ
1

σ−2π
2

σ−4π
2

σ−6π
2

Fig. 28. Semistable periodic trajectory: bifurcation of hid-
den oscillation. From a computational point of view, all the
trajectories tend to equilibria, but, in fact, there is a bounded
domain of attraction only.

3.2. Electrical machines

Despite there being a lot of models describing
drilling systems, drill string failures, which cause
enormous cost losses for the drilling industry, still
occur. Here, following [Kiseleva et al., 2012], on
the examples of a two-mass model [de Bruin et al.,
2009; Mihajlovic et al., 2004] of drilling system and
its modified version, supplemented by equations of
induction motor, we demonstrate that unique sta-
ble equilibrium state can coexist with a stable limit
cycle (hidden oscillation) in both models. It is very
possible that the breakdowns in real drilling sys-
tems happen due to the existence of hidden oscil-
lations in such systems, which are difficult to find
because of the limitation of the standard numerical
procedure.

3.2.1. Two-mass mathematical model

of drilling system

The ‘Two-mass’ mathematical model of drilling sys-
tem is a model, which allows one to perform in-
depth qualitative study of drill string behavior due
to the fact that it can be described by a system
of ordinary differential equations. Below, the model
studied in [de Bruin et al., 2009; Mihajlovic et al.,
2004] will be considered. This model consists of an
upper disc, actuated by a drive part, no-mass string,
and lower disc. The upper disc is connected to the
lower disc by a string, which is a low stiffness con-
nection between the discs. Here, there are two fric-
tion torques, acting on the upper and lower discs,
respectively. The upper friction torque is caused by
the electromagnetic field in the drive part of the
model. The lower friction torque is caused by the
friction against the workpiece which drill bit cuts.
This model is described by equations of motion for
the lower and upper discs:

Juθ̈u + kθ(θu − θl) + b(θ̇u − θ̇l)

+ Tfu(θ̇u) − kmu = 0,

Jlθ̈l − kθ(θu − θl) − b(θ̇u − θ̇l) + Tfl(θ̇l) = 0.

(91)

Here θu and θl are angular displacements of the
upper and lower discs respectively (θ̇u, θ̇l are deriva-
tives of θu, θl with respect to time t); Ju and Jl are
inertia torques; kθ, km, b are non-negative coeffi-
cients, u is a constant input voltage. Functions Tfu

and Tfl are friction torques acting on the upper and
lower discs (see Figs. 29 and 30):

Tfu(θ̇u) ∈















Tcu(θ̇u)sign(θ̇u), for θ̇u �= 0

[−Tsu + ∆Tsu, Tsu + ∆Tsu],

for θ̇u = 0,

(92)

Tcu(θ̇u) = Tsu + ∆Tsusign(θ̇u)

+ bu|θ̇u| + ∆buθ̇u, (93)

where Tsu, ∆Tsu, bu, ∆bu are non-negative coeffi-
cients.

Tfl(θ̇l) ∈
{

Tcl(θ̇l)sign(θ̇l), for θ̇l �= 0

[−Tsl, Tsl], for θ̇l = 0,
(94)

Tcl(θ̇l) = Tp + (Tsl − Tp)e
−|

θ̇l
ωsl

|δsl

+ bl|θ̇l|, (95)
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Fig. 29. Upper friction model Tfu.

Tfl

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.2
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0.2

0.3

θl

.

Fig. 30. Lower friction model Tfl.

where Tsl, Tp, ωsl, δsl, bl are non-negative
coefficients.

In this model, hidden oscillations can be found.
Here, for ωu = θ̇u, ωl = θ̇l, α = θu−θl, it can be seen
that there is a stable equilibrium state α0 ≈ 1.36,
ωu0 = ωl0 ≈ 5.17 and a stable limit cycle (Fig. 31).

3.2.2. Mathematical model of drilling

system actuated by induction motor

To take into account the dynamics of the rotor, a
modified model of the drilling system actuated by
the induction motor can be investigated. Consider
the two-mass mathematical model of the drilling
system (91) supplemented with equations of asyn-
chronous motor:

Li̇1 + Ri1 = ΦB(sin θu)θ̇u,

Li̇2 + Ri2 = ΦB(cos θu)θ̇u,

Juθ̈u + kθ(θu − θl) + b(θ̇u − θ̇l)

+ βΦB(i1 sin θu + i2 cos θu) = 0,

Jlθ̈l − kθ(θu − θl) − b(θ̇u − θ̇l)

+ Tfl(ω + θ̇l) = 0.

(96)

Here θu, θl are angular displacements of rotor and
the lower disc relatively to the rotating magnetic
field; ω is the speed of the rotation of magnetic
field, i1, i2 are currents in the rotor windings;

Tfl(ω + θ̇l) is friction torque (same as in the first
model); R — resistance of windings; L — induc-
tance of windings; ΦB — magnetic flux through the
rotor; β, Ju, Jl, kθ, b — non-negative coefficients.
These equations are the modification of the first
model. Here, the first two equations are the equa-
tions of the induction motor. In the third equation,
the expression Tfu(θ̇u)−kmu from the first model is
replaced by the expression βΦB(i1 sin θu + i2 cos θu)
which represents the effect of the induction motor
on the upper disc. As was mentioned before, in
contrast to the previous model here, θu and θl are

−6−4−20246810

−2
0

2
4

6
8

10

−50
−40

−20

0

20

40

ω l

α

ωu

Stable equilibrium

Stable limit cycle

Fig. 31. Stable equilibrium and hidden oscillations — stable limit cycle.
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G. A. Leonov & N. V. Kuznetsov

Fig. 32. Hidden oscillations and stable equilibrium in the mathematical model of drill actuated by induction motor.

angular displacements with respect to the rotating
magnetic field. Only Tfl(θ̇) is changed to Tfl(ω+ θ̇l)
due to the fact that (θu − θl) is the same in both
systems and, obviously, the derivatives of (ω + θ̇u)
and (ω + θ̇l) are equal to θ̇u and θ̇l, respectively.

The following change of variables

ωu = −θ̇u,

x =
L

ΦB
(i1 cos θu − i2 sin θu),

y =
L

ΦB
(i1 sin θu + i2 cos θu),

ωl = −θ̇l,

θ = θu − θl,

results in the system of fifth order

ẏ = −cy − ωu − xωu,

ẋ = −cx + yωu,

θ̇ = ωl − ωu,

ω̇u =
kθ

Ju
θ +

b

Ju
(ωl − ωu) +

a

Ju
y,

ω̇l = −kθ

Jl
− b

Jl
(ωl − ωu) +

1

Jl
Tfl(ω − ωl).

(97)

Here a = βΦB
2

L , c = R
L .

By computer simulation, it is shown that under
certain parameters the system has stable equilib-
rium state and hidden oscillation stable limit cycle
(see Fig. 32).

4. Aizerman’s and Kalman’s

Conjectures on Absolute

Stability of Control System

In 1949, Aizerman formulated the problem [Aizer-
man, 1949], which captured the attention of many
famous scholars, working in the field of control the-
ory and differential equations (see, e.g. [Aizerman &
Gantmacher, 1964; Lefschetz, 1965]). The Aizer-
man’s conjecture is formulated in the following way.
Consider a system with one scalar nonlinearity

dx

dt
= Px + qψ(r∗x), x ∈ R

n, (98)

where P is a constant n × n-matrix, q, r are con-
stant n-dimensional vectors, ∗ is an operation of
transposition, ψ(σ) is a piecewise-continuous scalar
function, and ψ(0) = 0. Here the solutions of sys-
tem (98) are interpreted in the sense of Filippov
[1988]. Suppose that all linear systems (98) with

ψ(σ) = µσ, µ ∈ (µ1, µ2) (99)

are asymptotically stable. The question arises

whether system (98) with any nonlinearity ψ(σ),
under the condition

µ1 <
ψ(σ)

σ
< µ2, ∀σ �= 0,

is stable in the large (i.e. a zero solution of system

(98) is asymptotically stable and any solution tends

to zero as t → +∞).
In 1952, Aizerman’s conjecture was completely

proved for n = 2 due to Malkin [1952], Eru-
gin [1952], and Krasovsky [1952]. In this case, for
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Hidden Attractors in Dynamical Systems

n = 2, Aizerman’s conjecture always has a positive
solution except for the case when the matrix (P +
µ1qr∗) has a double zero eigenvalue and

∫ ∞

0
(ψ(σ) − µ1σ)dσ �= +∞ or

∫ −∞

0
(ψ(σ) − µ1σ)dσ �= −∞.

Krasovsky [1952] showed that in the case when
these conditions are satisfied, system (98) can have
solutions tending to infinity. This was the first coun-
terexample to Aizerman’s conjecture, which was
generalized further to systems (98) of arbitrary
order [Pliss, 1958; Yakubovich, 1958; Efendiev &
Balitinov, 1968; Leonov, 1981].

In 1957, Kalman [1957] stated the following: “If
f(e) in Fig. 1 [see Fig. 33] is replaced by constants

K corresponding to all possible values of f ′(e), and

it is found that the closed-loop system is stable for

all such K, then it is intuitively clear that the sys-

tem must be monostable; i.e. all transient solutions

will converge to a unique, stable critical point.”
Kalman’s statement can be reformulated in the

following conjecture (Kalman’s conjecture) [Bra-
gin et al., 2011; Leonov & Kuznetsov, 2013a]:
Suppose, ψ(σ) is a piecewise-differentiable function1

and at the points of differentiability the following

condition

µ1 < ψ′(σ) < µ2

is valid. The question arises whether system (98)
is stable in the large if all linear systems (98) with

ψ(σ) = µσ, µ ∈ (µ1, µ2) are asymptotically stable.

Note that if Kalman’s conjecture conditions are
satisfied, then Aizerman’s conjecture conditions are
also satisfied. It is clear that for n = 2, the case,
considered by Krasovsky in his counterexample, is
not possible under Kalman’s conditions, therefore,

f(e)e f G(s)r
Σ

+
−

c

Fig. 33. Nonlinear control system. G(s) is a linear transfer
function, f(e) is a single-valued, continuous, and differen-
tiable function [Kalman, 1957].

for n = 2, Kalman’s problem has a positive solu-
tion. In 1958, Pliss [1958] developed a method for
the construction of three-dimensional nonlinear sys-
tems, satisfying the condition of Aizerman’s con-
jecture and having periodic solutions. Then this
method was extended to systems (98) of arbitrary
dimension [Leonov, 1970; Noldus, 1971]. However,
as before, the classes of these systems did not sat-
isfy Kalman’s condition. Later, it was shown that
the frequency criteria of stability imply a positive
solution of Kalman’s problem for n = 2 and n = 3
[Leonov et al., 1996].

The extension of the question, formulated in
Kalman’s problem, to the case of multidimensional
nonlinearity is known as Markus–Yamabe conjec-
ture [Markus & Yamabe, 1960].

Suppose, for a system

ẋ = f(x), f : R
n → R

n, f ∈ C1, f(0) = 0

(100)

the Jacobian matrix
(df(x)

dx

)

has all eigenvalues with

negative real parts for all x ∈ R
n. The question

arises whether system (100) is stable in the large.

This problem has a positive solution for n = 2
[Glutsyuk, 1995; Feßler, 1995; Gutierrez, 1995] and
a negative solution in the general case for n ≥ 3. For
example, a polynomial system, considered in [Cima
et al., 1997],

ẋ1 = −x1 + x3(x1 + x2x3)
2,

ẋ2 = −x2 − (x1 + x2x3)
2,

ẋ3 = −x3

has the Jacobian matrix with three eigenvalues
equal to −1, but at the same time, it allows
the unbounded solution (x1(t), x2(t), x3(t)) =
(18et,−12e2t, e−t).

Some recent development on the existence of
periodic solution and absolute stability theory,
related to Aizerman and Kalman conjectures, is pre-
sented, e.g. in [Rasvan, 2004; Margaliota & Yfoulis,
2006; Llibre et al., 2011; Grabowski, 2011; Alli-Oke
et al., 2012].

Within the framework of investigation of the
above conjectures and unlike Krasovsky and Cima
counterexamples, from the applied point of view,
[Kalman, 1957]: “Undoubtedly the most important

instability of interest in control systems are limit

cycles; the circumstances which lead to creation or

1i.e. a function, having finite number of points of discontinuity on any interval, and differentiated on closed continuity intervals.
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G. A. Leonov & N. V. Kuznetsov

destruction of limit cycles are to be studied in con-

siderable detail. Solutions tending to infinity are

also fairly readily avoidable . . .”.
Later in studying applied systems, hidden

chaotic attractors [Kuznetsov et al., 2010; Leonov
et al., 2010c; Bragin et al., 2011; Leonov et al.,
2011c; Leonov & Kuznetsov, 2011b; Leonov et al.,
2011b, 2012a; Kuznetsov et al., 2013; Leonov &
Kuznetsov, 2013a, 2013b] were also discovered, fur-
ther the efforts will be focused on the construction
of effective methods for the analysis of hidden peri-
odic oscillations and chaotic attractors.

4.1. Analytical–numerical procedure

for hidden attractors

localization

It was found that the effective methods for the
numerical localization of hidden attractors in mul-
tidimensional dynamical systems are the methods
based on numerical continuation: a sequence of sim-
ilar systems is constructed such that for the first
(starting) system the initial data for numerical com-
putation of possible oscillating solution (starting
oscillation) can be obtained analytically and then
the transformation of this starting oscillation when
passing from one system to another is followed
numerically.

In a scenario of transition to chaos in dynami-
cal system, there is usually a parameter λ ∈ [a, b],
its varying gives this scenario. We introduce the
parameter λ artificially, and then consider its vary-
ing on the interval [a, b] such that λ = b corresponds
to the initial system, and the parameter a is cho-
sen in such a way that for λ = a it is possible
to compute or localize a certain attractor (often
such an attractor is of simple form). Further, a
sequence λj , λ1 = a, λn = b, λj ∈ [a, b] is consid-
ered, such that the distance between λj and λj+1 is
sufficiently small. Then the change of the structure
of an attractor, obtained for λ1 = a, is considered
numerically. If during the change of the parameter λ
(from λj to λj+1) there is no loss of stability bifurca-
tion of the considered attractor, then for λn = b at
the end of the procedure, an attractor (often hid-
den or difficult to detect) of the initial system is
localized. Emphasize again that in this case, the
scenario is usually organized artificially. In other
words, here instead of the analysis of scenario of
transition to chaos, a scenario of transition to chaos
is synthesized.

Further, an example of effective analytical–
numerical approach, for hidden oscillations localiza-
tion, which is based on the method of small param-
eter, the harmonic linearization and describing
function method, numerical methods, and applied
bifurcation theory, is discussed, following mainly
the works [Leonov, 2009c, 2009d, 2009b, 2010a].

Define a coefficient of harmonic linearization k
(suppose that such k exists) in such a way that the
matrix

P0 = P + kqr∗ (101)

has a pair of purely imaginary eigenvalues ±iω0

(ω0 > 0) and the rest of its eigenvalues has neg-
ative real parts. Rewrite system (98) as

dx

dt
= P0x + qϕ(r∗x), (102)

where ϕ(σ) = ψ(σ) − kσ.
Introduce a finite sequence of functions ϕ0(σ),

ϕ1(σ), . . . , ϕm(σ) such that the graphs of neigh-
boring functions ϕj(σ) and ϕj+1(σ) slightly dif-
fer from one another, the function ϕ0(σ) is small,
and ϕm(σ) = ϕ(σ). By a smallness of the function
ϕ0(σ), for the system

dx

dt
= P0x + qϕ0(r∗x) (103)

the describing function method can be used and
be mathematically strictly justified [Leonov, 2010a;
Leonov et al., 2010c, 2010a]. Its application allows
to define a stable nontrivial periodic solution x0(t).
Then for the localization of an attractor of original
system (102), we can follow numerically the trans-
formation of this periodic solution x0(t) (a starting
oscillating attractor is an attractor, not including

equilibria and denoted further by A0) with increas-
ing j.

Here two cases are possible. The first case: all
the points of A0 are in an attraction domain of the
attractor A1, which is an oscillating attractor of the
system

dx

dt
= P0x + qϕj(r∗x) (104)

with j = 1. The second case: when passing from
system (103) to system (104) with j = 1, a loss of
stability is observed and the vanishing of A0. In the
first case, the solution x1(t) can be defined numer-
ically by starting a trajectory of system (104) with
j = 1 from the initial point x0(0). If in the pro-
cess of computation (here it should be considered a
sufficiently large computational interval [0, T ]) the
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Hidden Attractors in Dynamical Systems

solution x1(t) does not fall to an equilibrium and is
not increased indefinitely, then this solution reaches
an attractor A1. In this case, it is possible to pro-
ceed to system (104) with j = 2 and to perform a
similar procedure of computation of A2 by starting
from a trajectory of system (104) with j = 2 from
the initial point x1(T ) and computing a trajectory
x2(t).

Proceeding further, sequentially increasing j,
and computing xj(t) (a trajectory of system (104)
with the initial data xj−1(T )), one can either com-
pute Am (an attractor of system (104) with j = m,
i.e. original system (102)), or observe, at a cer-
tain step, a loss of stability and the vanishing of
attractor.

Here the form of the linear part of the systems
and the smallness of the function ϕ0(σ) permit one
to strictly determine the starting periodic solution
by the describing function method.

Note that in many comparatively simple cases,
more simple algorithms can be used for the con-
struction of the corresponding sequence of systems,
based on varying one of the system coefficients in
such a way that a starting system has a self-excited
oscillation. This starting self-excited oscillation can
be obtained by the standard computational proce-
dure, and then a sequential transformation of the
starting self-excited oscillation to hidden oscillation
can be followed numerically. Different realizations
of numerical continuation methods are discussed,
e.g. in [Doedel, 1986; Allgower & Georg, 1990; Beyn
et al., 2002; Krauskopf et al., 2007].

4.2. Small parameter and

describing function method

The method of harmonic linearization (harmonic
balance, describing function method — DFM) is
widely known and is often applied to the analysis of
oscillations in nonlinear systems of automatic con-
trol (see, e.g. some recent developments and appli-
cations [Tesi et al., 1996; Collera & Chamara, 2004;
Aracil & Gordillo, 2004; Zhou & Zhang, 2005; Liu
et al., 2006; LaBryer & Attar, 2010; Chen et al.,
2012]). This method is not strictly mathematically
justified and belongs to approximate methods of
analysis of control systems (see, e.g. [Krylov &
Bogolyubov, 1947; Khalil, 2002]). One of the first
examples, where the describing function method
gives untrue results, is due to Tzipkin [1984].

Below, we will describe the application of
describing function method to Aizerman’s conjec-
ture, which leads to wrong conclusion. For this pur-
pose, recall a standard way of applying the describ-
ing function method to system (98). This procedure
is the following. Introduce a transfer function

W (p) = r∗(P − pI)−1q,

where p is a complex variable, I is a unit matrix.
Let us find a harmonic oscillation a cos ω0t, which
is an approximate solution of system (98):

σ(t) = r∗x(t) ≈ a cos ω0t.

Define first the coefficient of harmonic linearization
k and the frequency ω0. For solving practical prob-
lems of defining the values of k and ω0, a transfer
function W (p) is applied. The number ω0 is defined
from the equation

Im W (iω0) = 0

and k is defined by the formula

k = −(Re W (iω0))
−1.

Following the describing function method, the
amplitude a can be obtained from the equation

∫ 2π/ω0

0
ψ(a cos ω0t) cos ω0tdt

= ka

∫ 2π/ω0

0
(cos ω0t)

2dt.

Now the procedure described is applied to Aizer-
man’s conjecture. It is clear that in the considered
case, the condition k ∈ (µ1, µ2) (see (99)) is not
satisfied. Then for any nonzero value σ, one of the
estimates

kσ2 < ψ(σ)σ or ψ(σ)σ < kσ2

is valid. This implies that for all a �= 0 the inequality
∫ 2π/ω0

0
(ψ(a cos ω0t) a cos ω0t

− k(a cos ω0t)
2)dt �= 0 (105)

is satisfied. Thus, according to the describing func-
tion method, system (98) under the conditions
of Aizerman’s conjecture (and also Kalman’s con-
jecture) has no periodic solutions. However the
results of Pliss and its progeny [Leonov, 1970;
Noldus, 1971] are in contrast to these conclusions
which were obtained by the describing function
method.
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G. A. Leonov & N. V. Kuznetsov

This is why, for many decades, attempts were
made to find classes of systems for which the
describing function method (and its various exten-
sions) gives true results. The first such works were
due to Bulgakov [1943, 1954], where a variant of the
classical method of small parameter was used.

Later, this direction falls under serious critique,
which is reduced to the following “these methods of

small parameter are based on the assumption that

the original small system differs from the linear

system, having self-generating frequency. In the the-

ory of automatic control, similar assumptions can-

not be made since the system, as is known, is not

conservative and in linear approximation stability

conditions are satisfied with sufficient fund” (trans-
lated into English from [Aizerman, 1953]). With
provision for this criticism, other methods of enter-
ing the small parameter, based on the filter hypoth-
esis, were developed [Garber & Rozenvasser, 1965;
Bergen & Franks, 1971; Mees & Bergen, 1975].

The development of numerical methods, com-
puters and applied theory of bifurcations permit one
to return to the first ideas, related to the application
of the methods of small parameter and the describ-
ing function method in dynamical systems, and to
consider them with new standpoints.

Here, the method of harmonic linearization will
be modified and justified. This will be done in such
a way that the method can be regarded as a base for
the construction of algorithms in the search of oscil-
lations in Aizerman’s and Kalman’s conjectures.

4.3. Describing function method

justification

4.3.1. System reduction

To define the initial data x0(0) of starting periodic
solution, system (103) with the nonlinearity ϕ0(σ)
is transformed by a linear nonsingular transforma-
tion x = Sy to the form

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c∗3y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗3y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c∗3y3).

(106)

Here y1, y2 are scalars, y3 is (n−2)-dimensional vec-
tor; b3 and c3 are (n − 2)-dimensional vectors, b1

and b2 are real numbers; A3 is an ((n−2)×(n−2))-
matrix, all eigenvalues of which have negative real
parts. Without loss of generality, it can be assumed

that for the matrix A3 there exists a positive num-
ber d > 0 such that

y∗
3(A3 + A∗

3)y3 ≤ −2d|y3|2, ∀y3 ∈ R
n−2. (107)

Let us present a transfer function of sys-
tem (103)

r∗(P0 − pI)−1q =
ηp + θ

p2 + ω2
0

+
R(p)

Q(p)
(108)

and a transfer function of system (106)

−b1p + b2ω0

p2 + ω2
0

+ c3
∗(A3 − pI)−1b3. (109)

Here η and θ are certain real numbers, Q(p) is a
stable polynomial of degree (n− 2), R(p) is a poly-
nomial of degree smaller than (n− 2). Suppose, the
polynomials R(p) and Q(p) have no common roots.
From the equivalence of systems (103) and (106), it
follows that the transfer functions of these systems
coincide. This implies the following relations

η = −b1, θ = b2ω0, c3
∗b3 + b1 = r∗q,

R(p)

Q(p)
= c3

∗(A3 − pI)−1b3.
(110)

4.3.2. Poincaré map for harmonic

linearization in the noncritical case

At the first step of algorithm, we consider sys-
tem (106) with the nonlinearity ϕ0(σ) = εϕ(σ) (ε
is an artificial continuation parameter)

ẏ1 = −ω0y2 + b1εϕ(y1 + c3
∗y3),

ẏ2 = ω0y1 + b2εϕ(y1 + c3
∗y3),

ẏ3 = A3y3 + b3εϕ(y1 + c3
∗y3),

(111)

where ϕ(σ) is a piecewise-differentiable function
with discontinuity points νi.

Consider in phase space of nonlinear sys-
tem (111) the following set

Ω = {y1 ∈ [a1, a2], y2 = 0, |y3| ≤ Dε},

where a1,2 are certain positive numbers. The num-
ber D is defined according to the following asser-
tion.

Lemma 8 [Leonov, 2010a]. The numbers D1 ≥ D >
0 can be found such that if for sufficiently small
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Hidden Attractors in Dynamical Systems

ε > 0 the inequality

|y3(0)| ≤ Dε

is satisfied, then

|y3(T )| ≤ Dε (112)

and

|y3(t)| ≤ D1ε, ∀ t ∈ [0, T ]. (113)

Here T is return time of trajectories of system (111)
in Poincaré map F of the set Ω:

F

∥

∥

∥

∥

∥

∥

∥

y1(0)

0

y3(0)

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

y1(T )

0

y3(T )

∥

∥

∥

∥

∥

∥

∥

. (114)

Thus T is a positive number for which

y1(T ) > 0, y2(T ) = 0,

and the relations

y1(t) > 0, y2(t) = 0, ∀ t ∈ (0, T )

are not satisfied.
Introduce the following describing function

Φ(a) =

∫ 2π/ω0

0
ϕ(cos(ω0t)a) cos(ω0t)dt. (115)

Theorem 9 [Leonov, 2010a]. If a1,2 �= |νi| and the

inequalities

b1Φ(a1) > 0, b1Φ(a2) < 0 (116)

are satisfied, then for sufficiently small ε > 0,
Poincaré map (114) of the set Ω is mapped into

itself : FΩ ⊂ Ω.

This theorem and Brouwer’s theorem on fixed
point imply the following

Corollary 4.1. If a1,2 �= |νi| and inequalities (116)
are satisfied, then for sufficiently small ε > 0 sys-

tem (111) has a periodic solution with initial data

from Ω. This solution is stable in the sense that its

neighborhood Ω is mapped into itself : FΩ ⊂ Ω.

The existence of derivative of the describing
function results in the following

Theorem 10. Suppose that there exists a number

a0 > 0, a0 �= |νi| such that the conditions

Φ(a0) = 0, b1
dΦ(a)

da

∣

∣

∣

∣

a=a0

< 0 (117)

are satisfied. Then for sufficiently small ε > 0 sys-

tem (111) has a periodic solution of the form

y1(t) = cos(ω0t)y1(0) + O(ε),

y2(t) = sin(ω0t)y1(0) + O(ε),

y3(t) = exp(A3t)y3(0) + On−2(ε),

t ∈ [0, T ]

(118)

with the initial data

y1(0) = a0 + O(ε),

y2(0) = 0,

y3(0) = On−2(ε)

(119)

and with the period

T =
2π

ω0
+ O(ε).

Here On−2(ε) is an (n−2)-dimensional vector such
that its components are O(ε).

Taking into account relations (110), this theo-
rem can be reformulated

Corollary 4.2. Suppose that there exists a number

a0 > 0, a0 �= |νi| such that the conditions

Φ(a0) = 0, η
dΦ(a)

da

∣

∣

∣

∣

a=a0

> 0 (120)

are satisfied. Then for sufficiently small ε > 0 sys-

tem (103) with transfer function (108) and the non-

linearity ϕ0(σ) = εϕ(σ) has a T -periodic solution

such that

r∗x(t) = a0 cos(ω0t) + O(ε), T =
2π

ω0
+ O(ε).

Theorem 10 describes the procedure of the
search for stable periodic solutions by the standard
describing function method (see, e.g. [Khalil, 2002]).

Similar assertions can also be formulated in the
case of vector nonlinearity [Kuznetsov et al., 2010;
Leonov et al., 2010c].

A sketch of proof of Theorem 9. The proof of this
theorem is due to the following lemmas.

Lemma 9. In the case of sufficiently small ε on a

finite time interval for the solution of system (111)
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G. A. Leonov & N. V. Kuznetsov

with initial data from Ω, representation (118)
occurs.

Lemma 10. For y1(0) �= |νi| the following estimate

∫ 2π/ω0

0
ϕ(σ(t))dt

=

∫ 2π/ω0

0
ϕ(cos(ω0t)y1(0))dt + O(ε) (121)

is satisfied.

Lemma 11. Suppose, y1(0) �= |νi|. Then for suffi-

ciently small ε > 0 the estimate

y1(T )2 − y1(0)
2

= 2εy1(0)b1Φ(y1(0)) + O(ε2) (122)

is satisfied.

For the proof of this lemma one can use the follow-
ing Lyapunov function: V (y1, y2) = y2

1 + y2
2.

These lemmas imply that the map F of the set
Ω is mapped into itself. �

It should be noted that, as was shown above,
condition (117) cannot be satisfied in the criti-
cal case when the conditions of Aizerman’s and
Kalman’s conjectures are fulfilled (i.e. a nonlinear-
ity belongs to the sector of linear stability). In this
critical case, the harmonic balance and describing
function method lead to a wrong result — to the
nonexistence of periodic solutions and global sta-
bility of unique stationary point, but nowadays the
counterexamples are well known (see, e.g. [Leonov
et al., 2010a, 2010b; Kuznetsov et al., 2011b; Bra-
gin et al., 2011; Leonov & Kuznetsov, 2011a, 2011b;
Leonov et al., 2011b]).

Now consider some examples of applying the
given algorithm.

Example 1. Suppose, ϕ(σ) = σ − signσ. Then

Φ(a) =
πa − 4

ω0
.

This implies that a is defined from the equation
Φ(a) = 0 in the following way:

a = a0 =
4

π

and the condition of stability takes the form η > 0.

Consider now system (102) with transfer func-
tion

W (p) =
p + 1

p2 + 1
− 1

p + 1
(123)

Then

ω0 = 1, b1 = −1, b2 = 1,

A3 = −1, c3 = 1, b3 = 1.

Using a classical describing function method,
one can obtain that for any ε > 0 system (103)
(or (111)) has a periodic solution and

σ(t) = r∗x(t) ≈ a0 cos t.

By Theorem 9 for small ε > 0, system (111)
has the stable periodic solution of the form

x1(t) = a0 cos t + O(ε),

x2(t) = a0 sin t + O(ε),

x3(t) = O(ε).

Consider now the transformation of thus solu-
tion with increasing ε by discrete steps from 0.1
to 1. Computational procedures are constructed as
was described above.

In Fig. 34 are shown the projections of the com-
puted periodic solutions on the plane {x1, x2}. Note
that the output σ(t) = x1(t) + x3(t) is close to har-
monic and here the filter hypothesis [Khalil, 2002]
is valid. Thus, in this case it is possible, in principle,
to justify the standard describing function method
for the considered values ε.

Example 2. Suppose that ϕ(σ) = k1σ + k3σ
3.

Then

Φ(a) =

(

k1a +
3

4
k3a

3

)

π

ω0
.

This implies that a can be obtained from the equa-
tion Φ(a) = 0:

a = a1 =

√

−4k1

3k3
,

and a stability condition takes the form ηk1 < 0.

Consider once more system (102) with W (p) of
the form (123). Suppose, k1 = −3, k3 = 4. Then
a1 = 1.

By standard DFM, it can be obtained that for
any ε > 0, system (103) (or (111)) has a periodic
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Fig. 34.

solution and

σ(t) = r∗x(t) ≈ cos t.

By Theorem 9 for small ε > 0, system (111)
has the periodic solution of the form

x1(t) = cos t + O(ε),

x2(t) = sin t + O(ε),

x3(t) = O(ε).

Further, using the computational procedure, one
can obtain periodic solutions of systems (104) for

ϕj(σ) = εjϕ(σ), ε1 = 0.1,

ε2 = 0.3, ε3 = 0.7, ε4 = 1.

In Fig. 35 are shown projections of thus computed
periodic solutions on the plane {x1, x2}. For these
periodic solutions, the graph of σ(t) = x1(t) +
x3(t) is also given. For ε3 = 0.7 and ε4 = 1,
the output σ(t) is not harmonic and in this case
the filter hypothesis is not valid. Therefore, here
it is impossible, in principle, to justify standard
describing function method by means of the filter
hypothesis.

Now we give an example of the disappearance
of periodic solutions with increasing parameter εj .

Example 3. Suppose, ϕ(σ) = −3σ + 4σ3 and

W (p) =
p + 1

p2 + 1
+

1

p + 1
.

In this case

ω0 = 1, b1 = −1, b2 = 1,

A3 = −1, b3 = −1, c3 = 1.

The standard describing function method for any
ε > 0 gives the existence of periodic solution and
σ(t) = x1(t) + x3(t) ≈ cos t. By Theorem 9 for
small ε > 0, one can obtain the periodic solution
of the form (118). With increasing ε the periodic
solution of system (111) exists in the case when
ε ∈ (0, ρ). For ε = ρ, there occurs loss of stabil-
ity and the vanishing of periodic solution. Figure 36
shows projections of solutions on the plane {x1, x2}
for ε = 0.25, 0.3, 0.35.

Recall that the equilibria of system (103) sat-
isfy the relations

σ0 + W (0)εϕ(σ0) = 0,

x0 = −(P + kqr∗)−1qεϕ(σ0).

Since W (0) = 2, the first relation yields the relation

σ0(1 − 6ε + 8εσ2
0) = 0.
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G. A. Leonov & N. V. Kuznetsov

Fig. 35.

This implies that for ε < 1/6 the considered sys-
tem has only one zero equilibrium. For ε > 1/6 the
system has three equilibria

σ0 = 0, σ0 = ±
√

6ε − 1

8ε
.

They are unstable for ϕ′(σ0) < 0 and are stable
for ϕ′(σ0) > 0. Consequently, the zero equilibrium
is always unstable and the nonzero one is unstable
for ε < 1/4 and is stable for ε > 1/4. Here, the
considered periodic solution is attracted to one of
these equilibria. The standard describing function
method overlooks all these qualitative changes in
the phase space of the considered system.

4.3.3. Poincaré map for harmonic

linearization in the critical case

As was shown in the critical case, where the con-
ditions of Aizerman’s or Kalman’s conjecture are
satisfied, the standard describing function method
gives incorrect results. But it is possible to mod-
ify and justify it for the nonlinearities of special
types.

Consider system (106)

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c3

∗y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c3

∗y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c3

∗y3),

(124)

Fig. 36. Loss of stability.
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Hidden Attractors in Dynamical Systems

where the nonlinearity ϕ0(σ) is of special form

ϕ0(σ) =

{

ϕ1(σ), ∀|σ| ≤ ε,

ε3ϕ2(σ), ∀|σ| > ε.
(125)

Here ϕ1(σ) is a piecewise-differentiable function and
ϕ2(σ) is a differentiable function, for which the fol-
lowing conditions

|ϕ1(σ)| ≤ µ|σ|,
∫ ε

−ε
(b2(c3

∗b3 + b1)ϕ1(σ) + b1ω0σ)ϕ1(σ)dσ

= Lε3 + O(ε4)

(126)

are valid. Here µ > 0 and L are certain num-
bers. Further, without loss of generality, it can be
assumed that

ϕ2(σ) = 0 ∀σ ∈ [−ε, ε]. (127)

Such conditions are valid, for example, for the
following nonlinearity

ϕ0(σ) =

{

µσ, ∀|σ| ≤ ε,

Mε3sign(σ), ∀|σ| > ε,
(128)

where M is a certain positive number.
Consider in phase space of nonlinear sys-

tem (124) the set

Ω = {y1 + c3
∗y3 = 0, y2 ∈ [−a1,−a2],

|y3| ≤ Dε2}. (129)

Here a1,2 are certain positive numbers, the number
D is defined by the following assertion.

Lemma 12. For solutions of system (124) with ini-

tial data from Ω, the following representation

y1(t) = −sin(ω0t)y2(0) + O(ε2),

y2(t) = cos(ω0t)y2(0) + O(ε2),

y3(t) = exp(A3t)y3(0) + On−2(ε2)

= On−2(ε
2)

t ∈ [0, T ]

(130)

is valid. In addition, there exist numbers D1 ≥ D >
0 such that if for small enough ε > 0 the inequality

|y3(0)| ≤ Dε2,

is satisfied, then

|y3(T )| ≤ Dε2 (131)

and

|y3(t)| ≤ D1ε
2, ∀ t ∈ [0, T ]. (132)

Proof. Represent a solution of the system in inte-
gral form:






y1(t)

y2(t)

y3(t)







=







cos(ω0t) − sin(ω0t) 0

sin(ω0t) cos(ω0t) 0

0 0 exp(A3(t − t0))







×







y1(t0)

y2(t0)

y3(t0)






+ I(t0, t). (133)

Here

I(t0, t) =

∫ t

t0

exp(A(t − τ))bϕ0
(

σ(τ)
)

dτ,

A =







0 −ω0 0

ω0 0 0

0 0 A3






, b =







b1

b2

b3






.

From condition (107) and the form of nonlinearity
ϕ0, one obtains the estimate

|exp(A3(t − t0))| < 1, |I(t0, t)| = O(ε2),

0 ≤ t0 < t ≤ T. (134)

Then a number D > 0 can be chosen such that
|exp(A3T )|D+E < D, where E is defined from the
condition supt∈[0,T ] |I(0, t)| ≤ Eε2 and depends on

|b| and the form of function ϕ0. �

Consider for trajectories of system (124), a
Poincaré map F of the set Ω:

F

∥

∥

∥

∥

∥

∥

∥

y1(0)

y2(0)

y3(0)

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

y1(T )

y2(T )

y3(T )

∥

∥

∥

∥

∥

∥

∥

. (135)

Here, T is a positive number such that

y1(T ) + c3
∗y3(T ) = 0, y2(T ) < 0

and the relations

y1(t) + c3
∗y3(t) = 0, y2(t) < 0, ∀ t ∈ (0, T )

are not satisfied. Introduce a describing function

Φ(a) =

∫ 2π/ω0

0
ϕ2(a sin(ω0t)) sin(ω0t)dt. (136)
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G. A. Leonov & N. V. Kuznetsov

Theorem 11 [Leonov & Kuznetsov, 2011a]. If the

inequalities

b1Φ(a2) > − 2

ω2
0a

2
2

L, b1Φ(a1) < − 2

ω2
0a

2
1

L (137)

are valid, then for sufficiently small ε > 0, Poincaré

map (135) of the set Ω is mapped to itself : FΩ ⊂ Ω.

In this case, by Brouwer’s fixed point theorem, one
can formulate the following

Corollary 4.3. If inequalities (137) are satisfied,
then for sufficiently small ε > 0 system (124) has

a periodic solution with initial data from Ω. This

solution is stable in a sense that its neighborhood Ω
is mapped in itself : FΩ ⊂ Ω.

Theorem 12. Suppose that there exists a number

a0 > 0,−a0 �= vi such that the conditions

b1Φ(a0) = − 2

ω2
0a

2
0

L, b1
dΦ(a)

da

∣

∣

∣

∣

a=a0

<
4

ω2
0a

3
0

L

(138)

are satisfied. Then for sufficiently small ε > 0,
system (124) has the periodic solution of the

form (130) with the initial data

y1(0) = O(ε2),

y2(0) = −a0 + O(ε),

y3(0) = On−2(ε2)

(139)

and with the period

T =
2π

ω0
+ O(ε2).

Corollary 4.4. For nonlinearity (128), one obtains

L =
2

3
(b2(c3

∗b3 + b1)µ + b1ω0)µ, Φ(a0) = M
4

ω0
,

and relation (139) results in

y1(0) = O(ε2),

y2(0) = −
√

− µ

3ω0b1M
(b2(c3

∗b3 + b1)µ + b1ω0)

+ O(ε),

y3(0) = On−2(ε
2).

(140)

By relations (110), Theorem 12 can be refor-
mulated in the following way.

Theorem 13. Let there exist a number a0 >
0,−a0 �= vi such that the conditions

ηΦ(a0) =
2

ω2
0a

2
0

L, η
dΦ(a)

da

∣

∣

∣

∣

a=a0

> − 4

ω2
0a

3
0

L

(141)

are satisfied. Then for sufficiently small ε > 0, sys-

tem (103) with transfer function (108) and nonlin-

earity (125) has T -periodic solution such that

r∗x(t) = a0 sin(ω0t) + O(ε2),

T =
2π

ω0
+ O(ε2).

Here by (110), L is defined from the relation

∫ ε

−ε

(

θ

ω0
r∗qϕ1(σ) − ηω0σ

)

ϕ1(σ)dσ

= Lε3 + O(ε4). (142)

A sketch of proof of Theorem 12. The proof of the
theorem is based on the following lemmas.

By the nonlinearity ϕ0 and representation of
solutions (130), for the output of system (124) and
a derivative of output, we can obtain the expressions

σ(t) = y1(t) + c3
∗y3(t)

= −sin(ω0t)y2(0) + O(ε2),

σ̇(t) = ẏ1(t) + c3
∗ẏ3(t)

= −ω0 cos(ω0t)y2(0) + O(ε).

(143)

Hence |σ̇(τ)| > κ > 0 for |σ(τ)| ≤ ε. From (143)
and (130) it follows that there exist numbers

0 = τ0 < τ1 < τ2 < τ3 < τ4 < τ5 = T (144)

such that (see Fig. 37)

τ1 : ∀ t ∈ (0, τ1)σ(t) ∈ (0, ε), σ(τ1) = ε;

τ2 : ∀ t ∈ (τ1, τ2)σ(t) > ε, σ(τ2) = ε;

τ3 : ∀ t ∈ (τ2, τ3)σ(t) ∈ (−ε, ε), σ(τ3) = −ε;

τ4 : ∀ t ∈ (τ3, τ4)σ(t) < −ε, σ(τ4) = −ε;

τ5 = T : ∀ t ∈ (τ4, T )σ(t) ∈ (−ε, 0), σ(T ) = 0

(145)

are valid.
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Hidden Attractors in Dynamical Systems

τ
3 τ

2

τ
4

τ
1

Fig. 37. Projection of solution on the plane (y1, y2) and the
nonlinearity ϕ0(σ) of the form (128).

By the first relation of (143), one can formulate
the following assertion.

Lemma 13. The following relations

τ1 =
ε

ω0|y2(0)|
+ O(ε2),

τ2 − τ1 =
π

ω0
− 2ε

ω0|y2(0)|
+ O(ε2),

τ3 − τ2 =
2ε

ω0|y2(0)|
+ O(ε2),

τ4 − τ3 =
π

ω0
− 2ε

ω0|y2(0)|
+ O(ε2),

T − τ4 =
ε

ω0|y2(0)|
+ O(ε2)

(146)

are valid.

Lemma 14. The following estimate

∫ 2π/ω0

0
ϕ2(σ(t))dt

=

∫ 2π/ω0

0
ϕ2(−sin(ω0t)y2(0))dt + O(ε) (147)

is satisfied.

Proof. From the continuity of σ(t) and the bound-
edness of the function ϕ2(σ) on finite intervals,

it follows that for fixed τ and m the following
relation

∫ τ+mε

τ−mε
ϕ2(σ(t))dt = O(ε) (148)

is valid.
Suppose, ±y2(0) �= νi. Then if −sin(ω0τ) ×

y2(0) = νi, one can obtain ω0τ �= π
2 + πk.

Hence by (143) for sufficiently small ε the estimate
|σ̇(τ)| > κ > 0 is satisfied. Then, for all time inter-
vals [tj , tj+1] outside the neighborhoods (τ − mε,
τ + mε) of time τ , where

−sin(ω0τ)y2(0) = νi,

for sufficiently small ε it can be found that

−sin(ω0t)y2(0) �= νi

σ(t) = −sin(ω0t)y2(0) + O(ε2) �= |νi| (149)

∀ t ∈ [tj, tj+1].

Suppose, ±y2(0) = νi. Then, for all time inter-
vals [tj , tj+1] outside the neighborhoods (τ−mε, τ +
mε) of the points ω0τ = π

2 +πk for sufficiently small
ε one can obtain that

|σ(t)| ≤ |−sin(ω0t)y2(0)| + D1ε
2

= |νi|
(

1 − 1

2
(ω0mε)2 + O(ε3)

)

+ D1ε
2, ∀ t ∈ [tj, tj+1].

Choosing m such that

|νi|
1

2
(ω0m)2 > D1,

one can obtain

−sin(ω0t)y2(0) �= νi,

|σ(t)| < |y2(0)| = |νi|
∀ t ∈ [tj , tj+1]. (150)

Taking into account boundedness of the deriva-
tive of ϕ2(σ) on continuity intervals, from (149)
and (150), one can obtain

ϕ2(σ(t)) = ϕ2(−sin(ω0t)y2(0))

+ O(ε2), t ∈ [tj , tj+1]. (151)

The estimates (148) and (151) are uniform on
[0, 2π]. This proves the lemma. �
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G. A. Leonov & N. V. Kuznetsov

Lemma 15. For sufficiently small ε > 0, the

estimate

y2
2(T ) − y2

2(0)

= 2|y2(0)|
(

2

ω2
0|y2(0)|2

L + b1Φ(|y2(0)|)
)

ε3

+ O(ε4) (152)

is satisfied.

Proof. Consider a function

V (y1, y2) = y2
1 + y2

2,

where y1(t) and y2(t) are solutions with initial data
from Ω. The derivative V (t) = V (y1(t), y2(t)) as per
system (124) is as follows

V̇ (y1(t), y2(t)) = 2(y1(t)b1 + y2(t)b2)ϕ
0(σ(t)).

(153)

By (130) the estimate V (T ) − V (0) = y2
2(T ) −

y2
2(0) + O(ε4) can be obtained.

Let us estimate the increment

V (T ) − V (0) =

∫ T

0
V̇ (t)dt

=

∫ T

0
2(y1(t)b1 + y2(t)b2)ϕ

0(σ(t))dt,

(154)

using a representation of an integral, taken on [0, T ],
as a sum of integrals, taken on [τi, τi+1].

(1) By (145) for t ∈ [τ1, τ2]∪ [τ3, τ4], from the defini-
tion of nonlinearity (125), and (154), one can define
∫

[τ1,τ2]∪[τ3,τ4]
V̇ (t)dt

=

∫

[τ1,τ2]∪[τ3,τ4]
2(y1(t)b1 + y2(t)b2)ε

3ϕ2(σ(t))dt.

Taking into account (127) and the form of solu-
tions (130), one finds

∫

[τ1,τ2]∪[τ3,τ4]
V̇ (t)dt

=

∫ 2π/ω0

0
2(y1(t)b1 + y2(t)b2)ε

3ϕ2(σ(t))dt

= 2

∫ 2π/ω0

0
(−sin(ω0t)y2(0)b1

+ cos(ω0t)y2(0)b2)ε
3ϕ2

× (−sin(ω0t)y2(0) + O(ε2))dt + O(ε4).

By (147) and (136)

∫

[τ1,τ2]∪[τ3,τ4]
V̇ (t)dt

= −2y2(0)b1ε
3

∫ 2π/ω0

0
sin(ω0t)ϕ2

× (−sin(ω0t)y2(0))dt + O(ε4)

= 2|y2(0)|b1ε
3Φ(|y2(0)|) + O(ε4).

(2) Let us perform the estimation of t ∈ [0, τ1] ∪
[τ2, τ3] ∪ [τ4, T ]. By (130), for y1(t) and y2(t) the
following estimates

y1(t) = σ(t) + O(ε2),

y2(t) = cos(ω0t)y2(0) + O(ε2)

=

{

y2(0) + O(ε2), t ∈ [0, τ1] ∪ [τ4, T ]

−y2(0) + O(ε2), t ∈ [τ2, τ3]

(155)

are satisfied. For the derivative σ̇(t) as per sys-
tem (124), the following estimate holds:

σ̇(t) =

{

−ω0y2(0) + b1ϕ1(σ(t)) + c3
∗b3ϕ1(σ(t)) + O(ε2), t ∈ [0, τ1] ∪ [τ4, T ]

ω0y2(0) + b1ϕ1(σ(t)) + c3
∗b3ϕ1(σ(t)) + O(ε2), t ∈ [τ2, τ3].

(156)

Then by estimates (126) and (146)

σ̇(t) = −ω0 cos(ω0t) + O(ε) �= 0.

Then the function t(σ), inverse to the function σ(t) on the intervals of fixed sign of σ̇(t), can be considered.
The substitution of (155) in relation (153) for V̇ (t) and the use of (156) give

∫ τ1

0
V̇ (t)dt =

∫ ε

0

V̇ (t(σ))

σ̇(t(σ))
dσ = 2

∫ ε

0

(σb1 + y2(0)b2)ϕ1(σ)

−ω0y2(0) + b1ϕ1(σ) + c3
∗b3ϕ1(σ)

dσ + O(ε4),
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Hidden Attractors in Dynamical Systems

∫ T

τ4

V̇ (t)dt =

∫ 0

−ε

V̇ (t(σ))

σ̇(t(σ))
dσ = 2

∫ 0

−ε

(σb1 + y2(0)b2)ϕ1(σ)

−ω0y2(0) + b1ϕ1(σ) + c3
∗b3ϕ1(σ)

dσ + O(ε4),

∫ τ3

τ2

V̇ (t)dt = −
∫ ε

−ε

V̇ (t(σ))

σ̇(t(σ))
dσ = −2

∫ ε

−ε

(σb1 − y2(0)b2)ϕ1(σ)

ω0y2(0) + b1ϕ1(σ) + c3
∗b3ϕ1(σ)

dσ + O(ε4).

The summation of the relations obtained gives the following
∫

[0,τ1]∪[τ2,τ3]∪[τ4,T ]
V̇ (t)dt

= 2

∫ ε

−ε

(

b1σ + b2y2(0)

−ω0y2(0) + c3
∗b3ϕ1(σ) + b1ϕ1(σ)

− b1σ − b2y2(0)

ω0y2(0) + c3
∗b3ϕ1(σ) + b1ϕ1(σ)

)

ϕ1(σ)dσ + O(ε4)

= 4

∫ ε

−ε

(b2(c3
∗b3 + b1)ϕ1(σ) + b1ω0σ)

ω2
0|y2(0)|

ϕ1(σ)dσ + O(ε4) =
4

ω2
0|y2(0)|

Lε3 + O(ε4). �

Lemmas 12 and 15 imply that if inequali-
ties (137) are satisfied, then the inclusion FΩ ⊂ Ω
occurs. By Brouwer’s fixed point theorem, from
this inclusion it follows that there is a fixed point
of the map F and, consequently, there is a peri-
odic solution of system (124) with initial data from
the set Ω. �

4.4. Hidden oscillations in

counterexamples to Aizerman’s

and Kalman’s conjectures

Let us use the proposed above algorithm for the
search of periodic solutions of systems under the
conditions of Aizerman’s and Kalman’s conjectures.

Consider a system

ẋ1 = −ω0x2 + b1ϕ
j(x1 + c3

∗x3)

ẋ2 = ω0x1 + b2ϕ
j(x1 + c3

∗x3)

ẋ3 = A3x3 + b3ϕ
j(x1 + c3

∗x3)

(157)

and a finite sequence of functions

ϕj(σ) =

{

µσ, ∀|σ| ≤ εj ,

Msign(σ)ε3
j , ∀|σ| > εj ,

εj =
j

m

√

µ

M
, j = 1, . . . ,m, (158)

satisfying the condition of Aizerman’s conjecture for
the sector (0, µ2). Here µ,M are certain positive
numbers and µ < µ2. Choose m in such a way that
the graphs of the functions ϕj and ϕj+1 slightly
differ from one another. Here, for sufficiently small
εj = ε, according to (140), in system (157) there is
a periodic solution with initial data

x1(0) = O(ε2),

x2(0) = −
√

− µ

3ω0b1M
(b2(c3

∗b3 + b1)µ + b1ω0)

+ O(ε),

x3(0) = O(ε2).

(159)

At the first step of algorithm, in the case j = 1 for
sufficiently large time interval [0, T ] one computes
the solution x1(t) with the initial data
(

0,−
√

− µ

3ω0b1M
(b2(c3

∗b3 + b1)µ + b1ω0),0

)

.

(160)

If in process of computation the solution tends to
the periodic one, then, according to the algorithm,
we can compute a solution of system with ε2, using
as initial data the value x1(T ).

Suppose that by this algorithm the periodic
solution xm(t) of system (157) with the continu-
ous nondecreasing function ϕm(σ) (“saturation”) is
computed. In this case, for constructing a coun-
terexample to Kalman’s problem, two algorithms
are realized.

(1) Let us organize the following computational
procedure for a sequence of nonlinearities [Leonov
et al., 2010a]

ψi(σ) =











µσ, ∀|σ| ≤ εm;

i(σ − sign(σ)εm)N

+ sign(σ)µεm, ∀|σ| > εm,

(161)
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G. A. Leonov & N. V. Kuznetsov

where i = 0, . . . , h, ψ0(σ) = ϕm(σ), and N is a
certain positive parameter such that hN < µ2.
Here at each step for i = 1, . . . , h, we can obtain
strictly increasing nonlinearity and the periodic
solution computed gives a certain counterexample
to Kalman’s problem.

For illustration of this algorithm, one can con-
sider a system

ẋ1 = −x2 − 10ϕ(x1 − 10.1x3 − 0.1x4),

ẋ2 = x1 − 10.1ϕ(x1 − 10.1x3 − 0.1x4),

ẋ3 = x4,

ẋ4 = −x3 − x4 + ϕ(x1 − 10.1x3 − 0.1x4).

(162)

Here for ϕ(σ) = kσ the asymptotic stability
of linear system (162) occurs for k ∈ (0, 9.9)
while by Theorem 11 for the nonlinearity ϕ(σ) =
ϕ0(σ) with sufficiently small ε, there is a periodic
solution.

The above algorithm allows one to sequentially
compute periodic solutions.2 Suppose, µ = M = 1
(in this case, nonlinearity (158) lies in the linear
stability sector), ε1 = 0.1, ε2 = 0.2, . . . , ε10 = 1.
For j = 1, . . . , 10, one sequentially constructs solu-
tions of system (162), assuming that the nonlinear-
ity ϕ(σ) is equal to ϕj(σ) according to (158). Here,
for all j = 1, . . . , 10, there are periodic solutions.

At the first step for j = 0, according to (159),
the initial data of periodic solution are the
following

x1(0) = x3(0) = x4(0) = 0, x2(0) = −1.7513.

Compute the trajectory x1(t) with the above-
mentioned initial data on large time interval. The
last point x1(T ) of the computed trajectory is taken
as the initial data for the computation of periodic
solution for j = 2.

The projection of solution trajectory on the
plane (x1, x2) and the output of system σ(t) =
x1(t) − 10.1x3(t) − 0.1x4(t) for j = 1 are shown
in Fig. 38. Here, one observes that after a transient
process the numerical procedure reaches a periodic
solution.

Proceeding for j = 2, . . . , 10, one can compute
sequentially (Figs. 39–46) a periodic solution of sys-
tem (162). For ε10 = 1, this periodic solution is
shown in Fig. 47.

Note that if in place of sequential increasing εj ,
a solution is computed with initial data (160) for
ε = 1, then this solution is attracted to zero.

Continue sequential construction of periodic
solutions for system (162), with the nonlinearity
ϕ(σ) being changed, according to (161), to the
strictly increasing function ψi(σ) with µ = 1, εm =
1, N = 0.01, for i = 1, . . . , 5. For i = 1 and 5 the
periodic solutions obtained are shown in Figs. 48
and 49. In computing a solution with i = 6, a peri-
odic solution vanishes (Fig. 50).

(2) Now in place of the consideration of the
functions ψi, we construct periodic solutions for
system (162) by the changes of the nonlinearity
ϕ10(σ) to

θi(σ) = ϕ10(σ) + (tanh(σ) − ϕ10(σ))
i

m
,
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Fig. 38. A projection of trajectory on the plane (x1, x2) and the output of system for ε1 = 0.1; the linear stability sector and
the nonlinearity ϕ1(σ).

2Standard Matlab tools were used for computation of trajectories.
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Fig. 39. A projection of trajectory on the plane (x1, x2) and the output of system for ε2 = 0.2; the linear stability sector and
the nonlinearity ϕ2(σ).
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Fig. 40. A projection of trajectory on the plane (x1, x2) and the output of system for ε3 = 0.3; the linear stability sector and
the nonlinearity ϕ3(σ).
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Fig. 41. A projection of trajectory on the plane (x1, x2) and the output of system for ε4 = 0.4; the linear stability sector and
the nonlinearity ϕ4(σ).
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Fig. 42. A projection of trajectory on the plane (x1, x2) and the output of system for ε5 = 0.5; the linear stability sector and
the nonlinearity ϕ5(σ).
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Fig. 43. A projection of trajectory on the plane (x1, x2) and a system output for ε6 = 0.6; the linear stability sector and the
nonlinearity ϕ6(σ).
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Fig. 44. A projection of trajectory on the plane (x1, x2) and the output of system for ε7 = 0.7; the linear stability sector and
the nonlinearity ϕ7(σ).
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Fig. 45. A projection of trajectory on the plane (x1, x2) and the output of system for ε8 = 0.8; the linear stability sector and
the nonlinearity ϕ8(σ).

Fig. 46. A projection of trajectory on the plane (x1, x2) and the output of system for ε9 = 0.9; the linear stability sector and
the nonlinearity ϕ9(σ).

Fig. 47. A projection of trajectory on the plane (x1, x2) and the output of system for ε10 = 1; the linear stability sector and
the nonlinearity sat(σ) = ϕ10(σ).
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Fig. 48. A projection of trajectory on the plane (x1, x2) and the output of system for i = 1; the linear stability sector and
the nonlinearity ψ1(σ).

Fig. 49. A projection of trajectory on the plane (x1, x2) and the output of system for i = 5; the linear stability sector and
the nonlinearity ψ5(σ).
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Fig. 50. A projection of trajectory on the plane (x1, x2) and the output of system for i = 6; the linear stability sector and
the nonlinearity ψ6(σ).
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Hidden Attractors in Dynamical Systems

Fig. 51. A projection of trajectory on the plane (x1, x2) and the output of system for i = 1; the linear stability sector and
the nonlinearity θ1(σ).

where i = 1, . . . , 10, m = 10,

tanh(σ) =
eσ − e−σ

eσ + e−σ
, 0 <

d

dσ
tanh(σ) ≤ 1 ∀σ.

For i = 1, starting from the point x10(T ),
one can find a periodic solution and continue the
procedure of computing periodic solutions for i =
2, . . . , 10. The result of the algorithm operation is
shown in Figs. 51–53.

Thus, it can be obtained a periodic solution for
a system with the smooth monotonically increasing
nonlinearity θ10(σ) = tanh(σ), satisfying Kalman’s
condition.

Compare the described algorithm with investi-
gations, devoted to Kalman’s problem, and show its
application to the construction of counterexamples.

Consider the only widely cited in literature (see,
e.g. [Blondel & Megretski, 2004; Hsu & Meyer,
1968; Westphal, 2001]) Fitts’ counterexample [Fitts,

1966]. In [Fitts, 1966], a simulation of system (98)
is given for n = 4 with the transfer function

W (p) =
p2

[(p + β)2 + (0.9)2][(p + β)2 + (1.1)2]

(163)

and with cubic nonlinearity ϕ(σ) = kσ3 for cer-
tain parameters β and k. Subsequently, for a part of
parameters β ∈ (0.572, 0.75), considered by Fitts, it
was shown [Barabanov, 1982, 1988] that the results
of Fitts’ experiments are not valid. The authors of
the present paper have made computer simulations
of the considered above system and for values of
parameters β = 0.01 and k = 10, a “periodic”
solution with very small domain of attraction was
obtained. The smallness of this domain makes dif-
ficult the use of the algorithm suggested in the
present paper. Consider simulation of Fitts’ system
for β = 0.01 and k = 10. Restoring the system by

Fig. 52. A projection of trajectory on the plane (x1, x2) and the output of system for i = 5; the linear stability sector and
the nonlinearity θ5(σ).
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Fig. 53. A projection of trajectory on the plane (x1, x2) and the output of system for i = 10; the linear stability sector and
the nonlinearity tanh(σ) = θ10(σ).

transfer function (163), one can obtain

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = −0.9803x1 − 0.0404x2 − 2.0206x3

− 0.0400x4 + ϕ(−x3), ϕ(σ) = 10σ3.

(164)

By simulation of this system with the initial data
x1(0) = 85.1189, x2(0) = 0.9222, x3(0) =
−2.0577, x4(0) = −2.6850, a “periodic” solution
(Fig. 54) can be defined. These initial data were
obtained empirically after the authors’ long search
in four-dimensional phase space.

Let us proceed to the system, considered by
Barabanov [1982, 1988]. As in [Barabanov, 1988],
the proof of existence of system (98) for n = 4, for
which Kalman’s problem has negative solution, is,

in essence, the “existence theorem” and, therefore,
it needs to be carefully checked.

Consider a system studied in [Barabanov, 1988]

ẋ1 = x2,

ẋ2 = −x4,

ẋ3 = x1 − 2x4 − ϕ(x4),

ẋ4 = x1 + x3 − x4 − ϕ(x4),

ϕ(σ) = sign(σ).

(165)

Here a sector of linear stability is (0,+∞) and,
according to [Barabanov, 1988], this system has a
periodic solution, which survives under small per-
turbation of nonlinearity (i.e. for construction of a
counterexample to Kalman’s conjecture, it is nec-
essary somehow to choose small perturbation of
ϕ(σ) in order to obtain a strictly increasing func-
tion). On the existence of periodic solutions in
system (165) Bernat and Llibre [1996] wrote “. . . we

checked numerically that in the region where he
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Fig. 54. A projection of trajectory on the plane (x1, x2), the output of system σ(t), the graph of ϕ(σ).
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[Barabanov ] tries to find the periodic orbit all solu-

tions have ω-limit equal to the origin”.
We should pay attention here to the difficul-

ties of simulation of systems with the nonlinearity
sign(σ).

Consider, for example, a classical differential
equation

...
x + Aẍ + Bẋ + x = −sign(ẍ), (166)

describing the operation of Watt’s regulator under
dry friction [Andronov & Maier, 1947; Yakobovich
et al., 2004]. Having made in Eq. (166) the change
y1 = ẍ, y2 = −Bẋ− x, y3 = −ẋ, one can obtain the
following system

ẏ1 = −Ay1 + y2 − sign(y1),

ẏ2 = −By1 + y3,

ẏ3 = −y1.

(167)

It is well known [Yakobovich et al., 2004], that in
this system the remaining segment y1 = 0, y3 = 0,
y2 ∈ [−1, 1] is stable in the large for AB > 1.

Suppose that A = 1.5, B = 1.1, and carry
out a trajectories’ simulation of system (167)
with the initial data, y1(0) = −0.5, y2(0) = 1,
y3(0) = 1.2

Figure 55 shows that the computation of trajec-
tories in the neighborhood of segment of rest after
a transient process (Fig. 55, on the left) gives small
oscillations, arising due to the errors of computation

of trajectories and the discontinuity of nonlinearity
sign( · ) (Fig. 55, on the right). On the other hand, if
in system (167), in changing sign( · ) to the continu-
ous in zero nonlinearity sat( · ), a similar numerical
procedure “converges” to zero (Fig. 56).

Let us apply our algorithm to system (165) con-
sidered by Barabanov, having changed the form of
nonlinearity to

ϕ(σ) =































5σ, ∀|σ| ≤ 1

5
;

sign(σ)

+
1

25

(

σ − sign(σ)
1

5

)

, ∀|σ| >
1

5
.

(168)

Reduce the system to form (157) by the trans-
formation matrix S, and compute x(0) using (160).
Then at the first step of algorithm for system (165)
with ϕ(σ) of the form (168) one obtains the initial
data Sx(0) = (0, 0.2309, 0.2309, 0). The results of
algorithm operation are shown in Figs. 57–59.

Continue sequential construction of periodic
solutions, make change nonlinearity (168) to a
strictly increasing function ψi(σ) (161), where µ =
1, N = 0.01. The obtained periodic solution for
i = 3 is shown in Fig. 60.

Thus, a counterexample to Kalman’s conjecture
is constructed in a modified Barabanov’s system.
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Fig. 55. The output y1 of system with the nonlinearity sign(y1).
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Fig. 56. The output y1 of system with the nonlinearity sat(y1).
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Fig. 57. A projection of trajectory on the plane (x3, x4); the output of system; the nonlinearity and the linear stability sector;
j = 1.
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Fig. 58. A projection of trajectory on the plane (x3, x4); the output of system; the nonlinearity and the linear stability sector;
j = 5.
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Fig. 59. A projection of trajectory on the plane (x3, x4); the output of system; the nonlinearity ϕ(σ) and the linear stability
sector; j = 10.

Proceed now to Bernat and Llibre’s investiga-
tions [Bernat & Llibre, 1996; Meisters, 1996; Glut-
syuk, 1998], there were revealed some “gaps” in
the work [Barabanov, 1988]: thus, in [Bernat &
Llibre, 1996] it is written “He [Barabanov ] tried

to prove that this system and systems close to

this have a periodic orbit. But his arguments are

not complete”, in [Meisters, 1996] it can be found
the following remark “In 1988, Barabanov gave

ideas for constructing a class C1 MY-SYSTEM

[Markus–Yamabe system] in four dimensions with

a nonconstant periodic orbit — and hence a coun-

terexample to MYC [Markus–Yamabe Conjecture]
in R

4. But the details of his paper were in some

doubt”, in [Glutsyuk, 1998] one can read “In
1988, Barabanov made an attempt to construct a

counterexample to this theorem in R
n for n ≥

4. Errors in his paper were found recently.” In
[Bernat & Llibre, 1996] an attempt was made
to overcome these “gaps” by analytical–numerical

methods, based on Andronov’s point transforma-
tion method [Andronov et al., 1966].

Now our algorithm will be applied to the sys-
tem proposed in [Bernat & Llibre, 1996],

ẋ1 = x2,

ẋ2 = −x4,

ẋ3 = x1 − 2x4 −
9131

900
ϕ(x4),

ẋ4 = x1 + x3 − x4 −
1837

180
ϕ(x4),

(169)

where

ϕ(σ) =



















σ, ∀|σ| ≤ 900

9185
;

sign(σ)
900

9185
, ∀|σ| >

900

9185
.

(170)
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Fig. 60. A projection of trajectory on the plane (x3, x4); the nonlinearity and the linear stability sector; i = 3.
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Fig. 61. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; j = 1.
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Fig. 62. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; j = 5.
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Fig. 63. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; j = 10.
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Fig. 64. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; i = 1.
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Fig. 65. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; i = 5.
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Fig. 66. A projection of trajectory on the plane (x3, x4); the output of system; a nonlinearity and stability sector; i = 6.

1330002-59

In
t.

 J
. 
B

if
u
rc

at
io

n
 C

h
ao

s 
2
0
1
3
.2

3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

0
6
.5

1
.2

2
6
.7

 o
n
 0

8
/0

9
/2

2
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



G. A. Leonov & N. V. Kuznetsov

Reducing the system to the form (157) by
the transformation matrix S and computing x(0)
by (160), for system (169) one can obtain at the
first step of algorithm, the initial data Sx(0) =
(0, 0.1722, 0.1722, 0).

The result of operation of the algorithm, sug-
gested above, is shown in Figs. 61–63.

Here the nonlinearity ϕ(σ) is changed to the
strictly increasing function ψi(σ) (161) with µ =
1, εm = 1, N = 0.01, for i = 1, . . . , 6. The periodic
solutions obtained are shown in Figs. 64 and 65.

In computing a solution for i = 6, a periodic
solution (Fig. 66) vanishes.

Note that the second part of the algorithm,
where the saturation zone of the nonlinearities
considered arise and counterexamples to Kalman’s
problem are constructed, complements the numeri-
cal results from [Barabanov, 1988; Bernat & Llibre,
1996], where the nonlinearities sign(σ) and sat(σ)
are considered, that do not satisfy Kalman’s con-
ditions. Thus, here we see that the algorithm sug-
gested can be used for the case of Barabanov’s and
Bernat’s and Llibre’s modified systems.

5. Hidden Attractor in Chua’s

Circuits

The development of modern computers allows one
to perform the numerical simulation of nonlinear
chaotic systems, and to obtain new information on
the structure of their trajectories. Classical attrac-
tors in well-known chaotic dynamical systems of
Lorenz [1963], Chua [Chua & Lin, 1990], Chen
[Chen & Ueta, 1999], and many others are self-
excited attractors and can be obtained numerically
by the standard computational procedure. However,
there are chaotic attractors of another type: hid-

den chaotic attractors, for which the possibility of
such simple computational approach turn out to be
highly limited. In 2010, for the first time, a hid-
den chaotic attractor was discovered [Kuznetsov
et al., 2010; Bragin et al., 2011; Kuznetsov et al.,
2011a; Leonov et al., 2011c, 2012a] in Chua’s circuit,
described by three-dimensional dynamical system.

Note that Chua himself, in analyzing vari-
ous cases of attractors’ existence in Chua’s circuit
[Chua & Lin, 1990] did not admit the existence of
hidden attractor (discovered later) in the circuit.

Below we will demonstrate the application of
the above algorithm to the localization of hid-
den chaotic attractor in Chua’s system. For this

purpose, write Chua’s system in the form (98)

dx

dt
= Px + qψ(r∗x), x ∈ R

3. (171)

Here

P =







−α(m1 + 1) α 0

1 −1 1

0 −β −γ






,

q =







−α

0

0






, r =







1

0

0






,

ψ(σ) = (m0 − m1)sat(σ).

Introduce a coefficient k and a small parameter
ε, and represent system (171) as (103)

dx

dt
= P0x + qεϕ(r∗x), (172)

where

P0 = P + kqr∗

=







−α(m1 + 1 + k) α 0

1 −1 1

0 −β −γ






,

λP0
1,2 = ±iω0, λP0

3 = −d,

ϕ(σ) = ψ(σ) − kσ = (m0 − m1)sat(σ) − kσ.

By the nonsingular linear transformation x = Sy,
system (172) is reduced to the form (106)

dy

dt
= Ay + bεϕ(c∗y), (173)

where

A =







0 −ω0 0

ω0 0 0

0 0 −d






,

b =







b1

b2

1






, c =







1

0

−h






.

The transfer function WA(p) of system (173) can
be represented as

WA(p) =
−b1p + b2ω0

p2 + ω2
0

+
h

p + d
.
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Further, using the equality of transfer functions of
systems (172) and (173), one can obtain

WA(p) = r∗(P0 − pI)−1q.

This implies the following relations

k =
−α(m1 + m1γ + γ) + ω2

0 − γ − β

α(1 + γ)
,

d =
α + ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d + d2)

ω2
0 + d2

,

b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(

(1 + γ − d)ω2
0 + (γ + β)d

)

ω0(ω2
0 + d2)

.

(174)

Since by the nonsingular linear transforma-
tion x = Sy system (172) can be reduced to the
form (173), for the matrix S the following relations

A = S−1P0S, b = S−1q, c∗ = r∗S (175)

are valid. Having solved these matrix equations, one
can obtain the transformation matrix

S =







s11 s12 s13

s21 s22 s23

s31 s32 s33






,

where

s11 = 1, s12 = 0, s13 = −h,

s21 = m1 + 1 + k, s22 = −ω0

α
,

s23 = −h(α(m1 + 1 + k) − d)

α
,

s31 =
α(m1 + k) − ω2

0

α
,

s32 = −α(β + γ)(m1 + k) + αβ − γω2
0

αω0
,

s33 = h
α(m1 + k)(d − 1) + d(1 + α − d)

α
.

By (119), for sufficiently small ε, at the
first step of multistage localization procedure, one

obtains the initial data

x(0) = Sy(0) = S







a0

0

0






=







a0s11

a0s21

a0s31






.

Returning to Chua’s system denotations, for the
determination of initial data of starting solution for
multistage procedure, one can obtain

x(0) = a0, y(0) = a0(m1 + 1 + k),

z(0) = a0
α(m1 + k) − ω2

0

α
.

(176)

Consider system (172) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(177)

Note that for the considered values of parame-
ters there are three equilibria in the system: a
locally stable zero equilibrium and two saddle equi-
libria. Now let us apply the above procedure of hid-
den attractors localization to Chua’s system (171)
with parameters (177). For this purpose, compute
a starting frequency and a coefficient of harmonic
linearization:

ω0 = 2.0392, k = 0.2098.

Then, we compute solutions of system (172) with
the nonlinearity εϕ(x) = ε(ψ(x)− kx), sequentially
increasing ε from the value ε1 = 0.1 to ε10 = 1 with
step 0.1. By (174) and (176), the initial data can be
obtained

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of multistage procedure. For ε1 =
0.1, after a transient process, the computational
procedure reaches starting oscillation x1(t). Fur-
ther, by the numerical procedure and the sequential
transformation xj(t) with increasing parameter εj ,
for original Chua’s system (171) the set Ahidden is
computed. This set is shown in Fig. 67.

It should be noted that the decreasing of inte-
gration step, the increasing of integration time,
and the computation of different trajectories of
the original system with initial data from a small
neighborhood of Ahidden lead to the localization
of the same set Ahidden (all computed trajec-
tories densely trace the set Ahidden). Note also
that for the computed trajectories, we observe
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Fig. 67. Equilibria, saddles manifolds, hidden attractor localization.

Zhukovsky instability and the positiveness of
Lyapunov exponent [Leonov & Kuznetsov, 2007b].3

The behavior of system trajectories in a neigh-
borhood of equilibria is shown in Fig. 67. Here
Munst

1,2 are unstable manifolds, M st
1,2 are stable man-

ifolds. Thus, in phase space of system, there are
stable separating manifolds of saddles.

The above results together with the remark on
the existence, in system, of locally stable zero equi-
librium F0, attracting the stable manifolds M st

1,2 of
two symmetric saddles S1 and S2, lead to the con-
clusion that in Ahidden a hidden strange attractor is
computed.

Also, hidden attractors were computed in
modified Chua systems with smooth nonlinearity
tanh( · ) [Leonov et al., 2012a] and with nonlinear-
ity sign( · ) [Kuznetsov et al., 2013]. The described
approach can be essentially used for investigating
other modifications of Chua circuit (see, e.g. [Shi
et al., 2008; Banerjee, 2012], etc.).

6. Conclusions

In this survey, the notion of hidden attractor, sug-
gested by the authors, is considered. Its connec-
tion with well-known fundamental problems and
applied models has been demonstrated. New effec-
tive analytical and numerical methods for the study
of hidden periodic oscillations and hidden chaotic

attractors are discussed. The approach, suggested
by the authors, are based on the use of modern com-
puters, the development of numerical methods, and
the applied bifurcation theory.

At the present time, for the terms hidden oscil-

lations and hidden attractors, Internet searcher sys-
tem Google gives about 1000 references, including
http://en.wikipedia.org/wiki/Hidden oscillation.
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par les équations différentielles,” J. de Math. 37,
375–422.
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