PRL 99, 046404 (2007)

PHYSICAL REVIEW LETTERS

week ending
27 JULY 2007

Hidden Charge 2e Boson in Doped Mott Insulators
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We construct the low-energy theory of a doped Mott insulator, such as the high-temperature super-
conductors, by explicitly integrating over the degrees of freedom far away from the chemical potential.
For either hole or electron doping, a charge 2e bosonic field emerges at low energy. The charge 2e boson
mediates dynamical spectral weight transfer across the Mott gap and creates a new charge e excitation by
binding a hole. The result is a bifurcation of the electron dispersion below the chemical potential as
observed recently in angle-resolved photoemission on Pb-doped Bi,Sr,CaCu,0Og, s (Pb2212).
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Two problems beset the construction of a proper low-
energy theory (explicit integration of the high-energy
scale) of doped Mott insulators. First, the high-energy
degrees of freedom are neither fermionic nor bosonic. To
illustrate, in a Mott insulator, the chemical potential lies in
a charge gap between two bands that represent electron
motion on empty (lower Hubbard band, LHB for short) and
singly occupied sites (upper Hubbard band, hereafter
UHB). Since the latter involves double occupancy, the
gap between the bands is set by the on-site repulsion
energy U. Nonetheless, both double occupancy and double
holes represent high-energy excitations in the half-filled
insulating state as each is equally far from the chemical
potential. As neither of these is fermionic, standard fermi-
onic path integral procedures are of no use.

Second, unlike the static bands in band insulators, the
UHB and LHB are not rigid, thereby permitting spectral
weight transfer. When x holes are placed in a Mott insula-
tor, at least 2x [1] single particle addition states are created
just above the chemical potential. The deviation from x, as
would be the case in a band insulator, is intrinsic to the
strong correlations that mediate the Mott insulating state in
a half-filled band, thereby distinguishing Mottness from
ordering. The states in excess of x arise from two distinct
effects. Each hole reduces the number of ways of creating a
doubly occupied site by one, thereby reducing the spectral
weight at high energy. As the x empty sites can be occupied
by either spin up or spin down electrons, the 2x sum rule is
exact [1] in the atomic limit. Further, in the presence of
hybridization (with matrix element ), virtual excitations
between the LHB and UHB increase the loss of spectral
weight at high energy thereby leading to a faster than 2x
growth [1-3] of the low-energy spectral weight, a phe-
nomenon confirmed [4—6] widely in the high-temperature
copper-oxide superconductors.

Because some of the low-energy degrees of freedom of
doped Mott insulators derive from the high-energy scale,
low-energy descriptions must either (C1) abandon Fermi
statistics or (C2) generate new degrees of freedom [1]
which ultimately leads to electron number nonconserva-
tion. Current proposals for the low-energy physics of
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doped Mott insulators are based either on perturbation
theory [7] followed by projecting out the high-energy
sector or slaved [8] operators designed to exclude double
occupancy. As projection is not integration, neither permits
an explicit integration of the high-energy scale, and both
miss relevant physical aspects.

We show that exact integration of the high-energy scale
results in a low-energy theory that possesses a charge 2e
bosonic mode. Such an excitation might have been antici-
pated in light of the mixing between high- and low-energy
multiply charged states [9]. Our theory is an explicit ex-
ample of proposal (C2) as the conserved charge involves
both the boson and electron number. Note that the emer-
gence of new degrees of freedom in a low-energy theory,
not directly built out of elementary excitations, is not with-
out precedent. Indeed, we believe that there are useful les-
sons to draw for Mott insulators from analogies with con-
fining theories or other strongly coupled theories. A simple
theoretical model which bears some resemblance to the
theory that we develop below is the nonlinear o model
(NLoM), in which an initially nondynamical field devel-
ops correlations and in fact determines the phase structure
of the theory.

While our starting point is the one-band Hubbard model,

Hyyop = _tzgijczzrcj,o + UZCITCILCLLCLT ey
j Lo

ijo

our scheme is completely general and is applicable to the
n-band case as well. Here i, j label lattice sites, g;; is equal
to one iff i, j are nearest neighbors and c;, annihilates an
electron with spin o on lattice site i. The Hilbert space of
this model is a product of Fock spaces, ®;(F; ® F)|). We
are concerned in the limit when the Hubbard bands are
well separated, U > t. Given that the chemical potential
lies in the gap between such well-separated bands at half-
filling, the high-energy degree of freedom is ambiguous at
half-filling. Both double occupancy (UHB) and double
holes (LHB) are equally costly. Doping removes this am-
biguity. Hole-doping jumps the chemical potential to the
top of the LHB thereby defining double occupancy to be
the high-energy scale. For electron doping, the chemical
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potential lies at the bottom of the upper Hubbard band and
it is the physics associated with double holes in the lower
Hubbard band that should be coarse grained. A generalized
particle-hole transformation relates the two theories.

Hole doping.—The basic idea of our construction is to
rewrite the Hubbard model in such a way as to isolate the
high-energy degrees of freedom so that they can be simply
integrated out. We do this by first introducing a new
oscillator that represents the degrees of freedom at
high energy and including a constraint which ensures that
the extended theory is equivalent to the Hubbard model. If
we simply solve this constraint we return to the description
(1) of the Hubbard model, while if instead, we integrate out
the high-energy degrees of freedom, we will obtain the
low-energy effective theory. To this end, we extend the
Hilbert space ®;(F; ® F| ® Fp). We associate DT with
the creation of double occupation. In order to limit the
Hilbert space to single occupation in the D sector, we will
take D to be fermionic. Integrating over the high-energy
scale will be accomplished by integrating over D. In par-
ticular, we will formulate a Hamiltonian for the extended
theory in such a way that if we were to solve the constraint,
precisely the Hubbard Hamiltonian (1) would be recov-
ered. The action of the standard electron creation operator
c;r,, and the new fermionic operator D! to create the
allowed states on a single site are shown in Fig. 1. We
now formulate a Euclidean Lagrangian

L= [ im0 = mpsel iy + 30D,
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in the extended Hilbert space in such a way as to include
the hopping terms (see right panel in Fig. 1) present in the
Hubbard model (where we have replaced doubly occupied
sites by D occupation). Here, n is a formal complex
Grassmann constant which we have inserted in order to

|0,0;0)
el el
/ lDt \
1, 0 0) |0,0;1) |0,1;0) ©O 0.0 (0.D)
01 / /
o (©0) ((Mi/' (©D)
1, (J 1) |1 1;0) 0,1;1) (DO) (Do) (D.D)
&l lDT )
cl f
11,1;1)

FIG. 1 (color online). Extended Hilbert space (left) which
allows an explicit integration of the high-energy scale.
Hopping processes (right) included in the Lagrangian.

keep track of statistics, and d?7n denotes Grassmann inte-
gration. The parameter V,, has values V; =1, V| = —1,
and simply ensures that D couples to the spin singlet. The
operator C;;, is of the form C;;, = nna;;,=nn(l—
n; 5)(1 —n; ;) with number operators n; , = CIU_C,-,[,. Note
that the dynamical terms that appear in the Lagrangian are
nontraditional because the dynamics with the c;,. operators
must exclude those sites which contain the occupancy
zlc T|O> Finally, the constraint H, is taken to be

Heon = 57) Z ¢l (D; = mejpe;) +He  (3)

where ¢; is a charge 2e bosonic field. The constant s will
be determined shortly. To see how this constraint removes
unphysical states that arise from the extended Hilbert
space, we compute the partition function

= /[DCDCT DDDDtDeDetlexp Jitar, (€))]

The integration over ¢, yields a series of 6 functions which
makes the integral over D trivial. The resultant Lagrangian
given by [ d*nfmLyu, = ch;rac'w + Hpyupy 18 identical
to that of the Hubbard model. This constitutes the ultra-
violet (UV) limit of our theory. As is evident, in this limit
the extended Hilbert space contracts, unphysical states
such as [1,0, 1), 10,1, 1), |1,1, 1) are set to zero, and we
identify |1, 1, 0) with |0, 0, 1). Note there is no contradic-
tion between treating D as fermionic and the constraint in
Eq. (3). The constraint never governs the commutation
relation for D. The value of D is determined by Eq. (3)
only when ¢ is integrated over. This is followed immedi-
ately by an integration over D at which point D is elimi-
nated from the theory.

The theory given above permits us to coarse grain the
system cleanly for U > t. The energy scale associated
with D is the large on-site energy U. Hence, it makes
sense, instead of solving the constraint, to integrate out
D. This will result in the low-energy (IR) theory. Such an
integration may be done exactly as the theory is Gaussian
in D. This is not possible in previous theories. Because of
the dynamical term in the action, integration over D will
yield a theory that is frequency dependent. We identify the
corresponding low-energy theory by setting the frequency
to zero. Since the theory is Gaussian, it suffices to complete
the square in the D field. To accomplish this, we define the
matrix

_ ! t
M= <5ij - mgijgcj,gci,a> ©)

andb; = 3 b;; = 3 ,8iiCj sV oCi- Atzero frequency the
Hamiltonian [10] is

H} = _tzgijaija'c;'r,g-cj,a' + Hiy
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where

Hmt UZbT(M 1)kak UZQDT(M ZJQDJ_SZQDJ ]chl—i_UZQDT(M l)t]bj+HC (6)

which constitutes the true (IR) limit as the high-energy
scale has been removed. The energy scale s is set by noting
that the fourth term entering our Hamiltonian can mediate
spin exchange. As the energy scale for this process is t2/U,
we make the identification s = ¢. Hence, appearing at low
energy is a charge 2e bosonic field which can either
annihilate or create doubly occupied sites or nearest-
neighbor singlets. That the energy cost for double occu-
pancy in the IR is #>/U and not U underscores the fact that
the UHB and LHB are not orthogonal. If they were, inte-
grating out the high-energy scale would not result in new
charge 2e degrees of freedom at low energy. While electron
number conservation is broken in the IR, a conserved low-
energy charge does exist, however [11]: O = Z”,.CT Civ T
2Z,¢ ¢;. As Eq. (6) lays plain, the bosons acquire dy-
namics only through electron motion. Further, they lack a
Fock space of their own since all operators in the extended
space have been integrated out. Indeed, on phenomeno-
logical grounds, weakly interacting Bose-Fermi models
have been advanced [12,13]. What the current analysis
clarifies is that there is a rigorous connection between a
strongly coupled Bose-Fermi model and the low-energy

|
= fdzn[ﬁnzni&c
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that preserves the distinct hops in the Hubbard model
where the operator D; is a fermion associated with double
holes. In this case, the constraint is given by H.,, =
57y @i(D; — ncllcf) + H.c. Two differences to note are
that (i) because the chemical potential resides in the UHB,
the electron hopping term now involves sites that are at
least singly occupied and (ii) the order of the D; and c;
operators is important. If we integrate over ¢; and then D;,
all the unphysical states are removed and we obtain as be-
fore precisely Ly, Hence, both theories yield the Hub-
bard model in their UV limits. They differ, however, in the
IR as can be seen by performing the integration over D,.
The corresponding integral is again Gaussian and yields

. 1
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physics of doped Mott insulator. As we will see, ¢,’s role is
to provide internal structure to the electron by mediating
composite excitations.

In the limit U — oo, the theory reduces to the restricted
hopping term and the third term in Eq. (6). Performing
the ¢ integration in the partition function, we arrive at
the constraint 8(c;c;). This leads to a vanishing of
double occupancy, the correct result for U = o0. Second,
for ¢ = 0, we have the restricted hopping term and sec-
ond term in Eq. (6). Approximating M,; by its lead-

ing term §;;, we reduce the second term to Z,-b;rb,- =

lj’
Z,ﬂ;(m/gugﬂcl Vo c 5C0o'VoCj g, Which contains the
spin-spin 1nteract10n —(8;+S; —n;n;/4) as well as the
three-site hopping term. Hence, the ¢ = 0 limit contains
the #-J model, thereby establishing that the physics con-
tained in ¢; is nonprojective.

Electron doping.—For electron doping, the chemical
potential jumps to the bottom of the UHB and hence the
degrees of freedom that lie far away from the chemical
potential no longer correspond to double occupancy, but
rather double holes. We proceed as before by extending the
Hilbert space and constructing a new Lagrangian

ijo

(7

[
as the IR limit of the electron-doped theory. In addition to

the hopping term, the last term also differs from the hole-
doped theory as it enters with the opposite sign. The
generalized particle-hole transformation (GPHT) that leads
to the hole-doped theory is c¢;, — €'¢ r'c L [Q = (7, m)]
augmented with ¢; — — ¢, . As ¢, is a complex field, the
GPHT interchanges the creation operators of opposite
charge. We again make the identification s = ¢ because
the last term can also mediate spin exchange. When the
boson vanishes, we do recover the exact particle-hole
symmetric analogue of the hole-doped theory. Because
the field ¢ now couples to double holes, the relevant
creation operator has charge —2e and the conserved charge
[11]is O = Zw Cig — 2¢ ¢;. This sign change in the
conserved charge w1ll manifest itself as a sign change in
the chemical potential as long as <go, ;) # 0. Likewise,
the correct U — oo limit is obtained as before.

To uncloak how the spectrum changes upon single-
electron addition or subtraction, we derive an exact ex-
pression for the electron operator in the new low-energy
theory. To this end, we translate the Lagrangian for the
hole-doped theory by a source term, that generates the
canonical electron operator when the constraint is solved.
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FIG. 2 (color online). (a) Spectral function along the nodal
direction for filling n = 0.9 and U = 10t at T = 0. The lower
energy branch below the chemical potential arises from a bind-
ing [which opens a pseudogap in the density of states (c)] of a
hole with the charge 2e boson. (b) Two kinks occur, one at
0.15¢ = 70 meV and a higher-energy kink at 0.5¢ = 250 meV at
which the bifurcation appears.

The appropriate source term that yields the canonical
electron operator in the UV region is > ,,J; ,[71m(1 —
niﬁ)c;ﬂ, + V,,D;fcl-ﬁn] + H.c. However, in the IR region
in which we only integrate over the heavy degree of free-
dom D;, the electron creation operator

t _ N _
(1- niﬁ)czg + VUUb,T.?Vl,-jlcjﬁ - V{,5<p:r3\/lijlcj,,—,
©))
contains the standard term for motion in the LHB, (1 —
ni’(—,)czg with a renormalization from spin fluctuations

(second term) and a new charge e excitation,
oM go}L, the IR analogue of the UHB excitation
n,-’(—,czo_. Consequently, we predict that an electron at low
energies is in a coherent superposition of the standard LHB
state (modified with spin fluctuations) and a new charge e
state described by ciﬁl?\/li_jlqo}. It is the presence of these
two distinct excitations that preserves the 2x sum rule [1].

To illustrate this physics, we offer an approximate cal-
culation of the electron spectral function. For the sake of
the following discussion, we consider ¢; to be spatially
independent and thereby compute the electron Green func-
tion by evaluating [d¢*d¢ F[ [[DciDc;lc;(t)c;(0)" X
exp(— [Lird1)]/Z, where F denotes the Fourier trans-
form. Further, we ignore the four-fermion term b;rbi, as
this term simply renormalizes the standard LHB band as
Eq. (9) indicates. The key results summarized in Fig. 2 are
the following: (i) Below the chemical potential the electron
spectral function consists of two branches. The inner curve
corresponds to the standard LHB of the #-J model while the
outer curve the new excitation arising from the nonprojec-
tive physics in the true low-energy theory. The bifurcation

persists for a wide range of doping (1.3 > n > 0.7) and
cannot be captured by mean-field or saddle-point approx-
imations to the Green function, which yield only one of the
branches. (ii) Bifurcation occurs at the second higher-
energy kink (roughly 0.5¢ approximately 250 meV for
the cuprates). (iii) The difference between the two
branches is largest at the momentum (0,0) and scales as
t. (iv) The presence of the two branches opens a pseudogap
in the spectrum as shown in the density of states (panel c).
The bifurcation, intensity of each branch, and energy of the
kink are in excellent agreement with recent experiments
[14] on Pb2212. Howeyver, the bifurcation has been inter-
preted as evidence for spin-charge separation. Although
our method is approximate, it is sufficient to capture the
essence of Eq. (8): two distinct excitations (as seen experi-
mentally) constitute the removal of an electron at low
energies in a doped Mott insulator.

Whether or not c,»(,,’]\/li;lg0} constitutes a true bound

state remains a conjecture at this point, though the presence
of two states [Fig. 2(a)] in the excitation spectrum and
Eq. (9) are consistent with such physics. An analysis based
on Bethe-Saltpeter equations is necessary. Consequently,
the physics of doped Mott insulators turns on precisely the
same kinds of problems that arise in other instances of
strong coupling such as nuclear structure and confinement.
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