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Abstract: The newly observed Pc(4312), Pc(4440) and Pc(4457) at the LHCb experiment

are very close to the ΣcD̄ and ΣcD̄
∗ thresholds. In this work, we perform a systematic

study and give a complete picture on the interactions between the Σ
(∗)
c and D̄(∗) systems in

the framework of heavy hadron chiral effective field theory, where the short-range contact

interaction, long-range one-pion-exchange contribution, and intermediate-range two-pion-

exchange loop diagrams are all considered. We first investigate the three Pc states without

and with considering the Λc contribution in the loop diagrams. It is difficult to simul-

taneously reproduce the three Pcs unless the Λc is included. The coupling between the

Σ
(∗)
c D̄(∗) and ΛcD̄

(∗) channels is crucial for the formation of these Pcs. Our calculation

supports the Pc(4312), Pc(4440) and Pc(4457) to be the S-wave hidden-charm [ΣcD̄]
I=1/2
J=1/2,

[ΣcD̄
∗]I=1/2
J=1/2 and [ΣcD̄

∗]I=1/2
J=3/2 molecular pentaquarks, respectively. Our calculation disfa-

vors the spin assignment JP = 1
2

−
for Pc(4457) and JP = 3

2

−
for Pc(4440), because the

excessively enhanced spin-spin interaction is unreasonable in the present case. We obtain

the complete mass spectra of the [Σ
(∗)
c D̄(∗)]J systems with the fixed low energy constants.

Our result indicates the existence of the [Σ∗
cD̄

∗]J (J = 1
2 ,

3
2 ,

5
2) hadronic molecules. The

previously reported Pc(4380) might be a deeper bound one. Additionally, we also study the

hidden-bottom Σ
(∗)
b B(∗) systems, and predict seven bound molecular states, which could

serve as a guidance for future experiments. Furthermore, we also examine the heavy quark

symmetry breaking effect in the hidden-charm and hidden-bottom systems by taking into

account the mass splittings in the propagators of the intermediate states. As expected,

the heavy quark symmetry in the bottom cases is better than that in the charmed sectors.

We notice that the heavy quark symmetry in the ΣcD̄ and Σ∗
cD̄ systems is much worse

for some fortuitous reasons. The heavy quark symmetry breaking effect is nonnegligible in

predicting the effective potentials between the charmed hadrons.
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1 Introduction

The charmonium physics is one of the most charming and interesting sectors in quantum

chromodynamics (QCD). On the one hand, the charmonium spectra deepen our under-

standing on the nonperturbative QCD and serve as a good platform to develop multifarious

potential models. On the other hand, the discoveries of the exotic XY Z states challenge
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the conventional hadron spectra [1], since these states cannot be easily reconciled with the

predictions of the conventional quark models. Furthermore, the heavy quark symmetry

in the charm sector is not good enough, thus the heavy quark symmetry breaking effect

would manifest itself and lead to some novel phenomena sometimes.

In 2015, two pentaquark candidates Pc(4380) and Pc(4450) were observed by the LHCb

Collaboration in the J/ψp invariant mass spectrum via the weak decay process of Λ0
b →

J/ψpK− [2]. The discovery of these two exotica triggered many discussions on the their

internal structures (for some related reviews, see refs. [1, 3–7]), among which, the molecular

interpretation is the most favored one. In ref. [8], these two states are interpreted as the

deeply bound ΣcD̄
∗ and Σ∗

cD̄
∗ molecular states in the framework of one-pion-exchange

model. Whereas in ref. [9], they are regarded as the Σ∗
cD̄ and Σ∗

cD̄
∗ molecules, respectively.

However, the JP quantum numbers of the Pc(4380) and Pc(4450) remain an open question.

Very recently, the LHCb Collaboration reported the new results with the updated

data [10]. A new narrow state Pc(4312) is observed in the J/ψpmass spectrum. In addition,

the previously observed structure Pc(4450) is dissolved into two narrow peaks Pc(4440)

and Pc(4457). Since these three states lie several to tens MeV below the thresholds of ΣcD̄

and ΣcD̄
∗, the molecular explanation is proposed with the chiral effective field theory [11],

contact-range effective field theory [12], one-boson-exchange model [13], local hidden gauge

formalism [14], and Bethe-Salpeter equation approach [15], respectively. The decays and

productions of the Pc states are also studied in refs. [16–19] (one can see refs. [20–24] for

some other pertinent works).

The interactions between Σ
(∗)
c and D̄(∗) are essential to map out the mass spectra of the

Σ
(∗)
c D̄(∗) molecules. Before the discovery of these Pc states, the Σ

(∗)
c D̄(∗) interactions have

been investigated with the one-boson-exchange model [25, 26] and chiral quark model [27].

In this work, in light of the newly observed Pc(4312), Pc(4440) and Pc(4457) [10], we

systematically study the Σ
(∗)
c and D̄(∗) interactions with chiral effective field theory up to

the one-loop level.

Nowadays, as the one inheritor of the Yukawa theory, the one-boson-exchange model

is the most popular and economical formalism for depicting the nucleon-nucleon (N -N)

systems [28, 29] and XY Z states [1]. But in this model, one has to include as many

exchanged particles as possible, such as π, σ, ρ, ω, or higher states and so on. As the

other inheritor of the Yukawa theory, chiral perturbation theory plays a pivotal role in

the modern theory of nuclear force. Its degrees of freedom are unambiguous, i.e., the

pion and matter field. Another advantage of chiral perturbation theory is its consistent

power counting. The scattering amplitudes can be expanded order by order with a small

parameter ε (generally, ε = mπ/Λχ or q/Λχ, where mπ and q are the mass and momentum

of pion, respectively, and Λχ ≃ 1 GeV is the chiral breaking scale), i.e., the power counting

is apparent at the scattering amplitude (effective potential) level. The uncertainty mainly

comes from the truncation error of the higher orders, thus the error is estimable and

controllable at the order we are working on. However, one should note that the power

counting is lost in physical observables (such as the binding energies) due to the mixing

between different orders after the potential is inserted into the iterative equation. In the

past decades, the chiral effective field theory has been extensively exploited to study the
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N -N systems with great success [30–34]. Moreover, in recently years, this theory is also

employed to investigate the effective potentials of the DD∗ [35], B̄(∗)B̄(∗) [36, 37], and

ΣcD̄
(∗) [11] systems.

The interactions between heavy matter fields in the chiral effective field theory are

clear and straightforward, which generally include the long-range one-pion-exchange,

intermediate-range two-pion-exchange and short-range contact interaction [32, 38, 39]. The

contributions from the heavy degrees of freedom are encoded into the low energy constants

(LECs) of the contact Lagrangians. As we know, the masses of the heavy matter fields, like

Σ
(∗)
c and D̄(∗), do not vanish in the chiral limit. The large masses would break the chiral

power counting. Thus, we can adopt the heavy hadron reduction formalism to integrate out

the large mass scale [40–42]. For the loop diagrams generated by the two-pion-exchange

interactions, we will encounter another trouble, which also destroys the power counting

rule. Considering the one-loop Feynman diagrams illustrated in figure 1, the scattering

amplitude at the leading order of the nonrelativistic expansion is badly divergent because

of the pinch singularity [32, 39]. Although the problem of divergence can be solved by

including the kinetic energies of Σ
(∗)
c and D̄∗ at the leading order (see some more detailed

discussions in refs. [32, 37, 39]), the amplitude would be finally enhanced by a large factor

M/|p| (M could be the mass of Σ
(∗)
c or D̄∗), which will destroy the power counting as

well. This strong enhancement is the manifestation of the nonperturbative nature of the

nuclear force, which is responsible for the existence of the bound pentaquark states. In

other words, a nonperturbative treatment is required.

In the two seminal works [38, 39], Weinberg pointed out that we shall focus on the

effective potential, i.e, the contributions from two-particle-irreducible (2PI) graphs. The

two-particle-reducible (2PR) part, that originates from the on-shell intermediate Σ
(∗)
c and

D̄∗, should be subtracted. On the other hand, the 2PR part can be automatically recov-

ered when the one-pion-exchange potential is inserted into the nonperturbative iterative

equation, such as the Schrödinger equation or Lippmann-Schwinger equation. Therefore,

the 2PI parts in the diagrams of figure 1 that contribute to the effective potentials can still

be calculated perturbatively. We just need to solve a nonperturbative iterative equation

with the obtained effective potential eventually.

For the Σ
(∗)
c D̄(∗) systems, the mass splittings in the spin doublets (Σc,Σ

∗
c) and (D̄, D̄∗)

do not vanish in the chiral limit, which only vanish in the strict heavy quark limit. There-

fore, except for the two particular diagrams in figure 1, the intermediate states in the loops

can also be their spin partners. In this case, the loop integral is well defined, and we do not

need to make the 2PR subtraction, unless the inelastic one-pion-exchange couple channel

is included.

In this work, we try to reproduce the newly observed Pc(4312), Pc(4440) and Pc(4457)

after simultaneously considering the leading order contact interaction and one-pion-

exchange contribution, as well as the next-to-leading order two-pion-exchange diagrams.

The mass splittings are kept in the loop diagrams. If these Pc states are shallow bound

hadronic molecules, they would be very sensitive to the subtle changes of the effective po-

tentials. Furthermore, the nonanalytic structures, such as the terms with the logarithmic

and square root functions, would emerge from the loop diagrams, which may enhance the
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Figure 1. Two typical Feynman diagrams for the two-pion-exchange process of the ΣcD̄
∗ (a) and

Σ∗

cD̄
∗ (b) systems. We use the thick line, heavy-thick line, double-thin line and dashed line to

denote the Σc, Σ
∗

c , D̄
∗ and pion, respectively.

two-pion-exchange potential to some extent. In particular, the mass difference δ between

D̄∗ and D̄ is larger than the pion mass mπ. The heavy quark spin symmetry breaking

effect has been noticed for the charmed sectors in some works [11, 43]. Besides, one shall

not neglect the role of Λc, since the Λcπ couples strongly with the Σ
(∗)
c . Therefore, we also

include the contribution of Λc in the loop diagrams. We will see the dramatic influences of

Λc on the Σ
(∗)
c D̄(∗) intermediate-range potentials.

We use the Pc(4312), Pc(4440) and Pc(4457) as inputs to fix the unknown LECs. We

notice that the three Pc states can be synchronously reproduced when the Λc is considered.

We then use the fixed LECs to study the previously reported Pc(4380) and predict the

possible Σ∗
cD̄

∗ molecules. We also investigate the Σ
(∗)
b B(∗) systems, and predict the possible

Pb states.

This paper is organized as follows. In section 2, we give the effective chiral Lagrangians.

In section 3, we present the analytical expressions for the effective potentials of the Σ
(∗)
c D̄(∗)

systems. In section 4, we illustrate the numerical results and discussions, which contain

the results without and with the Λc, and an investigation on interchanging the spins of

Pc(4440) and Pc(4457). In section 5, we study the hidden-bottom systems and predict their

mass spectra. In section 6, we give a detailed examination of the heavy quark symmetry

breaking effect in the hidden-charm and -bottom systems. In section 7, we conclude this

work with a short summary. In the appendices A, B, C and D, we display the definitions

and expressions of the loop integrals, the detailed elucidation on how to remove the 2PR

contributions with the mass splittings being kept, the derivation of the spin-spin terms in

the potentials, and a tentative parameterization of the effective potentials from the quark

model, respectively.

2 Effective chiral Lagrangians

In the framework of heavy hadron chiral perturbation theory, the scattering amplitudes

of the Σ
(∗)
c D̄(∗) systems can be expanded order by order in powers of a small parameter

ε = q/Λχ, where q is either the momentum of Goldstone bosons or the residual momentum

of heavy hadrons, and Λχ represents either the chiral breaking scale or the mass of a heavy

hadron. The expansion is organized by the power counting rule [38, 39]. One can get the
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order ν of a diagram with

ν = 2L− En
2

+ 2 +
∑

i

Vi∆i, ∆i = di +
ni
2

− 2, (2.1)

where L and En represent the number of loops and external lines of the matter field. Vi
denote the number of the type-i vertex with the order ∆i. di and ni stand for the number

of derivatives (or mπ factors) and external lines of the matter field in a type-i vertex.

2.1 Pion interactions

In the SU(2) flavor space, the two light quarks in the charmed baryons can form the

antisymmetric isosinglet and symmetric isotriplet. The corresponding total spins of the

light quarks are Sl = 0 and Sl = 1, respectively. We use the notations ψ1, ψ3 and ψµ3∗ to

denote the spin- 12 isosinglet, spin- 12 and spin-32 isotriplet, respectively.

ψ1 =

(

0 Λ+
c

−Λ+
c 0

)

, ψ3 =





Σ++
c

Σ+
c√
2

Σ+
c√
2

Σ0
c



 , ψµ3∗ =





Σ∗++
c

Σ∗+
c√
2

Σ∗+
c√
2

Σ∗0
c





µ

. (2.2)

The leading order relativistic chiral Lagrangians for the charmed baryons have been

constructed in refs. [44, 45], which are given as

LBφ = Tr
{

ψ̄µ3∗
[

−gµν(i /D −M3∗) + i(γµDν + γνDµ)− γµ(i /D +M3∗)γν
]

ψν3∗
}

Tr
[

ψ̄3(i /D −M3)ψ3

]

+ g1Tr
(

ψ̄3/uγ5ψ3

)

+ g3Tr
(

ψ̄µ3∗uµψ3 +H.c.
)

+g5Tr
(

ψ̄µ3∗/uγ5ψ3∗µ

)

+
1

2
Tr
[

ψ̄1(i /D −M1)ψ1

]

+ g2Tr
(

ψ̄3/uγ5ψ1 +H.c.
)

+g4Tr
(

ψ̄µ3∗uµψ1 +H.c.
)

, (2.3)

where Tr(X) denotes the trace of X in flavor space. The covariant derivative Dµ is defined

as Dµψ = ∂µψ + Γµψ + ψΓTµ (ΓTµ means the transposition of Γµ). Meanwhile, the chiral

connection Γµ and axial current uµ are

Γµ ≡ 1

2

[

ξ†, ∂µξ
]

, uµ ≡ i

2

{

ξ†, ∂µξ
}

, (2.4)

where

ξ2 = U = exp

(

iφ

fπ

)

, φ =

(

π0
√
2π+√

2π− −π0

)

, (2.5)

and fπ = 92.4 MeV is the pion decay constant.

We then adopt the heavy baryon reduction formalism [46] to get rid of the large baryon

masses in eq. (2.3), where the heavy baryon field is decomposed into the light and heavy

components by the projection operators (1 ± /v)/2,

Bi = eiMiv·x 1 + /v

2
ψi, Hi = eiMiv·x 1− /v

2
ψi, (2.6)

– 5 –
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where ψi denotes the relativistic heavy baryon field ψ1, ψ3 and ψ3∗ , Mi is their masses, and

vµ = (1,0) represents the four-velocity of a slowly moving heavy baryon. Bi and Hi are

the corresponding light and heavy components, respectively. Hi disappears at the leading

order expansion.

Consequently, the eq. (2.3) can then be reexpressed with the nonrelativistic form as

LBφ = Tr
[

B̄3(iv ·D − δc)B3

]

− Tr
[

B̄µ3∗ (iv ·D − δd)B3∗µ

]

+ 2g1Tr
(

B̄3S · uB3

)

+g3Tr
(

B̄µ3∗uµB3 +H.c.
)

+ 2g5Tr
(

B̄µ3∗S · uB3∗µ

)

+
1

2
Tr
[

B̄1(iv ·D)B1

]

+2g2Tr
(

B̄3S · uB1 +H.c.
)

+ g4Tr
(

B̄µ3∗uµB1 +H.c.
)

, (2.7)

where Sµ = i
2γ5σ

µνvν denotes the spin operator for the spin- 12 particle. We adopt the mass

splittings δa = M3∗ −M3 = 65 MeV, δc = M3 −M1 = 168.5 MeV, and δd = M3∗ −M1 =

233.5 MeV [47].

Recall that the (ψ3, ψ3∗) form the spin doublet in the heavy quark limit. Thus eq. (2.7)

can be rewritten as a compact form by introducing the super-field [48, 49],

LBφ = −Tr
(

ψ̄µiv ·Dψµ
)

+ igaǫµνρσTr
(

ψ̄µuρvσψν
)

+ i
δa
2
Tr
(

ψ̄µσµνψ
ν
)

+
1

2
Tr
[

B̄1(iv ·D)B1

]

+ gbTr
(

ψ̄µuµB1 +H.c.
)

, (2.8)

where the super-fields ψµ and ψ̄µ are defined as [42, 50]

ψµ = Bµ3∗ −
1√
3
(γµ + vµ)γ5B3, ψ̄µ = B̄µ3∗ +

1√
3
B̄3γ

5(γµ + vµ). (2.9)

Expanding eq. (2.8) and comparing them with the terms in eq. (2.7), one can get the

relations among the different coupling constants,

g1 = −2

3
ga, g3 = − 1√

3
ga, g5 = ga; g2 = − 1√

3
gb, g4 = gb. (2.10)

The values of g2 and g4 can be calculated with the partial decay widths of Σc → Λcπ and

Σ∗
c → Λcπ [47], respectively. The other axial couplings g1, g3 and g5 can be obtained by

their relations with g2 in the framework of the quark model [51–53], which yields

g2 = −0.60, g4 = −
√
3g2 = 1.04;

g1 = −
√

8

3
g2 = 0.98, g3 =

√
3

2
g1 = 0.85, g5 = −3

2
g1 = −1.47. (2.11)

The leading order chiral Lagrangians for the interactions between the anticharmed

mesons and light pseudoscalars read [54, 55]

LHφ = −i〈 ¯̃Hv · DH̃〉 − 1

8
δb〈 ¯̃HσµνH̃σµν〉+ g〈 ¯̃H/uγ5H̃〉, (2.12)

where 〈X〉 stands for the trace of X in spinor space. The covariant derivative Dµ =

∂µ + Γµ, δb = mD̄∗ −mD̄ is the mass splitting between D̄∗ and D̄. g = −0.59 represents

– 6 –
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the axial coupling constant, and its value is extracted from the partial decay width of

D∗+ → D0π+ [47], while the sign is determined by the quark model. We use the H̃ to

denote the super-field for the anticharmed mesons, which reads

H̃ =
(

P̃ ∗
µγ

µ + iP̃ γ5

) 1− /v

2
, ¯̃H = γ0H̃†γ0 =

1− /v

2

(

P̃ ∗†
µ γ

µ + iP̃ †γ5
)

, (2.13)

where P̃ = (D̄0, D−)T and P̃ ∗ = (D̄∗0, D∗−)T , respectively.

2.2 Contact interactions

We then construct the leading order Lagrangians that account for the interactions between

Σ
(∗)
c and D̄(∗) at the short range. We also use the super-field representations for Σ

(∗)
c and

D̄(∗) to reduce the numbers of the LECs, which read [11]

LHB = Da〈 ¯̃HH̃〉Tr
(

ψ̄µψµ
)

+ iDbǫσµνρv
σ〈 ¯̃Hγργ5H̃〉Tr

(

ψ̄µψν
)

+Ea〈 ¯̃Hτ iH̃〉Tr
(

ψ̄µτiψµ
)

+ iEbǫσµνρv
σ〈 ¯̃Hγργ5τ iH̃〉Tr

(

ψ̄µτiψ
ν
)

, (2.14)

where the Da, Db, Ea and Eb are four independent LECs. The contact terms contain

the residual contributions from the heavy degrees of freedom, which are integrated out

and invisible at the low energy scale. Their values can be delicately determined from the

experimental data [11] or roughly estimated with the theoretical models [35, 37]. Da and

Db contribute to the central potential and spin-spin interaction, respectively. Ea and Eb
are related with the isospin-isospin interaction and contribute to the central and spin-spin

interaction in spin space, respectively .

At the next-to-leading order, we need the O(ε2) LECs to absorb the divergences of

the loop diagrams. These O(ε2) contact Lagrangians shall be proportional to the m2
π, q

2,

δ2a and δ2b . As demonstrated in ref. [36], there exist a large number of contact terms at

O(ε2). It is very difficult to fix all these LECs at present. Therefore, in our work, we

try to combine some contributions of the O(ε2) LECs with the leading ones by fitting the

experimental data (At least the ones that proportional to m2
π, δ

2
a and δ2b can be absorbed

by renormalizing the O(ε0) LECs. The ones correlated with q2 can be largely compensated

by the cutoff).

3 Analytical expressions for the effective potentials of the Σ(∗)
c

D̄(∗) sys-

tems

The effective potential in momentum space can be obtained from the scattering amplitude

in the following way [26],

V(q) = − M(q)√
2M12M22M32M4

, (3.1)

where the M1,2 and M3,4 are the masses of the initial and final particles. The scattering

amplitude M(q) is calculated by expanding the Lagrangians in eqs. (2.7), (2.12) and (2.14).

Recall that at the leading order of the nonrelativistic expansions, there are the relations [55]

ψ(p) =
√

2mψ [χ(v) +O(1/mψ)] , H̃(p) =
√
mH

[

H̃(v) +O(1/mH)
]

, (3.2)

– 7 –
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where ψ(p) and H̃(p) are the relativistic fields. χ(v) is the two-component spinor. The

H̃(v) is the field in eqs. (2.12) and (2.14). We then make the Fourier transformation on

V(q) to get the potential V(r) in the coordinate space,

V(r) =
∫

d3q

(2π)3
e−iq·rV(q)F(q). (3.3)

Because the chiral expansion only works well for the soft momenta region q ≪ mρ ∼ Λχ ≈ 1

GeV, so we introduce an exponential cutoff F(q) = exp(−q2n/Λ2n) in eq. (3.3) to exclude

the contributions from high momenta [56, 57]. The light degree of freedom we explicitly

treated in chiral Lagrangians is pion, which mass is much smaller (about 630 MeV) than the

“typical” light hadron ρ. In other words, there is a large scale separation between the pion

and ρ, thus the ρ and other higher states can be regarded as the hard scales and integrated

out safely in the view of effective field theory. This imposes a very strong restriction on the

cutoff value Λ, i.e., Λ should be smaller than the mρ. Otherwise, the theory may become

unstable or untunable, and the expansion would not work any more when the transferred

momentum is extrapolated tomρ or higher. This is why a comparatively soft cutoff Λ = 0.5

GeV is adopted to fit the N -N scattering data [32, 58, 59]. The situation for the Σ
(∗)
c D̄(∗)

systems is very similar to the N -N systems, because if the observed Pcs are the ΣcD̄
(∗)

molecules, they are shallowly bound. Therefore, the cutoff Λ for the Σ
(∗)
c D̄(∗) systems

should also be soft to avoid the high momenta contributions being heavily involved. In this

work, as in refs. [35–37, 58], we set n = 2. The cutoff is also chosen to be a moderate value

Λ = 0.5 GeV as in refs. [11, 32, 58] to give predictions. The dependence of the numerical

results on the cutoff will be discussed in section 4.

3.1 ΣcD̄ system

Since the D̄D̄π vertex is forbidden by the parity conservation law, the leading order effective

potential for the ΣcD̄ system only arises from the contact terms [diagram (X1.1) in the

figure 2]. One can readily get

VX1.1

ΣcD̄
= −Da − 2Ea(I1 · I2), (3.4)

where I1 and I2 represent the isospin operators of the Σ
(∗)
c and D̄(∗), respectively. The

matrix element of I1 · I2 is

〈I1 · I2〉 =
{

−1 for I = 1
2

1
2 for I = 3

2

,

where I is the total isospin of the Σ
(∗)
c D̄(∗) system. The above values can be easily obtained

with the relation 〈I1 · I2〉 = 1
2 [I(I + 1)− I1(I1 + 1)− I2(I2 + 1)].

At the next-to-leading order, there are two types of one-loop diagrams. One is the

two-pion-exchange diagrams is figure 3. Another one is the vertex corrections and wave

function renormalizations in figure 4 [35–37]. The contribution of the diagrams in figure 4

could be included by using the physical values of the parameters in the Lagrangians, such

as the pion mass, decay constant, coupling constants, etc. . .

– 8 –



J
H
E
P
1
1
(
2
0
1
9
)
1
0
8

c
Σ

c
Σ

c
Σ *

c
Σ *

c
Σ *

c
Σ

1.1( )X
2.1( )X

2.1( )H 3.1( )X
4.1( )X 4.1( )H

D *
D

*
D D

*
D

*
D

Figure 2. The leading order Feynman diagrams that account for the O(ε0) effective potentials of

the ΣcD̄ (X1.1), ΣcD̄
∗ (X2.1, H2.1), Σ

∗

cD̄ (X3.1) and Σ∗

cD̄
∗ (X4.1, H4,1) systems. We use the thin

line to denote the D̄ meson, and other notations are the same as those in figure 1.

1.1( )F 1.1( )T
1.2( )T

1.3( )T 1.1( )B
1.2( )B 1.1( )R 1.2( )R

Figure 3. The two-pion-exchange diagrams of the ΣcD̄ system at O(ǫ2). These diagrams are

classified as the football diagram (F1.1), triangle diagrams (T1.i), box diagrams (B1.i) and crossed

box diagrams (R1.i). The internal heavy baryon lines in diagrams (T1.3), (B1.1) and (R1.1) can also

be the Λc. The notations are the same as those in figure 2.

The analytical expressions of the two-pion-exchange diagrams in figure 3 read

VF1.1

ΣcD̄
= (I1 · I2)

1

f4π
JF22(mπ, q), (3.5)

VT1.1
ΣcD̄

= (I1 · I2)
g2

f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E − δb, q), (3.6)

VT1.2
ΣcD̄

= (I1 · I2)
g23
4f4π

[

(d− 2)JT34 − q2
d− 2

d− 1

(

JT24 + JT33
)

]

(mπ, E − δa, q), (3.7)

VT1.3
ΣcD̄

= (I1 · I2)
g21
4f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E , q), (3.8)

VB1.1

ΣcD̄
= (1− I1 · I2)

g2g21
8f4π

[

(d2 − 1)JB41 − 2q2(d+ 1)
(

JB31 + JB42
)

− q2JB21

+q4
(

JB22 + 2JB32 + JB43
)

]

(mπ, E , E − δb, q), (3.9)

VB1.2

ΣcD̄
= (1− I1 · I2)

g2g23
8f4π

[

(d2 − d− 2)JB41 − 2q2
d2 − d− 2

d− 1

(

JB31 + JB42
)

− q2
d− 2

d− 1
JB21

+q4
d− 2

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E − δa, E − δb, q), (3.10)

VR1.i

ΣcD̄
= VB1.i

ΣcD̄

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2
. (3.11)

When the contribution of Λc is included, it will appear in the graphs (T1.3), (B1.1) and

(R1.1) as the intermediate state. The expressions read (we use T̄i.j , B̄i.j and R̄i.j to denote
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Figure 4. The next-to-leading order Feynman diagrams that contribute to the vertex corrections

and wave function renormalizations. Each graph denotes the one type of diagrams with the same

topological structure.

the loops with Λc)

V T̄1.3
ΣcD̄

= (I1 · I2)
g22
2f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E + δc, q), (3.12)

VB̄1.1

ΣcD̄
= (1− 2I1 · I2)

g2g22
8f4π

[

(d2 − 1)JB41 − 2q2(d+ 1)
(

JB31 + JB42
)

− q2JB21

+q4
(

JB22 + 2JB32 + JB43
)

]

(mπ, E + δc, E − δb, q), (3.13)

VR̄1.1

ΣcD̄
= VB̄1.1

ΣcD̄

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2
. (3.14)

In above equations, the loop functions Jyx are defined in appendix A. d is the dimension

where the loop integral is performed and approaches four at last. E represents the residual

energies of the Σ
(∗)
c and D̄(∗), which is defined as E = Ei −Mi (i = Σ

(∗)
c , D̄(∗)). E is set to

zero in our calculations.

3.2 ΣcD̄
∗ system

The leading order potential for the ΣcD̄
∗ system stems from the contact interaction and

one-pion-exchange diagrams [graphs (X2.1) and (H2.1) in figure 2], which reads

VX2.1

ΣcD̄∗
= −Da − 2Ea(I1 · I2) +

2

3

[

−Db − 2Eb(I1 · I2)
]

σ · T , (3.15)

VH2.1

ΣcD̄∗
= −(I1 · I2)

gg1
2f2π

(q · σ)(q · T )

q2 +m2
π

, (3.16)

where σ is the Pauli matrix. The spin operator S1 of Σc satisfies S1 = 1
2σ. The operator

T = iε∗ × ε (ε and ε∗ are the space components of polarization vectors of the initial and

final D̄∗ meson) is correlated with the spin operator S2 of the D̄∗ meson by the relation

S2 = −T . Thus the σ ·T term represents the spin-spin interaction (see appendix C). Since

only the S-wave interaction is considered, one can use the following replacement rules in

the potentials,

ε∗ · ε 7−→ 1, qiqj 7−→
1

d− 1
q2δij . (3.17)

The two-pion-exchange diagrams for the ΣcD̄
∗ system are shown in figure 5. The

potentials from these graphs read

VF2.1

ΣcD̄∗
= (I1 · I2)

1

f4π
JF22(mπ, q), (3.18)

VT2.1
ΣcD̄∗

= (I1 · I2)
g2

f4π

[

2JT34 − q2
d− 2

d− 1

(

JT24 + JT33
)

]

(mπ, E , q), (3.19)
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VT2.2
ΣcD̄∗

= (I1 · I2)
g2

f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δb, q), (3.20)

VT2.3
ΣcD̄∗

= (I1 · I2)
g21
4f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E , q), (3.21)

VT2.4
ΣcD̄∗

= (I1 · I2)
g23
4f4π

[

(d− 2)JT34 − q2
d− 2

d− 1

(

JT24 + JT33
)

]

(mπ, E − δa, q), (3.22)

VB2.1

ΣcD̄∗
= (1− I1 · I2)

g2g21
8f4π

[

4d2 − 10d+ 6

d− 1
JB41 − q2

d2 + 3d− 8

d− 1

(

JB31 + JB42
)

−q2
d− 2 + σ · T

d− 1
JB21 + q4

d− 2

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E , E , q), (3.23)

VB2.2

ΣcD̄∗
= (1− I1 · I2)

g2g21
8f4π

[

− 2q2
d+ 1

d− 1

(

JB31 + JB42
)

− q2
1

d− 1
(1 + σ · T )JB21

+(d+ 1)JB41 + q4
1

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E , E + δb, q), (3.24)

VB2.3

ΣcD̄∗
= (1− I1 · I2)

g2g23
8f4π

[

− q2
(d− 2)2 − σ · T

(d− 1)2
JB21 − q2

(d− 2)(d2 + 3d− 8)

(d− 1)2
(

JB31 + JB42
)

+
2(d2 − 2d+ 2)

d− 1
JB41 + q4

(d− 2)2

(d− 1)2
(

JB22 + 2JB32 + JB43
)

]

(mπ, E − δa, E , q), (3.25)

VB2.4

ΣcD̄∗
= (1− I1 · I2)

g2g23
8f4π

1

d− 1

[

− 2q2
(d+ 1)(d− 2)

d− 1

(

JB31 + JB42
)

− q2
d− 2− σ · T

d− 1
JB21

+q4
d− 2

d− 1

(

JB22 + 2JB32 + JB43
)

+ (d2 − d− 2)JB41

]

(mπ, E − δa, E + δb, q), (3.26)

VR2.i

ΣcD̄∗
= VB2.i

ΣcD̄∗

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2, σ·T→−σ·T
. (3.27)

Considering the contribution of Λc:

V T̄2.3
ΣcD̄∗

= (I1 · I2)
g22
2f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E + δc, q), (3.28)

VB̄2.1

ΣcD̄∗
= (1− 2I1 · I2)

g2g22
8f4π

[

4d2 − 10d+ 6

d− 1
JB41 − q2

d2 + 3d− 8

d− 1

(

JB31 + JB42
)

−q2
d− 2 + σ · T

d− 1
JB21 + q4

d− 2

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E + δc, E , q),(3.29)

VB̄2.2

ΣcD̄∗
= (1− 2I1 · I2)

g2g22
8f4π

[

− 2q2
d+ 1

d− 1

(

JB31 + JB42
)

− q2
1

d− 1
(1 + σ · T )JB21

+(d+ 1)JB41 + q4
1

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E + δc, E + δb, q), (3.30)

VR̄2.i

ΣcD̄∗
= VB̄2.i

ΣcD̄∗

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2, σ·T→−σ·T
. (3.31)

From the above equations we see that, in the S-wave interactions, only the central terms

and spin-spin interactions survive in the effective potentials.
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Figure 5. The two-pion-exchange diagrams of the ΣcD̄
∗ system at O(ǫ2). The internal heavy

baryon lines in diagrams (T2.3), (B2.1), (B2.2), (R2.1) and (R2.2) can also be the Λc. The notations

are the same as those in figure 2.
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3.1( )R 3.2( )R

Figure 6. The two-pion-exchange diagrams of the Σ∗

cD̄ system at O(ǫ2). The internal heavy

baryon lines in diagrams (T3.3), (B3.2) and (R3.2) can also be the Λc. The notations are the same

as those in figure 2.

3.3 Σ∗

cD̄ system

Like the ΣcD̄ system, the leading order potential for the Σ∗
cD̄ system only stems from the

contact terms [diagram (X3.1) in figure 2]. The expression reads

VX3.1

Σ∗

cD̄
= −Da − 2Ea(I1 · I2). (3.32)

We see that the contact potential of the Σ∗
cD̄ system equals to the one of the ΣcD̄ system

in eq. (3.4), because the O(ε0) contact Lagrangian is constructed in the heavy quark limit.

The heavy quark breaking effect will be manifested in the loop diagrams when the mass

splittings are considered in the propagators of the heavy matter fields.

The two-pion-exchange diagrams are illustrated in figure 6. The analytical results for

these diagrams are given as

VF3.1

Σ∗

cD̄
= (I1 · I2)

1

f4π
JF22(mπ, q), (3.33)

VT3.1
Σ∗

cD̄
= (I1 · I2)

g2

f4π

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E − δb, q), (3.34)

VT3.2
Σ∗

cD̄
= (I1 · I2)

g25
4f4π

d2 − 2d− 3

(d− 1)2

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E , q), (3.35)

– 12 –



J
H
E
P
1
1
(
2
0
1
9
)
1
0
8

VT3.3
Σ∗

cD̄
= (I1 · I2)

g23
4f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δa, q), (3.36)

VB3.1

Σ∗

cD̄
= (1− I1 · I2)

g2g25
8f4π

d2 − 2d− 3

(d− 1)2

[

(d2 − 1)JB41 − 2q2(d+ 1)
(

JB31 + JB42
)

−q2JB21 + q4
(

JB22 + 2JB32 + JB43
)

]

(mπ, E , E − δb, q), (3.37)

VB3.2

Σ∗

cD̄
= (1− I1 · I2)

g2g23
8f4π

[

(d+ 1)JB41 − 2q2
d+ 1

d− 1

(

JB31 + JB42
)

− q2
1

d− 1
JB21

+q4
1

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E + δa, E − δb, q), (3.38)

VR3.i

Σ∗

cD̄
= VB3.i

Σ∗

cD̄

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2
. (3.39)

Including the contribution of Λc:

V T̄3.3
Σ∗

cD̄
= (I1 · I2)

g24
2f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δd, q), (3.40)

VB̄3.2

Σ∗

cD̄
= (1− 2I1 · I2)

g2g24
8f4π

[

(d+ 1)JB41 − 2q2
d+ 1

d− 1

(

JB31 + JB42
)

− q2
1

d− 1
JB21

+q4
1

d− 1

(

JB22 + 2JB32 + JB43
)

]

(mπ, E + δd, E − δb, q), (3.41)

VR̄3.2

Σ∗

cD̄
= V B̄3.2

Σ∗

cD̄

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2
. (3.42)

3.4 Σ∗

cD̄
∗ system

The leading order diagrams for Σ∗
cD̄

∗ system are the graphs (X4.1) and (H4.1) in figure 2.

The potentials from these two graphs read

VX4.1

Σ∗

cD̄
∗
= −Da − 2Ea(I1 · I2) +

[

−Db − 2Eb(I1 · I2)
]

σrs · T , (3.43)

VH4.1

Σ∗

cD̄
∗
= (I1 · I2)

gg5
2f2π

(q · σrs)(q · T )

q2 +m2
π

, (3.44)

where the operator σrs is related to the spin operator S1 of the Σ
∗
c with S1 =

3
2σrs (see the

detailed derivations in appendix C), so the σrs ·T term represents the spin-spin interaction

as well. We see the O(ε0) potentials for Σ∗
cD̄

∗ resemble the ones for ΣcD̄
∗ in eqs. (3.15)

and (3.16).

The two-pion-exchange diagrams are displayed in figure 7. The potentials originate

from these graphs read

VF4.1

Σ∗

cD̄
∗
= (I1 · I2)

1

f4π
JF22(mπ, q), (3.45)

VT4.1
Σ∗

cD̄
∗
= (I1 · I2)

g2

f4π

[

2JT34 − q2
d− 2

d− 1

(

JT24 + JT33
)

]

(mπ, E , q), (3.46)

VT4.2
Σ∗

cD̄
∗
= (I1 · I2)

g2

f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δb, q), (3.47)
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Figure 7. The two-pion-exchange diagrams of the Σ∗

cD̄
∗ system at O(ǫ2). The internal heavy

baryon lines in diagrams (T4.4), (B4.3), (B4.4), (R4.3) and (R4.4) can also be the Λc. The notations

are the same as those in figure 2.

VT4.3
Σ∗

cD̄
∗
= (I1 · I2)

g25
4f4π

d2 − 2d− 3

(d− 1)2

[

(d− 1)JT34 − q2
(

JT24 + JT33
)

]

(mπ, E , q), (3.48)

VT4.4
Σ∗

cD̄
∗
= (I1 · I2)

g23
4f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δa, q), (3.49)

VB4.1

Σ∗

cD̄
∗
= (1− I1 · I2)

g2g25
8f4π

1

d− 1

[

2
(

2d2 − 5d− 7 + 3(σrs · T )2 − σrs · T
)

JB41

−q2
d3 + 2d2 − 15d− 16 + 12(σrs · T )2 − 4σrs · T

d− 1

(

JB31 + JB42
)

−q2
d2 − 3d− 4 + 3(σrs · T )2 + (d− 4)σrs · T

d− 1
JB21

+q4
d3 − 4d2 + d+ 6

(d− 1)2
(

JB22 + 2JB32 + JB43
)

]

(mπ, E , E , q), (3.50)

VB4.2

Σ∗

cD̄
∗
= (1− I1 · I2)

g2g25
8f4π

1

d− 1

[

(

d2 − 1− 6(σrs · T )2 + 2σrs · T
)

JB41 + q4
d2 − 2d− 3

(d− 1)2

×
(

JB22 + 2JB32 + JB43
)

− 2q2
d2 − 1− 6(σrs · T )2 + 2σrs · T

d− 1

(

JB31 + JB42
)

−q2
d+ 1− 3(σrs · T )2 + (d− 2)σrs · T

d− 1
JB21

]

(mπ, E , E + δb, q), (3.51)

VB4.3

Σ∗

cD̄
∗
= (1− I1 · I2)

g2g23
32f4π

[

(

20− 6(σrs · T )2 + 2σrs · T
)

JB41 + 4q4
d− 2

(d− 1)2
(

JB22

+2JB32 + JB43
)

− 4q2
d+ 6− 3(σrs · T )2 + σrs · T

d− 1

(

JB31 + JB42
)

+3q2
(σrs · T )2 − σrs · T − 2

d− 1
JB21

]

(mπ, E + δa, E , q), (3.52)
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VB4.4

Σ∗

cD̄
∗
= (1− I1 · I2)

g2g23
32f4π

[

(

6(σrs · T )2 − 2σrs · T
)

JB41 + 4q2
−3(σrs · T )2 + σrs · T

d− 1

×
(

JB31 + JB42
)

+ 4q4
1

(d− 1)2
(

JB22 + 2JB32 + JB43
)

−q2
3(σrs · T )2 + σrs · T − 2

d− 1
JB21

]

(mπ, E + δa, E + δb, q). (3.53)

Unlike the two-pion-exchange potentials of the ΣcD̄
∗ system, there exists a very simple

relation between VR2.i

ΣcD̄∗
and VB2.i

ΣcD̄∗
[e.g., see eqs. (3.27) and (3.31)], since the σ ·T term only

accompanies the JB21 and JR21. For the Σ∗
cD̄

∗ system, the two-pion-exchange potentials are

very complicated, and we cannot write out the simple relationship as eqs. (3.27) and (3.31).

But there is still a corresponding relation between each VR4.i

Σ∗

cD̄
∗
and VB4.i

Σ∗

cD̄
∗
, which is

VR4.i

Σ∗

cD̄
∗
= VB4.i

Σ∗

cD̄
∗

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2,CJB
21

→C
JR
21

, (3.54)

where the substitution rule CJB
21

→ CJR
21

represents that only the coefficient of JB21 in the

square brackets should be replaced with the one of JR21, while the other terms remain

unchanged. For example, the CJB
21
s for VB4.3

Σ∗

cD̄
∗
and VB4.4

Σ∗

cD̄
∗
are 3q2[(σrs·T )2−σrs·T−2]/(d−1)

and −q2[3(σrs · T )2 + σrs · T − 2]/(d − 1), respectively. We write down the CJR
21
s of the

VR4.i

Σ∗

cD̄
∗
(i = 1, . . . , 4) as follows correspondingly.

i = 1 : q2
d2 − 3d− 4 + 3(σrs · T )2 − (d− 2)σrs · T

1− d
,

i = 3 : 3q2
(σrs · T )2 + σrs · T /3− 2

d− 1
,

i = 2 : q2
d+ 1− 3(σrs · T )2 − (d− 4)σrs · T

1− d
,

i = 4 : q2
3(σrs · T )2 − 3σrs · T − 2

1− d
. (3.55)

Including the contribution of Λc:

V T̄4.4
Σ∗

cD̄
∗
= (I1 · I2)

g24
2f4π

[

JT34 −
q2

d− 1

(

JT24 + JT33
)

]

(mπ, E + δd, q), (3.56)

VB̄4.3

Σ∗

cD̄
∗
= (1− 2I1 · I2)

g2g24
32f4π

[

(

20− 6(σrs · T )2 + 2σrs · T
)

JB41 + 4q4
d− 2

(d− 1)2
(

JB22

+2JB32 + JB43
)

− 4q2
d+ 6− 3(σrs · T )2 + σrs · T

d− 1

(

JB31 + JB42
)

+3q2
(σrs · T )2 − σrs · T − 2

d− 1
JB21

]

(mπ, E + δd, E , q), (3.57)

VB̄4.4

Σ∗

cD̄
∗
= (1− 2I1 · I2)

g2g24
32f4π

[

(

6(σrs · T )2 − 2σrs · T
)

JB41 + 4q2
−3(σrs · T )2 + σrs · T

d− 1

×
(

JB31 + JB42
)

+ 4q4
1

(d− 1)2
(

JB22 + 2JB32 + JB43
)
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−q2
3(σrs · T )2 + σrs · T − 2

d− 1
JB21

]

(mπ, E + δd, E + δb, q), (3.58)

VR̄4.i

Σ∗

cD̄
∗
= VB̄4.i

Σ∗

cD̄
∗

∣

∣

∣

JB
x →JR

x , I1·I2→−I1·I2,CJB
21

→C
JR
21

, (3.59)

where the CJR
21
s are equal to the ones in eq. (3.55) for i = 3 and i = 4, respectively. In

the above equations, we notice that a new spin-spin structure (σrs · T )2 arises in the box

and crossed box diagrams, which is the characteristic interaction structure for the high

spin particle systems. Such a structure cannot appear in the two-body potentials with

spin-12 particle, such as the ΣcD̄
∗ system. Due to the constraints of the commutation

and anticommutation relations of the Pauli matrix, the spin operator of a spin- 12 particle

appears at most once. On the other hand, the (σrs · T )2 terms do not emerge at the tree

level, where the heavy quark symmetry is satisfied. In other words, this structure is also

the reflection of the heavy quark symmetry breaking effect at the one-loop level, which

indeed disappears if we set the mass splittings in the loops to be zeros (this structure will

persist for the diagrams with Λc as the intermediate state, since the mass splittings δc and

δd do not vanish even in the rigorous heavy quark limit).

4 Numerical results without and with the Λc

The newly observed three Pc states, Pc(4312), Pc(4440) and Pc(4457) have been studied

with the same framework in our previous paper [11], in which we did not include the

contribution of the Λc. There are three scenarios in ref. [11]. In scenario I, the LECs are

estimated from the N -N data, but the result is not good, because we cannot reproduce

the Pc(4457). In scenario II, the LECs are determined by fitting the data of the three Pcs,

yet the result is still unsatisfactory. In scenario III, the Pcs are simultaneously reproduced

in a relatively small parameter region when the couple channel effect is included. In this

part, we revisit these states without and with the Λc contribution, and give a comparison

with the result in scenario II of ref. [11].

4.1 The three Pc states without the Λc

Up to now, the four LECs in eq. (2.14) are still unknown. But we do not have to determine

each of them since the forms of the O(ε0) contact potentials are homogeneous for definite

isospin states. There are only two independent LECs in nature if the isospin-isospin terms

are absorbed into the relevant LECs with the following redefinitions,

D1 = Da + 2Ea(I1 · I2), D2 = Db + 2Eb(I1 · I2). (4.1)

Thus the O(ε0) contact potentials of the Σ
(∗)
c D̄(∗) systems can be rewritten as1

VX1.1

ΣcD̄
= −D1, VX2.1

ΣcD̄∗
= −

[

D1 +
2

3
D2(σ · T )

]

,

VX3.1

Σ∗

cD̄
= −D1, VX4.1

Σ∗

cD̄
∗
= −

[

D1 + D2(σrs · T )
]

. (4.2)

1There is a typo in the eq. (51) of ref. [11]. The potential VX2.1

ΣcD̄
∗
should be revised to the correct form

of this work. But it does not affect the numerical results in ref. [11], since the value of D2 in the figure 10

of ref. [11] is the twice of the one used in this work.
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States Mass Width Threshold Binding energy I(JP )

Pc(4312) 4311.9± 0.7+6.8
−0.6 9.8± 2.7+3.7

−4.5 Σ+
c D̄

0 −5.83± 0.7+6.8
−0.6

1
2

(

1
2

−

)

Pc(4440) 4440.3± 1.3+4.1
−4.7 20.6± 2.7+8.7

−10.1 Σ+
c D̄

∗0 −19.45± 1.3+4.1
−4.7

1
2

(

1
2

−

)

Pc(4457) 4457.3± 0.6+4.1
−1.7 6.4± 2.0+5.7

−1.9 Σ+
c D̄

∗0 −2.45± 0.6+4.1
−1.7

1
2

(

3
2

−

)

Pc(4380) 4380± 8± 29 205± 18± 86 Σ∗+
c D̄0 −2.33± 8± 29 1

2

(

3
2

−

)

Table 1. The experimental and theoretical information of the Pc(4312), Pc(4440), Pc(4457) [10],

and Pc(4380) [2]. The corresponding binding energies are obtained with the thresholds of

Σ
(∗)+
c D̄(∗)0, such as the binding energy of Pc(4312) equals to mPc(4312) − (mΣ+

c

+ mD̄0). The

masses of Σ
(∗)+
c and D̄(∗)0 are taken from the Particle Physics Booklet [47]. The I(JP ) quantum

numbers are the theoretically favored ones, not the experimental measurements (in units of MeV).

The masses and widths of the newly observed three Pc states and the previously re-

ported Pc(4380) are displayed in table 1. The closest thresholds, binding energies as the

Σ
(∗)
c D̄(∗) molecules, and theoretically favored I(JP ) quantum numbers are also illustrated.

Since the masses of Σ
(∗)+
c and D̄(∗)0 have been precisely measured in experiments, their

minor errors are ignored in calculating the uncertainties of binding energies.

With the above preparations, as in ref. [11], we vary the D1 and D2 in the ranges

[−100, 150] GeV−2 and [−100, 100] GeV−2 respectively to search for the possible region

where the three Pc states can coexist. We mainly focus on the I = 1
2 states, because

these Pc states are observed in the mass spectra of J/ψp. To make a comparison, we

present both the results without and with the Λc in figures 8(a) and 8(b), respectively.2

We assume that the Pc(4312), Pc(4440) and Pc(4457) are the [ΣcD̄]J= 1
2
, [ΣcD̄

∗]J= 1
2
and

[ΣcD̄
∗]J= 3

2
molecular states, respectively. We use three colored bands to denote the region

of parameters with binding energy [−30, 0] MeV for each system, respectively. Considering

the hadronic molecules are loosely bound states, we set −30MeV as the lower limit of the

bindings. The intersection point of two black solid lines designates the coordinate value

(D2,D1) where the corresponding two Pcs can coexist. Ideally, the three straight lines

should meet at a point if the central value of the mass for each Pc is exact and these Pcs

are indeed the molecules of the corresponding Σ
(∗)
c D̄(∗) systems. However, the results in

figure 8(a) are not good. Three intersection points stay far away from each other. It is

hard to reproduce the three Pcs in this case, simultaneously.

The line-shape of the effective potentials for the three Pcs in this case have been given

in ref. [11], where a set of parameters D1 = 42 GeV−2 and D2 = −12.5 GeV−2 in the

overlap region are adopted. Here, we use these two values to calculate the binding energies

of the [Σ
(∗)
c D̄(∗)]J systems, the corresponding results are given in the second row of table 2.

From table 2 we see that only the result for the [ΣcD̄
∗] 3

2
system is consistent with the data

in table 1. There are large differences for the [ΣcD̄] 1
2
and [ΣcD̄

∗] 1
2
systems. In addition,

the [Σ∗
cD̄

∗] 1
2
is very shallowly bound, and no binding solutions are found for other high

2One can also see the another version in the figure 10(a) of ref. [11], where the x and y axes are

interchanged.
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Figure 8. The dependence of the binding energies of the three Pc states on the redefined LECs D1

and D2. The green, red and blue bands correspond to the [ΣcD̄]J= 1
2
, [ΣcD̄

∗]J= 1
2
and [ΣcD̄

∗]J= 3
2

systems, respectively. The three black straight lines represent the central values of the binding

energies obtained from the experimental data [10] (the numbers in the fifth column of table 1). The

boundaries of the bands that are parallel to the corresponding straight lines stand for the regions of

parameters with the binding emerges −30MeV and 0MeV, respectively. The accompanied arrow

shows the direction that the each binding becomes deeper. Figures (a) and (b) illustrate the results

without and with the Λc, respectively. The results are both calculated with the cutoff Λ = 0.5GeV.

∆E [ΣcD̄] 1
2

[ΣcD̄
∗] 1

2
[ΣcD̄

∗] 3
2

[Σ∗

cD̄] 3
2

[Σ∗

cD̄
∗] 1

2
[Σ∗

cD̄
∗] 3

2
[Σ∗

cD̄
∗] 5

2

Without Λc −29.05 −6.84 −2.98 −34.30 −0.16 × ×

With Λc −4.60 −22.48 −3.19 −34.51 −14.34 −3.40 −0.30

I.S. −7.24 −1.47 −17.44 −40.88 × −0.24 −11.20

Table 2. The binding energies ∆E for the I = 1
2 hidden-charm [Σ

(∗)
c D̄(∗)]J systems in both cases

with and without the Λc, as well as the case with JP = 1
2

−

for Pc(4457) and
3
2

−

for Pc(4440). The

values of (D1,D2) for the “Without Λc” and “With Λc” cases are chosen to be (42,−12.5) GeV−2

and (52,−4) GeV−2, respectively. “I.S.” stands for the results when interchanging the spins of

Pc(4440) and Pc(4457), where (D1,D2) = (58,−31) GeV−2 in this case. “×” means no binding

solution (in units of MeV).

spin systems. We cannot simulate the three Pcs simultaneously no matter how we choose

the values of D1 and D2 in the overlapped region of figure 8(a).

4.2 Role of the Λc

As mentioned above, we cannot give a good description for the Pcs if we only consider the

spin partners of Σ
(∗)
c and D̄(∗) in the two-pion-exchange diagrams. In this part, we are

going to include the contributions of Λc in the loops. Since both the Σc and Σ∗
c can decay

into Λcπ, the strong couplings between Σ
(∗)
c and Λcπ should not be neglected.
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Figure 9. The effective potentials of the ΣcD̄
(∗) systems. Their I(JP ) are marked in each subfigure.

The potentials are obtained with the cutoff parameter Λ = 0.5GeV, and the LECs D1 = 52

GeV−2, D2 = −4 GeV−2. The Rrms in each subfigure denotes the root-mean-square radius of the

corresponding system.

The result with the Λc being included is illustrated in figure 8(b), from which we find

that there exists a very large overlap among the three colored bands. The small triangle

surrounded by three straight lines just locates in the overlap. Besides, the intersection

points between two of the three solid lines are very close to each other, and they almost

meet at a point if we consider the experimental errors. In other words, the three Pc can

be synchronously reproduced in this case. The result in figure 8(b) is in good agreement

with the experimental data.

We choose the values D1 = 52 GeV−2 and D2 = −4 GeV−2 in the center of the small

triangle to give the binding energies and effective potentials of the [Σ
(∗)
c D̄(∗)]J systems.

The binding energies in this case are shown in the third row of table 2, from which we get

the results for the [ΣcD̄] 1
2
, [ΣcD̄

∗] 1
2
and [ΣcD̄

∗] 3
2
systems that are consistent with the ex-

perimental data. One may note that the [Σ∗
cD̄] 3

2
system is always deeper bound compared

with the other systems regardless of the contribution of Λc. The [Σ∗
cD̄] 3

2
system might

correspond to the previously reported Pc(4380) [2]. Therefore, we urge the experimental-

ists to reanalyze the data to see whether Pc(4380) is the most deeply bound one in the

[Σ
(∗)
c D̄(∗)]J systems. Moreover, the bound states of the [Σ∗

cD̄
∗]J (J = 1

2 ,
3
2 ,

5
2) systems are

also predicted. Their binding energies are determined to be −14.34MeV, −3.40MeV and

−0.30MeV, respectively.

The effective potentials of the ΣcD̄
(∗) and Σ∗

cD̄
(∗) systems are shown in figures 9 and 10,

respectively. In the following, we analyze their behaviors in detail.

ΣcD̄
(∗) systems: the results in figures 9(a), 9(b) and 9(c) all demonstrate that the

contact term supplies the very strong attractive potential. From eq. (4.2) we know that

O(ε0) contact term for the ΣcD̄ system only contains the central potential, while the spin-

spin contact term appears for the ΣcD̄
∗ system. Thus their difference is mainly caused

by the spin-spin interaction. Meanwhile, the small difference between their O(ε0) contact

potentials indicates that the spin-spin interaction is rather weak and only serves as the

hyperfine splittings.

There is no one-pion-exchange potential for the ΣcD̄ due to the vanishing D̄D̄π vertex.

The one-pion-exchange potential for the [ΣcD̄
∗] 1

2
is attractive, while it is repulsive for the
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Figure 10. The effective potentials of the Σ∗

cD̄
(∗) systems. Their I(JP ) are marked in each

subfigure. The potentials are obtained with the cutoff parameter Λ = 0.5GeV, and the LECs

D1 = 52 GeV−2, D2 = −4 GeV−2. The Rrms in each subfigure denotes the root-mean-square radius

of the corresponding system.

[ΣcD̄
∗] 3

2
because of the different signs of the matrix element of the spin-spin operator for

the spin-12 and spin-32 states.

The contributions of the two-pion-exchange potentials for the [ΣcD̄] 1
2
and [ΣcD̄

∗] 3
2
are

significant, but it is marginal for the [ΣcD̄
∗] 1

2
. Nevertheless, one can still find the similar

behaviours of the two-pion-exchange potentials, which are repulsive at the short range,

but become weakly attractive at the intermediate range. This is the typical feature of the

nuclear force [32].

Finally, the total potentials of the [ΣcD̄
(∗)]J systems are fully attractive. The subtle

interplay among the short-, intermediate- and long-range interactions yields the experi-

mentally observed Pc(4312), Pc(4440) and Pc(4457).

Σ(∗)
c D̄∗ systems: the results in the figure 10 are also very interesting, since they are

related with the previously reported Pc(4380) and other unobserved states. Recalling the

binding energies in table 2, the result of Σ∗
cD̄ is about eight times larger than that of the

ΣcD̄. These two systems have the same O(ε0) contact potentials [e.g., see eq. (4.2)]. The

one-pion-exchange contribution vanishes for both systems. Thus the difference can only

arise from the two-pion-exchange potentials, as shown in figure 10(a). One can notice the

behaviors of the two-pion-exchange potential for the Σ∗
cD̄ is attractive at the short-range

and weakly repulsive at the intermediate-range, which is in contrast to that of the ΣcD̄

[e.g., see figure 9(a)]. Therefore, if one only considers the O(ε0) contribution, it is unlikely
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to obtain the significant difference between the ΣcD̄ and Σ∗
cD̄ systems. So we eagerly hope

the future analysis at LHCb can help us confirm this observation.

The effective potentials of the [Σ∗
cD̄

∗]J systems are very similar to those of the [ΣcD̄
∗]J

systems. For instance, the O(ε0) contact potentials are attractive. The one-pion-exchange

potentials vary dramatically with the total spins. The two-pion-exchange potentials have

the similar line-shape as the nuclear force. Although the total potentials are all attractive,

the [Σ∗
cD̄

∗] 5
2
system is very shallowly bound with root-mean-square radius 6.27 fm.

The two-pion-exchange potentials for the ΣcD̄
(∗) systems in different cases are dis-

played in figure 11. We can read the significant differences when we include the Λc and

not, or vary the mass splitting δc for the [ΣcD̄] 1
2
and [ΣcD̄

∗] 1
2
systems. We take the [ΣcD̄] 1

2

system as an example. The two-pion-exchange potential is attractive if we do not consider

the Λc, while it becomes repulsive when the Λc is involved. This can well explain why the

binding of the [ΣcD̄] 1
2
state is much deeper without the Λc (see table 2). The magnitude of

the change from the minimum to the maximum in these two cases is about 120MeV, which

is even larger than the minimum of the total potential [see figure 9(a)]. The enhancement

is mainly generated by the accidental degeneration of the ΣcD̄ and ΛcD̄
∗ systems, since the

contribution of the box diagram (B1.1) is proportional to 1/(δc−δb), where δc−δb ≃ 28MeV

is tiny. Another reason that may cause the enhancement is the contributing diagrams with

the Λc are only (T1.3) and (B1.1). Unlike the ΣcD̄
∗ system, the accidental cancelations

among several diagrams cannot happen. In other words, the Λc indeed plays a crucial role

in the formation of the Pc(4312).

For the [ΣcD̄
∗] 1

2
system, since the whole contribution of the two-pion-exchange poten-

tial is much weaker than the O(ε0) contact term [see figure 9(b)], the influence of Λc on

this state is not so apparent as in ΣcD̄. However, it is still very important to the existence

of Pc(4457) and the possible [Σ∗
cD̄

∗]J bound states (e.g., see the data in table 2).

In figure 11, we also show the dependence of the two-pion-exchange potentials on the

mass splitting δc. One can see that they are very sensitive to the δc. The loop integrals

generally contain two structures. One is the analytic term, which is the polynomials of

the m2
π, q

2, δ2, etc. . . Another one is the nonanalytic term, which comprises the typical

multivalued functions, such as logX and
√
X (X is the polynomials of the m2

π, q
2, δ2.).

The physical value of the δc is about 168MeV, which is larger than the pion mass mπ.

We then decrease its value to 100MeV and 65MeV. One can anticipate the dependence

on δ is regular if the terms that make up the potential are only polynomials, but the

variation trend in figure 11 is irregular. This phenomenon indicates the nonanalytic terms

can distort the O(ε2) potentials, which are vital to the formations of the Pc states. The

contributions of the nonanalytic terms incorporate the complicated light quark dynamics,

which are almost impossible to estimate from quark models.

After the above discussions, one may wonder whether it is possible to reproduce the

three Pcs simultaneously if we only consider the contribution of the Λc. The result in

this case is given in figure 12(a), which is also unsatisfactory as in the case of figure 8(a).

Therefore, both the Λc and the spin partners of the Σ
(∗)
c and D̄(∗) are indispensable.

Their subtle interaction leads to the synchronous emergence of the Pc(4312), Pc(4440)

and Pc(4457).
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Λ [ΣcD̄] 1
2

[ΣcD̄
∗] 1

2
[ΣcD̄

∗] 3
2

[Σ∗

cD̄] 3
2

[Σ∗

cD̄
∗] 1

2
[Σ∗

cD̄
∗] 3

2
[Σ∗

cD̄
∗] 5

2

0.4 GeV −5.83 −18.86 −2.31 −8.61 −18.39 −7.02 −0.17

0.5 GeV −4.60 −22.48 −3.19 −34.51 −14.34 −3.40 −0.30

0.6 GeV −4.24 −29.71 −3.88 −16.56 −7.57 −1.32 −1.84

0.7 GeV −6.99 −1.43 −0.55 −1.81 × × ×

Table 3. The dependence of the binding energies ∆E for the I = 1
2 hidden-charm [Σ

(∗)
c D̄(∗)]J

systems on the cutoff Λ. “×” means no binding solution (in units of MeV).
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Figure 11. The variations of the two-pion-exchange potentials for the ΣcD̄
(∗) systems in the cases

of without and with the Λc. Their I(JP ) are marked in each subfigure. The dependence on the

mass splitting δc is also illustrated.

In table 3, we show the dependence of the binding energies on the cutoff Λ, the value

of Λ is varied from 0.4 to 0.7GeV. We notice the results of most states are not very

sensitive to Λ when Λ ∈ [0.4, 0.6]GeV, while the result changes dramatically when Λ ∼
0.7GeV. When Λ = 0.6GeV, we still can simultaneously reproduce Pc(4312), Pc(4440)

and Pc(4457), and there are binding solutions for the other four systems. However, when

Λ = 0.7GeV, we can only reproduce the Pc(4312), and cannot find binding solutions for

[Σ∗
cD̄

∗]J systems. This is the vivid manifestation of the fact that the chiral expansion only

works for q ≪ mρ [32, 58, 59]. Once the q is extrapolated to mρ in the resummations,

the prediction is not stable any more. In practice, choosing Λ ∼ mρ or larger was already

found to result in spurious deeply bound states in N -N systems [60]. Besides, the nuclear

lattice simulations of refs. [61, 62] also correspond to smaller cutoff values. In other words,

it makes little sense to take the cutoff beyond the domain of validity of the effective theory.

The complete mass spectra of the hidden-charm molecular pentaquarks are shown in

figure 13(a). We see that the Pc(4312), Pc(4440) and Pc(4457) can be well interpreted

as the [ΣcD̄] 1
2
, [ΣcD̄

∗] 1
2
and [ΣcD̄

∗] 3
2
molecules. Pc(4380) might be the deeper bound

[Σ∗
cD̄] 3

2
molecules. There are also other possible Pcs composed of the [Σ∗

cD̄
∗]J . Future

search for these states at LHCb is very important for establishing a complete family of the

hidden-charm pentaquarks.
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Figure 12. The dependence of the binding energies of the three Pc states on the redefined LECs

D1 and D2 in different cases. Figure (a) gives the result that only considering the contributions of

Λc in the two-pion-exchange diagrams. Figure (b) shows the result when interchanging the spins of

Pc(4440) and Pc(4457). The notations are the same as those in figure 8.

4.3 An episode: interchanging the spins of Pc(4440) and Pc(4457)

The JP quantum numbers of the Pc(4312), Pc(4440) and Pc(4457) are not determined

yet [10]. The theoretically favored JP for Pc(4440) and Pc(4457) in this paper and some

previous works [11–15] are 1
2

−
and 3

2

−
, respectively. Nevertheless, in some recent works [63–

65], a new conjecture, that the JP = 3
2

−
for Pc(4440) and

1
2

−
for Pc(4457), is proposed. In

this subsection, we investigate the possibility of this spin assignment.

The result of interchanging the spin assignment of Pc(4440) and Pc(4457) is given in

figure 12(b). Marvelously, the result is comparable with the one in figure 8(b), i.e., it seems

this assignment can well describe the experimental data, likewise. However, one shall note

that the values of the LECs (D1,D2) in the center of the small triangle are (58,−31) GeV−2,

while these values in figure 8(b) are (52,−4) GeV−2. The shift of D1 in these two cases is

small, but the D2 in the first case is about eight times larger than that of the latter one.

One has to largely enhance the contribution of the O(ε0) spin-spin interaction to reverse

the canonical order3 of the spins of Pc(4440) and Pc(4457).

The binding energies of the [Σ
(∗)
c D̄(∗)]J systems with the (D1,D2) = (58,−31) GeV−2

are listed in the fourth row of table 2. Although the binding energies of the [ΣcD̄] 1
2
, [ΣcD̄

∗] 1
2

and [ΣcD̄
∗] 3

2
can match the ones of Pc(4312), Pc(4457) and Pc(4440), other predictions are

different from those with the previous spin assignment. The bound [Σ∗
cD̄

∗] 1
2
state does

not exist, the [Σ∗
cD̄

∗] 3
2
state is very shallowly bound, and the binding of the [Σ∗

cD̄
∗] 5

2
state

is much deeper. This result is very theatrical to some extent, since the lowest spin state

of the Σ∗
cD̄

∗ does not exist. However, this phenomenon does not occur in the leading

3An empirical rule given by the hadron mass spectra is that the higher spin state always has the larger

mass [47].
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order effective field theory where there does not exist the repulsive core from the two-pion-

exchange diagrams.

The information from figure 8(b) indicates the D1 and D2 always have the opposite sign,

and the ratio of their absolute values R12 = |D1|/|D2| ≃ 13. We notice the correspondence

and consistence with the N -N system. The leading order contact Lagrangian for the N -N

system reads [32],

L(0)
NN = −1

2
CS(N̄N)(N̄N)− 1

2
CT (N̄σN) · (N̄σN), (4.3)

where CS and CT are two independent LECs. One would see that they respectively cor-

respond to the D1 and D2 in our work if we write out the O(ε0) contact potential of the

N -N system,

VNN = CS + CTσ · σ. (4.4)

The values of CS and CT have been precisely determined by fitting the np scattering phase

shift at the next-to-next-to-next-to-leading order of chiral perturbation theory [59]. For

the np system, which gives4

CS = −100.28 GeV−2, CT = 5.61 GeV−2. (4.5)

If absorbing the minus sign of eq. (4.3) into the CS and CT , one would see the redefined

CS and CT share the same sign with the D1 and D2, correspondingly. Meanwhile, the ratio

of the absolute values for CS and CT gives RST = |CS |/|CT | ≃ 18, which is compatible

with the R12 for D1 and D2. However, this ratio for the case of interchanging the spins

of Pc(4440) and Pc(4457) is about 1.9, which is one order of magnitude smaller than the

RST , because of the spin-spin term in the contact potential is immoderately enhanced.

On the one hand, from the point of potential model, the spin-spin term is suppressed

by the factor 1/(m
Σ

(∗)
c
mD(∗)) (e.g., see appendix D). On the other hand, one can build a

mandatory connection between the contact terms of chiral effective field theory and the

one-boson-exchange model with the help of resonance saturation model [66, 67]. As the

heavy fields, ρ, ω, f0, a0, etc., which are equally treated in one-boson-exchange model,

are integrated out in chiral effective field theory, and their contributions are packaged into

the LECs. The (ω, f0) and (ρ, a0) mesons account for the isospin-isospin unrelated Da

and related Ea, respectively [e.g., see eq. (2.14)] [35]. Meanwhile, the ω and ρ mesons

couple to the matter fields via the P -wave interaction due to the parity conservation. Each

vertex contains one momentum. In other words, the ω and ρ mesons are responsible for

the momentum-dependent spin-spin interaction, which cannot be matched with the O(ε0)

Db and Eb. Therefore, the momentum-independent contributions for Db and Eb can only

come from the axial-vector mesons, such as (h1, f1) and (b1, a1). The masses of these states

reside around 1.2GeV, which are much heavier than those of ω and ρ, and suppress the

value of D2.

4See the data in table F.1 of ref. [32], where the similar regulator function as adopted in this work is

used, meanwhile, the cutoff Λ is also chosen to be 0.5GeV.
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5 Hidden-bottom molecular pentaquarks

The above study for the hidden-charm pentaquarks can be extended to the hidden-bottom

case, once the coupling constants and mass splittings are replaced by the bottomed ones.

The coupling constants g2 and g4 for the bottom baryons can be calculated with the partial

decay widths of Σb → Λbπ and Σ∗
b → Λbπ [47],

Γ(Σb → Λbπ) =
g22

4πf2π

mΛb

mΣb

|qπ|3, Γ(Σ∗
b → Λbπ) =

g24
12πf2π

mΛb

mΣ∗

b

|qπ|3, (5.1)

Using the average values of the decay widths of Σ+
b → Λ0

bπ
+ and Σ∗+

b → Λ0
bπ

+ [47], we

get g2 = −0.51, g4 = 0.91. The other couplings can then be obtained with the relations in

eq. (2.11), which yield,

g1 = 0.83, g3 = 0.72, g5 = −1.25. (5.2)

The axial coupling g of the B mesons cannot be directly derived from the experiments due

to absence of phase space for B∗ → Bπ, so we adopt the average value g = −0.52 from the

lattice calculations [68, 69]. Similarly, the mass splittings are correspondingly given by

δa = mΣ∗

b
−mΣb

≃ 20 MeV, δb = mB∗ −mB ≃ 45 MeV,

δc = mΣb
−mΛb

≃ 191 MeV, δd = mΣ∗

b
−mΛb

≃ 211 MeV, (5.3)

where the masses of the Σ
(∗)+
b and B(∗)0 are used [47].

The small scale expansion [70] is used in eqs. (2.8) and (2.12), i.e., the mass splitting

δ is treated as another small scale in the Lagrangians. This expansion works well for the

systems with one heavy matter field [43]. The loop integrals in these systems are the

polynomials of δ, thus the convergence of the chiral expansion is not affected as long as the

δ ∼ mπ or smaller than mπ. But the situation becomes different for the systems with two

heavy matter fields. The loop integral of the box diagram is proportional to 1/(δx + δy).

If δx + δy is of the order of the pion mass, the convergence of the expansion could still

be good. For example, for the Σ
(∗)
c D̄(∗) systems [11], δb − δa ≃ 80MeV. However, for the

Σ
(∗)
b B(∗) systems, δb−δa ≃ 25MeV, which is much smaller that the pion mass.5 Therefore,

if we still adopt the same procedure as used in the Σ
(∗)
c D̄(∗) systems, the amplitudes of

some typical box diagrams would be largely amplified, which results in extremely strong

attractive or repulsive potential. This is unphysical and mainly caused by the poles of the

heavy matter fields. In some previous works [11, 37], the mass splittings are discarded in

the box diagrams to subtract the 2PR contributions. Here, we develop a method to remove

the heavy matter field poles in the box diagrams with the mass splittings being kept (see

appendix B for more details).

In order to predict the possible Pb states, we also need to know the LECs D1 and D2

for the Σ
(∗)
b B(∗) systems. In principle, they should be fixed from experimental data or the

5The pathosis does not appear in the diagrams with Λb, because the differences between δc(δd) and δb

are of the same order as the mπ.
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∆E [ΣbB] 1
2

[ΣbB
∗] 1

2
[ΣbB

∗] 3
2

[Σ∗

bB] 3
2

[Σ∗

bB
∗] 1

2
[Σ∗

bB
∗] 3

2
[Σ∗

bB
∗] 5

2

With Λb −14.04+7.36
−8.92 −22.72+8.03

−9.34 −9.12+6.06
−8.34 −14.74+7.54

−9.05 −25.75+8.38
−9.06 −17.76+7.91

−9.07 −7.81+5.56
−8.41

Table 4. The binding energies ∆E for the I = 1
2 hidden-bottom [Σ

(∗)
b B(∗)]J systems with the

contribution of the Λb. The values of (D1,D2) are chosen to be (43 ± 9,−3.3 ∓ 0.7) GeV−2, the

cutoff Λ = 0.5GeV (in units of MeV).

results from lattice QCD, which are not available at present. Thus, we estimate the ranges

of D1 and D2. Generally, the values of D1 and D2 are different for the Σ
(∗)
b B(∗) and Σ

(∗)
c D̄(∗)

systems. One explicit example is that the axial coupling constants for the bottom sectors

are about 17% smaller than those of the charmed sectors. Therefore, we take the values

(D1,D2) = (52,−4)GeV−2 fixed for the Pcs with at most 17% deviation to give the ranges

of D1 and D2 in the hidden-bottom case.

We set the (52,−4)GeV−2 as the limits of (D1,D2) for the bottom case, which deviate

17% from the central value. Approximately, we have

D1 = 43± 9 GeV−2, D2 = −3.3∓ 0.7 GeV−2. (5.4)

The binding energies and the mass spectra are given in table 4 and figure 13(b), respectively.

We notice the hidden-bottom ones are the tightly bound molecules due to the large masses

of their components. Unlike the [Σ∗
cD̄

∗]J systems, the gaps between the thresholds of the

[Σ∗
bB

∗]J systems are only about 20MeV. Thus the masses of some peculiar states with

binding energies ∆E < −20MeV may not only lie below its corresponding threshold but

also the lower one. For example, the molecular state [Σ∗
bB

∗] 1
2
locates below the thresholds

of ΣbB
∗ and Σ∗

bB
∗ if we only consider the central value.

The masses of the hidden-bottom molecules are all above 11GeV. Like their Pc part-

ners, they may be observed from the Υ(1S)N and Υ(2S)N final states. We hope future

experiments to hunt for these Pb states. We conclude this section by borrowing one of the

famous phrases from R. P. Feynman: “There is plenty of room at the ‘bottom’.” [71]

6 Heavy quark symmetry breaking effect

The QCD Lagrangian has heavy quark symmetry (HQS) when the heavy quark mass

mQ → ∞. For a heavy hadron containing one single heavy quark, the strong interaction

would be independent of the heavy flavors in this limit. Meanwhile, the heavy quark will

decouple with the light degrees of freedom. The multiplet associated with the heavy quark

spin would be degenerate in the heavy quark limit. However, the physical masses of the

heavy quarks are finite, such as mc ∼ 1.5GeV, mb ∼ 5GeV. Therefore, the effects of

the heavy quark flavor symmetry breaking and spin symmetry breaking are explicit. For

example, the axial coupling g for B∗Bπ is about 17% smaller that that of the D∗Dπ.
Thus the value 17% can be roughly regarded as the breaking size of the heavy quark

flavor symmetry. In addition, the heavy quark spin symmetry (HQSS) breaking is more

obvious, such as the mass splittings of (B∗, B) and (D∗, D) are about 45MeV and 142MeV,

respectively.
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Figure 13. The mass spectra of the hidden-charm (a) and hidden-bottom (b) molecular pen-

taquarks. The red and yellow regions in figures (a) and (b) denote the mass ranges obtained from

the experimental measurements and theoretical estimations, respectively. The blue solid lines repre-

sent the central values in our calculations. The black dashed lines are the corresponding thresholds.

HQS can be used to relate the coupling constants to one another, such as the axial

coupling constants in the O(ε0) Lagrangians. Under HQS, the heavy quarks only serve

as the spectators. The interaction between Σ
(∗)
c and D̄(∗) is mediated by their inner light

degrees of freedom, i.e., the light diquarks in Σ
(∗)
c and the light quark in D̄(∗). Therefore, the

S-wave effective potentials between Σ
(∗)
c and D̄(∗) at the quark level can be parameterized

as [11]

V HQS
quark−level = Vc + Vsl1 · l2, (6.1)

where Vc and Vs denote the central term and spin-spin term, respectively. l1 and l2 are the

spins of the light degrees of freedom of the Σ
(∗)
c and D̄(∗), respectively. With the potentials

at the quark level, one can build the relations between different channels at the hadron

level by parameterizing the hadron level potentials as

VΣcD̄ = V1, VΣcD̄∗ = V2 + V ′
2S1 · S2,

VΣ∗

cD̄
= V3, VΣ∗

cD̄
∗ = V4 + V ′

4S1 · S2, (6.2)

where S1 and S2 are the spin operators of the Σ
(∗)
c and D̄∗, respectively. One can eas-

ily verify6

V1 = V2 = V3 = V4 = Vc; V ′
2 =

2

3
Vs, V ′

4 =
1

3
Vs. (6.3)

The leading order potentials obviously satisfy the above relations obtained from HQS. One

can also testify the one-loop level analytical expressions satisfy the above relations as well

when d→ 4 and δa,b → 0.

6See more detailed derivations in the appendix A of ref. [11].
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Figure 14. The heavy quark symmetry breaking phenomena in the two-pion-exchange diagrams.

The solid lines denote the Σ
(∗)
c D̄(∗) systems with vanishing mass splittings and physical mass split-

tings. The dashed lines represent the same cases but for the Σ
(∗)
b B(∗) systems. The unlisted systems

share the similar behaviors as their spin partners.

The HQS breaking effect would manifest itself in the loop diagrams if δa,b 6= 0.7 When

δa = δb = 0, all the box diagrams would become the 2PR ones, thus we have to remove the

2PR contributions. In order to compare with the cases of δa = δb = 0, we also subtract

the 2PR contributions from the (δa, δb) 6= 0 cases (see appendix B). The 2PI two-pion-

exchange potentials for the Σ
(∗)
c D̄(∗) and Σ

(∗)
b B(∗) systems with and without HQS are illus-

trated in figure 14. We notice the HQS keeps relatively good for the [ΣcD̄
∗]J/[ΣbB∗]J and

[Σ∗
cD̄

∗]J/[Σ∗
bB

∗]J systems, while it breaks significantly for the [ΣcD̄]J and [Σ∗
cD̄]J systems.

When δa = δb = 0, the two-pion-exchange potential of the [ΣcD̄]J system is exactly equal

to that of the [Σ∗
cD̄]J system, which satisfies the relations in eq. (6.3). However, when we

set the physical mas splitting, (δa, δb) = (65, 142)MeV, the line-shapes are explicitly mod-

ified and the relations in eq. (6.3) are obviously violated. The quantum fluctuation at the

loop level would break the HQS significantly. The predictions inherited from HQS should

be carefully reexamined, at least for the [ΣcD̄]J and [Σ∗
cD̄]J systems. Besides, the HQS in

the hidden-bottom systems is better than that of the hidden-charm cases as expected.

In the following, we investigate the HQSS violation effect of each Feynman diagram

for the [ΣcD̄] 1
2
and [Σ∗

cD̄] 3
2
systems. The results are shown in figure 15. When δa = δb = 0,

the contributions from the triangle diagrams and box diagrams are always repulsive and

7When we are talking about the HQS in the loop diagrams, the contribution of the Λc is ignored, since

the mass splittings δc,d do not vanish even in heavy quark limit.
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Figure 15. The behaviors of the two-pion-exchange potentials of each mass splitting related 2PI

diagrams for the [ΣcD̄] 1
2
[(a), (b)] and [Σ∗

cD̄] 3
2
[(c), (d)] systems in the cases of δa = δb = 0 and

(δa, δb) = (65, 142)MeV, respectively.

attractive, respectively. The differences between the corresponding diagrams, such as (B1.1)

and (B3.1), are mainly caused by the coupling constants. However, when the mass splittings

are considered, the magnitudes of most diagrams except for (T1.1) and (T3.1) would change.

The signs of the potentials from (T1.1) and (T3.1) are changed. The HQSS breaking mainly

originates from these two diagrams. The repulsive contributions of the two diagrams in the

heavy quark limits become attractive when the mass splittings are included. Inspecting the

analytical expressions of the triangle diagrams for the Σ
(∗)
c D̄(∗) systems, we would see that

VTi.j
Σ

(∗)
c D̄(∗)

∼ (I1 · I2)
[

AJT34 −Bq2
(

JT24 + JT33
)

]

(mπ, ω, q), (6.4)

where A and B are the positive numbers. The corresponding JTij functions generally contain

two structures, the odd function of ω and the even one (see appendix A). The odd part is

proportional to

ω

∫ 1

0
dxF (x,mπ, ω, q) +

∫ 0

−ω
dy

∫ 1

0
dxG (x, y,mπ, ω, q), (6.5)

where F (x, . . . ) and G (x, y, . . . ) denote the integrands which are the functions of (x, . . . )

and (x, y, . . . ), respectively. These two terms vanish in the heavy quark limit, i.e., when

δa = δb = 0. The even one is proportional to

∫ 1

0
dxH (x,mπ, ω, q). (6.6)
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Only this term contributes when δa = δb = 0. Therefore, one would see a different scenario

when the nonzero mass splittings are considered, since the two terms in eq. (6.5) also

contribute. For the diagrams (T1.1) and (T3.1), ω = −δb, while for the diagrams (T2.2) and

(T4.2), ω = δb. Thus the HQS breaking effect is totally different for the Σ
(∗)
c D̄ and Σ

(∗)
c D̄∗

systems, because the eq. (6.5) is the odd function of ω, which is very sensitive to the sign

of the ω. In addition, the integrands F , G and H always have the nonanalytic structures,

such as the logarithmic and square root terms. So the variations of the graphs (T1.2) and

(T3.3) are not so dramatic as those of the (T1.1) and (T3.1), because δa < mπ, whereas

δb > mπ. The HQS breaking effect expounded above issues from the loop diagrams, which

is the quantum physics of the light degrees of freedom at the low energy, and cannot be

modified by any unknown physics that happens at the high energy.

7 Summary and conclusion

In the April of this year, the LHCb collaboration reported the observation of the three

pentaquark states Pc(4312), Pc(4440) and Pc(4457) [10]. They were subsequently inter-

preted as the molecular states by many theoretical works [11–15] due to the proximities

to the ΣcD̄ and ΣcD̄
∗ thresholds. In this paper, we have systematically investigated the

interactions between the charmed baryons Σ
(∗)
c and anticharmed mesons D̄(∗) in the frame-

work of chiral effective field theory. To this end, we have simultaneously considered the

short-range contact interaction, long-range one-pion-exchange contribution, intermediate-

range two-pion-exchange loop diagrams, as well as the influence of the mass splittings on

the effective potentials.

When we fix the total isospin as I = 1
2 , the original four independent LEC can be

reduced to two. These two LECs can be fitted using the binding energies of the Pc(4312),

Pc(4440) and Pc(4457) as inputs. We first attempt to reproduce the newly observed three

Pcs via only considering the spin partners of the ΣcD̄
(∗) in the loops. But we fall into the

same dilemma as in the scenario II of our previous work [11], i.e., it is nearly impossible

to reproduce the three Pcs synchronously in this case. Considering the strong couplings

between Σ
(∗)
c and Λcπ, we then include the contribution of Λc in the loop diagrams. Three

Pcs are simultaneously reproduced at this point. This indicates the Λc plays a very im-

portant role for the formation of these Pcs. We also notice that only considering the Λc
cannot describe the Pcs either. The subtle interplay between the channels with Λc and

the ones with Σ
(∗)
c determines the existence of these hadronic molecules. Our calculation

supports the Pc(4312), Pc(4440) and Pc(4457) to be the S-wave hidden-charm [ΣcD̄]
I=1/2
J=1/2,

[ΣcD̄
∗]I=1/2
J=1/2 and [ΣcD̄

∗]I=1/2
J=3/2 hadronic molecules.

Since the JP quantum numbers are still unknown in experiment, we also investigate

the possibility of a different spin assignment, viz, 1
2

−
for Pc(4457) and 3

2

−
for Pc(4440).

Although the binding energies can also be well fitted by changing the LECs in this case,

one has to fulfill this assignment at the cost of largely enhancing spin-spin interaction. The

overwhelming spin-spin term at O(ε0) contradicts the phenomenological considerations of

the quark model and one-boson-exchange model, as well as the empirical conclusions from

the hadron spectra and N -N scattering data.
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With the fixed LECs, we notice the other four channels [Σ∗
cD̄]

I=1/2
J=3/2 and

[Σ∗
cD̄

∗]I=1/2
J (J = 1

2 ,
3
2 ,

5
2) are also bound ([Σ∗

cD̄
∗]1/25/2 is very shallowly bound). The previ-

ously reported Pc(4380) [2], a candidate of the [Σ∗
cD̄]

1/2
3/2 molecular state, is a deeper bound

hadronic molecule in our calculation. This is mainly caused by the important contribution

from the two-pion-exchange diagrams, which is the essential difference with the predictions

from the quark model and leading order effective field theory. These two approaches do not

contain the nonanalytical terms, such as the powers of log q2 and
√

q2, which are irregular

and may give the enhanced contributions sometimes. These terms cannot be predicted

accurately from the aspects of the quark model.

We also study the hidden-bottom Σ
(∗)
b B(∗) systems. The axial coupling constants for

the bottom baryons and bottom mesons are determined with the partial decay widths

of Σ
(∗)
b → Λbπ and the lattice simulations, respectively. We adopt the fitted LECs in

the hidden-charm case as the limit, and the 17% reduction as the central value for the

hidden-bottom systems. With these fixed parameters, we find the [Σ
(∗)
b B(∗)]1/2J systems

are more tightly bound. Because the thresholds of Σ
(∗)
b B(∗) are very close to each other,

so the masses of some states may cross two thresholds, such as the [Σ∗
bB

∗]1/21/2. The hidden-

bottom ones might be observed from the ΥN final states. We give a complete picture

on the mass spectra of the hidden-charm and hidden-bottom molecular pentaquarks, and

there are overall fourteen bound states in our calculations. The discovery of Pcs at the

LHCb is just the beginning for the community to search for the exotic multiquark matters.

The heavy quark symmetry is always exploited to predict the mass spectra of the

hidden-charm and hidden-bottom systems. Since mb is much larger than mc, so the pre-

dictions from the HQS in the bottom sector is more reliable because the correction from

the next-to-leading order heavy quark expansion is very small. But the reliability of the

HQS in the charm sector is still questionable. So we examine the HQS breaking effect in

the loop diagrams by considering the mass splittings in the propagators of the intermediate

states. As expected, the HQS in the hidden-bottom systems is much better than that in

the hidden-charm cases. Besides, for some accidental reasons, the HQS as an approxima-

tion in the ΣcD̄ and Σ∗
cD̄ systems is not as good as in the others. The two-pion-exchange

potentials become totally different with the mass splittings or not. One reason is the mass

difference between the initial D̄ and intermediate D̄∗ is −δb and some triangle diagrams

are very sensitive to the sign of the mass difference. Another reason is δb > mπ, so the

nonanalytic structures, e.g., logarithmic and square root terms in the loop functions would

be enhanced to distort the potentials. This enlightens us that the HQS breaking effect shall

not be ignored if we want to give a comprehensive description of the effective potentials,

especially for the interactions between the charmed hadrons.

We hope the lattice QCD simulations on the hidden-charm and hidden-bottom pen-

taquark systems could be carried out in the future, which can help us to get a deeper

insight into the inner structures of these exotica. The analytical expressions derived in this

work can also be used to perform the chiral extrapolations.
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A Loop integrals

The various loop functions JFij , J
T
ij and JBij in this text are defined in the following. One

can find the complete forms and detailed derivations in ref. [37].

i

∫

ddlλ4−d

(2π)d
{lαlβ}

(l2 −m2 + iǫ) [(l + q)2 −m2 + iǫ]

≡
{

qαqβJF21 + gαβJF22

}

(m, q), (A.1)

i

∫

ddlλ4−d

(2π)d
{lαlβ , lαlβlγ , lαlβlγlδ}

(v · l + ω + iǫ) (l2 −m2 + iǫ) [(l + q)2 −m2 + iǫ]

≡
{

gαβJT21 + qαqβJT22 + vαvβJT23 + (q ∨ v)JT24, (g ∨ q)JT31 + qαqβqγJT32

+(q2 ∨ v)JT33 + (g ∨ v)JT34 + (q ∨ v2)JT35 + vαvβvγJT36, (g ∨ g)JT41
+(g ∨ q2)JT42 + qαqβqγqδJT43 + (g ∨ v2)JT44 + vαvβvγvδJT45

+(q3 ∨ v)JT46 + (q2 ∨ v2)JT47 + (q ∨ v3)JT48 + (g ∨ q ∨ v)JT49
}

(m,ω, q), (A.2)

i

∫

ddlλ4−d

(2π)d
{lαlβ , lαlβlγ , lαlβlγlδ}

(v · l + ω + iǫ) [(+/−)v · l + δ + iǫ] (l2 −m2 + iǫ) [(l + q)2 −m2 + iǫ]

≡
{

gαβJ
R/B
21 + qαqβJ

R/B
22 + vαvβJ

R/B
23 + (q ∨ v)JR/B24 , (g ∨ q)JR/B31 + qαqβqγJ

R/B
32

+(q2 ∨ v)JR/B33 + (g ∨ v)JR/B34 + (q ∨ v2)JR/B35 + vαvβvγJ
R/B
36 , (g ∨ g)JR/B41

+(g ∨ q2)JR/B42 + qαqβqγqδJ
R/B
43 + (g ∨ v2)JR/B44 + vαvβvγvδJ

R/B
45

+(q3 ∨ v)JR/B46 + (q2 ∨ v2)JR/B47 + (q ∨ v3)JR/B48 + (g ∨ q ∨ v)JR/B49

}

(m,ω, δ, q),

(A.3)

where the notation X ∨ Y ∨ Z ∨ · · · represents the symmetrized tensor structure of

XαY βZγ · · ·+ · · · , which are given as

q ∨ v ≡ qαvβ + qβvα,

g ∨ q ≡ gαβqγ + gαγqβ + gγβqα,

g ∨ v ≡ gαβvγ + gαγvβ + gγβvα,

q2 ∨ v ≡ qβqγvα + qαqγvβ + qαqβvγ ,

q ∨ v2 ≡ qγvαvβ + qβvαvγ + qαvβvγ ,

g ∨ g ≡ gαβgγδ + gαδgβγ + gαγgβδ,

g ∨ q2 ≡ qαqβgγδ + qαqδgβγ + qαqγgβδ + qγqδgαβ + qβqδgαγ + qβqγgαδ,
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g ∨ v2 ≡ vαvβgγδ + vαvδgβγ + vαvγgβδ + vγvδgαβ + vβvδgαγ + vβvγgαδ,

q3 ∨ v ≡ qβqγqδvα + qαqγqδvβ + qαqβqδvγ + qαqβqγvδ,

q ∨ v3 ≡ qδvαvβvγ + qγvαvβvδ + qβvαvγvδ + qαvβvγvδ,

q2 ∨ v2 ≡ qγqδvαvβ + qβqδvαvγ + qαqδvβvγ + qβqγvαvδ + qαqγvβvδ + qαqβvγvδ,

g ∨ q ∨ v ≡ qβvαgγδ + qαvβgγδ + qδvαgβγ + qγvαgβδ + qαvδgβγ + qαvγgβδ + qδvγgαβ

+qδvβgαγ + qγvδgαβ + qγvβgαδ + qβvδgαγ + qβvγgαδ.

These J functions can be directly calculated with the dimensional regularization in d di-

mensions, or by an iterative way as shown in ref. [11]. Their detailed expressions read

JF22(m, q) =

(

m2 − q2

6

)

L+
1

32π2

∫ 1

0
∆̄ ln

∆̄

λ2
dx, where ∆̄ = x(x− 1)q2 +m2 − iǫ.

(A.4)

JT21(m,ω, q) = 2ωL+
1

16π2

∫ 1

0
dx

∫ 0

−ω

(

1 + ln
∆

λ2

)

dy +
1

16π

∫ 1

0
A1/2dx, (A.5)

JT22(m,ω, q) =
1

8π2

∫ 1

0
dx

∫ 0

−ω

x2

∆
dy +

1

16π

∫ 1

0
x2A−1/2dx, (A.6)

JT24(m,ω, q) = −L+
1

8π2

∫ 1

0
dx

∫ 0

−ω

x(y + ω)

∆
dy − 1

16π2

∫ 1

0
x

(

1 + ln
A

λ2

)

dx

+
ω

16π

∫ 1

0
xA−1/2dx, (A.7)

JT31(m,ω, q) = −ωL− 1

16π2

∫ 1

0
dx

∫ 0

−ω
x

(

1 + ln
∆

λ2

)

dy − 1

16π

∫ 1

0
xA1/2dx, (A.8)

JT32(m,ω, q) = − 1

8π2

∫ 1

0
dx

∫ 0

−ω

x3

∆
dy − 1

16π

∫ 1

0
x3A−1/2dx, (A.9)

JT33(m,ω, q) =
2

3
L− 1

8π2

∫ 1

0
dx

∫ 0

−ω

x2(y + ω)

∆
dy +

1

16π2

∫ 1

0
x2
(

1 + ln
A

λ2

)

dx

− ω

16π

∫ 1

0
x2A−1/2dx, (A.10)

JT34(m,ω, q) =

(

m2 − q2

6
− 2ω2

)

L− 1

16π2

∫ 1

0
dx

∫ 0

−ω
(y + ω)

(

1 + ln
∆

λ2

)

dy

− ω

16π

∫ 1

0
A1/2dx+

1

32π2

∫ 1

0
A ln

A

λ2
dx, (A.11)

JT41(m,ω, q) = ω

(

m2 − q2

6
− 2

3
ω2

)

L+
1

32π2

∫ 1

0
dx

∫ 0

−ω
∆ ln

∆

λ2
dy +

1

48π

∫ 1

0
A3/2dx,

JT42(m,ω, q) =
2

3
ωL+

1

16π2

∫ 1

0
dx

∫ 0

−ω
x2
(

1 + ln
∆

λ2

)

dy +
1

16π

∫ 1

0
x2A1/2dx, (A.12)

JT43(m,ω, q) =
1

8π2

∫ 1

0
dx

∫ 0

−ω

x4

∆
dy +

1

16π

∫ 1

0
x4A−1/2dx, (A.13)

JBij (m,ω, δ, q) =











1
δ+ω

[

JTij (m,ω, q) + JTij (m, δ, q)
]

if ω 6= −δ 6= 0

∂
∂xJ

T
ij (m,x, q)

∣

∣

∣

x→0
if ω = δ = 0

, (A.14)
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JRij (m,ω, δ, q) =











1
δ−ω

[

JTij (m,ω, q)− JTij (m, δ, q)
]

if ω 6= δ 6= 0

− ∂
∂xJ

T
ij (m,x, q)

∣

∣

∣

x→0
if ω = δ = 0

, (A.15)

where ∆ = y2 +A, A = x(x− 1)q2 +m2 − ω2 − iǫ, and λ = 4πfπ. The L is defined as

L =
1

16π2

[

1

d− 4
+

1

2
(γE − 1− ln 4π)

]

, (A.16)

where γE is the Euler-Mascheroni constant 0.5772157. We adopt the MS scheme to renor-

malize the loop integrals.

B Removing the 2PR contributions

Sometimes, we need to subtract the 2PR contributions from the box diagrams, which can

be recovered by inserting the one-pion-exchange potentials into the iterative equations.

For the case of ω = δ = 0, the 2PR part must be discarded due to the pinch singularity.

This can be easily done by using the simple derivative relation given in eq. (A.14). In this

part, we develop a new method to make such a subtraction with the help of the principal-

value integral method. In this way, we can subtract the 2PR part in a diagram with

nonvanishing mass splittings, which has no pinch singularity. Considering the loop integral

of a box diagram with the following form,

I = i

∫

ddlλ4−d

(2π)d
L µν···α(l)

(v · l + ω + iǫ) (−v · l + δ + iǫ) (l2 −m2 + iǫ) [(l + q)2 −m2 + iǫ]
, (B.1)

where the Lorentz structure L µν···α(l) ≡ lµlν · · · lα. This integral can be straightforwardly

disassembled into two parts through the following way,

1

(v · l + ω + iǫ) (−v · l + δ + iǫ)
=

[

1

v · l + ω + iǫ
+

1

−v · l + δ + iǫ

]

1

ω + δ
. (B.2)

The principal-value integral method tells that

lim
ǫ→0+

1

x± iǫ
= P 1

x
∓ iπδ(x). (B.3)

If we replace the x with the v · l+ω+ iǫ and −v · l+ δ+ iǫ, the integral can be divided into

two parts, the principal-vale part and the Dirac delta part. The Dirac delta part is the pole

contribution of the matter fields, which corresponds to the 2PR part in the time-ordered

perturbation theory.The principal-value part is just the 2PI contribution. In other words,

the 2PI part of the integral I can be written as

I2PI = I + I2PR. (B.4)

As long as we can derive the form of I2PR, we could obtain I2PI, since the complete form

of I has been given in appendix A. The calculation of the I2PR is simple due to the special
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property of the delta function. We take the calculation of the I2PR part of JB21 as an

example. We first show the concrete form of the I2PR,

I2PR = i

∫ 1

0
dx

∫

ddlλ4−d

(2π)d

{

L µν···α(l − xq)

l2 − M 2 + iǫ
iπ
[

δ(v · l + ω) + δ(v · l − δ)
] 1

ω + δ

}

, (B.5)

where we have used the Feynman parameterization to combine the denominators of the

propagators of the light pseudoscalars, and M 2 = x(x− 1)q2 +m2. Besides, we have also

utilized the approximation v · q ≃ 0 in the two delta functions. Choosing L µν···α(l−xq) to
be L µν(l− xq) we would be in the position to calculate the 2PR part of the JB2i (denoted

by JB2i
∣

∣

2PR
). For the JB21

∣

∣

2PR
, we have

(−π)
∫ 1

0
dx

∫

dl0

∫

dd−1lλ4−d

(2π)d
lαlβ

[

(l0 + M̄ )(l0 − M̄ )
]2 [δ(l0 + ω) + δ(l0 − δ)]

1

ω + δ
, (B.6)

where M̄ =
√

l2 + x(x− 1)q2 +m2−iǫ. This integral can be easily calculated. One finally

obtains

JB21
∣

∣

2PR
= − 1

16π(ω + δ)

∫ 1

0
dx
[

√

N (ω) +
√

N (δ)
]

, (B.7)

where the function N (ω) = x(x−1)q2+m2−ω2− iǫ. Following the same procedure given

above, we can get all the 2PR parts of the JBij functions.

One can avoid the lengthy and tedious calculations by adopting another trick. The loop

integrals of the box diagrams can be constructed from the ones of the triangle diagrams

[e.g., see eq. (A.14)], the finite part of the loop functions JTij that make up the JBij actually

contains two types of functions, one is the odd function of ω, and the other one is the even

function of ω. Therefore, the renormalized JTij can be written as

JTij (ω) = O
T
ij(ω) + E

T
ij (ω), (B.8)

where OT
ij(ω) and E T

ij (ω) represent the odd and even parts of the JTij (ω), respectively. The

other two variables m and q are omitted for simplicity. It can be proved that OT
ij(ω) and

E T
ij (ω) account for the 2PI and 2PR parts of the JBij , respectively. For example, we find

the − 1
16π

∫ 1
0 dx

√

N (ω) in eq. (B.7) is just the opposite of the E T
12(ω). With the simple

properties of the odd and even functions, we can readily obtain

JBij (ω, δ)
∣

∣

2PI
=

1

ω − (−δ)
[

O
T
ij(ω)− O

T
ij(−δ)

]

. (B.9)

When ω and δ approach to zero, this formula evolves into the derivative relation in

eq. (A.14). One can easily testify the remainder ones indeed satisfy the eq. (B.9), like-

wise.

C Spin transition operators

In calculating the loop diagrams of the Σ∗
cD̄

∗ system, we encountered some intractable

scalarproducts, such as (ū · ε∗)(u · ε) and (ū · ε)(u · ε∗), where the uµ denotes the spinor-

vector of the spin- 32 Rarita-Schwinger field ψµ, and εµ represents the polarization vector
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of the spin-1 field P̃ ∗µ. ūµ and ε∗µ are their conjugations, respectively. We notice that

these structures involving polarizations can be transformed into the spin-spin interaction

terms by introducing the so-called spin transition operators for the spin- 32 and spin-1 fields,

respectively.

C.1 Vector field

In the rest frame of a vector particle, the space components of the polarization vectors

with different helicity λ = 0,±1 read,

ε(0) = (0, 0, 1)T , ε(±1) =
1√
2
(∓1,−i, 0)T . (C.1)

We define the corresponding eigenfunctions for the λ = 0,±1 components, respectively,

φ(+1) = (1, 0, 0)T , φ(0) = (0, 1, 0)T , φ(−1) = (0, 0, 1)T . (C.2)

The ε(λ) can be obtained with the following relation,

ε(λ) = Stφ(λ), (C.3)

where St is the spin transition operator for the spin-1 field. The matrix form of the St is

Sxt =
1√
2
(−1, 0, 1), Syt =

1√
2
(−i, 0,−i), Szt = (0, 1, 0). (C.4)

One can easily verify that

S
†
t · St = 13×3, −iS†

t × St = Sv, (C.5)

where Sv is just the spin operator of the vector field. One can also testify the following

relation,

Si†t S
j
t =

i

2
ǫijkSkv −

1

2
S{i
v S

j}
v + δij . (C.6)

C.2 Rarita-Schwinger field

The spin-32 Rarita-Schwinger field ψµ can be constructed by the polarization vector εµ and

two-component spinor χ with the following form,

ψµ =
∑

mλ,ms

〈1,mλ;
1

2
,ms|

3

2
,mλ +ms〉εµ(mλ)χ(ms). (C.7)

We can also define the eigenfunctions for helicity λ = ±3
2 ,±1

2 components,

ϕ

(

3

2

)

= (1, 0, 0, 0)T , ϕ

(

1

2

)

= (0, 1, 0, 0)T ,

ϕ

(

− 1

2

)

= (0, 0, 1, 0)T , ϕ

(

− 3

2

)

= (0, 0, 0, 1)T . (C.8)
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Then the field ψµ can be reexpressed as follows by introducing the spin transition opera-

tor S
µ
t ,

ψµ(λ) = S
µ
t ϕ(λ). (C.9)

We can also get the matrix form of the S
µ
t ,

S
0
t = 02×4, S

x
t =

1√
2

(

−1 0 1√
3
0

0 − 1√
3

0 1

)

,

S
y
t =

−i√
2

(

−1 0 1√
3
0

0 1√
3

0 1

)

, S
z
t =





0
√

2
3 0 0

0 0
√

2
3 0



 . (C.10)

Similarly, one can also obtain

S
†
t · St = −14×4, Srs =

3

2
σrs = −3

2
S

†µ
t σStµ, (C.11)

where Srs is the spin operator of the spin- 32 Rarita-Schwinger field. Analogous to eq. (C.6),

there also exists a similar relation for S
i†
t S

j
t ,

S
i†
t S

j
t =

i

3
ǫijkSkrs −

1

6
S{i
rsS

j}
rs +

3

4
δij . (C.12)

With the above preparations, the scalarproducts (ū · ε∗)(u · ε) and (ū · ε)(u · ε∗) can be

breezily worked out,

(ū · ε∗)(u · ε) = −1

6
Srs · Sv +

1

3
(Srs · Sv)2 −

1

2
,

(ū · ε)(u · ε∗) =
1

2
Srs · Sv +

1

3
(Srs · Sv)2 −

1

2
. (C.13)

The emergence of the (Srs ·Sv)2 term is the unique feature of the interactions between the

high spin states.

D A tentative parameterization of the effective potential from the quark

model

Assuming a pair of c and c̄ quarks are produced in the high energy colliding process, and

they are surrounded by the largely separated light quarks u and d. At the very short c

and c̄ separation r, the c and c̄ quarks interact with the perturbative one-gluon-exchange

Coulomb potential. There is essentially no screening of the cc̄ interaction due to the much

farther separated u and d quarks. Before the hadronization occurs, the effective potential

at this size scale can be written as [72, 73]

Vij(ri, si, rj , sj) = −Cαs
4

(

1

|ri − rj |
− δ3(r)

8π

3mimj
si · sj + · · ·

)

+ · · · , (D.1)

where we only show the central term and spin-spin interaction. Other terms such as the

tensor force and spin-orbit interaction are omitted for the S-wave case. The C denotes
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System [ΣcD̄] 1
2

[ΣcD̄
∗] 1

2
[ΣcD̄

∗] 3
2

[Σ∗

cD̄] 3
2

[Σ∗

cD̄
∗] 1

2
[Σ∗

cD̄
∗] 3

2
[Σ∗

cD̄
∗] 5

2

∆E −5.32 −19.81 −4.38 −6.07 −24.54 −14.61 −3.55

M 4312.41 4439.94 4455.37 4376.25 4499.81 4509.74 4520.80

Table 5. The binding energies and masses of the I = 1
2 hidden-charm [Σ

(∗)
c D̄(∗)]J systems in the

quark model (in units of MeV).

the color factor. αs is the strong coupling constant. ri, si and mi represent the position,

spin, and mass of the i-th quark, respectively. We need the cc̄ color singlet to supply an

attractive core, thus C = 16
3 .

In order to avoid the c and c̄ pair to rapidly move far away from each other with large

velocity, we assume that the cc̄ pair is produced near the threshold. When the distance

between the slowly moving c and c̄ increases, the light quarks u and d start to screen the

color interaction at this point. Then the five quarks form two weakly interacting color

singlet clusters Σ
(∗)
c and D̄(∗). The force between them is nothing but just the residual

color interaction similar to the van der Waals force between neutral molecules. At this size

scale, the attractive core from c and c̄ still works, but attenuates rapidly with the increase

of the separation r. At the same time, the heavy quark spin decouples, and the spin-spin

interaction is transferred to their inner light degrees of freedom. If ignoring other higher

order contributions, one could roughly parameterize the potential as follows,

V = −e
−( r

d)
x

r

[

A

Λ2
χ

+
B

m
Σ

(∗)
c
mD(∗)

l1 · l2
]

, (D.2)

where A and B are two independent constants with the same dimension, which can be

determined by fitting the data. l1 and l2 denote the spins of the inner light degrees of

freedom of Σ
(∗)
c and D̄(∗), respectively.8 d ∈ [1, 2] fm stands for the characteristic size of a

hadronic molecule, we choose the upper limit d = 2 fm. x is always chosen to be 1.5 or 2

for some phenomenological considerations. Here we use x = 2 as in ref. [74]. Obviously,

the strength of the spin-spin term is suppressed by the factor 1/(m
Σ

(∗)
c
mD(∗)).

By fitting the binding energies of the Pc(4312), Pc(4440) and Pc(4457), we obtain

A ≃ 2.45GeV2, B ≃ −1.83GeV2, i.e., their absolute values have the similar size. The

predictions for the masses of the I = 1
2 hidden-charm [Σ

(∗)
c D̄(∗)]J systems in the quark

model are listed in table 5. We see the newly observed three Pcs can be simultaneously

reproduced, and other four systems all have the binding solutions. The ∆E for [Σ∗
cD̄] 3

2
in

the quark model is smaller than that of the chiral effective field theory. In addition, the

bindings of the [Σ∗
cD̄

∗]J systems are larger than the predictions of the chiral effective field

theory. These deviations mainly arise from the quantum fluctuations in the loop diagrams,

which can hardly be accommodated in the quark models.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

8The matrix element of l1 · l2 can be found in ref. [11].
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