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We develop a model to describe odd parity baryon resonances generated dynamically through a
unitary baryon-meson coupled-channels approach. The scheme applies to channels with light and/or
heavy quark content. Distinct features of the model are that, i) the interaction is an S-wave contact
one, ii) it reduces to the SU(3) Weinberg-Tomozawa Hamiltonian when light pseudoscalar mesons are
involved, thus, respecting chiral symmetry, iii) spin-flavor in preserved in the light quark sector, and
iv) heavy quark spin symmetry is fulfilled in the heavy quark sector. In particular, baryon-meson
states with different content in c or in c̄ do not mix. The model is a minimal one and it contains
no free parameters. In this work, we focus on baryon resonances with hidden-charm (at least one c̄
and one c quarks). We analyze several possible sectors and, for the sector with zero net charm, we
write down the most general Lagrangian consistent with SU(3) and heavy quark spin symmetry. We
explicitly study the N and ∆ states, which are produced from the S-wave interaction of pseudoscalar
and vector mesons with 1/2+ and 3/2+ baryons within the charmless and strangeless hidden charm
sector. We predict seven odd parity N-like and five ∆-like states with masses around 4GeV, most of
them as bound states. These states form heavy-quark spin multiplets, which are almost degenerate
in mass. The predicted new resonances definitely cannot be accommodated by quark models with
three constituent quarks and they might be looked for in the forthcoming P̄ANDA experiment at
the future FAIR facility.
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I. INTRODUCTION

The possible observation of new states with the charm degree of freedom has attracted a lot of attention over the
past years in connection with many experiments such as CLEO, Belle, BaBar, and others [1–36]. Moreover, the future
P̄ANDA and CBM experiments at FAIR facility of GSI [37, 38] will aim at obtaining data in the heavy-flavor sector,
thus opening the possibility for observation of new exotic states with quantum numbers of charm and strangeness.
In this regard, a clear goal would be to understand the nature of these states, and in particular, whether they can
be described with the usual three-quark baryon or quark-antiquark meson interpretation, or qualify better as hadron
molecules within a baryon-meson coupled-channels description.
Unitarized coupled-channels approaches have shown to be very successful in describing some of the existing exper-

imental data. These schemes include, for example, models based on the chiral perturbation amplitudes for S-wave
scattering of 0− octet Goldstone bosons off baryons of the nucleon 1/2+ multiplet [39–60]. Recently the charm
degree of freedom has been incorporated in these models and several experimental states have been described as
dynamically-generated baryon molecules [61–77]. This is the case, for example, of the Λc(2595), which is the charm
sector counterpart of the Λ(1405). Some of these approaches are based on a bare baryon-meson interaction saturated
with the t-channel exchange of vector mesons between pseudoscalar mesons and baryons [61–70], others make use of
the Jülich meson-exchange model [71–73] or some rely on the hidden gauge formalism [74–77].
Nevertheless, these models do not explicitly incorporate heavy-quark spin symmetry (HQSS) [78–80], and therefore,

it is unclear whether this symmetry is respected. HQSS is a QCD symmetry that appears when the quark masses, such
as the charm mass, become larger than the typical confinement scale. HQSS predicts that all types of spin interactions
involving heavy quarks vanish for infinitely massive quarks. Thus, HQSS connects vector and pseudoscalar mesons
containing charmed quarks. On the other hand, chiral symmetry fixes the lowest order interaction between Goldstone
bosons and other hadrons in a model independent way; this is the Weinberg-Tomozawa (WT) interaction. Thus, it is
appealing to have a predictive model for four flavors including all basic hadrons (pseudoscalar and vector mesons, and
1/2+ and 3/2+ baryons) which reduces to the WT interaction in the sector where Goldstone bosons are involved and
which incorporates HQSS in the sector where charm quarks participate. This model was developed in Ref. [81–83],
following the steps of the SU(6) approach in the light sector of Refs. [84–87]. In these works, several resonances have
been analyzed and compared to experimental states, such as the S-wave states with charm C = 1, 2, 3 [81, 83] together
with C = −1 states [82]. Also this scheme has been recently extended to incorporate the bottom degree of freedom
[88] in order to study the nature of the newly discovered Λb(5912) and Λ∗b(5920) resonances [89] as possible molecular
states.
In this paper we aim at continuing those studies on dynamically-generated baryon resonances using HQSS con-

straints. We will discuss extensively the details of the model and how heavy-quark spin symmetry is implemented.
The model respects spin-flavor symmetry in the light sector and HQSS in the heavy sector, and it reduces to SU(3)
WT in the light sector respecting chiral symmetry. Moreover, we will focus on the dynamical generation of hidden
charmed states. The coupled-channels in the hidden charm sectors are characterized by containing equal number of
c- and c̄- quarks. As we shall discuss, HQSS does not mix sectors with different number of c- or c̄- quarks. Thus,
this model has a symmetry SU(6) × HQSS, with HQSS = SUc(2) × SUc̄(2) × Uc(1) × Uc̄(1). We will pay a special
attention to the charmless (C = 0) and strangeless (S = 0) sector. Recent works [74–77] predict the existence of a few
nucleon-like states with masses around 4GeV which result from the baryon-meson scattering in this hidden charm
sector. In this paper we will analyze these results within our model, and predict the existence of several odd parity
∆- and N - like bound states with various spins. These resonances can be organized in heavy-quark spin multiplets,
which are almost degenerate in mass and that can be subject to experimental detection.
The predicted new resonances might be subject to experimental detection in the forthcoming P̄ANDA/FAIR ex-

periment. If confirmed, they definitely cannot be accommodated by quark models with three constituent quarks.
The paper is organized as follows. In Sec. II we present the WT interaction implementing heavy-quark spin

symmetry, and analyze the different hidden charm sectors, classified according to their charmed content. In Sec. III
we introduce the unitarized coupled-channels approach used throughout this work. Sec. IV is devoted to present
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our results and in Sec. V we summarize the conclusions. In Appendix A we give details for the construction of the
meson and baryon tensors and the computation of the different matrix elements of the interaction. The tables of the
interaction matrices for the different baryon-meson channels are collected in Appendix B.

II. THE MODEL

A. Weinberg-Tomozawa interaction

The theoretical model we use has been developed in previous works for baryon-meson sectors involving light and/or
heavy quarks, but not for those with hidden charm, so we devote this section to fully specify the model.
The guiding principle is to blend several well established hadronic symmetries in a model as simple as possible.

Specifically, to comply with chiral symmetry, SU(NF )L × SU(NF )R for NF flavors, we require the interaction to
reproduce the Weinberg-Tomozawa (WT) Hamiltonian [90–92], a contact S-wave interaction, when light pseudoscalar
mesons are involved. The low energy interaction of soft pseudo-Nambu-Goldstone bosons of the spontaneously broken
chiral symmetry off any (flavored) target takes the WT universal form1

VWT =
K(s)

4f2
2J i

PJ
i
T , i = 1, . . . , N2

F − 1, (2.1)

where f is the decay constant of the pseudoscalar meson (∼ 93MeV), and J i
P , J

i
T are the SU(NF ) group generators

(with the standard normalization fiklfjkl = NF δij , where fijk are the structure constants) for pseudoscalar meson
and target, respectively. Further, K(s) = k0 + k′0 represents the sum of the incoming and outgoing energies of the
meson. In the center-of mass frame (CM)

K(s) =
s−M2 +m2

√
s

, (2.2)

where
√
s is the total CM energy, M the mass of the target, and m the mass of the pseudo-Nambu-Goldstone meson.

VWT is the tree level on-shell interaction. The normalization we use is such that the corresponding T -matrix for
elastic scattering is related to the scattering amplitude by

f(s) = − 1

8π

2M√
s
T (s), f(s) =

e2iδ − 1

2ik
, (2.3)

where k is the CM momentum.2

For three flavors and baryons in the 1
2

+
(nucleon) octet, the Hamiltonian density of the WT interaction takes the

form (we assume exact SU(3) symmetry for simplicity) [48]

HWT(x) = − i

4f2
: tr

(

B̄γµ[[φ, ∂µφ], B]
)

: (NF = 3), (2.4)

where φ and B are the meson and baryon matrices in the adjoint representation of SU(3). On account of the trace
cyclic property, and neglecting the meson momentum, the WT interaction can be recast as

i

4f2
: tr

(

[φ, ∂0φ]{B†, B}
)

: (2.5)

From the symmetry group point of view, the interaction in Eq. (2.5) is, schematically,

HWT =
1

f2

(

(M † ⊗M)adjoint,antisymmetric ⊗ (B† ⊗B)adjoint
)

singlet
, (2.6)

where adjoint and singlet refers to the adjoint and singlet representations of the flavor group. This corresponds with
the structure in Eq. (2.1). M , M †, B and B† refer to the matrices of annihilation and creation operators of meson
and baryons (see below).

1 An extra factor 1/2 is to be added if the projectile and target are identical particles.
2 T = iM = −T , M and T being the amplitudes defined in [93] and [94], respectively. 2MT equals M in [95].
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It is worth noticing that the eigenvalues of the relevant operator in Eq. (2.1), 2J i
PJ

i
T , can be written using the

quadratic Casimir operator of SU(NF ) (see e.g. [96])

(2J i
PJ

i
T )µ = C2(µ;NF )− C2(µP ;NF )− C2(µT ;NF ), (2.7)

where µ, µP and µT are, respectively, the SU(NF ) irreducible representations (irreps) of the system, the Nambu-
Goldstone boson (i.e., the adjoint representation) and the target. We use the normalization C2(adjoint;N) = N for
SU(N). In our convention a positive eigenvalue indicates repulsion and a negative one attraction.

B. Spin-flavor extended Weinberg-Tomozawa interaction

Next we turn to spin-flavor (SF) symmetry, SU(2NF ), [97–99]. This symmetry has been phenomenologically
successful in the classification of lowest-lying hadrons as well as in uncovering regularities present in the masses and
other hadron properties [100, 101]. This is particularly true for baryons, a fact that can be understood from the large
NC (number of colors) limit of QCD. In that limit SF becomes exact for the baryon sector [102]. As for mesons, the
lowest-lying states can also be classified quite naturally according to SF multiplets, but the symmetry works worse
for the meson spectrum. A prime example of this is provided by the pion and rho mesons. They belong to the same
multiplet of SU(6) and this would require these two mesons to be approximately degenerated in mass. Also, the pion
is a collective state identified as the pseudo-Nambu-Goldstone boson of the spontaneously broken approximate chiral
symmetry, whereas the rho meson mass fits well with a pair of constituent quark-antiquark. Vector dominance also
suggests that the rho meson should belong to the same chiral representation of the vector current (8, 1)+(1, 8), which
is different from the chiral representation of the pion, (3, 3∗) + (3∗, 3). The apparent conflict was solved by Caldi
and Pagels in two insightful papers [103, 104], where a number of related puzzles are clarified. These authors noted
that chiral and SF symmetries are compatible, as they can be regarded as subgroups of a larger symmetry group,
SU(2NF )L × SU(2NF )R, actually a realization of the Feynman–Gell-Mann–Zweig algebra [105]. In their solution,
the SF extended chiral symmetry is spontaneously broken, the rho meson being a dormant Goldstone boson of this
breaking. The collective nature of the rho meson has been confirmed in lattice QCD [106]. As it is well known, exact
SF invariance is not compatible with exact relativistic invariance [107]. In the Caldi-Pagels scenario, vector mesons
acquire mass through SF–breaking relativistic corrections which restore Poincaré invariance.
While not an immediate consequence of the QCD Lagrangian, SF symmetry emerges in some limits, such as large

NC for baryons, as already noted, and partially also in heavy quark limits. We will turn to this point below. The lack
of exact relativistic invariance is not unusual in other treatments involving hadron or quark interactions to form new
hadrons, either bound states or resonances. A good example would be the successful “relativized quark model” of
Isgur and coworkers [108, 109]. Similarly, in our approach the breaking of relativistic invariance is very mild: the spin
is treated as just an internal label (as another kind of flavor) and our fields are effectively spinless as regards to the
kinematics. So we have fully relativistic kinematics with SF as a purely internal symmetry. This entails the following.
Because angular momentum can be transferred between orbital and spin components, and spin is not conserved under
Lorentz transformations, a strict relativistic treatment requires fields with different spin to behave differently. In turn
this yields differences in the off-shell propagators for each spin and this breaks strict SF symmetry. To the extent
that we consider on-shell particles the various fields behave in the same way, and only the off-shell baryon-meson
propagator (or loop function) would depend on the spin of the particles involved. We disregard this effect.3 On the
other hand, because we consider pure S-wave interactions, the spin is separately conserved, and also, near threshold,
the case of interest to us, the specifically relativistic properties of the spin become irrelevant. It should be noted
that even approaches with formally relativistic Lagrangians are in practice subject to simplifying approximations in
vertices and propagators which break exact relativistic invariance without relevant phenomenological implications.
Also we remark that SF invariance is just our starting point for modeling the interaction. Modifications will be
introduced below to account for other established properties of QCD, and more importantly, we use physical values
for hadron masses and meson decay constants in our kinematics.
The compatibility between SF and chiral symmetries implies that the WT interaction can be extended to enjoy SF

invariance, and this can be done in a unique way [84]. For the on-shell vertex the extension is simply

V sf
WT =

K(s)

4f2
4J i

MJ
i
B, i = 1, . . . , (2NF )

2 − 1, (2.8)

3 However, any such spin dependence would not be easy to extract from phenomenology as it will be masked by the intrinsic ambiguity
of the loop function, which has to be renormalized using some phenomenological prescription.
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where J i
M and J i

B are the SU(2NF ) generators on mesons and baryons. Mesons consists of 0− (P ) and 1− (V )

lowest-lying states, while baryons contain 1
2

+
(B) and 3

2

+
(B∗) lowest-lying states. When this interaction is restricted

to the sector PB → PB it reproduces the standard WT off B targets. Its SF extension automatically yields the
standard WT for PB∗ → PB∗ (hence the compatibility between the two symmetries). Additionally, the extended
interaction provides contact S-wave vertices for V B → V B, V B∗ → V B∗, PB ↔ V B, PB ↔ V B∗, PB∗ ↔ V B,
PB∗ ↔ V B∗, and V B ↔ V B∗. As we have tried to argue above, these new vertices are well defined predictions
of an approximate emergent symmetry of hadrons. So we adopt them as our starting point to describe interactions
involving vector mesons.
The Hamiltonian corresponding to the vertex in Eq. (2.8) can be written for any number of flavors and colors NC

[85]. For the physical case NC = 3

Hsf
WT(x) = − i

4f2
: [Φ, ∂0Φ]

A
BB†ACDBBCD :, A,B, . . . = 1, . . . , 2NF . (2.9)

The indices A,B, . . ., denote spin and flavor, and so they take 2NF values. ΦA
B(x) is the meson field, a 2NF ×2NF

Hermitian matrix which contains the fields of 0− (pseudoscalar) and 1− (vector) mesons. This matrix is not traceless;
for later convenience it includes the SU(2NF ) singlet meson (the mathematical η1). The contribution of η1 to Φ is
proportional to the identity matrix and so it does not couple in Hsf

WT. The normalization of Φ(x) is such that a mass
term (with a common mass m for all mesons) would read 1

2m
2tr(Φ2).

B(x) is the baryon field. BABC is a completely symmetric tensor, that is, in the irrep [3] of SU(2NF ). It has 56

components for NF = 3, and 120 components for NF = 4, and contains the lowest-lying baryons with JP = 1
2

+
and

3
2

+
. The normalization of the field B is such that a mass term (with a common mass M for all baryons) would take

the form M 1
3!B
†
ABCBABC . E.g. the fields B123(x), B112(x)/

√
2, and B111(x)/

√
6 have the standard normalization of

a fermionic field. We refer to the Appendix for the detailed construction of ΦA
B(x) and BABC(x) in terms of the

individual meson and baryon fields for NF = 4.
The HamiltonianHsf

WT has precisely the same structure displayed in Eq. (2.6), this time for the SF group SU(2NF ).
4

The predictions of the SF extended WT model for NF = 3 have been worked out in [87] for baryonic resonances,
and in [110] for the mesonic version. Applications involving charm have been given in [81–83].
Before closing this subsection, we note that the eigenvalues of the relevant operator 4J i

MJ
i
B in Eq. (2.8) can also

be written using the quadratic Casimir operator of SU(2NF )

(4J i
MJ

i
B)µ = 2 (C2(µ; 2NF )− C2(µM ; 2NF )− C2(µB ; 2NF )) . (2.10)

For baryons in the irrep (with Young tableau) [3] of SU(2NF ) (56 or 120 for NF = 3 or 4, respectively) and mesons
in [2, 12NF−2] (the adjoint representation of SU(2NF ), 35 or 63 for NF = 3 or 4, respectively), the baryon-meson
states lie in the irreps [3], [2, 1], [5, 12NF−2] and [4, 2, 12NF−3], which correspond to 56, 70, 700 and 1134 for NF = 3,
and to 120, 168, 2520 and 4752 for NF = 4. The corresponding eigenvalues are [85]

λ[3] = −4NF , λ[2,1] = −4NF − 6, λ[5,12NF −2] = 6, λ[4,2,12NF −3] = −2. (2.11)

The SF extended WT interaction is attractive in three multiplets and repulsive in the remaining one. The sum of all
eigenvalues with their multiplicity, i.e. the trace of 4J i

MJ
i
B, is zero, as follows e.g. from tr(J i

M ) = 0. The operator
can be written as

4J i
MJ

i
B =

∑

µ

λµPµ, (2.12)

where µ are the four baryon-meson irreps of SU(2NF ), λµ the eigenvalues and Pµ the orthogonal projectors. This
allows to compute the matrix elements using the SU(2NF ) Clebsch-Gordan coefficients [111].

C. Heavy-quark spin symmetry implementation

Whereas the model just described can be used directly for three flavors, the extension to include charm requires
more care. One reason is that chiral symmetry and SU(4) invariance are less reliable for fixing the interaction in the

4 Note that the singlet part in B†
ACDBBCD does not couple since the matrix [Φ, ∂0Φ] is traceless
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sectors involving charm. At the same time, new specific symmetries of non relativistic type arise when heavy quarks
are involved [78–80]. In the heavy quark limit the number of charm quarks and the number of charm antiquarks are
separately conserved. This implies a symmetry Uc(1) × Uc̄(1). Likewise, the terms in the QCD Hamiltonian which
depend on the heavy quark or antiquark spin are suppressed, being of order 1/mh, where mh is the mass of the heavy
quark. Therefore, in the heavy quark limit, arbitrary rotations of the spin carried by the c quarks and, independently,
of the spin carried by the c̄ antiquarks, would leave unchanged the energy of the hadronic state.5 This implies a
symmetry SUc(2) × SUc̄(2) in the heavy quark limit. These invariances are aspects of heavy-quark spin symmetry
(HQSS). In what follows we refer to SUc(2)× SUc̄(2)×Uc(1)×Uc̄(1) as the HQSS group.
The approximate HQSS reflects on the hadronic spectrum and for charm it has a level of accuracy similar to that of

flavor SU(3). Taking HQSS into account implies that the model described in the previous subsection, the SF extended
WT or just SU(8)-WT model (for four flavors), has to be slightly modified. In order to keep the model simple, we
will impose exact HQSS on it. The alternative would be to introduce instead 1/mh suppressions in some amplitudes,
but such improvement is beyond the scope of the present work.
First, it should be noted that SF by itself already guarantees HQSS in many sectors. Consider for instance, the

couplings involving the channels ND and ND∗. These channels are related through HQSS since there should be
invariance under rotations of the c quark spin (leaving the light quarks unrotated), and this mixes D and D∗. But
the same invariance is already implied by SF, which requires symmetry under independent rotations of spin for each
flavor separately. The only cases where SF does not by itself guarantee HQSS is when there are simultaneously c
quarks and c̄ antiquarks: SF implies invariance under equal rotations for c and c̄, but HQSS requires also invariance
when the two spin rotations are different.
To be more specific, let us consider baryon-meson channels, and let Nc be the number of c quarks and Nc̄

the number of c̄ antiquarks. Nc ranges from 0 to 4, and Nc̄ from 0 to 1. SF guarantees HQSS in the sectors
(Nc, Nc̄) = (0, 0), (0, 1), (1, 0), (2, 0), (3, 0), (4, 0), but not in the sectors (1, 1), (2, 1), (3, 1), (4, 1). As compared to the
former sectors, the latter ones contain extra cc̄ pairs. For the present discussion, we refer collectively to these sectors
as sectors with “hidden charm”, regardless of whether they have net charm or not. The hidden charm sectors are the
main subject of the present work. We note that, for S-wave interactions (the ones of interest here), even SU(6) SF,
rather than SU(8), is sufficient to guarantee HQSS in the sectors without hidden charm: a rotation of the single heavy
quark (or antiquark) can be produced by a light sector rotation followed by a global rotation, without changing the
energy. In order words, in those sectors and for S-wave, any SF invariant interaction enjoys HQSS automatically.
It is perfectly possible to write down non trivial models enjoying simultaneously SU(8) and HQSS invariances

(namely, by requiring SUq(8) × SUq̄(8)) but they would not reduce to WT in the light sector. Concretely SU(8)-
WT conserves C = Nc − Nc̄ but not Nc and Nc̄ separately. Of course, one could impose this by hand, but it is
automatically taken care of by our modified interaction below (Eq. (2.22)). Also, the restrictions of SU(8)-WT to the
sectors (Nc, Nc̄) = (1, 1), (2, 1), (3, 1), (4, 1) turn out to violate HQSS.
In order to implement HQSS in the model let us analyze its content. We extract the trivial kinematic part and

work directly in the space with only spin and flavor as degrees of freedom. Let

HWT = 4J i
MJ

i
B. (2.13)

This operator can be written in terms of meson and baryon operators [81, 85], and it contains two distinct mechanisms
which stem from expanding the meson commutator in Eq. (2.9),

HWT = Hex +Hac,

Hex = :MA
CM

†C
BB

BDEB†ADE :,

Hac = − :M †ACM
C
BB

BDEB†ADE :, A, . . . , E = 1, . . . , 2NF . (2.14)

Here MA
B and BABC are the annihilation operators of mesons and baryons, respectively, with M †AB = (MB

A)
†,

and B†ABC = (BABC)†. BABC is a completely symmetric tensor. They are normalized as

[MA
B,M

†C
D] = δADδ

C
B ,

{BABC , B†A′B′C′} = δAA′δBB′δCC′ + · · · (6 permutations). (2.15)

Note that in the SU(8)-WT model, the η1 (SU(8) singlet meson) does not couple and could be ignored, however,
this meson has to be present in the corrected interaction since it mixes with the other mesons under HQSS.

5 However all c quarks present in the state, being identical particles, are rotated by a common rotation, and similarly for the c̄.
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B A C A A

C A B C B B
Hex

D E D E

D ED E

C

Hac

FIG. 1: The two mechanisms acting in the spin-flavor extended WT interaction. Hex (exchange of quarks) and Hac (annihilation
and creation of quark-antiquark pairs). In the HQSS corrected version of the interaction, Eq. (2.21), the labels A and B in Hac

only take light-flavor values.

Schematically, representing the quark and antiquark operators by QA and Q̄A,

MA
B ∼ QAQ̄B, M †AB ∼ Q̄†AQ†B, BABC ∼ QAQBQC , B†ABC ∼ Q†AQ

†
BQ
†
C . (2.16)

So, an upper index in M or B represents the SF of a quark to be annihilated, whereas in M † it represents that of
an antiquark to be created. Likewise, a lower index in M † or B† represents the SF of a quark to be created while in
M it represents that of an antiquark to be annihilated. From this identification it is immediate to interpret the two
mechanisms Hex and Hac in terms of quark and antiquark propagation.
The two mechanisms involved, Hex and Hac are displayed in Fig. 1. In Hex (exchange) the quark with spin-flavor

A is transferred from the meson to the baryon, as is the quark with label B from the baryon to the meson. On the
other hand, in Hac (annihilation-creation) an antiquark with spin-flavor B in the meson annihilates with a similar
quark in the baryon, with subsequent creation of a quark and an antiquark with spin-flavor A. In both mechanisms
the quarks or antiquarks C, D and E are spectators from the point of their spin-flavor (the ubiquitous gluons are
not explicited). Also in both mechanisms effectively a meson is exchanged. In passing we note that the OZI rule
is automatically fulfilled as regards to the exchanged meson. OZI rule violating mechanisms would be of the type
depicted in Fig. 2 and are not present in WT.

FIG. 2: OZI rule violating mechanisms. Gluons are implicit.

It appears that Hac can violate HQSS when the annihilation or creation of qq̄ pairs involves heavy quarks, whereas
Hex would not be in conflict with HQSS. This is indeed correct. To expose this fact more clearly, let us consider the
symmetries of these two interaction mechanisms. Let NF = 4 and let U be a matrix of SF SU(8). Upper indices
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transform with U † and lowers indices with U

QA → U †ABQ
B, Q̄†A → U †ABQ̄

†B,

Q̄A → UB
AQ̄B, Q†A → UB

AQ
†
B. (2.17)

Therefore (with obvious matrix/tensor notation)

M → U †MU, M † → U †M †U,

B → (U † ⊗ U † ⊗ U †)B, B† → B†(U ⊗ U ⊗ U). (2.18)

The indices are so contracted that Hex and Hac are both invariant under these SU(8) transformations. However,
HQSS requires also invariance when the charm quark and the charm antiquark receive different rotations. To examine
this, let us consider the transformation under U ∈ SUq(8) and Ū ∈ SUq̄(8), i.e., different transformations for quarks
and antiquarks (previously U = Ū). In this case

Q→ U †Q, Q̄† → Ū †Q̄†, Q̄→ Q̄Ū , Q† → Q†U, (2.19)

and therefore

M → U †MŪ, M † → Ū †M †U,

B → (U † ⊗ U † ⊗ U †)B, B† → B†(U ⊗ U ⊗ U). (2.20)

Clearly, the mechanism Hex, which depends on the combination MM †, is still invariant under this larger group
SUq(8)× SUq̄(8).

6 It certainly preserves SF and HQSS. On the other hand, Hac depends on the combination M †M
which transforms with Ū , while BB† transforms with U . Hac is SF invariant (U = Ū) but not HQSS invariant. A
simple solution to enforce HQSS with minimal modifications is to remove just the offending contributions in Hac,
which come from creation or annihilation of charm quark-antiquark pairs. This implies to remove the interaction
when the labels A or B are of heavy type in Hac.

7 That is, we adopt the following modified version of the Hac

mechanism

H ′ac = − :M †ÂCM
C
B̂B

B̂DEB†
ÂDE

:, C,D,E = 1, . . . , 8, Â, B̂ = 1, . . . , 6. (2.21)

The indices with hat are restricted to SU(6). By construction Nc and Nc̄ are exactly conserved in H ′ac. Also

SUc(2)×SUc̄(2) is conserved: when U and Ū act only on the heavy sectorM †ÂCM
C
B̂ and BB̂DEB†

ÂDE
are unchanged.

So HQSS is preserved. On the other hand, when U = Ū and this matrix acts on the light sector, H ′ac is unchanged, so
it enjoys SU(6) symmetry. Exact SF SU(8) and flavor SU(4) is no longer present. Presumably this breaking of SU(4)
is comparable to the breaking through the kinematics due to the substantially heavier mass of the charmed quark.
To summarize, our model (in all sectors) is given by

V =
K(s)

4f2
H ′WT, H ′WT = Hex +H ′ac. (2.22)

This model fulfills some desirable requirements: i) It has symmetry SU(6) × HQSS, i.e., SF symmetry in the light
sector and HQSS in the heavy sector, the two invariances being compatible. ii) It reduces to SU(6)-WT in the light
sector, so it is consistent with chiral symmetry in that sector. And, iii) is a minimal modification that preserves
simplicity and does not introduce new adjustable parameters.

D. The model in the various sectors

We can analyze the model in the different (Nc, Nc̄) sectors, which as already noted, do not mix due to HQSS.
In all the sectors without hidden charm, namely, (Nc, Nc̄) = (0, 1), (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), H ′ac produces the

same amplitudes as Hac when the latter is restricted to the corresponding sector. Indeed these interactions vanish

6 Note that the commutation relations Eq. (2.15) are also preserved by this symmetry.
7 Keeping the contributions with A = B of heavy type would preserve Uc(1) × Uc̄(1), i.e., conservation of Nc and Nc̄, but not SUc(2) ×
SUc̄(2).
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unless the state contains a quark-antiquark pair with quark and antiquark of the same type. In the absence of
hidden charm, the pair must be light and in this case the two operators produce the same result. This is consistent
with our previous observation that, when there are only heavy quarks or heavy antiquarks but not both, SF already
implies HQSS. So in all these sectors, our model produces the same amplitudes as SU(8)-WT after removing channels
involving hidden charm. This observation has been applied in [81–83, 88].
It is noteworthy that, in the sectors (Nc, Nc̄) = (0, 1) and (4, 0), corresponding to C = −1 and C = 4, H ′ac = Hac = 0

as they do not contain light quark-antiquark pairs. Also these two sectors cannot couple to any other (Nc, Nc̄) sector
in the baryon-meson case. Therefore for them, our model coincides directly with SU(8)-WT.
Let us turn now to the sectors with hidden charm. These are (Nc, Nc̄) = (1, 1), (2, 1), (3, 1), (4, 1). For all these

sectors H ′ac vanishes. The reason is that in these sectors the relevant quark-antiquark pair (quark and antiquark with
equal labels) is necessarily of heavy type, and such amplitude has been removed from H ′ac. (Note that Hac does not
vanish in these sectors.) So for the hidden charm sectors H ′WT reduces to the exchange mechanism Hex.
The interaction is effectively Hex for the four hidden charm sectors and also for C = −1 and C = 4. This has the

immediate consequence that the interaction H ′WT has only two eigenvalues, namely −2 (attractive) and 6 (repulsive),
in those sectors.8 This follows from the fact that Hex has a large (accidental) symmetry group, SUq(8) × SUq̄(8),
which produces only two large multiplets of degenerated states in the baryon-meson coupled-channels space. Under
SUq(8)× SUq̄(8) the baryons fall in the irrep (120,1) (120 being the symmetric representation of three quarks with
8 possible spin-flavor states).9 Likewise, the mesons belong to (8,8∗) (being qq̄ states). Therefore, the baryon-meson
states form two SUq(8)× SUq̄(8) multiplets:

(120,1)⊗ (8,8∗) = (330,8∗)⊕ (630,8∗), (2.23)

(330 is the symmetric representation [4] of SU(8) while 630 corresponds to the mixed symmetry [3, 1]). The two
corresponding eigenvalues are10

λ(330,8∗) = 6, λ(630,8∗) = −2. (2.24)

These two eigenvalues are also present in the original SU(8)-WT interaction (namely, λ2520 = 6 and λ4752 = −2 from
Eq. (2.11)) since the two interactions coincide for C = −1 or C = 4. It can also be noted that under SF SU(8), these
multiplets reduce as follows

(330,8∗) = 120⊕ 2520, (630,8∗) = 120⊕ 168⊕ 4752. (2.25)

Of course, these are the same SU(8) irreps obtained from 120⊗63 (baryon-meson except η1) and 120⊗1 (baryon-η1).
Therefore, the interaction can be written using SU(8) Clebsch-Gordan coefficients by means of11

Hex = 6(P ′
120

+ P2520)− 2(P120 + P168 + P4752). (2.26)

We emphasize that the large multiplets (330,8∗) and (630,8∗) are not realized in our model. First of all, they
contain sectors without hidden charm, for which the interaction does not reduce to the exchange mechanism Hex.
And second, the eigenvalues 6 and −2 refer only to the driving operator 4J i

MJ
i
B. The vertex V in Eq. (2.22) depends

also on hadron masses and meson decay constants, for which we use physical values in V and in the propagators. The
values that we use for these magnitudes are collected in Table II of [83].

E. Analysis of the hidden charm sectors

Here we consider hidden charm sectors with C = 0, 1, 2, 3, i.e. Nc̄ = 1 and Nc = 1, 2, 3, 4, respectively. We want to
classify the possible states under the symmetry group SU(6)×HQSS, with HQSS = SUc(2)×SUc̄(2)×Uc(1)×Uc̄(1).
Since in the hidden charm sectors there is exactly one heavy antiquark, it is not necessary to specify the irrep of the
factor SUc̄(2)×Uc̄(1) and we can use the notation R2Jc+1,C for the irreps of SU(6)×HQSS, R being the SU(6) irrep
of the light sector, C the charm quantum number and Jc the total spin carried by the one or more c quarks (not

8 Remarkably, these two eigenvalues are the only NF -independent ones in Eq. (2.11).
9 Fermi-Dirac statistic is taken care of by the antisymmetric color wavefunction.

10 They can be obtained by applying Hex to two suitable states, e.g., (M†1
1B

†
211 ±M†1

2B
†
111)|0〉.

11 One exception comes from the two 120 irreps, which differ by the type of symmetry of the four quarks. This information is not contained
in the SU(8) Clebsch-Gordan coefficients.
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including the spin of the c̄ antiquarks). The corresponding dimension is dimR× (2Jc +1)× 2 (the last factor coming
from the two possible spin states of the c̄).
Subsequently, we study the breaking of light SF down to SU(3)× SU(2) keeping HQSS, and enumerate the number

of attractive channels in each (C, r, J) sector, where r is the SU(3) irrep and J the total spin.
In practice we will assume exact isospin and spin SU(2)I × SU(2)J , as well as conservation of each flavor, but not

exact SU(3) and HQSS, for the baryons and mesons composing the coupled-channels space. Therefore the sectors are
labeled by (C, S, I, J), S being the strangeness quantum number and I the isospin. This implies a further breaking
of each (C, r, J) sector into (C, S, I, J) subsectors.

1. C = 0

For C = 0, the quark content is ℓℓℓcc̄, with two possibilities of grouping into baryon-meson: (ℓℓℓ)(cc̄) and (ℓℓc)(ℓc̄).
(Here ℓ denotes any light flavor quark, u, d, s.) The total dimension of the space is 56× 2× 2 + 21× 2× 6× 2 = 728,
and contains the following SU(6)×HQSS multiplets12

HC=0 = 562,0 ⊕ 562,0 ⊕ 702,0 (SU(6)×HQSS). (2.27)

The eigenvalues turn out to be

λ562,0 = λ702,0 = −2, λ′
562,0

= 6. (2.28)

The accidental degeneracy between 702,0 and one 562,0 takes place in our model and it is not a necessary consequence
of SU(6) × HQSS. This symmetry does not fix the three possible eigenvalues and the precise splitting between the
two copies of 562,0. In general, the accidental degeneracy will be lifted in V and the T -matrix even when an exact
SU(6)×HQSS invariance is assumed in the hadron masses and meson decay constants.
Next, we consider the breaking of light SF SU(6) down to SU(3)×SUJℓ

(2). E.g. 56 = 82⊕104. HQSS is unbroken.
After recoupling the spin carried by light and heavy quarks and antiquarks to yield the total spin J , we obtain
representations of SU(3)× SU(2)J labeled as r2J+1, where r is the SU(3) irrep. This yields the following reductions
(the two 562,0 have the same reduction)

562,0 = (82 ⊕ 104)2,0 = (82 ⊕ 82 ⊕ 84)⊕ (102 ⊕ 104 ⊕ 104 ⊕ 106), (2.29)

702,0 = (12 ⊕ 82 ⊕ 84 ⊕ 102)2,0 = (12 ⊕ 12 ⊕ 14)⊕ (82 ⊕ 82 ⊕ 84)⊕ (82 ⊕ 84 ⊕ 84 ⊕ 86)⊕ (102 ⊕ 102 ⊕ 104).

In the reduction (82)2,0 = (82⊕82⊕84) in 562,0, the three octets only differ in how the light sector spin is coupled
to the heavy sector spin, therefore these three irreps are degenerated if exact HQSS is assumed. (82 ⊕ 82 ⊕ 84) is a
multiplet of SU(3)×HQSS. Similar statements hold in the other cases: each 562,0 produces two such multiplets and
702,0 produces four. Consequently, in the hidden charm sector with C = 0 we expect to find 8 different eigenvalues
after SU(6) × HQSS is broken down to SU(3) × HQSS. Let λ1, λ2 be the eigenvalues of the two multiplets in the
repulsive 562,0, λ3, λ4 in the attractive 562,0, and λ5, λ6, λ7, λ8 those in 702,0. In this case, the spectra in each
(C, r, J) sector is as follows:

12 : (λ5, λ5),

14 : (λ5),

82 : (λ1, λ1, λ3, λ3, λ6, λ6, λ7),

84 : (λ1, λ3, λ6, λ7, λ7),

86 : (λ7),

102 : (λ2, λ4, λ8, λ8),

104 : (λ2, λ2, λ4, λ4, λ8),

106 : (λ2, λ4). (2.30)

In the SU(6) limit, λ1 = λ2, λ3 = λ4, λ5 = λ6 = λ7 = λ8. Breaking down the symmetry to SU(3), one expects

λ3,4,5,6,7,8 < 0 < λ1,2. (2.31)

12 (ℓℓℓ)(cc̄) is purely 562,0 from the symmetry of the three light quarks. The two light quarks in (ℓℓc) are symmetric giving a 21 of SU(6),
coupled to the further light quark in (ℓc̄) gives 21⊗ 6 = 56⊕ 70. These two 562,0 are not directly those in Eq. (2.28).
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Each negative eigenvalue can give rise to a resonance or bound state. Each such state is a full multiplet of
SU(3)× SU(2)J . This implies the following expected number of states in each (C, r, J) sector: up to two states in 12,
one in 14, five in 82, four in 84, one in 86, three in 102, three in 104, and one in 106, all of them with C = 0.

2. C = 1

For C = 1 there are two baryon-meson structures, namely, (ℓℓc)(cc̄) and (ℓcc)(ℓc̄). The total dimension of the space
is 384, with the following reduction under SU(6)×HQSS

HC=1 = 213,1 ⊕ 213,1 ⊕ 211,1 ⊕ 153,1 (SU(6)×HQSS), (2.32)

and eigenvalues

λ213,1 = λ211,1 = λ153,1 = −2, λ′
213,1

= 6. (2.33)

Once again the accidental degeneracy beyond SU(6)×HQSS is lifted in the T -matrix.
After the breaking SU(6) ⊃ SU(3)× SU(2)Jℓ

, and recoupling to J , one finds

213,1 = (63 ⊕ 3∗1)3,1 = (62 ⊕ 62 ⊕ 64 ⊕ 64 ⊕ 66)⊕ (3∗2 ⊕ 3∗4),

211,1 = (63 ⊕ 3∗1)1,1 = (62 ⊕ 64)⊕ (3∗2),

153,1 = (61 ⊕ 3∗3)3,1 = (62 ⊕ 64)⊕ (3∗2 ⊕ 3∗2 ⊕ 3∗4 ⊕ 3∗4 ⊕ 3∗6). (2.34)

Thus for C = 1, each of the four SU(6) irreps split into two SU(3)×HQSS multiplets.13

In principle there are eight different eigenvalues. Denoting by λ1, λ2 the eigenvalues of the two multiplets in the
repulsive 213,1, λ3, λ4 for the attractive 213,1, λ5, λ6 for 211,1, and λ7, λ8 for 153,1, the spectra in each (C, r, J) sector
is as follows:

3∗2 : (λ2, λ4, λ6, λ8, λ8),

3∗4 : (λ2, λ4, λ8, λ8),

3∗6 : (λ8),

62 : (λ1, λ1, λ3, λ3, λ5, λ7),

64 : (λ1, λ1, λ3, λ3, λ5, λ7),

66 : (λ1, λ3). (2.35)

In the SU(6) limit, λ1 = λ2, λ3 = λ4, λ5 = λ6, and λ7 = λ8. If only SU(3) symmetry is assumed, we expect the
following number of states: up to four states in 3∗2, three in 3∗4, one in 3∗6, four in 62, four in 64, and one in 66.

3. C = 2

For the hidden charm sector with C = 2 there are two baryon-meson quark structures, (ℓcc)(cc̄) and (ccc)(ℓc̄). The
space has dimension 120, with the following reduction and eigenvalues:

HC=2 = 62,2 ⊕ 64,2 ⊕ 64,2 (SU(6)×HQSS)

λ62,2 = λ64,2 = −2, λ′
64,2

= 6. (2.36)

The SU(3)×HQSS multiplets are as follows:

62,2 = (32)2,2 = (32 ⊕ 32 ⊕ 34),

64,2 = (32)4,2 = (32 ⊕ 34 ⊕ 34 ⊕ 36). (2.37)

13 Note that the two (62 ⊕ 64) multiplets above do not mix if HQSS holds, as they carry different heavy quark spin labels. Such label has
been left implicit to avoid clumsiness.
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In this case the SU(6) × HQSS multiplets are not reduced further under SU(3) × HQSS. Calling λ1 the eigenvalue
of the repulsive 64,2, λ2 that of the attractive 64,2, and λ3 the one of 62,2, yields the following spectra for the three
(C, r, J) sectors:

32 : (λ1, λ2, λ3, λ3),

34 : (λ1, λ1, λ2, λ2, λ3),

36 : (λ1, λ2). (2.38)

This produces the following expected maximum number of states: three in 32, three in 34 and one in 36

It can be noted in the present case, C = 2 with hidden charm, the assumption of SU(6) invariance does not
add anything (does not reduce the number of parameters) on top of that of SU(3). The reason is that here HQSS
automatically implies SF: there is just one light quark and rotations of it can be produced by combining global
rotations with heavy quark rotations.

4. C = 3

For C = 3 there is just one quark structure, (ccc)cc̄. The dimension is 16. The SU(6)×HQSS reduction is

HC=3 = 13,3 ⊕ 15,3 (SU(6)×HQSS), (2.39)

with eigenvalues

λ13,3 = −2, λ15,3 = 6. (2.40)

The SU(3)× SU(2)J reduction is:

13,3 = (11)3,3 = (12 ⊕ 14),

15,3 = (11)5,3 = (14 ⊕ 16). (2.41)

Once again, the SU(6)×HQSS multiplets are not reduced further under SU(3)×HQSS.
The following spectra is obtained for the various (C, r, J) sectors

12 : (λ2),

14 : (λ1, λ2),

16 : (λ1), (2.42)

where λ1 denotes the eigenvalue corresponding to 15,3, and λ2 that of 13,3. So no states will be produced in 16, and
up to one state is expected in 12 and 14.
Some of the results of this subsection are summarized in Table I.

C 0 1 2 3

J SU(3) 1 8 10 3∗ 6 3 1

1/2
2 7 4 5 6 4 1

(2) (5) (3) (4) (4) (3) (1)

3/2
1 5 5 4 6 5 2

(1) (4) (3) (3) (4) (3) (1)

5/2
0 1 2 1 2 2 1

(0) (1) (1) (1) (1) (1) (0)

TABLE I: Total number of channels for each J and each SU(3) irrep, for the various hidden charm sectors. Here each channel
represents a full SU(3) and spin multiplet (C, r, J) (rather than a isospin-spin multiplet, (C,S, I, J).) The expected number
of resonances in each sector is shown between parenthesis.The actual number of resonances will depend on the values of the
physical masses and meson decay constants.
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F. Lagrangian form of the interaction

In the strict heavy quark limit, the total spin J , and the separate spins of the light, heavy quarks and heavy
antiquarks subsystems are conserved, when only S-wave interactions are considered. Moreover, the matrix elements
of QCD Hamiltonian depend only on the spin-flavor quantum numbers of the light degrees of freedom. Each n-fold
degenerated SU(6) or SU(3) multiplet implies the specification of n(n+1)/2 parameters which are coupling constants
of the corresponding operators present in the interaction. From the previous analysis it follows that the number of
independent operators in the hidden charm sectors with C = 0, 1, 2, 3 is 4, 5, 4, 2, respectively, for a generic interaction
if SU(6)×HQSS invariance is assumed and 12, 10, 4, 2 if the symmetry is reduced to SU(3)×HQSS.
In what follows we will focus on the sector with hidden charm and C = 0. For this sector we will write down the most

general (modulo kinematical factors) S-wave Lagrangian consistent with SU(3)×HQSS for the baryon-meson coupled-
channels space. This Lagrangian contains 12 operators and our model gives well defined values for the corresponding
coupling constants. We should note that we actually compute the matrix elements of our interaction using directly
the previous expressions, either in terms of projectors using Clebsch-Gordan coefficients, or of hadron creation and
annihilation operators in spin-flavor space, by taking Wick contractions. Nevertheless, writing the interaction in
field-theoretical Lagrangian form is highly interesting in order to make contact with alternative approaches in the
literature.
For this purpose it is convenient to organize the hadrons forming multiplets of HQSS into building blocks with well

defined HQSS transformation properties [80, 112–114]. Specifically, consider a HQSS doublet composed of pseudoscalar

meson and vector meson with one heavy quark (e.g. D and D∗). Let M (c) and M
(c)
µ be the corresponding fields, then

M (c) = Q+(M
(c)
µ

(+)γµ +M (c)(+)γ5),

M (c) = γ0M
(c)†γ0 = (M (c)†

µ
(−)γµ −M (c)†(−)γ5)Q+. (2.43)

As usual (±) represent the positive and negative frequency part of the fields, corresponding to purely annihilation for
(+) and purely creation for (−). Therefore,M (c) [M (c)] annihilates [creates] the meson with one heavy quark but it
does not create [annihilate] the corresponding antimeson with a heavy antiquark. A similar proviso is applied in all
the other fields for hadrons carrying heavy quarks and/or antiquarks. Besides,

Q± =
1± v/

2
(2.44)

where vµ is the heavy hadron velocity (v2 = 1). We use Bjorken and Drell [115] conventions for the Dirac gammas.
For the hadron fields we use the conventions of [111] and this fixes the relative sign between pseudoscalar and vector
(see Appendix A).
Likewise, for a HQSS meson doublet with one heavy antiquark

M (c̄) = (M (c̄)
µ

(+)γµ +M (c̄)(+)γ5)Q−,

M (c̄) = γ0M
(c̄)†γ0 = Q−(M

(c̄)†
µ
(−)γµ −M (c̄)†(−)γ5). (2.45)

For a HQSS meson doublet with one heavy quark and one heavy antiquark (e.g., ηc and J/ψ):

M (cc̄) = Q+(M
(cc̄)
µ

(+)γµ +M (cc̄)(+)γ5)Q−,

M (cc̄) = γ0M
(cc̄)†γ0 = Q−(M

(cc̄)†
µ
(−)γµ −M (cc̄)†(−)γ5)Q+. (2.46)

For a HQSS baryon doublet with exactly one heavy quark (e.g., Σc and Σ∗c),

B(c)µ = B(c)µ(+) +
1√
3
(γµ + vµ)γ5B

(c)(+),

B(c)µ = B(c)†µγ0 = B(c)µ(−) +
1√
3
B(c)(−)(γµ − vµ)γ5. (2.47)

Here B(c) is the Dirac spinor of the 1/2+ baryon in the doublet while B(c)µ is the Rarita-Schwinger field for the 3/2+

baryon: vµB
(c)µ = γµB

(c)µ = 0.
Finally, for a HQSS singlet baryon with exactly one heavy quark (e.g., Λc)

B(c) = B(c)(+), B(c) = B(c)†γ0 = B(c)(−). (2.48)
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In addition, the polarization of the baryons carrying heavy quarks is such that Q−B
(c)(+) = Q−B

(c)µ(+) = 0, hence

Q−B
(c) = Q−B

(c)µ = 0. (2.49)

Under HQSS rotations these fields transform as follows

ScM
(c), M (c̄)S−1c̄ , ScM

(cc̄)S−1c̄ , ScB
(c), ScB

(c)µ

M (c)S−1c , Sc̄M
(c̄), Sc̄M

(cc̄)S−1c , B(c)S−1c , B(c)µS−1c . (2.50)

Here Sc and Sc̄ are the matrices in Dirac space representing the c or c̄ spin rotation and satisfy S†c,c̄ = γ0S
−1
c,c̄ γ0.

All other hadrons without heavy quarks nor antiquarks are HQSS singlets. They have complete fields (positive and
negative frequency parts) and are denoted without boldface type.
The hadrons are also organized into SU(3) multiplets. We use fields with labels a, b, c, . . . = 1, 2, 3 (or up, down,

strange) in the fundamental or anti-fundamental representations of SU(3), in such a way that

T a···
b··· → U †aa′U b′

b · · ·T a′···
b′··· , U ∈ SU(3) (2.51)

For C = 0 with hidden charm, the following SU(3) multiplets are needed

D̄a =
(

D̄0 D̄− D̄s

)

(2.52)

Here D̄0 represents the HQSS doublet formed by D̄0 and D̄∗0, etc.

Σµ
c

ab =







√
2Σµ

c

++ Σµ
c

+ Ξµ
c

+

Σµ
c

+
√
2Σµ

c

0 Ξµ
c

0

Ξµ
c

+ Ξµ
c

0
√
2Ωµ

c






(2.53)

This is a symmetric tensor (irrep 6 of SU(3)). Σµ
c
, Ξµ

c
, and Ωµ

c
are the HQSS doublets with (Σc,Σ

∗
c), (Ξ

′
c,Ξ
∗
c), and

(Ωc,Ω
∗
c), respectively.

Ξca =
(

−Ξ0
c

Ξ+
c

−Λc

)

(2.54)

In this case the members of the SU(3) multiplet are HQSS singlets. Further we define ψ as the SU(3) singlet and
HQSS doublet containing (ηc, J/ψ).
In addition, the following light baryon multiplets appear: with JP = 1/2+

Σa
b =









1√
6
Λ− 1√

2
Σ0 Σ+ −p

−Σ− 1√
6
Λ + 1√

2
Σ0 −n

−Ξ− Ξ0 −
√

2
3Λ









, (2.55)

and with JP = 3/2+, ∆abc
µ , a Rarita-Schwinger field and a symmetric tensor normalized as

∆111
µ =

√
6∆++

µ , ∆112
µ =

√
2∆+

µ , ∆122
µ =

√
2∆0

µ, ∆222
µ =

√
6∆−µ ,

∆113
µ =

√
2Σ∗µ

+, ∆123
µ = Σ∗µ

0, ∆223
µ =

√
2Σ∗µ

−,

∆133
µ =

√
2Ξ∗µ

0, ∆233
µ =

√
2Ξ∗µ

−,

∆333
µ =

√
6Ωµ. (2.56)

The relative phases of all fields here are standard with respect to the conventions adopted in [111] for the rotation,
flavor and spin-flavor groups. So for instance, (Ξ+

c ,Ξ
0
c) is a standard isospin doublet and (Σ+,Σ0,Σ−) is a standard

isovector. For SU(3) (and SU(4)) the convention in [116] is used instead of that in [117].14

14 The matrix elements between standard states of the step operators u ↔ d, d ↔ s, and s ↔ c are required to be non negative [116],
rather than those of u ↔ d and u↔ s [117].
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Regarding parity, we note that the hadrons with spin-parity 1− or 1/2+ have normal parity, whereas those with
0− or 3/2+ have abnormal parity. So Σb

a, ψ, Ξca, and D̄
a are true tensors while ∆abc

µ , and Σµ
cab are pseudotensors.

Also, Σb
a, Ξca, ∆

abc
i , and Σi

cab have large upper components while ψ and D̄a have large off-diagonal blocks in Dirac
space. The γ5 matrices introduced to preserve parity fit in this scheme.
Next, we write down the 12 most general operators allowed by SU(3)×HQSS in the baryon-meson coupled-channels

space, in S-wave and preserving parity. The operator
↔
∂v = vµ(

→
∂µ −

←
∂µ) acts on the mesons only and it is introduced

in order to produce the correct kinematical dependence in the amplitudes.

L1(x) = g1 Σ
a
bΣ

b
a tr(ψ i

↔
∂vψ), (2.57)

L2(x) = g2
1

3!
∆µ

abc∆
abc
µ tr(ψ i

↔
∂vψ), (2.58)

L3(x) = g3 Ξ
a
c
ψ(−i

↔
∂v)D̄bΣ

b
a + h.c., (2.59)

L4(x) = g4 ǫ
bcdΣµ

c abψ(−i
↔
∂v)D̄cγµγ5Σ

a
d + h.c., (2.60)

L5(x) = g5
1

2
Σµ

c abψ(−i
↔
∂v)D̄c ∆

abc
µ + h.c., (2.61)

L6(x) = g6 Ξ
a
c
Ξca tr(D̄b i

↔
∂vD̄

b), (2.62)

L7(x) = g7 Ξ
a
c
Ξcb tr(D̄a i

↔
∂vD̄

b), (2.63)

L8(x) = g8 ǫ
bcdΣµ

c abΞcd tr(D̄cγµγ5 i
↔
∂vD̄

a) + h.c., (2.64)

L9(x) + L10(x) =
1

2
Σµ

cabΣ
ν
c

ab tr(D̄c(g9 gµν + g10 iσµν) i
↔
∂vD̄

c), (2.65)

L11(x) + L12(x) = Σµ
c acΣ

ν
c

bc tr(D̄b(g11 gµν + g12 iσµν) i
↔
∂vD̄

a). (2.66)

The traces refer to Dirac space.
The reduction of these Lagrangians when no strangeness is involved is as follows:

L1(x) = g1NN tr(ψ i
↔
∂vψ), (2.67)

L2(x) = g2 ∆
µ∆µ tr(ψ i

↔
∂vψ), (2.68)

L3(x) = g3 Λcψ(−i
↔
∂v)D̄N + h.c., (2.69)

L4(x) = g4 Σ
µ
c jψ(−i

↔
∂v)D̄ τjγµγ5N + h.c., (2.70)

L5(x) =
√
3 g5 Σ

µ
c jψ(−i

↔
∂v)ψ Tj∆µ + h.c., (2.71)

L6(x) = g6 ΛcΛc tr(D̄ i
↔
∂vD̄), (2.72)

L7(x) = 0, (2.73)

L8(x) = g8 Σ
µ
c jΛc tr(D̄ τjγµγ5 i

↔
∂vD̄) + h.c., (2.74)

L9(x) + L10(x) + L11(x) + L12(x) = Σµ
c jΣ

ν
cj tr

(

D̄(G9 gµν +G10 iσµν) i
↔
∂vD̄

)

+Σµ
c jΣ

ν
ck tr

(

D̄ τjτk(G11 gµν +G12 iσµν) i
↔
∂vD̄

)

. (2.75)

Here j, k are isovector indices, ~τ are the Pauli matrices and 〈3/2,M |~ǫλ~T †|1/2,m〉 = C(1/2, 1, 3/2;m,λ,M). Further,

G9 = g9 + 2g11, G10 = g10 + 2g12, G11 = −g11, G12 = −g12. (2.76)

Our WT model with SF and HQSS gives the following values for the parameters:

ĝ1 = 0, ĝ2 = 0, ĝ3 =

√

3

2
, ĝ4 =

√

1

6
, ĝ5 = −1, ĝ6 =

1

2
,

ĝ7 = −1

2
, ĝ8 =

1

2
, ĝ9 = 0, ĝ10 = 0, ĝ11 = −1

2
, ĝ12 = −1

2
. (2.77)

where we have defined ĝi = 4f2gi.
The vanishing of g1 and g2 follows from the OZI rule, which is fulfilled by the model.
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III. COUPLED-CHANNELS UNITARIZATION AND SYMMETRY BREAKING

A. Unitarization and renormalization scheme

As previously discussed, the baryon-meson interaction is mediated by the extended WT interaction of Eq. (2.22)
that fulfills SU(6)× HQSS and it is consistent with chiral symmetry in the light sector. The final expression for the
potential to be used throughout this work is

V CSIJ
ij = DCSIJ

ij

1

4fifj
(k0i + k′j

0) , (3.1)

where k0i and k′j
0 are the CM energies of the incoming and outgoing mesons, respectively, and fi and fj are the

decay constants of the meson in the i-channel and j-channel.15We use the hadron masses and meson decay constants
compiled in Table II of Ref. [83]. In particular, fJ/Ψ is taken from the width of the J/Ψ → e−e+ decay, that is, fJ/Ψ =
290 MeV and we set fηc = fJ/Ψ, as predicted by HQSS and corroborated in the lattice evaluation of Ref. [118]. The
Dij are the matrix elements of H ′WT, Eq. (2.22), for the various hidden charm CSIJ sectors previously discussed.
Those for the strangeless hidden charm C = 0 case, for which H ′WT = Hex, and that we will discuss in what follows
are given in Appendix B. 16

In order to calculate the scattering amplitudes, Tij , we solve the on-shell Bethe-Salpeter equation (BSE), using the
matrix V CSIJ as kernel:

TCSIJ = (1 − V CSIJGCSIJ )−1V CSIJ , (3.2)

where GCSIJ is a diagonal matrix containing the baryon-meson propagator for each channel. Explicitly

GCSIJ
ii (s) =

(
√
s+Mi)

2 −m2
i

2
√
s

(

J̄0(
√
s;Mi,mi)− J̄0(µ

SI ;Mi,mi)
)

, (3.3)

Mi (mi) is the mass of the baryon (meson) in the channel i. The loop function J̄0 can be found in the appendix of
[48] (Eq. A9) for the different possible Riemann sheets. The baryon-meson propagator is logarithmically ultraviolet
divergent, thus, the loop needed to be renormalized. This has been done by a subtraction point regularization such
that

GCSIJ
ii (s) = 0 at

√
s = µCSI , (3.4)

with µCSI =
√

m2
th +M2

th, where mth and Mth, are, respectively, the masses of the meson and baryon producing the
lowest threshold (minimal value of mth +Mth) for each CSI sector, independent of the angular momentum J . This
renormalization scheme was first proposed in Refs. [65, 66] and it was successfully used in Refs. [56, 81, 83]. A recent
discussion on the regularization method can be found in Ref. [60].
The dynamically-generated baryon resonances appear as poles of the scattering amplitudes on the complex energy√
s plane. One has to check both first and second Riemann sheets. The poles of the scattering amplitude on the first

Riemann sheet that appear on the real axis below threshold are interpreted as bound states. The poles that are found
on the second Riemann sheet below the real axis and above threshold are identified with resonances17. The mass and

15 As compared to our previous work of Ref. [83], we have

• approximated (2
√
s −Mi −Mj), with Mi and Mj the incoming and outgoing baryon masses, by the sum of the CM energies of

the incoming and outgoing mesons. In the present case, the non relativistic approximation tends to increase the binding by up
to few tens of MeV. This non-relativistic approximation for the baryons is consistent with the treatment for the baryons adopted
in the previous section to implement the HQSS constraints, and it makes easier to connect with the effective HQSS Lagrangians
introduced in Eqs. (2.57)–(2.66).

• and, also for this latter reason, moved the
√

(E +M)/(2M) factors included in the potential used in [83] to the definition of the
loop function in Eq. (3.3).

16 For the sake of completeness, and to make possible the determination (see Eq. (2.77)) of the coupling g7 of the HQSS effective Lagrangian
of Eq. (2.63), we also give in the Appendix B the coefficients for the rest of hidden charm sectors with explicit strangeness.

17 Often we refer to all poles generically as resonances, regardless of their concrete nature, since usually they can decay through other
channels not included in the model space.
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the width of the state can be found from the position of the pole on the complex energy plane. Close to the pole, the
scattering amplitude behaves as

TCSIJ
ij (s) ≈ gie

iφi gje
iφj

√
s−√

sR
. (3.5)

The mass MR and width ΓR of the resonance result from
√
sR = MR − i ΓR/2, while gje

iφj (modulus and phase) is
the coupling of the resonance to the j-channel.

B. Symmetry breaking

As it was already pointed out in the subsection II E, we classify states under the symmetry group SU(6)× HQSS,
and consider the breaking of the light SF SU(6) to SU(3) × SUJl

(2). Subsequently we break the SU(3) light flavor
group to SU(2) isospin symmetry group, preserving the HQSS, and finally we break the HQSS. Thus, we assume
exact isospin, total spin and flavor conservation. The symmetry breaking is performed by adiabatic change of hadron
masses and meson weak decay constants, as it was previously done in Ref. [83]. At each symmetric point, the hadron
masses and meson decay constants are averaged over the corresponding group multiplets. Further, we introduce three
parameters, x, x′ and x′′ that are changed from 0 to 1, to gradually break the symmetry from SU(6) × HQSS down
to SU(3)×HQSS, then to SU(2)×HQSS, and finally down to SU(2) isospin, respectively:

m(x) = (1− x) mSU(6)×HQSS + x mSU(3)×HQSS,

f(x) = (1− x) fSU(6)×HQSS + x fSU(3)×HQSS,

m(x′) = (1 − x′) mSU(3)×HQSS + x′ mSU(2)×HQSS,

f(x′) = (1− x′) fSU(3)×HQSS + x′ fSU(2)×HQSS,

m(x′′) = (1 − x′′) mSU(2)×HQSS + x′′ mSU(2),

f(x′′) = (1− x′′) fSU(2)×HQSS + x′′ fSU(2). (3.6)

In this way we can assign SU(3) and SU(6) representation labels to each found resonance, and also identify the HQSS
multiplets. We will show below a diagram (Fig. 3) with the evolution of the hidden charm N and ∆ pole positions as
the various symmetries are gradually broken.

IV. CHARMLESS AND STRANGELESS HIDDEN CHARM SECTOR: THE N AND ∆ STATES

In this work we will only discuss results on hidden charm baryon resonances with total charm C = 0 and strangeness
S = 0. Other sectors with charm different from zero will be studied elsewhere.
In this sector, we find several I = 1/2 and I = 3/2 states, which correspond to N -like and ∆-like states, respectively

(here we use the same notation as in Refs. [74, 75]). All these states have odd parity and different values (J = 1/2, 3/2
and 5/2) of total angular momentum. The list of coupled-channels and the corresponding coefficients DIJ

ij can be
found in the first six tables of Appendix B.
In this hidden charm sector and in the SU(6)×HQSS limit, we saw (Eqs. (2.27) and (2.28)) that the group structure

of the HQSS-constrained extension of the WT interaction developed in this work consists of two 562,0 and one 702,0

representations. One of the 562,0 multiplets and the 702,0 one are attractive. Thus, from the decomposition in
Eq. (2.29) (see also Table I), we could expect up to a total of ten N -like and seven ∆-like resonances.18 Because of
the breaking of the SU(6)× HQSS symmetry, due to the use of physical hadron masses and meson decay constants,
we only find seven heavy N and five heavy ∆ states in the physical Riemann sheets. They have masses around
4GeV and most of them turn out to be bound. The remaining missing states show up in unphysical Riemann sheets.
The evolution of all states as we gradually break the symmetry from SU(6) × HQSS down to SU(3) × HQSS, then
to SU(2) × HQSS, and finally down to SU(2) isospin, is depicted in Fig. 3. Thanks to this latter study, we could
assign SU(6) × HQSS and SU(3) × HQSS labels to each of the predicted resonances, which are all of them collected
in Tables II and IV, and could also identify two HQSS multiplets in each isospin sector.

18 Those lie in the SU(3) octets and decuplets irreps, respectively, contained in the attractive 562,0 and 702,0 multiplets.
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A. N states (C = 0, S = 0, I = 1/2 )

As mentioned above, the model predicts the existence of seven heavy nucleon resonances: three states with the

spin-parity JP = 1
2

−
, also three states with 3

2

−
sectors, and one state with JP = 5

2

−
. Their masses, widths and

couplings to the different channels are compiled in Table II.

• J = 1/2: In this sector, there are seven coupled channels, with the following threshold energies (in MeV):

Nηc NJ/ψ ΛcD̄ ΛcD̄
∗ ΣcD̄ ΣcD̄

∗ Σ∗cD̄
∗

3918.6 4035.8 4153.7 4294.8 4320.8 4461.9 4526.3

• J = 3/2: In this sector, there are five coupled channels, with the following threshold energies:

NJ/ψ ΛcD̄
∗ Σ∗cD̄ ΣcD̄

∗ Σ∗cD̄
∗

4035.8 4294.8 4385.2 4461.9 4526.3

• J = 5/2: In this sector there is only one channel, Σ∗cD̄
∗, with threshold equal to 4526.3MeV.

From the group decomposition of the SU(6) × HQSS representations, we could expect up to a maximum of five
states with spin J = 1/2 (see Table I): one state from each of the two J = 1/2 octets encoded in the attractive
562,0 representation, and three states corresponding to the each of the 82 octets that appear in the reduction of the
702,0 representation [Eq. (2.29)]. However, the two poles related to the 562,0 representation appear in an unphysical
Riemann sheet, at the physical point (i.e., at the point of the evolution when the hadron masses and meson decay
constants attain their physical values). As it can be seen from Fig. 3, these poles dissappear from the physical
sheet when we pass from the SU(3) × HQSS limit to the SU(2) × HQSS one. Indeed, we could observe how the
(82)2,0 ⊂ (562)2,0 pole almost coincides with the threshold value of the degenerated Nηc and NJ/ψ channels in the
first steps of this evolution until it finally disappears. On the other hand, the (82)2,0 ⊂ (562)2,0 pole also gives rise
to an octet of J = 3/2 states (see Eq. (2.29)), which is also lost at the physical point. Thus, for J = 3/2 we are also
left only with the three baryon resonances stemming from the 702,0 representation, one from (82)2,0, and two from
(84)2,0. The J = 5/2 state is originated also from this latter multiplet.
From the above discussion, it is clear that the N -like resonances found in this work, and collected in Table II, form

two HQSS multiplets. In the first one the light degrees of freedom have quantum numbers (82)2,0 ⊂ (702)2,0. This
multiplet is formed by the three first resonances of the table (two with spin 1/2 and third one with spin 3/2) that
correspond to the blue states in Fig. 3. They only differ in how the light sector spin is coupled to the spin of the
cc̄ pair. The second HQSS multiplet corresponds to (84)2,0 ⊂ (702)2,0 quantum numbers for the light sector, and it
consists of the four remaining states in Table II (displayed in green in Fig. 3) one with spin 1/2, two with spin 3/2,
and another one with spin 5/2.
The members of each HQSS multiplet are nearly degenerate, but not totally because we also break the HQSS by

the use of physical hadron masses.
A word of caution is needed here. The mass of the J = 5/2 resonance is around 4027.2MeV. In this sector there

is only one channel (Σ∗cD̄
∗, with threshold equal to 4526.3MeV), thus this state is around five hundred MeV bound.

We expect our model to work well close to threshold, and therefore, in this case, interaction mechanisms neglected
here and involving higher partial waves could be relevant for determining the actual properties of this resonance.
There exist previous works on hidden-charm odd-parity nucleon states, also named crypto-exotic hadronic states.

These studies can be divided in two types. Namely, those based on a constituent quark description of the resonances,
and those where they are described as baryon-meson bound molecules or resonating states. Some of the predictions
of these other models are compiled in Table III.
The baryon-meson coupled-channel calculations by Hofmann and Lutz for JP = 1/2− in Ref. [65] and for JP = 3/2−

in Ref. [66] rely on a model of zero-range t-channel exchange of light vector mesons, based on chiral and large NC

considerations, and supplemented with SU(4) input in some vertices. This model is used as the driving interaction of
pseudo-scalar mesons with the JP = 1/2+, 3/2+ baryon ground states. After solving the BSE using a renormalization
scheme similar to that proposed here, some 1/2−, 3/2−–resonances were dynamically generated. Vector mesons in the
coupled-channel space were omitted in those early studies, thus channels like ΣcD̄

∗ or ΛcD̄
∗ were not considered.

More recently baryon-meson calculations using a hidden-gauge model have been carried out in Refs. [74–76]. These
works consider 1/2+ baryons interacting with pseudoscalar mesons and dynamically generate JP = 1/2− hidden-charm
nucleon resonances as poles in the T -matrix. Yet, the interaction of vector mesons with 1/2+ baryons (V B → V B)
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SU(6)× HQSS SU(3)× HQSS Couplings

irrep irrep MR[MeV] ΓR[MeV] to main channels J

702,0 (82)2,0 3918.3 0.0 gNηc = 0.5, gNJ/ψ = 0.6, gΛcD̄ = 3.1, gΛcD̄∗ = 0.5, 1/2

gΣcD̄ = 0.2 , gΣc D̄∗ = 2.6, gΣ∗

c D̄∗ = 2.6

702,0 (82)2,0 3926.0 0.1 gNηc = 0.2, gNJ/ψ = 0.04, gΛcD̄ = 0.4, gΛcD̄∗ = 3.0, 1/2

gΣcD̄ = 4.2, gΣcD̄∗ = 0.2, gΣ∗

c D̄
∗ = 0.7

702,0 (82)2,0 3946.1 0. gNJ/ψ = 0.2, gΛcD̄∗ = 3.4, gΣ∗

c D̄
= 3.6, gΣcD̄∗ = 1.1, 3/2

gΣ∗

c D̄
∗ = 1.5

702,0 (84)2,0 3974.3 2.8 gNηc = 0.5, gNJ/ψ ∼ 0.05, gΛcD̄ = 0.4, gΛcD̄∗ = 2.2, 1/2

gΣcD̄ = 2.1, gΣcD̄∗ = 3.4, gΣ∗

c D̄
∗ = 3.1

702,0 (84)2,0 3986.5 0. gNJ/ψ = 0.2, gΛcD̄∗ = 1.0, gΣ∗

c D̄
= 2.7, gΣcD̄∗ = 4.3, 3/2

gΣ∗

c D̄
∗ = 1.8

702,0 (84)2,0 4005.8 0. gNJ/ψ = 0.3, gΛcD̄∗ = 1.0, gΣ∗

c D̄
= 1.6, gΣcD̄∗ = 3.2, 3/2

gΣ∗

c D̄
∗ = 4.2

702,0 (84)2,0 4027.1 0. gΣ∗

c D̄∗ = 5.6 5/2

TABLE II: Odd parity hidden charm N (J = 1/2, J = 3/2 and J = 5/2) resonances found in this work. The first two columns
contain the SU(6)×HQSS and SU(3)×HQSS quantum numbers of each state, while MR and ΓR stand for its mass and width
(in MeV). The largest couplings of each pole, ordered by their threshold energies, are collected in the next column. In boldface,
we highlight the channels which are open for decay. Finally, the spin of the state is given in the last column. Resonances with
equal SU(6)× HQSS and SU(3)× HQSS labels form HQSS multiplets, and they are collected in consecutive rows.

is also taken into account in [74–76], which leads to additional and degenerate JP = 1/2− and 3/2− hidden-charm
nucleons. However, the J = 3/2+ baryons are not included at all, and thus some channels like Σ∗cD̄

∗ are excluded.
The main difference among our scheme and the hidden-gauge models is the definition of the coupled-channels

space. We consider simultaneously pseudoscalar meson–baryon (PB) and vector meson–baryon (V B) channels, with
JP = 1/2+ and 3/2+ baryons. However in the approaches of Refs. [74–76] all interaction terms of the type PB → V B
are neglected. Furthermore, channels with JP = 3/2+ baryons are not considered either. The potential used in
[74–76] for the PB → PB transitions, with JP = 1/2+ baryons, is similar to that derived here. However, there
exist important differences in all transitions involving vector mesons. When restricting our model to the PB → PB
sector, we still do not obtain the same results as in Refs. [74–76]. This is mainly due to i) the use of a different
renormalization scheme and, ii) the presence in these latter works of a suppression factor in those transitions that
involve a t-channel exchange of a heavy charm vector meson.
However, when we use our full space, the inclusion of a similar suppression factor in our HQSS kernel is not

quantitatively relevant for the dynamical generation of the resonances. Note that HQSS does not require the presence
of such suppression factor. In summary, when we compare our approach with the other molecular-type ones, we
observe in our model a rich structure of resonances due to the many channels cooperating to create them. Our states
are much more lighter that those predicted in Refs. [74–76], though significantly less bound that the crypto-exotic
baryons reported in Refs. [65, 66].
Finally, we will pay attention to the recent work of Ref. [119]. There a constituent quark model is used to describe

isospin I = 1/2 baryons with uudcc̄ quark content. The mass spectra is evaluated with three types of hyperfine
interactions: color-magnetic interaction (CM) based on one-gluon exchange, chiral interaction (FS) based on meson
exchange, and instanton-induced interaction (INST) based on the non-perturbative QCD vacuum structure. The FS
(CM) model predicts the lowest (highest) mass for each state. Results for the FS and CM models are displayed in
Table III. In all cases, the mass predicted by the INST model (not displayed in the table) lies between the values
predicted by the other two models. Our results are closer to those predicted by the FS model, specially for the lowest
lying states.

B. ∆ states (C = 0, S = 0, I = 3/2 )

The model predicts in this sector the existence of five heavy resonances (bound states; all of them appear below

threshold): three with spin-parity JP = 1
2

−
and another two with JP = 3

2

−
. Their masses, widths and couplings to

the different channels are compiled in Table IV.
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FIG. 3: Evolution of the poles as symmetries, starting from SU(6) × HQSS, are sequentially broken to reach the isospin
symmetric final crypto-exotic N and ∆ odd-parity resonances. The meanings of x, x′ and x′′ can be found in (3.6). The lower
index of the final states stands for the spin J of the corresponding resonance. The thresholds (red dashed lines) are marked
together with the respective baryon-meson channel. The SU(6)×HQSS labels 702,0 and 562,0, and the SU(3)× HQSS labels
(82)2,0, (84)2,0, (102)2,0, (104)2,0 are also shown at the corresponding symmetric points.

• J = 1/2: In this sector, there are four coupled channels, with the following threshold energies (in MeV):

∆J/ψ ΣcD̄ ΣcD̄
∗ Σ∗cD̄

∗

4306.9 4320.8 4461.9 4526.3

• J = 3/2: In this sector, there are five coupled channels, with the following threshold energies:

∆ηc ∆J/ψ Σ∗cD̄ ΣcD̄
∗ Σ∗cD̄

∗

4189.7 4306.9 4385.2 4461.9 4526.3

• J = 5/2: In this sector there are only two channels, with the following threshold energies:

∆J/ψ Σ∗cD̄
∗

4306.9 4526.3
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N(1/2−) N(3/2−) N(5/2−)

MR g to main-channels MR g to main-channels MR g

Ref. Model [MeV] ΛcD̄ ΛcD̄
∗ ΣcD̄ ΣcD̄

∗ Σ∗
cD̄

∗ [MeV] ΛcD̄
∗ Σ∗

cD̄ ΣcD̄
∗ Σ∗

cD̄
∗ [MeV] Σ∗

cD̄
∗

This work (82)2,0 ⊂ (702)2,0 3918 3.1 0.5 0.2 2.6 2.6

3926 0.4 3.0 4.2 0.2 0.7 3946 3.4 3.6 1.1 1.5

(84)2,0 ⊂ (702)2,0 3974 0.4 2.2 2.1 3.4 3.1 3987 1.0 2.7 4.3 1.8

4006 1.0 1.6 3.2 4.2 4027 5.6

[65][66] zero-range 3520 5.3 3430 5.6

vector exchange

[75] hidden-gauge 4265 0.1 3.0

4415 0.1 2.8 4415 0.1 2.8

[76] hidden-gauge 4315 X X

4454 X X 4454 X X

[119] quark model FS−CM FS−CM

uudcc̄ 3933−4267

4013−4363 4013−4389

4119−4377 4119−4445

4136−4471 4136−4476

4156−4541 4236−4526 4236−4616

TABLE III: Comparison of the whole spectrum of hidden-charm nucleons (or crypto-exotic nucleons) with odd-parity and
angular momentum L = 0 predicted by our model with some results from previous models. In all cases, masses and couplings
(g) to the dominant channels (when available) are shown in sequential rows. In the hidden gauge model of Ref. [76], the
numerical values of the couplings are not given. In this case, we indicate with a symbol X the elements of the coupled channel
space used to generate each resonance. On the other hand, in the case of the predictions of this work, in the column “Model”
we give the HQSS multiplet. Besides, we have also omitted the small couplings to the Nηc and NJ/ψ channels that can be
seen in Table II.

We obtain three ∆(J = 1/2) states as expected from the group decomposition of the SU(6)×HQSS representations
(see Table I): one state from each of the two J = 1/2 decuplets encoded in the attractive 702,0 representation,
and a further state corresponding to the J = 1/2 decuplet that appears in the reduction of the 562,0 representation
[Eq. (2.29)]. The evolution of the corresponding poles is shown in Fig. 3.
The pole that corresponds to (104)2,0 ⊂ 562,0 (light magenta circles in Fig. 3) has a mass quite close to the ∆ηc

and ∆J/ψ degenerated thresholds, between the SU(6) × HQSS and the SU(2) × HQSS symmetric points. Later,
while moving to the SU(2) isospin symmetric point, the spin 1/2 ∆ resonance keeps having a mass close to the ∆J/ψ
threshold, and ends up with a final mass of 4306.2MeV (the ∆J/ψ threshold is at 4306.9MeV). However, the spin
5/2 and the two spin 3/2 states, that are also originated from this (104)2,0 ⊂ 562,0 pole, essentially disappear. One
of the J = 3/2 states still shows up as a cusp very close to the ∆J/ψ threshold, and it has been included in the table.
The second state with spin 3/2 (light magenta triangles in Fig. 3) and the spin 5/2 one appear as small unnoticeable
peaks right at the ∆ηc and ∆J/Ψ thresholds, respectively.
From the discussion above, the (104)2,0 ⊂ 562,0 HQSS multiplet could be incomplete.
However the three ∆ states (dark magenta circles for the two JP = 1/2− states and dark magenta triangles for the

JP = 3/2− resonance in Fig. 3) that stem from the (102)2,0 ⊂ 702,0 configuration of the light degrees of freedom
turn out to be quite bound. Indeed, we find binding energies of at least 250 (150) MeV in the spin 1/2 (3/2) sector.
These three states, nearly degenerate, form a clear HQSS multiplet.
The models based on vector meson exchange, naturally predict a suppression factor in the baryon-meson amplitudes

involving exchange of charm, from the propagator of the exchanged heavy vector meson. In the heavy quark limit,
the suppression factor is of the order of 1/mH .19 Therefore, in that limit, one expects a quenching of order MV /MD∗

for the charm exchanging amplitudes of those models. (Of course, the true factor for large but finite physical heavy

19 The boson propagator is approximately 1/(2MH (EH −MH )), with MH the mass of the heavy vector meson and EH its energy, and
EH −MH is O(1) in the heavy quark limit.
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SU(6) ×HQSS SU(3) ×HQSS Couplings

irrep irrep MR ΓR to main channels J

702,0 (102)2,0 4005.8 0. g∆J/ψ = 0.3, gΣcD̄ = 2.7, gΣcD̄∗ = 4.4, gΣ∗

c D̄
∗ = 1.2 1/2

702,0 (102)2,0 4032.5 0. g∆ηc = 0.2, g∆J/ψ = 0.1, gΣ∗

c D̄
= 2.9, gΣcD̄∗ = 1.8 3/2

gΣ∗

c D̄
∗ = 4.1

702,0 (102)2,0 4050.0 0. g∆J/ψ = 0.2, gΣcD̄ = 0.8, gΣcD̄∗ = 1.9, gΣ∗

c D̄
∗ = 5.1 1/2

562,0 (104)2,0 4306.2 0. g∆J/ψ = 1.3, gΣcD̄ = 0.3, gΣcD̄∗ = 0.3, gΣ∗

c D̄
∗ = 0.3 1/2

(cusp)

562,0 (104)2,0 4306.8 0. g∆ηc ∼ 0.1, g∆J/ψ = 0.8, gΣ∗

cD̄
= 0.2, gΣcD̄∗ = 0.2, 3/2

(cusp) gΣ∗

c D̄
∗ = 0.1

TABLE IV: As in Table II, for the ∆ (J = 1/2,J = 3/2) resonances with hidden charm content.

hadron masses needs not exactly coincide with this heavy quark limit estimate.) Our model is not directly based on
exchange of vector mesons. Nevertheless, as commented above, we have verified that adding such suppression by hand
in the charm exchanging amplitudes does not have an impact on our results. Even a factor (MV /MD∗)2, proposed in
the literature [68] has a very small effect in the position of the resonances we find. Presumably, this is due to the fact
that the relevant channels have a small coupling. An exception comes from the two very weakly bound ∆ resonances
from the 562,0 irrep, which disappear due to the suppression of their dominant channel ∆J/ψ.

V. CONCLUSIONS

In the present work we develop a model for the interaction of lowest-lying 1/2+ and 3/2+ baryons with 0− and 1−

mesons, including light and heavy flavors. The interaction is of zero range and it is modeled as a suitable extension of
the Weinberg-Tomozawa term to include, besides chiral symmetry, spin-flavor symmetry in the light sector and heavy
quark spin symmetry. These symmetries are only broken in our model to the extent that they are broken at level
of the physical masses and meson decay constants. The OZI rule is also automatically implemented. Our extended
WT model, Eq. (2.22), contains no adjustable parameters, although some ambiguity is present through the choice of
renormalization prescription, as in all other hadronic molecular approaches. The model has been applied previously
to the light sector and to charm or bottom sectors with a single heavy quark. Here we show that it admits a natural
realization in sectors with hidden charm in such a way that HQSS is preserved. In particular, the spin of c quarks
and the spin of c̄ antiquarks are separately conserved.
We have carried out a detailed analysis of the hidden charm sectors (i.e., with cc̄ pairs) with C = 0, 1, 2, 3 and

their breaking as the symmetry is lifted from SU(6) × HQSS to SU(3) × HQSS (and then to SU(2) × HQSS and
SU(2) of isospin). This allows to count the expected number of bound states or resonances, and to classify them into
multiplets corresponding to the various symmetries. Taking the eigenvalues λ′s as undetermined (free) parameters,
the results of Eqs. (2.30), (2.35), (2.38) and (2.42), for the C = 0, C = 1, C = 2 and C = 3 hidden charm sectors
respectively, are general. Indeed, these equations fixes the most general structure of eigenvalues that can be deduced
from SU(3) × HQSS. The rest of undetermined parameters, not fixed by this latter symmetry, accounts for non-
diagonal transitions between multiplets with the same SU(3)× SUJℓ

(2) SF quantum numbers for the light degrees of
freedom. Further, we have translated this general discussion of the group structure allowed by SU(3) × HQSS into
Lagrangian form, for the charmless hidden-charm sector. This makes the HQSS of the model explicit and it allows to
compare with other models in the literature. Finally, we have found the couplings of the HQSS effective Lagrangians
of Eqs. (2.57)–(2.66) for the particular case of our extended WT model. This constitutes an additional check of its
compatibility with HQSS.
We have analyzed the charmless and strangeless sector, where we have dynamically generated several N and ∆

states. Actually, we predict the existence of seven N -like and five ∆-like states with masses around 4GeV, most of
them as bound states. These states form heavy-quark spin multiplets, which are almost degenerate in mass. The N
states form two HQSS multiplets. The lowest one has the light quark flavor-spin content coupled to 82. Since the c̄c
pair can couple to spin Scc̄ = 0, 1, this HQSS multiplet consists of three nucleon states with J = 1/2, 1/2, and 3/2,
and masses around 3930MeV. On the other hand, the highest HQSS nucleon-like multiplet contains four resonances
with J = 1/2, 3/2, 3/2 and 5/2, and masses around 4000MeV. In this case, these states are originated from the
84 SF light configuration. These two SU(3) × HQSS multiplets arise from the 70-plet of SU(6) × HQSS. There are
no N physical states coming from the 56-plet. With regards to ∆ states, we find two multiples with very different
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average masses, because in this case they are originated from different SU(6)×HQSS representations. The ∆ multiplet
coming from the (102)2,0 ⊂ 702,0 irrep is formed by 3 states (J = 1/2, 1/2, 3/2) with an average mass of 4035MeV.
Besides, we find only two (J = 1/2, 3/2) ∆ resonances at the physical point out of the four states originated from
the (104)2,0 ⊂ 562,0 in the SU(6) limit. These two states are nearly degenerate, with a mass of 4306MeV.
When we compare our approach with the other molecular-type ones, we observe in our model a rich structure

of resonances due to the many channels cooperating to create them. Our states are much more lighter that those
predicted in the hidden-gauge scheme [74–76], though significantly less bound that the crypto-exotic baryons reported
in the zero range vector meson exchange model of Refs. [65, 66]. Moreover, we have presented the first prediction for
exotic hidden-charm ∆-like resonances within a molecular baryon-meson scheme.
In comparison with the quark model of Ref. [119], we find that our results are closer to those predicted by the FS

hyperfine interaction discussed in Ref. [119], specially for the lowest lying states.
The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks

and they might be looked for in the forthcoming P̄ANDA experiment at the future FAIR facility.
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Appendix A: Spin-flavor states

In this appendix we give details regarding the construction of the tensors MA
B and BABC , the SU(3) multiplets

Σa
b, D̄

a, etc, and the computation of the matrix elements of the interaction.
The wave-functions in spin-flavor space of the basic mesons and baryons are constructed in terms of bosonic quark

and antiquark operators with spin and flavor labels, namely, Q†f↑,Q
†
f↓, Q

†
f̄↑ Q

†
f̄↓, f = u, d, s, c. The concrete wave-

functions are those given in the Appendix A of [81] with the following modification: a minus sign is to be applied to
all 1/2+ baryons, to all 0− mesons except η, η′ and ηc, and to φ, ω and J/ψ (denoted ψ in [81]). No change of sign
is to be applied to 3/2+ baryons, nor to η, η′ and ηc, nor to 1− mesons (except φ, ω and J/ψ).
The states just defined are standard with respect to the flavor and spin-flavor groups conventions of [111]. In

particular they are SU(2)J , SU(2)I standard and follow the convention of [116] for flavor SU(3) and SU(4). The only
exceptions come from the neutral mesons for which we use ideal mixing. In terms of these, the standard states of
[111] are given by:

|η′〉stan = |η′〉 (SU(3)), (A1)

|η′〉stan =

√

3

4
|η′〉+ 1

2
|ηc〉 (SU(4)), (A2)

|ηc〉stan = −1

2
|η′〉+

√

3

4
|ηc〉 (SU(4)), (A3)

|ω8〉 =

√

1

3
|ω〉+

√

2

3
|φ〉 (SU(3) and SU(4)), (A4)

|ω1〉 =

√

2

3
|ω〉 −

√

1

3
|φ〉 (SU(3)), (A5)

|ω1〉 =

√

1

2
|ω〉 − 1

2
|φ〉 + 1

2
|J/ψ〉 (SU(4)), (A6)

|ψ〉 = −
√

1

6
|ω〉+

√

1

12
|φ〉+

√

3

4
|J/ψ〉 (SU(4)). (A7)

In these formulas, the right-hand sides contain the physical (or rather ideal mixing) neutral mesons that we use in this
work. Their wave-functions are constructed as indicated above (i.e., from those in [81]). The left-hand sides contain
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the standard or mathematical states used in [111]. They have good quantum numbers with respect to SU(6) or SU(8)
(and their corresponding chain of subgroups).20

In order to construct the tensors MA
B and BABC , M †AB and B†ABC , with good transformations properties, the

following procedure is used: For all flavors f = u, d, s, c, and for the various creation operators Q†f↑, Q
†
f↓, Q

†
f̄↑, and

Q†
f̄↓, appearing in the wave-functions of the hadrons, the following replacements are to be applied:

Q†f↑ → +Q†f1, Q†f↓ → +Q†f2, Q†
f̄↑ → −Q̄†f2, Q†

f̄↓ → +Q†f1 (A8)

Note i) the minus sign in Q†
f̄↑, and ii) for quarks, the labels 1 and 2 correspond to spin up and down, respectively,

but for antiquarks they correspond to spin down and up, respectively.

After the replacement, there are only operators Q†A, and Q̄†A for creation (and QA, and Q̄A for annihilation),
carrying any of the eight labels A = u1, d1, s1, c1, u2, d2, s2, c2. These operators transform under SU(8) in the way
indicated in Eq. (2.17).

The meson matrix is then obtained by replacing Q̄†AQ†B with M †AB and expressing it in terms of meson operators

by inverting the wave-function equations. Similarly, for the baryons, Q†AQ
†
BQ
†
C is replaced with B†ABC and then

expressed in terms of baryon operators. The fields ΦA
B(x) and BABC(x) of Section II B are constructed in the usual

way from these annihilation and creation operators.
The SU(3) multiplets introduced in Section II F are obtained as follows.

∆abc = B(as1,bs2,cs3)3/2 (A9)

Here A = as1, B = bs2, C = cs3, with a, b, c ∈ {u, d, s}, s1, s2, s3 ∈ {1, 2}, and the notation (ABC)3/2 indicates that
the spin part is coupled to J = 3/2 with 1 =↑ and 2 =↓. Besides we refer here to the (annihilation) operator; the
field ∆abc

µ (x) is constructed out of it.

Σa
b =

√

1

6
ǫbcdB

(as1(cs2,ds3)0)1/2 , (A10)

Σab
c = B((as1,bs2)1cs3)1/2 , , (A11)

Σ∗c
ab = B((as1,bs2)1cs3)3/2 , , (A12)

Ξca =
1

2
ǫabcB

((bs1,cs2)0cs3)1/2 , . (A13)

For the mesons

D̄a = M (as1
cs2)0 , (A14)

D̄∗a = −M (as1
cs2)1 , (A15)

ηc = M (cs1
cs2)0 , (A16)

J/ψ = −M (cs1
cs2)1 . (A17)

Recalling that Q̄f1 = Qf̄↓ and Q̄f2 = −Qf̄↑, it follows that M (as1
bs2)0 = (Ma1

b1 +Ma2
b2)/

√
2, while M (as1

bs2)1

equals −Ma1
b2, (M

a1
b1 −Ma2

b2)/
√
2 and Ma2

b1, for J3 = +1, 0,−1, respectively.
Finally, we remark that we systematically take the coupling of baryon and meson in the order |baryon〉 ⊗ |meson〉,

rather than |meson〉 ⊗ |baryon〉.

Appendix B: Baryon-meson matrix elements

The coefficients Dij , appearing in Eq. (3.1), for the charmless (C = 0) and strangeless (S = 0) sector are compiled
in this Appendix (Tables V, VI, VII, VIII, IX and X). In addition, we also provide here the corresponding coefficients

20 Note that |ψ〉 of [81] corresponds to −|J/ψ〉 here, not to |ψ〉 of [111] and of Eq. (A7).
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for the C = 0 and S 6= 0 sectors (Tables XI, XII, XIII, XIV, XV, XVI XVII, XVIII, XIX, XX, XXI, XXII).
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TABLE V: C = 0, S = 0, I = 1/2, J = 1/2.

Nηc Nψ ΛcD̄ ΛcD̄
∗ ΣcD̄ ΣcD̄

∗ Σ∗
cD̄

∗

Nηc 0 0
√

3

2
−
√

9

2

√

3

2

√

1

2
2

Nψ 0 0 −
√

9

2
−
√

3

2

√

1

2

√

25

6
−
√

4

3

ΛcD̄
√

3

2
−
√

9

2
1 0 0 −

√
3

√
6

ΛcD̄
∗ −

√

9

2
−
√

3

2
0 1 −

√
3 −2 −

√
2

ΣcD̄
√

3

2

√

1

2
0 −

√
3 −1

√

4

3

√

2

3

ΣcD̄
∗

√

1

2

√

25

6
−
√
3 −2

√

4

3

1

3
−
√

2

9

Σ∗
cD̄

∗ 2 −
√

4

3

√
6 −

√
2

√

2

3
−
√

2

9

2

3

TABLE VI: C = 0, S = 0, I = 1/2, J = 3/2.

Nψ ΛcD̄
∗ Σ∗

cD̄ ΣcD̄
∗ Σ∗

cD̄
∗

Nψ 0
√
6 −

√
2

√

2

3
−
√

10

3

ΛcD̄
∗

√
6 1 −

√
3 1 −

√
5

Σ∗
cD̄ −

√
2 −

√
3 −1 −

√

1

3

√

5

3

ΣcD̄
∗

√

2

3
1 −

√

1

3
− 5

3
−
√

5

9

Σ∗
cD̄

∗ −
√

10

3
−
√
5

√

5

3
−
√

5

9
− 1

3

TABLE VIII: C = 0, S = 0, I = 3/2, J = 1/2.

∆ψ ΣcD̄ ΣcD̄
∗ Σ∗

cD̄
∗

∆ψ 0
√
8 −

√

8

3
−
√

4

3

ΣcD̄
√
8 2 −

√

16

3
−
√

8

3

ΣcD̄
∗ −

√

8

3
−
√

16

3
− 2

3

√

8

9

Σ∗
cD̄

∗ −
√

4

3
−
√

8

3

√

8

9
− 4

3

TABLE IX: C = 0, S = 0, I = 3/2, J = 3/2.

∆ηc ∆ψ Σ∗
cD̄ ΣcD̄

∗ Σ∗
cD̄

∗

∆ηc 0 0
√
3 −2 −

√
5

∆ψ 0 0 −
√
5 −

√

20

3

√

1

3

Σ∗
cD̄

√
3 −

√
5 2

√

4

3
−
√

20

3

ΣcD̄
∗ −2 −

√

20

3

√

4

3

10

3

√

20

9

Σ∗
cD̄

∗ −
√
5

√

1

3
−
√

20

3

√

20

9

2

3

TABLE X: C = 0, S = 0, I = 3/2, J = 5/2.

∆ψ Σ∗
cD̄

∗

∆ψ 0
√
12

Σ∗
cD̄

∗
√
12 4

TABLE VII: C = 0, S = 0, I = 1/2, J = 5/2.

Σ∗
cD̄

∗

Σ∗
cD̄

∗ −2
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TABLE XI: C = 0, S = −1, I = 0, J = 1/2.

Ληc Λψ ΛcD̄s ΞcD̄ ΛcD̄
∗
s Ξ′

cD̄ ΞcD̄
∗ Ξ′

cD̄
∗ Ξ∗

cD̄
∗

Ληc 0 0 1
√

1

2
−
√
3

√

3

2
−
√

3

2

√

1

2
2

Λψ 0 0 −
√
3 −

√

3

2
−1

√

1

2
−
√

1

2

√

25

6
−
√

4

3

ΛcD̄s 1 −
√
3 0

√
2 0 0 0 −

√
2 2

ΞcD̄
√

1

2
−
√

3

2

√
2 −1 0 0 0 −1

√
2

ΛcD̄
∗
s −

√
3 −1 0 0 0 −

√
2

√
2 −

√

8

3
−
√

4

3

Ξ′
cD̄

√

3

2

√

1

2
0 0 −

√
2 −1 −1

√

4

3

√

2

3

ΞcD̄
∗ −

√

3

2
−
√

1

2
0 0

√
2 −1 −1 −

√

4

3
−
√

2

3

Ξ′
cD̄

∗
√

1

2

√

25

6
−
√
2 −1 −

√

8

3

√

4

3
−
√

4

3

1

3
−
√

2

9

Ξ∗
cD̄

∗ 2 −
√

4

3
2

√
2 −

√

4

3

√

2

3
−
√

2

3
−
√

2

9

2

3

TABLE XII: C = 0, S = −1, I = 0, J = 3/2.

Λψ ΛcD̄
∗
s ΞcD̄

∗ Ξ∗
cD̄ Ξ′

cD̄
∗ Ξ∗

cD̄
∗

Λψ 0 2
√
2 −

√
2

√

2

3
−
√

10

3

ΛcD̄
∗
s 2 0

√
2 −

√
2

√

2

3
−
√

10

3

ΞcD̄
∗

√
2

√
2 −1 −1

√

1

3
−
√

5

3

Ξ∗
cD̄ −

√
2 −

√
2 −1 −1 −

√

1

3

√

5

3

Ξ′
cD̄

∗
√

2

3

√

2

3

√

1

3
−
√

1

3
− 5

3
−
√

5

9

Ξ∗
cD̄

∗ −
√

10

3
−
√

10

3
−
√

5

3

√

5

3
−
√

5

9
− 1

3

TABLE XIII: C = 0, S = −1, I = 0, J = 5/2.

Ξ∗
cD̄

∗

Ξ∗
cD̄

∗ −2

TABLE XIV: C = 0, S = −1, I = 1, J = 1/2.

Σηc Σψ ΞcD̄ ΣcD̄s Ξ′
cD̄ ΞcD̄

∗ Σ∗ψ ΣcD̄
∗
s Ξ′

cD̄
∗ Σ∗

cD̄
∗
s Ξ∗

cD̄
∗

Σηc 0 0
√

3

2
1 −

√

1

2
−
√

9

2
0

√

1

3
−
√

1

6

√

8

3
−
√

4

3

Σψ 0 0 −
√

9

2

√

1

3
−
√

1

6
−
√

3

2
0 5

3
−
√

25

18
−
√

8

9

2

3

ΞcD̄
√

3

2
−
√

9

2
1 0 0 0 0 −

√
2 1 2 −

√
2

ΣcD̄s 1
√

1

3
0 0

√
2 −

√
2

√

8

3
0 −

√

8

3
0 −

√

4

3

Ξ′
cD̄ −

√

1

2
−
√

1

6
0

√
2 1 1

√

16

3
−
√

8

3
−
√

4

3
−
√

4

3
−
√

2

3

ΞcD̄
∗ −

√

9

2
−
√

3

2
0 −

√
2 1 1 0 −

√

8

3

√

4

3
−
√

4

3

√

2

3

Σ∗ψ 0 0 0
√

8

3

√

16

3
0 0 −

√

8

9
− 4

3
− 2

3
−
√

8

9

ΣcD̄
∗
s

√

1

3

5

3
−
√
2 0 −

√

8

3
−
√

8

3
−
√

8

9
0 −

√

2

9
0 2

3

Ξ′
cD̄

∗ −
√

1

6
−
√

25

18
1 −

√

8

3
−
√

4

3

√

4

3
− 4

3
−
√

2

9
− 1

3

2

3

√

2

9

Σ∗
cD̄

∗
s

√

8

3
−
√

8

9
2 0 −

√

4

3
−
√

4

3
− 2

3
0 2

3
0 −

√

8

9

Ξ∗
cD̄

∗ −
√

4

3

2

3
−
√
2 −

√

4

3
−
√

2

3

√

2

3
−
√

8

9

2

3

√

2

9
−
√

8

9
− 2

3
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TABLE XV: C = 0, S = −1, I = 1, J = 3/2.

Σψ Σ∗ηc ΞcD̄
∗ Σ∗ψ Σ∗

cD̄s Ξ∗
cD̄ ΣcD̄

∗
s Ξ′

cD̄
∗ Σ∗

cD̄
∗
s Ξ∗

cD̄
∗

Σψ 0 0
√
6 0 −

√

4

3

√

2

3

2

3
−
√

2

9
−
√

20

9

√

10

9

Σ∗ηc 0 0 0 0 1
√
2 −

√

4

3
−
√

8

3
−
√

5

3
−
√

10

3

ΞcD̄
∗

√
6 0 1 0 −

√
2 1

√

2

3
−
√

1

3
−
√

10

3

√

5

3

Σ∗ψ 0 0 0 0 −
√

5

3
−
√

10

3
−
√

20

9
−
√

40

9

1

3

√

2

9

Σ∗
cD̄s −

√

4

3
1 −

√
2 −

√

5

3
0

√
2 0

√

2

3
0 −

√

10

3

Ξ∗
cD̄

√

2

3

√
2 1 −

√

10

3

√
2 1

√

2

3

√

1

3
−
√

10

3
−
√

5

3

ΣcD̄
∗
s

2

3
−
√

4

3

√

2

3
−
√

20

9
0

√

2

3
0

√

50

9
0

√

10

9

Ξ′
cD̄

∗ −
√

2

9
−
√

8

3
−
√

1

3
−
√

40

9

√

2

3

√

1

3

√

50

9

5

3

√

10

9

√

5

9

Σ∗
cD̄

∗
s −

√

20

9
−
√

5

3
−
√

10

3

1

3
0 −

√

10

3
0

√

10

9
0

√

2

9

Ξ∗
cD̄

∗
√

10

9
−
√

10

3

√

5

3

√

2

9
−
√

10

3
−
√

5

3

√

10

9

√

5

9

√

2

9

1

3

TABLE XVI: C = 0, S = −1, I = 1, J = 5/2.

Σ∗ψ Σ∗
cD̄

∗
s Ξ∗

cD̄
∗

Σ∗ψ 0 2
√
8

Σ∗
cD̄

∗
s 2 0

√
8

Ξ∗
cD̄

∗
√
8

√
8 2

TABLE XVII: C = 0, S = −2, I = 1/2, J = 1/2.

Ξηc Ξψ ΞcD̄s Ξ′
cD̄s ΩcD̄ ΞcD̄

∗
s Ξ∗ψ Ξ′

cD̄
∗
s ΩcD̄

∗ Ξ∗
cD̄

∗
s Ω∗

cD̄
∗

Ξηc 0 0
√

3

2

√

1

2
−1 −

√

9

2
0

√

1

6
−
√

1

3

√

4

3
−
√

8

3

Ξψ 0 0 −
√

9

2

√

1

6
−
√

1

3
−
√

3

2
0

√

25

18
− 5

3
− 2

3

√

8

9

ΞcD̄s

√

3

2
−
√

9

2
1 0 0 0 0 −1

√
2

√
2 −2

Ξ′
cD̄s

√

1

2

√

1

6
0 1

√
2 −1

√

16

3
−
√

4

3
−
√

8

3
−
√

2

3
−
√

4

3

ΩcD̄ −1 −
√

1

3
0

√
2 0

√
2

√

8

3
−
√

8

3
0 −

√

4

3
0

ΞcD̄
∗
s −

√

9

2
−
√

3

2
0 −1

√
2 1 0 −

√

4

3

√

8

3
−
√

2

3

√

4

3

Ξ∗ψ 0 0 0
√

16

3

√

8

3
0 0 − 4

3
−
√

8

9
−
√

8

9
− 2

3

Ξ′
cD̄

∗
s

√

1

6

√

25

18
−1 −

√

4

3
−
√

8

3
−
√

4

3
− 4

3
− 1

3
−
√

2

9

√

2

9

2

3

ΩcD̄
∗ −

√

1

3
− 5

3

√
2 −

√

8

3
0

√

8

3
−
√

8

9
−
√

2

9
0 2

3
0

Ξ∗
cD̄

∗
s

√

4

3
− 2

3

√
2 −

√

2

3
−
√

4

3
−
√

2

3
−
√

8

9

√

2

9

2

3
− 2

3
−
√

8

9

Ω∗
cD̄

∗ −
√

8

3

√

8

9
−2 −

√

4

3
0

√

4

3
− 2

3

2

3
0 −

√

8

9
0
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TABLE XVIII: C = 0, S = −2, I = 1/2, J = 3/2.

Ξψ Ξ∗ηc ΞcD̄
∗
s Ξ∗

cD̄s Ξ∗ψ Ω∗
cD̄ Ξ′

cD̄
∗
s ΩcD̄

∗ Ξ∗
cD̄

∗
s Ω∗

cD̄
∗

Ξψ 0 0
√
6 −

√

2

3
0

√

4

3

√

2

9
− 2

3
−
√

10

9

√

20

9

Ξ∗ηc 0 0 0
√
2 0 1 −

√

8

3
−
√

4

3
−
√

10

3
−
√

5

3

ΞcD̄
∗
s

√
6 0 1 −1 0

√
2

√

1

3
−
√

2

3
−
√

5

3

√

10

3

Ξ∗
cD̄s −

√

2

3

√
2 −1 1 −

√

10

3

√
2

√

1

3

√

2

3
−
√

5

3
−
√

10

3

Ξ∗ψ 0 0 0 −
√

10

3
0 −

√

5

3
−
√

40

9
−
√

20

9

√

2

9

1

3

Ω∗
cD̄

√

4

3
1

√
2

√
2 −

√

5

3
0

√

2

3
0 −

√

10

3
0

Ξ′
cD̄

∗
s

√

2

9
−
√

8

3

√

1

3

√

1

3
−
√

40

9

√

2

3

5

3

√

50

9

√

5

9

√

10

9

ΩcD̄
∗ − 2

3
−
√

4

3
−
√

2

3

√

2

3
−
√

20

9
0

√

50

9
0

√

10

9
0

Ξ∗
cD̄

∗
s −

√

10

9
−
√

10

3
−
√

5

3
−
√

5

3

√

2

9
−
√

10

3

√

5

9

√

10

9

1

3

√

2

9

Ω∗
cD̄

∗
√

20

9
−
√

5

3

√

10

3
−
√

10

3

1

3
0

√

10

9
0

√

2

9
0

TABLE XIX: C = 0, S = −2, I = 1/2, J = 5/2.

Ξ∗ψ Ξ∗
cD̄

∗
s Ω∗

cD̄
∗

Ξ∗ψ 0
√
8 2

Ξ∗
cD̄

∗
s

√
8 2

√
8

Ω∗
cD̄

∗ 2
√
8 0

TABLE XX: C = 0, S = −3, I = 0, J = 1/2.

ΩcD̄s Ωψ ΩcD̄
∗
s Ω∗

cD̄
∗
s

ΩcD̄s 2
√
8 −

√

16

3
−
√

8

3

Ωψ
√
8 0 −

√

8

3
−
√

4

3

ΩcD̄
∗
s −

√

16

3
−
√

8

3
− 2

3

√

8

9

Ω∗
cD̄

∗
s −

√

8

3
−
√

4

3

√

8

9
− 4

3

TABLE XXI: C = 0, S = −3, I = 0, J = 3/2.

Ωηc Ω∗
cD̄s Ωψ ΩcD̄

∗
s Ω∗

cD̄
∗
s

Ωηc 0
√
3 0 −2 −

√
5

Ω∗
cD̄s

√
3 2 −

√
5

√

4

3
−
√

20

3

Ωψ 0 −
√
5 0 −

√

20

3

√

1

3

ΩcD̄
∗
s −2

√

4

3
−
√

20

3

10

3

√

20

9

Ω∗
cD̄

∗
s −

√
5 −

√

20

3

√

1

3

√

20

9

2

3

TABLE XXII: C = 0, S = −3, I = 0, J = 5/2.

Ωψ Ω∗
cD̄

∗
s

Ωψ 0
√
12

Ω∗
cD̄

∗
s

√
12 4


