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Abstract. Conditional Random Fields and Hidden Conditional Ran-
dom Fields are a staple of many sequence tagging and classification
frameworks. An underlying assumption in those models is that the state
sequences (tags), observed or latent, take their values from a set of nom-
inal categories. These nominal categories typically indicate tag classes
(e.g., part-of-speech tags) or clusters of similar measurements. However,
in some sequence modeling settings it is more reasonable to assume that
the tags indicate ordinal categories or ranks. Dynamic envelopes of se-
quences such as emotions or movements often exhibit intensities growing
from neutral, through raising, to peak values. In this work we propose
a new model family, Hidden Conditional Ordinal Random Fields (H-
CORFs), that explicitly models sequence dynamics as the dynamics of
ordinal categories. We formulate those models as generalizations of or-
dinal regressions to structured (here sequence) settings. We show how
classification of entire sequences can be formulated as an instance of
learning and inference in H-CORFs. In modeling the ordinal-scale latent
variables, we incorporate recent binning-based strategy used for static
ranking approaches, which leads to a log-nonlinear model that can be
optimized by efficient quasi-Newton or stochastic gradient type searches.
We demonstrate improved prediction performance achieved by the pro-
posed models in real video classification problems.

1 Introduction

In this paper we tackle the problem of time-series sequence classification, a task
of assigning an entire measurement sequence a label from a finite set of cate-
gories. We are particularly interested in classifying videos of real human/animal
activities, for example, facial expressions. In analyzing such video sequences, it
is often observed that the sequences in nature undergo different phases or in-
tensities of the displayed artifact. For example, facial emotion signals typically
follow envelope-like shapes in time: neutral, increase, peak, and decrease,
beginning with low intensity, reaching a maximum, then tapering off. (See Fig. 1
for the intensity envelope visually marked for an facial emotion video.) Model-
ing such an envelop is important for faithful representation of motion sequences
and consequently for their accurate classification. A key challenge, however, is
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that even though the action intensity follows the same qualitative envelope the
rates of increase and decrease differ substantially across subjects (e.g., different
subjects express the same emotion with substantially different intensities).

neut

incr

apex

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 1. An example of facial emotion video and corresponding intensity labels. The
ordinal-scale labels over time form an intensity envelope (the first half shown here).

We propose a new modeling framework of Hidden Conditional Ordinal Ran-
dom Fields (H-CORFs) to accomplish the task of sequence classification while
imposing the qualitative intensity envelope constraint. H-CORF extends the
framework of Hidden Conditional Random Fields (H-CRFs) [12,5] by replacing
the hidden layer of H-CRFs category indicator variables with a layer of variables
that represent the qualitative but latent intensity envelope. To model this enve-
lope qualitatively yet accurately we require that the state space of each variable
be ordinal, corresponding to the intensity rank of the modeled activity at any
particular time. As a consequence, the hidden layer of H-CORF is a sequence
of ordinal values whose differences model qualitative intensity dissimilarities be-
tween various stages of an activity. This is distinct from the way the latent
dynamics are modeled in traditional H-CRFs, where states represent different
categories without imposing their relative ordering. Modeling the dynamic en-
velope in a qualitative, ordinal manner is also critical for increased robustness.
While the envelope could plausibly be modeled as a sequence of real-valued
absolute intensity states, such models would inevitably introduce undesired de-
pendencies. In such cases the differences in absolute intensities could be strongly
tied to a subject or a manner in which the action is produced, making the models
unnecessarily specific while obscuring the sought-after identity of the action.

To model the qualitative shape of the intensity envelope within H-CORF we
extend the framework of ordinal regression to structured ordinal sequence spaces.
The ordinal regression, often called the preference learning or ranking [6], has
found applications in several traditional ranking problems, such as image clas-
sification and collaborative filtering [14,2], or image retrieval [7,8]. In the static
setting, the goal is to predict the label of an item represented by feature vector
x ∈ R

p where the output label bears particular meaning of preference or order
(e.g., low, medium or high). The ordinal regression is fundamentally different
from the standard regression in that the actual absolute difference of output
values is nearly meaningless, but only their relative order matters (e.g., low <
medium < high). The ordinal regression problems may not be optimally handled
by the standard multi-class classification either because of classifier’s ignorance
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of the ordinal scale and symmetric treatment of different output categories (e.g.,
low would be equally different from high as it would be from medium).

Despite their success in static settings (i.e., a vectorial input associated with
a singleton output label), ranking problems are rarely explored in structured
problems, such as the segmentation of emotion signals into regions of neutral,
increasing or peak emotion or actions into different intensity stages. In this case
the ranks or ordinal labels at different time instances should vary smoothly, with
temporally proximal instances likely to have similar ranks. For this purpose we
propose an intuitive but principled Conditional Ordinal Random Field (CORF)
model that can faithfully represent multiple ranking variables correlated in a
combinatorial structure. The binning-based modeling strategy adopted by recent
static ranking approaches (see (2) in Sec. 2.1) is incorporated into our structured
models, CORF and H-CORF, through graph-based potential functions. While
this formulation leads to a family of log-nonlinear models, we show that the
models can still be estimated with high accuracy using general gradient-based
search approaches.

We formally setup the problem and introduce basic notation below. We then
propose a model for prediction of ordinal intensity envelopes in Sec. 2. Our clas-
sification model based on the ordinal modeling of the latent envelope is described
in Sec. 3. In Sec. 4, the superior prediction performance of the proposed struc-
tured ranking model to the regular H-CRF model is demonstrated on two prob-
lems/datasets: emotion recognition from the CMU facial expression dataset [11]
and behavior recognition from the UCSD mouse dataset [4].

1.1 Problem Setup and Notations

We consider a K-class classification problem, where we let y ∈ {1, ..., K} be the
class variable and x be the input covariate for predicting y. In the structured
problems we assume that x is composed of individual input vectors xr measured
at the temporal and/or spatial positions r (i.e., x = {xr}). Although our frame-
work can be applied to arbitrary combinatorial structures for x, in this paper we
focus on the sequence data, written as x = x1 . . .xT where the sequence length
T can vary from instance to instance. Throughout the paper, we assume a su-
pervised setting: we are given a training set of n data pairs D = {(yi,xi)}n

i=1,
which are i.i.d. samples from an underlying but unknown distribution.

2 Structured Ordinal Modeling of Dynamical Envelope

In this section we develop the model which can be used to infer ordinal dynamical
envelope from sequences of measurement. The model is reminiscent of a classical
CRF model, where its graphical representation corresponds to the upper two
layers in Fig. 2 with the variables h = h1, . . . , hT treated as observed outputs.
But unlike the CRF it restricts the envelope (i.e., sequence of tags) to reside
in a space of ordinal sequences. This requirement will impose ordinal, rank-
like, similarities between different states instead of the nominal differences of
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Fig. 2. Graphical representation of H-CRF. Our new model H-CORF (Sec. 3) shares
the same structure. The upper two layers form CRF (and CORF in Sec. 2.3) when
h = h1, . . . , hT serves as observed outputs.

classical CRF states. We will refer to this model as the Conditional Ordinal
Random Field (CORF). To develop the model we first introduce the framework
of static ordinal regression and subsequently show how it can be extended into
a structured, sequence setting.

2.1 Static Ordinal Regression

The goal of ordinal regression is to predict the label h of an item represented by a
feature vector1 x ∈ R

p where the output indicates the preference or order of this
item. Formally, we let h ∈ {1, . . . , R} for which R is the number of preference
grades, and h takes an ordinal scale from the lowest preference h = 1 to the
highest h = R, h = 1 ≺ h = 2 ≺ . . . ≺ h = R.

The most critical aspect that differentiates the ordinal regression approaches
from the multi-class classification methods is the modeling strategy. Assuming
a linear model (straightforwardly extendible to a nonlinear version by kernel
tricks), the multi-class classification typically (c.f. [3]) takes the form of2

h = argmaxc∈{1,...,R}w
�
c x + bc. (1)

For each class c, the hyperplane (wc ∈ R
p, bc ∈ R) defines the confidence toward

the class c. The class decision is made by selecting the one with the largest
confidence. The model parameters are {{wc}R

c=1, {bc}R
c=1}. On the other hand,

ordinal regression approaches adopt the following modeling strategy:

h = c iff w�x ∈ (bc−1, bc], where −∞ = b0 ≤ b1 ≤ · · · ≤ bR = +∞. (2)

The binning parameters {bc}R
c=0 form R different bins, where their adjacent

placement and the output deciding protocol of (2) naturally enforce the ordi-
nal scale criteria. The parameters of the model become {w, {bc}R

c=0}, far fewer
1 We use the notation x interchangeably for both a sequence observation x = {xr}

and a vector, which is clearly distinguished by context.
2 This can be seen as a general form of the popular one-vs-all or one-vs-one treatment

for the multi-class problem.
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in count than those of the classification models. The state-of-the-art Support
Vector Ordinal Regression (SVOR) algorithms [14,2] conform to this represen-
tation while they aim to maximize margins at the nearby bins in the SVM-like
formulation.

2.2 Conditional Random Field (CRF) for Sequence Segmentation

CRF [10,9] is a structured output model which represents the distribution of
a set (sequence) of categorical tags h = {hr}, hr ∈ {1, . . . , R}, conditioned on
input x. More formally, the density P (h|x) has a Gibbs form clamped on the
observation x:

P (h|x, θ) =
1

Z(x; θ)
es(x,h;θ). (3)

Here Z(x; θ) =
∑

h∈H es(x,h;θ) is the partition function on the space of possible
configurations H, and θ are the parameters3 of the score function s(·).

The choice of the output graph G = (V, E) on h critically affects model’s rep-
resentational capacity and the inference complexity. For convenience, we further
assume that we have either node cliques (r ∈ V ) or edge cliques (e = (r, s) ∈ E)
with corresponding features, Ψ (V )

r (x, hr) and Ψ (E)
e (x, hr, hs). By letting θ =

{v,u} be the parameters for node and edge features, respectively, the score
function is typically defined as:

s(x,h; θ) =
∑

r∈V

v�Ψ (V )
r (x, hr) +

∑

e=(r,s)∈E

u�Ψ (E)
e (x, hr, hs). (4)

In conventional modeling practice, the node/edge features are often defined
as products of measurement features confined to cliques and the output class
indicators. For instance, in CRFs with sequence [10] and lattice outputs [9,17]
we often have

Ψ (V )
r (x, hr) =

[
I(hr = 1), · · · , I(hr = R)

]�
⊗ φ(xr), (5)

where I(·) is the indicator function and ⊗ denotes the Kronecker product. Hence
the k-th block (k = 1, . . . , R) of Ψ (V )

r (x, hr) is φ(xr) if hr = k, and the 0-vector
otherwise. The edge feature may typically assess the absolute difference between
the measurements at adjoining nodes,

[
I(hr = k ∧ hs = l)

]

R×R
⊗ ∣

∣φ(xr) − φ(xs)
∣
∣. (6)

Learning and inference in CRFs has been studied extensively in the past decade,
c.f. [10,9,17], with many efficient and scalable algorithms, particularly for se-
quential structures.

3 For brevity, we often drop the dependency on θ in our notation.
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2.3 Conditional Ordinal Random Field (CORF)

A standard CRF model seeks to classify, treating each output category nomi-
nally and equally different from all other categories. The consequence is that the
model’s node potential has a direct analogy to the static multi-class classification
model of (1): For hr = c, the node potential equals v�

c φ(xr) where vc is the c-th
block of v, or the c-th hyperplane w�

c xr + bc in (1). The max can be replaced by
the softmax function. To setup an exact equality, one can let φ(xr) = [1,x�

r ]�.
Conversely, the modeling strategy of the static ordinal regression methods

such as (2) can be merged with the CRF through the node potentials to yield
a structured output ranking model. However, the mechanism of doing so is not
obvious because of the highly discontinuous nature of (2). Instead, we base our
approach on the probabilistic model for ranking proposed by [1], which shares
the notion of (2).

In [1], the noiseless probabilistic ranking likelihood is defined as

Pideal(h = c|f(x)) =
{

1 if f(x) ∈ (bc−1, bc]
0 otherwise (7)

Here f(x) is the model to be learned, which could be linear f(x) = w�x. The
effective ranking likelihood is constructed by contaminating the ideal model with
noise. Under the Gaussian noise δ and after marginalization, one arrives at the
ranking likelihood

P (h=c|f(x))=
∫

δ

Pideal(h=c|f(x)+δ)·N (δ; 0, σ2)dδ=Φ

(
bc−f

σ

)

−Φ

(
bc−1−f

σ

)

,

(8)
where Φ(·) is the standard normal cdf, and σ is the parameter that controls the
steepness of the likelihood function.

Now we set the node potential at node r of the CRF to be the log-likelihood
of (8), that is,

v�Ψ (V )
r (x, hr) −→ Γ (V )

r (x, hr; {a,b, σ}), where

Γ (V )
r (x, hr) :=

∑R
c=1 I(hr = c) · log

(

Φ

(
bc−a�φ(xr)

σ

)

− Φ

(
bc−1−a�φ(xr)

σ

))

.

(9)

Here, a (having the same dimension as φ(xr)), b = [−∞ = b0, . . . , bR = +∞]�,
and σ are the new parameters, in contrast with the original CRF’s node param-
eters v. Substituting this expression into (4) leads to a new conditional model
for structured ranking,

P (h|x, ω) ∝ exp
(
s(x,h; ω)

)
, where (10)

s(x,h; ω) =
∑

r∈V

Γ (V )
r (x, hr; {a,b, σ}) +

∑

e=(r,s)∈E

u�Ψ (E)
e (x, hr, hs). (11)

We refer to this model as CORF, the Conditional Ordinal Random Field. The
parameters of the CORF are denoted as ω = {a,b, σ,u}, with the ordering
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constraint bi < bi+1, ∀i. Note that the number of parameters is significantly fewer
than that of the regular CRF. Unlike CRF’s log-linear form, the CORF becomes
a log-nonlinear model, effectively imposing the ranking criteria via nonlinear
binning-based modeling of the node potential Γ .

Model Learning. We briefly discuss how the CORF model can be learned
using gradient ascent. For the time being we assume that we are given labeled
data pairs (x,h), a typical setting for CRF learning, although we treat h as
latent variables for the H-CORF sequence classification model in Sec. 3.

First, it should be noted that CORF’s log-nonlinear modeling does not im-
pose any additional complexity on the inference task. Since the graph topology
remains the same, once the potentials are evaluated, the inference follows exactly
the same procedures as that of the standard log-linear CRFs. Second, it is not
difficult to see that the node potential Γ (V )

r (x, hr), although non-linear, remains
concave.

Unfortunately, the overall learning of CORF is non-convex because of the log-
partition function (log-sum-exp of nonlinear concave functions). However, the
log-likelihood objective is bounded above by 0, and the quasi-Newton or the
stochastic gradient ascent [17] can be used to estimate the model parameters.
The gradient of the log-likelihood w.r.t. u is (the same as the regular CRF):

∂ log P (h|x, ω)
∂u

=
∑

e=(r,s)∈E

(

Ψ (E)
e (x, hr, hs) − EP (hr ,hs|x)

[
Ψ (E)

e (x, hr, hs)
])

.

(12)
The gradient of the log-likelihood w.r.t. μ = {a,b, σ} can be derived as:

∂ log P (h|x, ω)
∂μ

=
∑

r∈V

(
∂Γ (V )

r (x, hr)
∂μ

− EP (hr |x)

[
∂Γ (V )

r (x, hr)
∂μ

])

, (13)

where the gradient of the node potential can be computed analytically,

∂Γ (V )
r (x, hr)

∂μ
=

R∑

c=1

I(hr=c) · N (z0(r, c); 0, 1) · ∂z0(r,c)
∂μ −N (z1(r, c); 0, 1) · ∂z1(r,c)

∂μ

Φ(z0(r, c)) − Φ(z1(r, c))
,

where zk(r, c) =
bc−k − a�φ(xr)

σ
for k = 0, 1. (14)

Model Reparameterization for Unconstrained Optimization. The
gradient-based learning proposed above has to be accomplished while respect-
ing two sets of constraints: (i) the order constraints on b: {bj−1 ≤ bj for
j = 1, . . . , R}, and (ii) the positive scale constraint on σ: {σ > 0}. Instead
of general constrained optimization, we introduce a reparameterization that ef-
fectively reduces the problem to an unconstrained optimization task.

To deal with the order constraints in the parameters b, we introduce the
displacement variables δk, where bj = b1 +

∑j−1
k=1 δ2

k for j = 2, . . . , R − 1. So, b
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is replaced by the unconstrained parameters {b1, δ1, . . . , δR−2}. The positiveness
constraint for σ is simply handled by introducing the free parameter σ0 where
σ = σ2

0 . Hence, the unconstrained node parameters are: {a, b1, δ1, . . . , δR−2, σ0}.
Then the gradients for ∂zk(r,c)

∂μ in (14) then become:

∂zk(r, c)
∂a

= − 1
σ2

0

φ(xr),
∂zk(r, c)

∂σ0
= −2

(
bc−k − a�φ(xr)

)

σ3
0

, for k = 0, 1. (15)

∂z0(r, c)
∂b1

=
{

0 if c = R
1

σ2
0

otherwise ,
∂z1(r, c)

∂b1
=

{
0 if c = 1
1

σ2
0

otherwise . (16)

∂z0(r, c)
∂δj

=

{
0 if c ∈ {1, . . . , j, R}
2δj

σ2
0

otherwise ,
∂z1(r, c)

∂δj
=

{
0 if c ∈ {1, . . . , j + 1}
2δj

σ2
0

otherwise ,

for j = 1, . . . , R − 2. (17)

We additionally employ parameter regularization on the CORF model. For a
and u, we use the typical L2 regularizers ||a||2 and ||u||2. No specific regular-
ization is necessary for the binning parameters b1 and {δj}R−2

j=1 as they will be
automatically adjusted according to the score a�φ(xr). For the scale parameter
σ0 we consider (log σ2

0)2 as the regularizer, which essentially favors σ0 ≈ 1 and
imposes quadratic penalty in log-scale.

3 Hidden Conditional Ordinal Random Field (H-CORF)

We now propose an extension of the CORF model to a sequence classification
setting. The model builds upon the method for extending CRFs for classifica-
tion, known as Hidden CRFs (H-CRF). H-CRF is a probabilistic classification
model P (y|x) that can be seen as a combination of K CRFs, one for each class.
The CRF’s output variables h = h1, . . . , hT are now treated as latent variables
(Fig. 2). H-CRF has been studied in the fields of computer vision [12,18] and
speech recognition [5]. We use the same approach to combine individual CORF
models as building blocks for sequence classification in the Hidden CORF set-
ting, a structured ordinal regression model with latent variables.

To build a classification model from CORFs, we introduce a class variable
y ∈ {1, . . . , K} and a new score function

s(y,x,h; Ω) =
K∑

k=1

I(y = k) · s(x,h; ωk)

=
K∑

k=1

I(y = k) ·
[

∑

r∈V

Γ (V )
r (x, hr; {ak,bk, σk}) +

∑

e=(r,s)∈E

u�
k Ψ (E)

e (x, hr, hs)

]

,

(18)

where Ω = {ωk}K
k=1 denotes the compound H-CORF parameters comprised of

K CORFs ωk = {ak,bk, σk,uk} for k = 1, . . . , K. The score function, in turn,
defines the joint and class conditional distributions:
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P (y,h|x) =
exp(s(y,x,h))

Z(x)
, P (y|x) =

∑

h

P (y,h|x) =
∑

h exp(s(y,x,h))
Z(x)

.

(19)
Evaluation of the class-conditional P (y|x) depends on the partition function
Z(x) =

∑
y,h exp(s(y,x,h)) and the class-latent joint posteriors P (y, hr, hs|x).

Both can be computed from independent consideration of K individual CORFs.
The compound partition function is the sum of individual partition functions,
Z(x) =

∑
k Z(x|y = k) =

∑
k

∑
h exp(s(k,x,h)), computed in each CORF.

Similarly, the joint posteriors can evaluated as P (y, hr, hs|x) = P (hr, hs|x, y) ·
P (y|x). Learning the H-CORF can be done by maximizing the class conditional
log-likelihood log P (y|x), where its gradient can be derived as:

∂ log P (y|x)
∂Ω

= EP (h|x,y)

[
∂s(y,x,h)

∂Ω

]

− EP (y,h|x)

[
∂s(y,x,h)

∂Ω

]

. (20)

Using the gradient derivation (12)-(14) for the CORF, it is straightforward to
compute the expectations in (20). Finally, the assignment of a measurement
sequence to a particular class, such as the action or emotion, is accomplished by
the MAP rule y∗ = arg maxy P (y|x).

4 Evaluations

In this section we demonstrate the performance of our model with ordinal latent
state dynamics, the H-CORF. We evaluate algorithms on two datasets/tasks:
facial emotion recognition from the CMU facial expression video dataset and
behavior recognition from the UCSD mouse dataset.

4.1 Recognizing Facial Emotions from Videos

We consider the task of the facial emotion recognition. We use the Cohn-Kanade
facial expression database [11], which consists of six basic emotions (anger, dis-
gust, fear, happiness, sadness, and surprise) performed by 100 students, 18 to
30 years old. In this experiment, we selected image sequences from 93 subjects,
each of which enacts 2 to 6 emotions. Overall, the number of sequences is 352
where the class proportions are as follows: anger(36), disgust(42), fear(54), hap-
piness(85), sadness(61), and surprise(74). For this 6-class problem, we randomly
select 60%/40% of the sequences as training/testing, respectively. The training
and the testing sets do not have sequences of the same subject. After detecting
faces with the cascaded face detector [16], we normalize them into (64 × 64)
images which are aligned based on the eye locations similar to [15].

Unlike the previous static emotion recognition approaches (e.g., [13]) where
just the ending few peak frames are considered, we use the entire sequences that
cover the onset state of the expression to the apex in order to conduct the task
of dynamic emotion recognition. The sequence lengths are, on average, about 20
frames long. Fig. 3 shows some example sequences. We consider the qualitative
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(a) Anger

(b) Disgust

(c) Fear

(d) Happiness

(e) Sadness

(f) Surprise

Fig. 3. Sample sequences for six emotions from the Cohn-Kanade dataset

intensity state of size R = 3, based on typical representation of three ordinal
categories used to describe the emotion dynamics: neutral < increasing <
apex. Note that we impose no actual prior knowledge of the category dynamics
nor the correspondence of the three states to the qualitative categories described
above. This correspondence can be established by interpreting the model learned
in the estimation stage, as we demonstrate next. For the image features, we first
extract the Haar-like features, following [20]. To reduce feature dimensionality,
we apply PCA on the training frames for each emotion, which gives rise to
30-dimensional feature vectors corresponding to 90% of the total energy.

The recognition test errors are shown in Table 1. Here we also contrasted with
the baseline generative approach based on a Gaussian Hidden Markov Model
(GHMM). See also the confusion matrices of H-CRF and H-CORF in Fig. 4. Our
model with ordinal dynamics leads to significant improvements in classification
performance over both prior models.

To gain insight about the modeling ability of the new approach, we stud-
ied the latent intensity envelopes learned during the model estimation phase.
Fig. 5 depicts a set of most likely latent envelopes estimated on a sample of test
sequences. The decoded envelopes by our model correspond to typical visual
changes in the emotion intensities, qualified by the three categories (neutral, in-
crease, apex). On the other hand, the decoded states by the H-CRF model have
weaker correlation with the three target intensity categories, typically exhibiting
highly diverse scales and/or orders across the six emotions. The ability of the
ordinal model to recover perceptually distinct dynamic categories from data may
further explain the model’s good classification performance.
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Table 1. Recognition accuracy on CMU emotion video dataset

Methods GHMM H-CRF H-CORF

Accuracy 72.99% 78.10% 89.05%

(a) H-CRF (b) (Proposed) H-CORF

Fig. 4. Confusion matrices for facial emotion recognition on CMU database

4.2 Behavior Recognition from UCSD Mouse Dataset

We next consider the task of behavior recognition from video, a very important
problem in computer vision. We used the mouse dataset from the UCSD vision
group4. The dataset contains videos of 5 different mouse behaviors (drink, eat,
explore, groom, and sleep). See Fig. 6 for some sample frames. The video clips
are taken at 7 different points in the day, separately kept as 7 different sets.
The characteristics of each behavior vary substantially among each of the seven
sets. From the original dataset, we select a subset comprised of 75 video clips
(15 videos for each behavior) from 5 sets. Each video lasts between 1 and 10
seconds. For the recognition setting, we take one of the 5 sets having the largest
number of instances (25 clips; 5 for each class) as the training set, while the
remaining 50 videos from the other 4 sets are reserved for testing.

To obtain the measurement features from the raw videos, we extract dense
spatio-temporal 3D cuboid features of [4]. Similar to [4], we construct a finite
codebook of descriptors, and replace each cuboid descriptor by the corresponding
codebook word. More specifically, after collecting the cuboid features from all
videos, we cluster them into C = 200 centers using the k-means algorithm.

For the baseline performance comparison, we first run [4]’s static mixture
approach where each video is represented as a static histogram of cuboid types
contained in the video clip, essentially forming a bag-of-words representation. We
then apply standard classification methods such as the nearest neighbor (NN)

4 Available for download at http://vision.ucsd.edu
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Fig. 5. Facial emotion intensity prediction for some test sequences. The decoded latent
states by H-CORF are shown as red lines, contrasted with H-CRF’s blue dotted lines.
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Fig. 6. Sample frames from mouse dataset, representing each of the five classes (drink,
eat, explore, groom, and sleep) from left to right

Table 2. Recognition accuracy on UCSD mouse dataset

Methods NN Hist.-χ2 [4] GHMM H-CRF H-CORF

Accuracy 62.00% 64.00% 68.00% 78.00%

(a) NN Hist.-χ2 [4] (b) H-CRF

(c) (Proposed) H-CORF

Fig. 7. Confusion matrices for behavior recognition in UCSD mouse dataset

classifier based on the χ2 distance measure on the histogram space. We obtain
the test accuracy (Table 2) and the confusion matrix (Fig. 7) shown under the
title “NN Hist.-χ2”. Note that the random guess would yield 20.00% accuracy.
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Instead of representing the video as a single histogram, we consider a sequence
representation for our H-CORF-based sequence models. For each time frame t,
we set a time-window of size W = 40 centered at t. We then collect all detected
cuboids with the window, and form a histogram of cuboid types as the node
feature φ(xr). Note that some time slices may have no cuboids involved, in which
case the feature vector is a zero-vector. To avoid a large number of parameters
in the learning, we further reduce the dimensionality of features to 100-dim by
PCA which corresponds to about 90% of the total energy.

The test errors and the confusion matrices of the H-CRF and our H-CORF
are contrasted with the baseline approach in Table 2 and Fig. 7. Here the car-
dinality of the latent variables is set as R = 3 to account for different ordinal
intensity levels of mouse motions, which is chosen among a set of values that
produced highest prediction accuracy. Our H-CORF exhibits better performance
than the H-CRF and [4]’s standard histogram-based approach. Results similar
to ours have been reported in other works that use more complex models and
are evaluated on the same dataset (c.f., [19]). However, they are not immediately
comparable to ours as we have different experimental settings: a smaller subset
with non-overlapping sessions (i.e., sets) between training and testing where we
have a much smaller training data proportion (33.33%) than [19]’s (63.33%).

5 Conclusion

In this paper we have introduced a new modeling framework of Hidden Condi-
tional Ordinal Random Fields to accomplish the task of sequence classification.
The H-CORF, by introducing a set of ordinal-scale latent variables, aims at
modeling the qualitative intensity envelope constraints often observed in real
human/animal motions. The embedded sequence segmentation model, CORF,
extends the regular CRF by incorporating the ranking-based potentials to model
dynamically changing ordinal-scale signals. For the real datasets for facial emo-
tion and mouse behavior recognition, we have demonstrated that the faithful
representation of the linked ordinal states in our H-CORF is highly useful for
accurate classification of entire sequences. In our future work, we will apply
our method to more extensive and diverse types of sequence datasets including
biological and financial data.
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