
Hidden Conditional Random Field with Distribution Constraints for Phone 

Classification 

Dong Yu, Li Deng, Alex Acero
 

Speech Research Group, Microsoft Research, USA 
{dongyu, deng, alexac}@microsoft.com 

 

Abstract 

We advance the recently proposed hidden conditional random 

field (HCRF) model by replacing the moment constraints 

(MCs) with the distribution constraints (DCs). We point out 

that the distribution constraints are the same as the traditional 

moment constraints for the binary features but are able to 

better regularize the probability distribution of the continuous-

valued features than the moment constraints. We show that 

under the distribution constraints the HCRF model is no longer 

log-linear but embeds the model parameters in non-linear 

functions. We provide an effective solution to the resulting 

more difficult optimization problem by converting it to the 

traditional log-linear form at a higher-dimensional space of 

features exploiting cubic spline. We demonstrate that a 20.8% 

classification error rate (CER) can be achieved on the TIMIT 

phone classification task using the HCRF-DC model. This 

result is superior to any published single-system result on this 

heavily evaluated task including the HCRF-MC model, the 

discriminatively trained HMMs, and the large-margin HMMs 

using the same features.  

Index Terms: hidden conditional random field, maximum 

entropy, moment constraint, distribution constraint, phone 

classification, TIMIT, cubic spline 

1. Introduction 

The recently proposed hidden conditional random field 

(HCRF) model [2][5] is a class of discriminative models that 

generalize both the hidden Markov model (HMM) and the 

conditional random field (CRF) model. The HCRF models are 

direct models that produce the most probable state sequence 

by estimating the conditional probability of a state sequence 

given the entire observed feature sequence. Different from 

HMMs which model the state sequence as being Markov and 

each observation being independent of all others given the 

state, HCRFs model the state sequence as being conditionally 

Markov given the observation sequence and is capable of 

representing  long-range feature dependencies and 

incorporating  highly correlated features. The HCRF model 

has been successfully applied to the phone classification task 

[2][5], the meeting segmentation task [6], and the 

electrocardiogram classification task [1], to name a few. 

The core of the HCRF model is the maximum entropy 

(MaxEnt) model with moment constraints (MCs). The moment 

constraint requires that the expected value of each feature 

estimated from the model be the same as that observed in the 

training data. The MaxEnt principle indicates that among all 

the probability distributions that accord with the moment 

constraints, we should choose the one that maximizes the 

entropy. The conditional probability in the HCRF model has a 

nice log-linear form [2]  

𝑝 𝑤|𝑜;𝝀 =
1

𝑧 𝑜; 𝝀 
 𝑒𝑥𝑝 𝝀𝑇𝒇 𝑤, 𝑠,𝒐  

𝑠∈𝑤

, (1) 

where  ∙ 𝑇  is the transposition of  ∙ , 𝑜 =  𝑜1,⋯ , 𝑜𝑇  is the 

observation sequence, 𝑤  is the state sequence without 

boundary information and is typically represented as a 

phoneme sequence or word sequence, 𝑠 =  𝑠1,⋯ , 𝑠𝑇  is a 

state sequence with boundary information,   𝒇 𝑤, 𝑠, 𝑜 =
 𝑓1 𝑤, 𝑠, 𝑜 ,⋯ ,𝑓𝑁 𝑤, 𝑠, 𝑜  𝑇  is the feature vector, 𝝀 =
 𝜆1 ,⋯ , 𝜆𝑁 

𝑇  is the weight vector, and 

𝑧 𝑜; 𝝀 =  𝑒𝑥𝑝 𝝀𝑇𝒇 𝑤, 𝑠, 𝑜  𝑤 ,𝑠∈𝑤  is the normalization 

factor to ensure probabilities 𝑝 𝑤|𝑜;𝝀 ’s sum to 1.  

Both binary and continuous features can be used in the 

HCRF model. For example, in the speech classification and 

recognition tasks [2][5] the sufficient statistics  

𝑓
𝑤 ′
 𝐿𝑀  𝑤, 𝑠, 𝑜 = 𝛿 𝑤 = 𝑤′                               ∀𝑤′  (2) 

𝑓𝑠"𝑠′
 𝑇𝑟  𝑤, 𝑠, 𝑜 =  𝛿 𝑠𝑡−1 = 𝑠" 𝛿 𝑠𝑡 = 𝑠′ 

𝑇

𝑡=1

 ∀𝑠", 𝑠′ (3) 

𝑓𝑠′
 𝑂𝑐𝑐   𝑤, 𝑠, 𝑜 =  𝛿 𝑠𝑡 = 𝑠′ 

𝑇

𝑡=1

                        ∀𝑠′ (4) 

𝑓𝑠′
 𝑀1  𝑤, 𝑠, 𝑜 =  𝛿 𝑠𝑡 = 𝑠′ 

𝑇

𝑡=1

𝑜𝑡                      ∀𝑠′ (5) 

𝑓𝑠′
 𝑀2  𝑤, 𝑠, 𝑜 =  𝛿 𝑠𝑡 = 𝑠′ 

𝑇

𝑡=1

𝑜𝑡
2                    ∀𝑠′ (6) 

were used as features, where 𝛿 𝑥 = 1  if 𝑥  is true, and 

𝛿 𝑥 = 0 otherwise. 𝑓
𝑤 ′
 𝐿𝑀  𝑤, 𝑠, 𝑜  are language model (LM) 

features, 𝑓𝑠"𝑠′
 𝑇𝑟  𝑤, 𝑠, 𝑜  are state transition features, 𝑓𝑠′

 𝑂𝑐𝑐  
 are 

state occupation features, and 𝑓𝑠′
 𝑀1  𝑤, 𝑠,𝑜  and 

𝑓𝑠′
 𝑀2  𝑤, 𝑠, 𝑜  are the first and second-order statistics 

generated from the observations. Among these features, 

𝑓
𝑤 ′
 𝐿𝑀  𝑤, 𝑠, 𝑜  are binary features, 𝑓𝑠"𝑠′

 𝑇𝑟  𝑤, 𝑠, 𝑜  and 

𝑓𝑠′
 𝑂𝑐𝑐   𝑤, 𝑠, 𝑜  are multi-valued discrete features, and 

𝑓𝑠′
 𝑀1  𝑤, 𝑠, 𝑜  and 𝑓𝑠′

 𝑀2  𝑤, 𝑠, 𝑜  are continuous features. 

As we have shown in our recent work [9], the moment 

constraint is a strong one for binary features since knowing the 

mean of the binary feature is equivalent to knowing its 

probability distribution in full.  However, the moment 

constraint is very weak for continuous features and as a result 

we learn less than should from the training data if only 

moment constraints are used for the continuous features. In 

this paper, we advance the HCRF model by replacing the 

moment constraints with the distribution constraints (DCs). 

We show that under distribution constraints the HCRF model 

is no longer log-linear but with non-linear functions which 

embed the model parameters to be estimated. We provide a 

solution to this significantly more difficult optimization 

problem by converting it to a log-linear problem at a higher-

dimensional space using cubic spline. We demonstrate that a 

20.8% classification error rate (CER) can be achieved on the 

TIMIT phone classification task using the HCRF-DC model, 

which is 0.5% better than the best result obtained using the 

HCRF-MC model [5] and 0.3% better than the best single-

system result reported on the same task which was achieved 
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using the large-margin technique [7]. 

The rest of the paper is organized as follows. In Section 2, 

we derive the improved HCRF model with distribution 

constraints and show how we can solve the resulting 

optimization problem that contains non-linear functions as 

parameters by converting it to a log-linear problem at a higher-

dimensional space. In Section 3, we describe the experimental 

results on the TIMIT phone classification task. We conclude 

the paper in Section 4. 

2. HCRF with Distribution Constraints 

In this section, we derive the HCRF model with distribution 

constraints and provide a solution to the more complicated 

model estimation problem. For the sake of clarity, we simplify 

𝑓𝑖 𝑤, 𝑠, 𝑜  as 𝑓𝑖  in the rest of the paper. 

2.1. Distribution constraints 

The distribution constraint of a continuous feature can be 

approximated with bucketing approaches, with which each 

continuous feature 𝑓𝑖  in the range of  𝑙𝑖 , ℎ𝑖  is converted into 𝐾 

binary features in the form of 

𝑓𝑖𝑘 =  
ℎ𝑖𝑘 + 𝑙𝑖𝑘

2
      𝑖𝑓 𝑓𝑖 ∈  𝑙𝑖𝑘 ,ℎ𝑖𝑘  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (7) 

where 𝑙𝑖𝑘 = ℎ𝑖(𝑘−1) = (𝑘 − 1) ℎ𝑖 − 𝑙𝑖 𝐾 + 𝑙𝑖 . The HCRF 

model with moment constraints on the quantized features has 

the form of  

𝑝 𝑤|𝑜;𝝀 =
1

𝑧 𝑜; 𝝀 
 𝑒𝑥𝑝

𝑠∈𝑤

   𝜆𝑖𝑘𝑓𝑖𝑘

𝐾

𝑘=1

𝐶

𝑖=1

+  𝜆𝑗𝑓𝑗

𝐵

𝑗=1

  

(8) 

where 𝐵 is the number of binary features and 𝐶 is the number 

of continuous features. This approximation is very rough. 

Now, let us assume we have infinite number of training 

samples so that we can increase the number of buckets 𝐾 to 

infinity. By noting that only one 𝑓𝑖𝑘  is non-zero and the non-

zero 𝑓𝑖𝑘  takes the value of 𝑓𝑖 , we get 

lim
𝐾→∞

 𝜆𝑖𝑘𝑓𝑖𝑘
𝑘

= 𝜆𝑖 𝑓𝑖 𝑓𝑖 . (9) 

Eq. (8) thus becomes 

𝑝 𝑤|𝑜;𝝀 =
1

𝑧 𝑜; 𝝀 
 𝑒𝑥𝑝

𝑠∈𝑤

  𝜆𝑖 𝑓𝑖 𝑓𝑖

𝐶

𝑖=1

+  𝜆𝑗𝑓𝑗

𝐵

𝑗=1

 . 

(10) 

Note that the weight 𝜆𝑖 𝑓𝑖  for the continuous feature 𝑓𝑖  is 

no longer a single value but a (generally nonlinear) function of 

the continuous feature 𝑓𝑖 . 

2.2. Solution to the optimization problem 

Since the model parameters to be estimated are functions 

instead of single values, the parameter estimation problem 

cannot be easily solved. Here we provide a solution by 

converting it to the standard log-linear form at a higher-

dimensional space using the cubic-spline-based technique we 

recently developed [9][11][12][13]. The core idea is to 

approximate the continuous weight function (instead of the 

feature) with splines. 

Given K evenly distributed knots   𝑓𝑖𝑘 , 𝜆𝑖𝑘    𝑘 = 1,⋯ ,𝐾 

in the cubic spline with the natural boundary condition (i.e., 

the second derivatives at the boundaries are 0), and denote 

ℎ = 𝑓𝑖(𝑘+1) − 𝑓𝑖𝑘 = 𝑓𝑖(𝑗+1) − 𝑓𝑖𝑗 > 0,∀𝑗, 𝑘 ∈  1,⋯ ,𝐾 − 1 ,  

the value 𝜆𝑖 𝑓𝑖  of a data point 𝑓𝑖  can be estimated as 

𝜆𝑖 𝑓𝑖 = 𝑎𝜆𝑖𝑗 + 𝑏𝜆𝑖(𝑗+1) + 𝑐
𝜕2𝜆𝑖

𝜕𝑓𝑖
2 |𝑓𝑖=𝑓𝑖𝑗

+ 𝑑
𝜕2𝜆𝑖

𝜕𝑓𝑖
2 |𝑓𝑖=𝑓𝑖(𝑗+1)

 

(11) 

where 

𝑎 =
𝑓𝑖 𝑗+1 − 𝑓𝑖

𝑓𝑖 𝑗+1 − 𝑓𝑖𝑗
,  

𝑏 = 1− 𝑎, 

𝑐 =
1

6
 𝑎3 − 𝑎  𝑓𝑖 𝑗+1 − 𝑓𝑖𝑗  

2
, 𝑎𝑛𝑑 

𝑑 =
1

6
 𝑏3 − 𝑏  𝑓𝑖 𝑗+1 − 𝑓𝑖𝑗  

2
 

(12) 

are interpolation parameters, and  𝑓𝑖𝑗 , 𝑓𝑖 𝑗+1   is the section in 

which the point 𝑓𝑖  falls. As we have shown in [9][11][12][13], 

𝜆𝑖 𝑓𝑖  can be written in the matrix form  

𝜆𝑖 𝑓𝑖 ≅ 𝒂𝑻 𝑓𝑖 𝝀𝑖  (13) 

where 

𝝀𝑖 =  𝜆𝑖1,⋯ , 𝜆𝑖𝐾  
𝑇  (14) 

is the weight vector for feature 𝑓𝑖 , and 

𝒂𝑻 𝑓𝑖 = 𝒆𝑇 𝑓𝑖 + 𝒇𝑇 𝑓𝑖 𝑪
−1𝑫 (15) 

is a vector with 

𝒆𝑻 𝑓𝑖 =  
0 ⋯ 𝑎 

𝑗

𝑏 
𝐽+1

⋯ 0
 , (16) 

𝒇𝑻 𝑓𝑖 =  
0 ⋯ 𝑐 

𝑗

𝑑 
𝐽+1

⋯ 0
 , (17) 

𝑪 =

 
 
 
 
 
 
 
 
 
 
 
 
ℎ

6
𝟎 𝟎 ⋯ ⋯ ⋯ 𝟎

ℎ

6

2ℎ

3

ℎ

6
𝟎 ⋯ ⋯ 𝟎

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ 𝟎
ℎ

6

2ℎ

3

ℎ

6
𝟎 ⋮

⋮ ⋮ 𝟎 ⋮ ⋮ ⋮ 𝟎

𝟎 ⋯ ⋮ 𝟎
ℎ

6

2ℎ

3

ℎ

6

𝟎 ⋯ ⋯ ⋯ 𝟎 𝟎
ℎ

6 
 
 
 
 
 
 
 
 
 
 
 

, (18) 

𝑫 =

 
 
 
 
 
 
 
 
 
 

0 𝟎 𝟎 ⋯ ⋯ ⋯ 𝟎
1

ℎ
−

2

ℎ

1

ℎ
𝟎 ⋯ ⋯ 𝟎

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ 𝟎
1

ℎ
−

2

ℎ

1

ℎ
𝟎 ⋮

⋮ ⋮ 𝟎 ⋮ ⋮ ⋮ 𝟎

𝟎 ⋯ ⋮ 𝟎
1

ℎ
−

2

ℎ

1

ℎ
𝟎 ⋯ ⋯ ⋯ 𝟎 𝟎 0 

 
 
 
 
 
 
 
 
 

. (19) 

From Eq. (13), we obtain 
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𝜆𝑖 𝑓𝑖 𝑓𝑖 ≅ 𝒂𝑻 𝑓𝑖 𝝀𝑖𝑓𝑖 =  𝒂𝑻 𝑓𝑖 𝑓𝑖 𝝀𝑖

=  𝜆𝑖𝑘  𝑎𝑘 𝑓𝑖 𝑓𝑖  

𝑘

, (20) 

where 𝑎𝑘 𝑓𝑖  is the 𝑘 -th element of 𝒂𝑻 𝑓𝑖 . Eq. (20) 

indicates that the product of a continuous feature with its 

continuous weight can be approximated as a sum of the 

products of 𝐾 transformed features in the form of 𝑎𝑘 𝑓𝑖 𝑓𝑖  
with the corresponding 𝐾  single-valued weights. The 

conditional probability in the HCRF-DC model can thus 

be written as 

𝑝 𝑤|𝑜;𝝀 =
1

𝑧 𝑜; 𝝀 
 

             𝑒𝑥𝑝

𝑠∈𝑤

   𝜆𝑖𝑘𝑓𝑖𝑘

𝐾

𝑘=1

𝐶

𝑖=1

+  𝜆𝑗𝑓𝑗

𝐵

𝑗=1

 , 

(21) 

where 

𝑓𝑖𝑘 = 𝑎𝑘 𝑓𝑖 𝑓𝑖  (22) 

only depends on the continuous-valued feature 𝑓𝑖  and the 

locations of the knots, and is independent of the weights to 

be estimated.  

Note that although Eq. (21) has the same form as Eq. (8), 

the definition of 𝑓𝑖𝑘  is quite different. The expanded features 

defined in Eq. (22) are more robust and typically performs 

much better than that defined in Eq. (7). In fact, spline 

interpolation can be considered as a filter with which the data 

sparseness problem can be alleviated since the difference 

between the model-estimated value and the observed value can 

be considered as the observation noise. A trade-off can thus be 

obtained between the accuracy of the constraint and the 

uncertainty of the constraint, or the discrimination ability and 

the generalization ability, by choosing the number of knots 

used: Using a small number of knots may represent the 

constraints with low accuracy, and as a result, reduces 

classification accuracy. On the other hand, increasing the 

number of knots forces the model obtained to follow 

increasingly closely to the distribution observed in the training 

data and may decrease the generalization ability of the model. 

Eq. (21) is in the standard log-linear form and can be 

efficiently solved with existing algorithms for the HCRF-MC 

model. More specifically, we have used the RPROP [7] 

algorithm in our experiments since it has been shown to 

perform the best for the HCRF-MC model [5].  

Figure 1 and Figure 2 illustrate the difference between the 

moment constraint and the distribution constraint.  Figure 1  

shows five features with the same first-order moment but 

different distributions. Note that although the feature 

distributions are very different, the model with moment 

constraints does not distinguish and use the distribution 

information.  Figure 2 shows the associated weights learned 

using the moment constraints and the distribution constraints. 

With the moment constraint, the same weight (the straight line 

𝜆0) is used for all the values of the same feature. In other 

words, the feature is considered having the same importance 

across all its value range. With the distribution constraint, the 

weight is a function of the feature and may have very different 

functional shape as the curves 𝜆1- 𝜆5 shown in Figure 2. As 

the result, a feature can be important within one range and less 

important within another range. 

As observed in the HCRF-MC model [2][5], normalizing 

the  features to the same range can typically provide better 

results in practical if the dynamic range of the features is 

vastly different, even though normalization should cause no 

difference in theory. This is especially true if higher-order 

statistics are used as features. The reason is that most 

optimization algorithms work best within its designed 

parameter range. If the optimal value is outside of the assumed 

range, the performance of the algorithms drastically decreases 

either as a speed slowdown or as an error rate increase. For 

example, an RPROP algorithm may have a minimum step size 

optimized for the designed parameter range. If a feature has a 

huge value, the associated optimal weight is extremely small 

and so the pre-set minimum step is too large to allow for a 

search of the optimal weight. One possible solution is to 

reduce the minimum step so that the optimal weight can be 

found. However, a smaller minimum step usually means a 

slower search process and may dramatically increase the 

training time. Two typical normalization approaches are 

mapping the features 𝑓 in the range of  𝑙 ℎ  into the range of 

 1 2  with 𝑓 ′ =  𝑓 + ℎ − 2𝑙  ℎ − 𝑙   and normalizing the 

variance of the features to unity. 

 

 

Figure 1: Features with the same first-order moment 

and different distributions. 

 

Figure 2: Comparison between the weights obtained 

using the moment constraint and the distribution 

constraint. 

3. Experimental Results 

We have evaluated the HCRF-DC model by comparing it with 

the HCRF-MC model on the TIMIT phone classification task. 

In this task, the boundaries of a segment are known and the 

goal is to identify the phone name of each segment. We 

followed the standard practice [4] of mapping the 61 TIMIT 

phones into 48 phones for model training, and collapsing the 

48 phones to 39 phones for evaluation. All parameters used in 

the HCRF-MC and HCRF-DC training algorithms such as 

stopping point, step size, and number of knots were tuned on 

the MIT development set [3]. The best model parameters 

discovered were then used on the NIST core evaluation set. 
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The training, development, and evaluation sets contain 

142,910, 15,334, and 7,333 phonetic segments respectively.  

The mean and variance normalized 39-dimensional 

acoustic observations used in the experiments contain the 13-

dimensional Mel-frequency cepstral coefficient (MFCC) and 

its first and second derivatives.  To make it easier to process 

with HTK, the segment boundaries given in the corpus were 

adjusted to coincide with per-utterance segment boundaries 

following the practice in [2][5]. The model estimation 

problems of the HCRF models are non-convex and so proper 

initialization is crucial. In our experiments, both the HCRF-

MC and HCRF-DC models were initialized from the same 

three-state left to right mono-phone HMM system trained with 

maximum likelihood (ML) criterion. The HMM system is then 

converted into the HCRF model based on the procedure 

described in [2]. Note that during the conversion, each state-

Gaussian pair in the HMM system is mapped to a state in the 

HCRF model.  With 10, 15, and 20 Gaussian components per 

state in the HMM system, the resulting HCRF models contain 

30, 45, and 60 states per phone. The RPROP [7] algorithm was 

used to train the HCRF models with no additional 

regularizations such as those described in [9]. 

Table 1. TIMIT phone classification error rate 

achieved with the HCRF-MC and HCRF-DC models 

on the MIT development set and the NIST core test set. 

# Gaussian 

Mixtures 
HCRF-

MC Dev 
HCRF-MC 

Core 
HCRF-

DC Dev 
HCRF-DC 

Core 

20 19.8% 21.3% 19.4% 20.8% 

15 20.3% 21.4% 19.9% 21.0% 

10 20.4% 21.7% 20.3% 21.4% 

 

Table 1 shows phone classification error rate (CER) on the 

MIT development set and the NIST core test set achieved with 

the HCRF-MC and HCRF-DC models initialized with HMM 

systems that contain 10, 15, and 20 Gaussian components per 

state. We observe from the table that the HCRF-DC model 

outperforms the HCRF-MC model consistently over different 

settings. The best result of 20.8% CER achieved with the 

HCRF-DC model is better than the best HCRF-MC model 

result of 21.3% [5], the best HMM maximum mutual 

information estimation (MMIE) result of 24.9%, and the best 

HMM ML result of 25.8 by absolute CER reduction of 0.5%, 

4.1%,  and 5.0% respectively. To our best knowledge, this 

result is also 0.3% better than the best single-system result of 

21.1% reported on this task using the same features and was 

achieved with the large-margin technique [8]. All these 

improvements are statistically significant at the 5% 

significance level.  

4. Conclusions 

We have developed an HCRF model with distribution 

constraints. We showed that in the HCRF-DC model, the 

conditional probability is no longer in the simple log-linear 

form where each weight to be estimated is a single, constant 

value. Instead, the weights in the HCRF-DC model are non-

linear functions of the features. We provided a solution to this 

optimization problem by converting it to a log-linear problem 

at a higher-dimensional space using cubic splines and 

demonstrated the effectiveness of the HCRF-DC model on the 

TIMIT phone classification task.  

We believe the HCRF-DC model can be applied to other 

tasks where the HCRF-MC model has been successfully used 

to achieve improved performance. In addition, by 

incorporating additional (e.g., long-range [10][14][15]) 

features and introducing additional regularization terms the 

performance can be further improved. 

5. Acknowledgements 

We would like to thank Dr. Asela Gunawardana and Milind 

Mahajan at Microsoft research for their valuable discussions 

and useful helps in conducting experiments.  

6. References 

[1] El-Khoribi, R. A., ―Hidden Conditional Random Fields 

for ECG Classification‖, ICGST-AIML Journal, vol. 8, 

no. III, December 2008, pp. 25-30. 

[2] Gunawardana, A., Mahajan, M., Acero, A. and Platt, J. 

C., ―Hidden Conditional Random Fields for Phone 

Classification‖, in Proc. of Interspeech 2005, pp. 1117—

1120. 

[3] Halberstadt, A. K. and Glass, J. R., ―Heterogeneous 

acoustic measurements for phonetic classification,‖ in 

Proc. of Eurospeech 1997, pp. 401–404. 

[4] Lee, K. F. and Hon, H. W., ―Speaker Independent Phone 

Recognition Using Hidden Markov Models,‖ in Proc. of 

ICASSP 1980, pp. 1641–1648. 

[5] Mahajan, M., Gunawardana, A. and Acero, A., ―Training 

Algorithms for Hidden Conditional Random Fields’, in 

Proc. of ICASSP 2006, vol. I, pp. 273 – 276. 

[6] Reiter, S., Schuller, B. and Rigoll, G., ―Hidden 

Conditional Random Fields for Meeting Segmentation‖, 

in Proc. of ICME 2007, pp. 639-642. 

[7] Riedmiller, M. and Braun, H., ―A direct adaptive method 

for faster back-propagation learning: The RPROP 

algorithm‖, in proc. of IEEE ICNN 1993, vol. 1, pp. 586-

591. 

[8] Sha, F. and Saul, L.K., ―Large Margin Gaussian Mixture 

Modeling for Phonetic Classification and Recognition,‖ 

in Proc. of ICASSP 2006, vol. I, pp. 265 – 268. 

[9] Sung, Y.-H., Boulis, B., Manning, C. and Jurafsky D., 

―Regularization, Adaptation, and Non-independent 

Features Improve Hidden Conditional Random Fields for 

Phone Classification‖, in proc. of ASRU workshop, pp. 

347-352.  

[10] Deng, L., Li, X., Yu, D., and Acero, A., "A Hidden 

Trajectory Model with Bi-directional Target-Filtering: 

Cascaded vs. Integrated Implementation for Phonetic 

Recognition", in proc. ICASSP 2005. 

[11] Yu, D., Deng, L., Gong, Y. and Acero, A., 

―Discriminative Training of Variable-Parameter HMMs 

for Noise Robust Speech Recognition‖, in Proc. of 

Interspeech 2008, vol. I, pp. 285-288. 

[12] Yu, D., Deng, L., Gong, Y. and Acero, A., ―A Novel 

Framework and Training Algorithm for Variable-

Parameter Hidden Markov Models‖, IEEE trans. on 

Audio, Speech, and Language Processing (to appear). 

[13] Yu, D., Deng, L. and Acero, A., "Using Continuous 

Features in the Maximum Entropy Model", Pattern 

Recognition Letters (to appear). 

[14] Yu, D., Deng, L. and Acero, A., "Structured Speech 

Modeling", IEEE Trans. on Audio, Speech and Language 

Processing. Vol. 14 No. 5, Sep 2006. pp. 1492- 1504. 

[15] Yu, D., Deng, L. and Acero, A., ―Evaluation of a Long-

contextual-span Hidden Trajectory Model and Phonetic 

Recognizer Using A* Lattice Search,‖ in Proc. of 

Interspeech, 2005, pp. 553-556. 

679


