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Abstract

Extreme and very-near-extreme spin J Kerr black holes have been conjectured to be

holographically dual to two-dimensional (2D) conformal field theories (CFTs) with left and

right central charges cL = cR = 12J . In this paper it is observed that the 2D conformal

symmetry of the scalar wave equation at low frequencies persists for generic non-extreme

values of the mass M 6=
√
J . Interestingly, this conformal symmetry is not derived from

a conformal symmetry of the spacetime geometry except in the extreme limit. The 2π

periodic identification of the azimuthal angle φ is shown to correspond to a spontaneous

breaking of the conformal symmetry by left and right temperatures TL = M2/2πJ and

TR =
√
M4 − J2/2πJ . The well-known low-frequency scalar-Kerr scattering amplitudes

coincide with correlators of a 2D CFT at these temperatures. Moreover the CFTmicrostate

degeneracy inferred from the Cardy formula agrees exactly with the Bekenstein-Hawking

area law for all M and J . These observations provide evidence for the conjecture that the

Kerr black hole is dual to a cL = cR = 12J 2D CFT at temperatures (TL, TR) for every

value of M and J .

http://arxiv.org/abs/1004.0996v1
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1. Introduction

An extreme Kerr black hole with mass M and angular momentum J = M2 has a

near-horizon scaling region, known as the NHEK (Near-Horizon Extreme Kerr) geometry,

which has an enhanced SL(2, R) × U(1) isometry group [1]. Recently it has been shown

[2,3,4] from an analysis of the NHEK boundary conditions that the canonically conserved

charges associated with the non-trivial diffeomorphisms of the NHEK region form two

copies of the two-dimensional Virasoro algebra. The central charges were computed to be

cL = cR = 12J . This motivated the conjecture [2] that the extreme Kerr black hole is dual

to a two-dimensional CFT. The conjecture was supported by the facts that, at and very

near extremality, the Cardy CFT microstate degeneracy precisely matches the Bekenstein-

Hawking entropy and the finite temperature CFT correlators precisely match the Kerr

scattering amplitudes. Other tests of the Kerr/CFT conjecture and its generalizations, all

successful, appear in [5,6,7,8].

If the conjecture is correct finite excitations of the CFT are expected to correspond

to generic non-extremal Kerr black holes. However all attempts so far to understand Kerr

black holes in this manner a finite distance from the extreme limit have run into obstacles.

The problem is that away from the extreme limit the NHEK geometry disappears and

the near-horizon geometry is just Rindler space. We know of no clear way to associate

a conformal field theory to Rindler space. Put another way, the back reaction of a finite

energy excitation on the geometry appears to destroy the conformal symmetry. This is

closely related to the AdS2 fragmentation problem discussed in [9].

The key observation of the present paper, which enables us to circumvent this obstacle,

is that a near horizon geometry (such as NHEK or AdS3) with a conformal symmetry
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group is not a necessary condition for the interactions to exhibit conformal invariance. For

scattering amplitudes, a sufficient condition is that the solution space of the wave equation

for the propagating field has a conformal symmetry. Such a symmetry is guaranteed if the

space on which the field propagates has the symmetry. However we will see that it can

and does happen that the solution space has the requisite conformal symmetry even when

the space on which the field propagates does not.

While we will see this conformal symmetry emerge in detail in the text, it is possible

to understand heuristically why this occurs. At low frequencies ω ≪ 1
M the wave equation

can be solved with a matching procedure which divides the geometry into a near region

r ≪ 1
ω

and a far region r ≫ M which have a large overlap. The solution of the full

wave equation is obtained by matching the inner part of the far region solution with the

outer part of the near region solution along a matching surface rM (t, φ). In order for

the matching procedure to be consistent, the final result cannot depend on the arbitrary

choice of the matching surface rM . This requires that the amplitudes in each region have

a symmetry under arbitrary local changes of rM . Changing rM changes the redshift factor

at the matching surface, and so is a local change in scale. It is thus perhaps not surprising

that this system has a local 2D conformal symmetry. For the case of extreme Kerr, or

for the BPS black holes studied in string theory, the near region turns out – for special

reasons – to be equivalent to the near horizon region and the conformal symmetry of the

wave equation is lifted from the conformal symmetry of the geometry. In the generic case

this is not so. The near region goes out to values of r ≪ 1
ω
with r ≫ M and so essentially

includes the entire asymptotically flat spacetime.

The conformal symmetry we find acts locally on the solution space, but is globally

obstructed by periodic identification of the azimuthal angle φ. We argue that this spon-

taneous breaking of the conformal group is precisely of the form produced by finite left

and right temperatures TL = M2/2πJ and TR =
√
M4 − J2/2πJ in a 2D CFT. This sug-

gestion is corroborated by the demonstration that the known [10] near-region scattering

amplitudes computed in the 70s are indeed of the form required by conformal invariance for

a finite temperature 2D CFT. Moreover, using the temperatures (TL, TR) and the values

of the central charge cL = cR = 12J previously computed at extremality one can apply

the Cardy formula to count the number of states. This precisely reproduces Bekenstein-

Hawking Area law for the black hole entropy

Smicro =
π2

3
(cLTL + cRTR) = 2π(M2 +

√

M4 − J2) =
Area

4
. (1.1)
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These results all support the Kerr/CFT conjecture for general J and M .1

We wish to warn the reader that we have not, in this paper, provided a systematic

derivation or even argument from some set of assumptions that a generic Kerr black hole

is dual to a 2D CFT. In past examples such derivations have proceeded from an analysis

of the asymptotic symmetry group of the geometry [12,13,2,3,4], or from a scaling limit

of string theory [14]. Since the conformal symmetries here are not symmetries of the

spacetime geometry, and we are not embedding in string theory, these approaches can not

work.2 In the absence of a systematic approach we have patched together, and provided

evidence for, a picture with what strikes us as a remarkable cohesiveness. However, holes

in the picture remain and we hope to have inspired the reader to fill them in!

This paper is organized as follows. In section 2 we review the massless scalar wave

equation in the Kerr background. In section 3 we describe the near region where the be-

haviour of this wave equations simplifies. In section 4 we locally construct six vector fields

with an SL(2, R)× SL(2, R) Lie bracket algebra, show that their Casimir is precisely the

near-region scalar wave equation, and identify them as generators of a conformal symme-

try spontaneously broken down to U(1) × U(1) by the 2π identification of the azimuthal

angle. A dual CFT interpretation is proposed in section 5, which allows us to compute

the left and right CFT temperatures and hence the microscopic entropy using a Cardy

formula. In section 6 we provide further evidence for the proposed generalized Kerr/CFT

correspondence by showing that the scattering amplitudes in the near region agree with

those of a finite temperature 2D CFT.

2. Massless Scalar Wave Equation

In this section we describe the classical wave equation for a massless scalar on the

geometry of a Kerr black hole with generic mass M and angular momentum J = Ma. We

1 As mentioned in [2] for extreme Kerr, there may be an underlying ”long string” interpretation

[11] involving the J -fold cover of the CFT circle. The long string has cR = cL = 12 and the

temperatures and charges are rescaled by a factor of J . We will not reiterate here the issues

surrounding the long string picture but wish to note that it also has appealing features for the

case of general M and J considered here.
2 Clearly a new approach is needed. Perhaps there is a generalization of the notion of an

asymptotic symmetry group of a dynamical system which does not insist that the symmetries

are purely geometric and allows for the more general realization of conformal symmetry discussed

here.
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use the familiar Boyer-Lindquist coordinates

ds2 =
ρ2

∆
dr2 − ∆

ρ2
(

dt− a sin2 θdφ
)2

+ ρ2dθ2 +
sin2 θ

ρ2
(

(r2 + a2)dφ− adt
)2

, (2.1)

where ∆ and ρ2 are given by

∆ = r2 + a2 − 2Mr , ρ2 = r2 + a2 cos2 θ . (2.2)

The inner and outer horizons are located at

r± = M ±
√

M2 − a2 . (2.3)

The Klein-Gordon equation for a massless scalar is

1√−g
∂µ

(√−ggµν∂νΦ
)

= 0 . (2.4)

Expanding in eigenmodes

Φ(t, r, θ, φ) = e−iωt+imφΦ(r, θ) , (2.5)

and using (2.1) equation (2.4) becomes

∂r (∆∂rΦ) +
(2Mr+ω − am)

2

(r − r+)(r+ − r−)
Φ− (2Mr−ω − am)

2

(r − r−)(r+ − r−)
Φ

+
(

r2 + a2 cos2 θ + 2M(r + 2M)
)

ω2Φ+∇S2Φ = 0 .

(2.6)

Famously [15], this equation (as well as its higher spin and fermionic cousins [16,17,18])

can be separated. Writing

Φ(r, θ) = R(r)S(θ) , (2.7)

we have
[

1

sin θ
∂θ (sin θ∂θ)−

m2

sin2 θ
+ ω2a2 cos2 θ

]

S(θ) = −KℓS(θ) , (2.8)

and
[

∂r∆∂r +
(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)
+ (r2 + 2M(r+ 2M))ω2

]

R(r) = KℓR(r) .

(2.9)

Both equations are solved by Heun functions and the separation constants Kℓ are the

eigenvalues on a sphere. The Heun functions are not among the usual special functions

and the Kℓ are known only numerically.
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3. The Near Region

We start by asking whether it is possible to find a range of parameters where the order

ω2 terms in the second line of (2.6) can be neglected; in this case, as we will see below,

the wave equation simplifies considerably. We see from (2.6) that this occurs when the

wavelength of the scalar excitation is large compared to the radius of curvature

ωM ≪ 1 . (3.1)

In this case the geometry can be divided into two regions

r ≪ 1

ω
“NEAR”

r ≫ M “FAR”
(3.2)

which have significant overlap in the matching region

M ≪ r ≪ 1

ω
“MATCHING” . (3.3)

The wave equations in the near and far regions can be solved in terms of familiar special

functions, and a full solution is obtained by matching near and far solutions together along

a surface in the matching region.

We note that the near region defined above is not the same as the oft-discussed “near-

horizon” region of the geometry defined by r − r+ ≪ M . Indeed, for sufficiently small ω,

the value of r in the near region defined by (3.2) can be arbitrarily large. For a generic

non-extreme Kerr the near-horizon geometry is just Rindler space, while the structure of

the near region is more complicated.

We view the far region as an asymptotic region where the scattering experiments are

set up. The black hole is thought of as encompassing the whole “near” region. Waves are

sent from the far region into the matching region, which is the interface for interactions

with the black hole. We will see that the behaviour of these incident waves in the near

region has conformal symmetry. This conformal invariance results form the freedom to

locally choose the radius of the matching surface within the matching region.

In the near region, the angular equation (3.1) reduces to the standard Laplacian on

the 2-sphere

[

1

sin θ
∂θ (sin θ∂θ)−

m2

sin2 θ

]

S(θ) = −KℓS(θ) , ℓ = −m, · · · , m . (3.4)
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The solutions eimφS(θ) are spherical harmonics, and the separation constants are

Kℓ = ℓ(ℓ+ 1) . (3.5)

The radial wave equation in the limit (3.1) becomes3

[

∂r∆∂r +
(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]

R(r) = ℓ(ℓ+ 1)R(r) . (3.6)

The above equation is solved by hypergeometric functions. As hypergeometric functions

transform in representations of SL(2, R), this suggests the existence of a hidden conformal

symmetry. This is the subject of the next section.

4. SL(2, R)L × SL(2, R)R

In this section we will describe the SL(2, R)L×SL(2, R)R symmetry of the near-region

scalar field equation. For this purpose it is convenient to adapt “conformal” coordinates

(w±, y) defined in terms of (t, r, φ) by

w+ =

√

r − r+
r − r−

e2πTRφ

w− =

√

r − r+
r − r−

e2πTLφ− t

2M

y =

√

r+ − r−
r − r−

eπ(TL+TR)φ− t

4M

(4.1)

where

TR ≡ r+ − r−
4πa

, TL ≡ r+ + r−
4πa

. (4.2)

Next we define locally the vector fields

H1 = i∂+ ,

H0 = i(w+∂+ +
1

2
y∂y) ,

H−1 = i(w+2∂+ + w+y∂y − y2∂−) ,

(4.3)

3 When m 6= 0 in certain regions of r and/or in the black hole parameter space (M,J) , it is

possible to drop in addition the ω terms in the numerators of the poles in this expression. See

subsection 6.2 for further discussion.
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and
H̄1 = i∂− ,

H̄0 = i(w−∂− +
1

2
y∂y) ,

H̄−1 = i(w−2∂− + w−y∂y − y2∂+) .

(4.4)

These obey the SL(2, R) Lie bracket algebra,

[H0, H±1] = ∓iH±1 , [H−1, H1] = −2iH0 , (4.5)

and similarly for (H̄0, H̄±1). The SL(2, R) quadratic Casimir is

H2 = H̄2 = −H2
0 +

1

2
(H1H−1 +H−1H1)

=
1

4
(y2∂2

y − y∂y) + y2∂+∂− .

(4.6)

In terms of the (t, r, φ) coordinates, the vector fields are

H1 = ie−2πTRφ

(

∆1/2∂r +
1

2πTR

r −M

∆1/2
∂φ +

2TL

TR

Mr − a2

∆1/2
∂t

)

,

H0 =
i

2πTR
∂φ + 2iM

TL

TR
∂t ,

H−1 = ie2πTRφ

(

−∆1/2∂r +
1

2πTR

r −M

∆1/2
∂φ +

2TL

TR

Mr − a2

∆1/2
∂t

)

,

(4.7)

and

H̄1 = ie−2πTLφ+ t

2M

(

∆1/2∂r −
a

∆1/2
∂φ − 2M

r

∆1/2
∂t

)

,

H̄0 = −2iM∂t ,

H̄−1 = ie2πTLφ− t

2M

(

−∆1/2∂r −
a

∆1/2
∂φ − 2M

r

∆1/2
∂t

)

,

(4.8)

and the Casimir becomes

H2 = ∂r∆∂r −
(2Mr+∂t + a∂φ)

2

(r − r+)(r+ − r−)
+

(2Mr−∂t + a∂φ)
2

(r − r−)(r+ − r−)
. (4.9)

The near region wave equation (3.6) can be written as

H̄2Φ = H2Φ = ℓ(ℓ+ 1)Φ . (4.10)

We see that the scalar Laplacian has reduced to the SL(2, R) Casimir. The SL(2, R)L ×
SL(2, R)R weights of the field Φ are

(hL, hR) = (ℓ, ℓ) . (4.11)
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From this result one might think that the solutions of the Kerr wave equation in the

near region form SL(2, R) representations. In fact this is not the case, because the vectors

fields (4.7) - (4.8) which generate the SL(2, R) symmetries are not globally defined. They

are not periodic under the angular identification

φ ∼ φ+ 2π . (4.12)

Thus these symmetries cannot be used to generate new global solutions from old ones.

This can be interpreted as the statement that the SL(2, R)L × SL(2, R)R symmetry is

spontaneously broken by the periodic identification of the angular coordinate φ. Indeed,

under the identification (4.12) the conformal coordinates are identified as

w+ ∼ e4π
2TRw+, w− ∼ e4π

2TLw−, y ∼ e2π
2(TL+TR)y . (4.13)

This identification is generated by the SL(2, R)L × SL(2, R)R group element

e−i4π2TRH0−i4π2TLH̄0 . (4.14)

Hence the SL(2, R)L×SL(2, R)R symmetry is broken down to the U(1)L×U(1)R subgroup

generated by (H̄0, H0).

The situation is somewhat similar to the BTZ black hole in 2+1 gravity, which has a

local SL(2, R)L×SL(2, R)R isometry which is spontaneously broken by the identification of

the angular coordinate φ. In that case the symmetry, even though it is broken by the BTZ

geometry, is still usefully present in the theory. In particular, the conformal symmetry still

fixes the form of scattering amplitudes and constrains the asymptotic density of states via

Cardy’s formula. The Kerr case is similar, except that the broken SL(2, R)L × SL(2, R)R

acts on the solution space but not on the geometry itself. Nevertheless, we shall see that

powerful constraints from symmetry considerations still apply.

5. CFT Interpretation

5.1. Temperature

The SL(2, R)L × SL(2, R)R symmetries described above generate rigid conformal

transformations in the (w+, w−) ∼ (φ, t) plane. Accordingly, let us now assume that

the dynamics of the near region is described by a dual 2D CFT, which possesses a ground

state that is invariant under the full SL(2, R)L × SL(2, R)R symmetry. What then is the

8



effect of the identification (4.13)? 4 At fixed r, the relation between conformal (w+, w−)

and Boyer-Lindquist (φ, t) coordinates is, up to an r-dependent rescaling,

w± = e±t± , (5.1)

with
t+ = 2πTRφ ,

t− =
t

2M
− 2πTLφ .

(5.2)

This is precisely the relation between Minkowski (w±) and Rindler (t±) coordinates. In the

SL(2, R)L×SL(2, R)R invariant Minkowski vacuum, observers at fixed position in Rindler

coordinates will observe a thermal bath of Unruh radiation. The periodic identification of

φ requires that we restrict our observations to a fundamental domain of the identification

t+ ∼ t+ + 4π2TR , t− ∼ t− − 4π2TL . (5.3)

The quantum state describing physics in this accelerating strip of Minkowski space is ob-

tained from the Minkowski vacuum by tracing over the quantum state in the region outside

the strip. The well-known result is that we get a thermal density matrix at temperature

(TL, TR). Hence the Kerr black hole should be dual to a finite temperature (TL, TR) mixed

state in the dual CFT.

5.2. Entropy

We would now like to microscopically reproduce the Kerr entropy by assuming the

Cardy formula for the dual 2D CFT. This requires a formula for the central charges cL and

cR. In some cases, such central charges can be derived from an analysis of the asymptotic

symmetry group [20,12,21,22]. This derivation has been completed for extreme Kerr, giving

[2,3,4]

cR = cL = 12J . (5.4)

So far, as mentioned in the introduction, no one has understood how to extend this cal-

culation beyond linear order away from extremality. In this paper we have adopted an

alternate approach which does not lead to a formula for cL,R. Therefore we will simply

assume that the conformal symmetry found here connects smoothly to that of the extreme

4 The analysis here follows that of [19] for the BTZ black hole. Although the discussion of [19]

was in the context of string theory, the discussion did not actually require string theory.
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limit and that the central charge is therefore still given by (5.4). The Cardy formula for

the microstate degeneracy is

S =
π2

3
(cLTL + cRTR) . (5.5)

Using the central charges (5.4) and temperatures (4.2) we get

S = 2πMr+ =
Area

4
. (5.6)

This agrees on the nose with the macroscopic Bekenstein-Hawking area law for the en-

tropy.5,6

6. Scattering

If the near region of Kerr is dual to a 2D CFT, then near region contributions to

scattering amplitudes or absorption probabilities should be given by 2D CFT two-point

functions. We will see in this section that that this is indeed the case. The derivation

here is essentially identical to that given many times before staring with [23] and we will

accordingly be brief. The only difference is that in the present context the near region is

not geometrically a near-horizon region, but this does not affect the discussion.

6.1. Absorption Probabilities

The absorption probability for a massless scalar Φ at frequencies ωM ≪ 1 and arbi-

trary m, ℓ was computed long ago [10] and re-analyzed in [23,24,25]. In the near region

ωr ≪ 1 the solution to the radial wave equation (2.9) with ingoing boundary conditions

at the horizon is

R(r) =

(

r − r+
r − r−

)−i
2Mr+

r+−r−
(ω−mΩ)

(r − r−)
−1−ℓ

F

(

1 + ℓ− i
4M

r+ − r−
(Mω − r+mΩ), 1 + ℓ− i2Mω; 1− i

4Mr+
r+ − r−

(ω −mΩ);
r − r−
r − r+

)

,

(6.1)

5 A similar derivation was attempted in [7] but was missing an overall mutliplicative factor.
6 A sufficient condition for validity of the Cardy formula (5.5) (in a unitary theory) is that the

temperatures (TL, TR) are large compared to the central charge. For suitable choices of parameters

this indeed holds. This includes the near-Schwarzschild case where M ≫ J 6= 0. Outside this

parameter range the applicability of the Cardy formula may still follow, as in stringy examples

[11], in the long string picture.
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where F (a, b; c; z) is the hypergeometric function and

Ω =
a

2Mr+
, (6.2)

is the angular velocity at the horizon. At the outer boundary of the matching region

r ≫ M (but still r ≪ 1
ω ) (6.1) behaves as

R(r ≫ M) ∼ Arℓ +Br−1−ℓ ∼ Arℓ , (6.3)

with

A =
Γ(1− i

4Mr+
r+−r−

(ω −mΩ))Γ(1 + 2ℓ)

Γ(1 + ℓ− i2Mω) Γ(1 + ℓ− i 4M2

r+−r−
ω + i4Mr+Ω

r+−r−
m)

, (6.4)

up to an overall constant independent of ω and m. A similar expression for B – which is

not needed here – can be found in [6]. The absorption cross section is then proportional

to
Pabs ∼ |A|−2

∼ sinh

(

4πMr+
r+ − r−

(ω −mΩ)

)

|Γ (1 + ℓ− i2Mω)|2 ×
∣

∣

∣

∣

Γ

(

1 + ℓ− i
4M2

r+ − r−
ω + i

4Mr+Ω

r+ − r−
m

)
∣

∣

∣

∣

2

(6.5)

To compare with the dual CFT we rewrite Pabs in terms of the CFT temperatures

(TR, TL), the linearization of their conjugate charges and the conformal weights (ℓ, ℓ). To

determine the linearized conjugate charges we begin with the first law of thermodynamics

THδS = δM − ΩδJ, (6.6)

where

TH =
1

8π

r+ − r−
Mr+

, (6.7)

S = 2πMr+, and we identify ω = δM and m = δJ . We then look for the conjugate charges

δER and δEL such that

δS =
δEL

TL
+

δER

TR
(6.8)

with TL,R given by (4.2). The solution is

δEL =
2M3

J
δM ,

δER =
2M3

J
δM − δJ ,

(6.9)
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hence we identify the left and right moving frequencies as

ωL ≡ δEL =
2M3

J
ω ,

ωR ≡ δER =
2M3

J
ω −m

. (6.10)

Using these formula as well as (4.2) and (4.11) one then finds that the gravity result (6.5)

can be expressed as

Pabs ∼ T 2hL−1
L T 2hR−1

R sinh

(

ωL

2TL
+

ωR

2TR

)
∣

∣

∣

∣

Γ(hL + i
ωL

2πTL
)

∣

∣

∣

∣

2 ∣
∣

∣

∣

Γ(hR + i
ωR

2πTR
)

∣

∣

∣

∣

2

, (6.11)

which is precisely the well-known finite-temperature absorption cross section for a 2D CFT.

6.2. Parameter Ranges

The nature of the agreement between the CFT and gravity results for ωM ≪ 1

depends on the values of the parameters under consideration. While (6.11) is the correct

gravity answer whenever ωM ≪ 1, in some cases the expression (6.11) can be organized

into leading and subleading terms. In these cases only the leading term can obviously

be trusted and a more detailed analysis is required to see if corrections to the matching

procedure effect the result. For this reason, although the gravity and CFT do agree insofar

as they have been tested, the test is not as strong as it may first appear from (6.11). For

example, for generic values of M which differ from
√
J by a multiplicative factor of order

unity, TL and TR are themselves of order unity. It follows that ωL

TL

≪ 1 while ωR ∼ −m.

The leading term in (6.11) is then

Pabs ∼ −T 2hL−1
L T 2hR−1

R sinh

(

m

2TR

)

|Γ(hL)|2
∣

∣

∣

∣

Γ(hR − i
m

2πTR
)

∣

∣

∣

∣

2

+O(ωM) , (6.12)

which does not involve ω. The fact that a (variant of) this expression has a CFT inter-

pretation was already noted in [7,23]. Another interesting case is when m = 0 and TR is

of order Mω, from which it follows that ωR

TR

is of order one. In this case the leading order

answer does depend on ω and we overlap the parameter range considered in [6]. In this

overlap range, the agreement here is equivalent to what was found there.

Hence the results of this paper lend further credence to the idea that there is a general

conformal symmetry governing the dynamics of Kerr black holes of which the discussions

of [23,6,2,3,4,7] comprise various aspects and special cases. We hope to understand this

more completely.
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