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Abstract. In [6] T. Matsumoto and H. Imai described a new asymmet-
ric algorithm based on multivariate polynomials of degree two over a
finite field, which was subsequently broken in [9]. Here we present two
new families of Asymmetric Algorithms that so far have resisted all at-
tacks, if properly used: Hidden Field Equations (HFE) and Isomorphism
of Polynomials (IP). These algorithims can be seen as two candidate ways
to repair the Matsumoto-Imai Algorithm. HFE can be used to do sig-
natures, encryption or authentication in an asymmetric way, with very
short signatures and short encryptions of short messages. [P can be used
for signatures and for zero knowledge authentication.

An extended version of this paper can be obtained from the author.
Another way to repair the Matsumoto-Imai Algorithm will be presented
in [10].

1 Introduction

Currently the security of most algorithms that we know in Asymmetric Crypto-
graphy for encryption or signatures relies on the unproved intractability of the
integer factorization or discrete log problem. One of the challenges of Asymmetric
Cryptography is to find new and efficient algorithms for encryption or signatures
that do not depend on these two closely related problems. For authentication
the situation is much better, due to the algorithms presented for example in [12]
and [13].

In this paper we propose two new classes of Asymmetric Algorithms whose
security does not depend on factoring or discrete logs: Hidden Field Equations
(HFE) and Isomorphism of Polynomials (IP). Furthermore HFE also address two
other problems facing Asymmetric Cryptography: generating very short asym-
metric signatures, and generating short encryptions of short messages. Both HFE
and IP are hased on a scheme described by T. Matsumoto and H. Imai (cf. [6]).
In [9] an efficient attack against this scheme was presented. Unfortunately, we
are not able to prove the security of HFE or IP either, but so far they have re-
sisted all attacks, including the one from [9]. Moreover IP-based authentications
can be proved to be zero-knowledge.
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2 Preliminaries

Throughout this paper we use the following notation. We denote by F; a finite
field of cardinality ¢ and characteristic p, for some prime p and prime power
g =p™. let Fyn be an extension of degree n of F,. Let

flz) = Z,Bijﬂfq% Y 4 Z oz,ca:qe’n + p € Fyn[z]
i,j k
be a polynomial in z over Fg» of degree d, for integers 8;;, ;j, & > 0.
Since Fy» is isomorphic to F,[z]/(g(z)), if g(z) € Fylz] is irreducible of
degree n, elements of Fy» may be represented as n-tuples over F, and f may
be represented as a polynomial in n variables xz, z, ..., z, over F:

f(xl, cee !w‘") = (Pl(l-ls ‘e ,.’En), c ,Pn(mlax'b v 71"7!)) € Fq[mla R 71:"]’

with p;(zy,...,2,) € Fylzy,...,x.), for i = 1,2, ..., n. The p; are quadratic
polynomials due to the choice of f and the fact that x +— z7 is a linear function
of Fqn — Fqn.

Note that f may be a permutation of Fy», in which case each a € Fy» gives
rise to precisely one solution = € Fy» to the equation f(z) = a. If f consists of
more than one monornial in x, however, it seems to be difficult to choose f such
that it is a permutation (cf. [5: Chapter 7] or [8]). Obviously, for any a € Fy»
there are at most d solutions to f(z) = «, and often there are only a few. It
is well known that solutions to f(z) = a can be found in deterministic time
polynomial in p, m, n, and d, and in expected time polynomial in logp, m, n,
and d, cf. [1: 17-26], {5: Chapter 4], [14], [15]. Some run times can be found in
[7].

3 Hidden Field Equations for Encryption

In this paragraph we will describe a first version of HFE for encryption (i.e. the
version with the easiest description).

We assume that, the message M is represented as an n-tuple z over Fg, where
F, as above is publicly known. (Thus, if p = 2, each message can be represented
by nm bits.) Moreover, we assume that some redundancy has been included in
the representation of each message, in such a way that the redundancy depends
in a non-linear way on M. A nice way to do this is to make use of an error
correcting code. If p = 2 we could also obtain z by concatenating the binary
representation of M and the first 64 bits of h(M), where h is a hash function
such as MD5 or SHA, as long as the resulting = has at most nm bits.

Let s and t be two affine bijections (Fy)" — (F;)", where (F )" is regarded
as an n-dimensional vector space over F,. Both s and t can be represented as n-
tuples of polynormnials in n variables over F, of total degree 1. Using the function
J from Section 2 and some representation of Fy» over Fg as in Section 2, the
function (F,)™ — (F )" that assigns t(f(s(z))) to = € (F,)" can be written as

t(f(s(er,. .., 20))) = (Pr(z1, . oy 2a), - P21, T2, .., Z0)) € Fylay, ..., 24,
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with pi(z1,...,2n) € Fylzy, ... 2], for i = 1, 2, ..., n. The p; are quadratic
polynomials due to the choices of s, ¢, and f. Furthermore, given s, ¢, f and the
way Fy» is represented over Fg, the polynomials p; can efficiently be computed.
The converse, however, seems to be hard, if s, ¢, and f are properly chosen. This
leads to the following public key encryption scheme, which we call ‘Hidden Field
Equations’ (HFE).

Secret key. A function f as in Section 2, two affine bijections s and ¢ as above,
and some way of representing Fg» over F. The latter may or may not be secret
since changing the representation is equivalent to changing s or ¢; therefore, we
may assume some fixed (and public) way of representing Fn.

Public key. Polynomials p; for i = 1, 2, ..., n as above, computed using the
secret key f, s, t. Furthermore, F,, the extension degree n and the way to add
redundancy to a message are public.

Encryption. To encrypt the n-tuple « = (z1,...,x,) € (Fg)" (representing the
message M plus redundancy), compute the ciphertext

Yy = (pl(-’”h s 7I1L)a .- -7pn($l7x2: .- -a:’:n))‘

Decryption. To decrypt the ciphertext y, first find all solutions z to the equation
f(z) = t~Y(y) (cf. Section 2), next compute all s~1(2)’s, and finally use the
redundancy to find M from these.

Security considerations. We conclude this section with a few remarks concerning
the security of HFE. We have restricted ourselves to the case where the char-
acteristic p is equal to 2, even though HFE works for any small prime value p
(unlike the Matsumoto-Imai scheme from [6], which only works for p = 2).

1. To avoid exhaustive search attacks we recommend that the message M con-
sists of at least 64 bits and of at least 128 bits including redundancy.

2. In order to avoid the “affine multiple attack” that is described in the next
section, we recommend to choose f of degree at least 17, but small enough to
make decryption efficient. For computational examples of this attack we refer to
the next section. Furthermore, to foil this attack it is necessary (but not suffi-
cient) that f consists of at least two monomials in z: HFE with one monomial
is equivalent to a Matsumoto-Imai algorithm, and can be attacked as described
in [9). We have done some Toy simulations of the vulnerability of HFE to the
attack from [9] for » = 13. Though our tests enabled us to identify weak keys,
they did not lead to a method to break HFE for well chosen keys. Details can
be found in the extended version of this paper.

3. Some authentication algorithms (such as {12]| or [13]) are proved to be as
secure as a NP hard problem. (This is a very nice result of security but of course
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this is not a proof of absolute security: a problem can be NP hard but easy in av-
erage, or easy with bad parameters, or difficult only with very large parameters).
Can we also hope to prove that HFE is as secure as a NP hard problem? No:
from a generalisation of a theorem given by G. Brassard in [2] we can prove that
to recover a cleartext from an encrypted HFE Text is never an NP hard problem
(if NP # co NP). However this is not. really a flaw of HFE but a property of
almost all asymmetric encryption algorithms.

Idea of the proof. Let F be an asymmetric encryption algorithm with a secret
key K and a public key k such that when the secret key K is given and when
a value y is given it is always very easy to see if there is or not a cleartext z
such that y = Fi(z), i.e. such that y is the encryption of z by the algorithm
F with the public key k. HFE, as all efficient encryption algorithms (such as
RSA) has of course this property. Now let us consider the problem: “Is there an
« such that y = Fi ()7, where y is a given value. Then if the answer is “yes”
« 1s a certificate that indeed the answer is “yes”, i.e. it is easy to verify that the
answer is “yes” if such an «x is given (K is also another certificate). Moreover
if the answer is “no” K is a certificate that indeed the answer is “no”. So this
problem is in NI’ Nco NP. But (if NP # co NP) there is no NP hard problem in
NP Nco NP. Similarly if from the secret key K we can compute easilly all the
x such that y = Fi(z), then the problem: “Is there an x such that y = Fi(x)
and a < x < b?", where a and b are two integers, is also in NP Nco NP.So to
recover a cleartext « from its corresponding cyphertext y can not be a NP hard
problem. This shows that there is little hope to design any practical asymmetric
encryption algorithm with a security proved to be based on a NP hard problem.
It is also instructive to see that RSA may (or may not) be as secrure as the
factorisation problem bhecause the factorisation problem is in NPNco NP (so
is not a NP hard problem).

This result could suggest that when we have introduce a trapdoor in HFE,
in order to have a cryptosystem usefull for encryption, we may have weaken the
problem. This results shows also that the problem on with the security of HFE
relies is not clearly shown (it can not be the general NP hard problem of solv-
ing randomly selected system of multivariate quadratic equations over GF(2)).
However to recover a cleartext from its HFE ciphertext is still expected to be
exponentally difficult when the HFE parameters are properly chosen.

4 The affine multiple attack

Introduction The “affine multiple attack” of the basic HFE that we will consider
in this paragraph is a generalization of the main attack of [9] of the Matsumoto-
Imai Algorithm. It is the only attack that we know against the basic HFE that
can sometimes be much better than “quasi” exhaustive search on the cleartext
(i.e. exhaustive search on most of the cleartext).
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Principle of the attack Let f be a polynomial used in the basic HFE algorithm.
By using a general algorithm (see for example [1] p. 25) we know that there
are always some affine (in z) multiple A(x,y) of the polynomial f(z)—y. (This
means that z — A(x,y) is an affine function and that each solution z of f(z) =y
is also a solution of A(x,y) = 0). For example in characteristic 2 the polynomial

. D 2 . .
Alx,y) will have only 1,z,x?, z*, 28 .. 2% ,.. . as monomials in =.

From now on we will assume for simplicity that the characteristic is 2.

Moreover, sometimes for such an affine multiple A(x,y) all the exponents in y
have small Hamming Weight in base 2. If this occurs, then the polynomial f will
be a weak key for HFE.

More precisely if all the exponents in y have a Hamming Weight < k, then there

will be an attack with a Gaussian reduction on 0(n'**) terms (more precisely
k

with about Z n'™*/i! terms because we have about n! 1% /i! terms of total degree
i=1

¢ in the y; variables, 1 < i < k) where n is the number of bits of the message. This
attack will work exactly as the attack of [9] for the Matsumoto-Imai Algorithm.
The Gaussian reduction needed may be easier than a general Gaussian reduction
but the complexity will be at worst in 0(n3%%3) and at least in 0(n!**). Gaussian
reductions with N terms are asymptotically in N¥ with w < 2.376 (cf. [3]).
Moreover we can choose some x but not some y, so in the equations on which
we need to do a Gaussian reduction we will have at least O(n!*2*) unpredictible
values. So it seems that more precisely the Gaussian reduction needed will be at
most in O(n(1t5)«) and at least in O(n!+2¥).

Example 1. Let f(z) = 2172 So 21+?° = 4

Then 22”4y = z.4*°. So Az, y) = 22y + 2% is an affine multiple of f(z)+y,
and here all the exponents in y have a Harnming Weight < 1. This leads to the
attack with a Gaussian reduction on 0(n?) terms described in [9)].

Example 2. Let f(x) = 2% + % 4 & = y.
Then it is possible to prove that y*.z + (y? + 1)zt + 28 = 0.

Here all the exponents in y have a Hamming Weight < 2. So this leads to
an attack of the HFE algorithm with a Gaussian reduction on 0(n®) terms if
this polynomial f is used. So this polynomial should not be used (it’s a weak
polynomial).

Example 3. Let f(z) =24+ 2% + 25 + 23 + z = y.
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Then the affine multiple A(z,y) of f(z) of degree 28 in z found by AXIOM is:

(y27+y24 +y23+y20+y19+y11 +y8+y7+y4+y3)a:
+(y27+y25 +y2l+y20+y15 +y9+y7+y5+y4 +y3)12
+(y28+y26+y25+y20+y18+y16+y14+y9+y8+y6+y4+1)$4
+(y22+y21 +y18+y16+y15+y14+y13 +y10+y8 +y7)a:8
+(y25+y22 +y21+y19+y17+y12+y11 +y6+y5)$16
+ (y23+y20 +y19+y18+y17+y16 +y15+y14+y13+y11+y10 +y9+y8 +y6 +y5)132
+(y18+y17 +yl4 +y11+y10+y9+y6+y3)$64
+(913+y11 +y5+y4+y3)zl28
+ 256

In A(z,y) the largest Hamming Weight of the exponents in y is 4.

So this leads to an attack with a Gaussian reduction on 0(n®) terms if this
polynomial is used. This attack will need a lot of power but may be feasible. (For
example if n = 64 it will need Gaussian reduction on 225 variables (=~ n°/4!)
and if n = 128 it will need Gaussian reduction on 230 variables. ..). So we do not
recommmend to use this function f.

Example 4. Let f(z) = s+ttt =y
Then one of the affine multiple of f(z) found by axiom is:

1.256 + (ylﬁ +y)£l?64 4 (ys +y5 +y2)$16 4 (y3 4 1)14
tyr +y + S+t eyt =0

Here all the exponents in y have a Hamming Weight < 2.

So this polynomial f should not be used for HFE.

Since the degree of f was not so small (it was 12), and since f had a lot of
monomials (6), this example shows that the affine multiple attack has to be
taken seriously: it is not always obvious whether it works or not.

Example 5. Let f(z) =27 4o vt + 23+ 22tz =y.

With AXIOM, we have computed the least affine multiple A(z,y) of f(z) +y
(it took us two days on a workstation).

In A(z,y) all the exponents in y are < 3840, and the exponent with the largest
Hamming Weight as a Hamming Weight of 11.

So this affine multiple leads to an attack of HFE with this polynomial f with
a Gaussian reduction on 0(n'?) terms, where n > 64. (For n = 128 it will need
Gaussian reduction on 2% terms because 2% ~ nl12/11!).

Since this attack is completely impracticable, this polynomial f resists to the
“afline multiple attack” and may be a strong polynomial for HFE.

Example 6. Let f(z) =z!" + 2% 4+ 2° 4w = 4.

With AXIOM (also after two days of computations) we have computed the least
affine multiple A(x,y) of f(x) +y. In A(x,y) the exponents with the largest
Hamming Weight have a Hamming Weight also of 11.

So this function may also be a strong polynomial for HFE.
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Note: What is nice with this function is that this function is not only quadratic
over Fy but also quadratic over F4. (So the public computations will be easier
with this function).

Asymptotic complezity For large d, and for most of the polynomials f of degree d,
the complexity of the affine multiple attack of the basic HFE with this polynomial
f is expected to be in 0(n%(®).

So, if d = 0(n) the complexity of the attack is expected to be exponential in n.
Moreover, d = 0(Inn) is expected to be sufficient to avoid all polynomial attacks.

Conclusion The affine multiple attack is very efficient for some very special poly-
nomials. However when the degree of f is > 17 and when f is well chosen, this
attack is expected to fail completely.

Note For easier computations, we have chosen in all the examples the constant
terms in the monomials of f equal to 0 or 1.

Of course this is not an obligation and any elements of the extension field can
be chosen.

5 HFE variations

HFE plus and minus some p; equations. The polynomials (pi,...,p.) of the
HFE Algorithm of paragraph 3 gives y from z. Since there is some redundancy
in z it may be possible to recover x from y without some of these polynomials.
For example when p,,_; and p,, are omitted it may still be possible to recover =
from y: we will just compute the 22 possibilities and find the good z thanks to
the redundancy in x. When m is very small, for example when m = 1 or 2 this
is clearly feasible.

So we can imagine that just py,...p,_9 are public.

Note. This idea of ommiting some polynomial p; can also be done in the original
Matsumoto-Imai scheme (instead of HFE). However this is not recommended:
in the extended version of this paper we give some ideas for the eryptanalysis of
such a scheme.

HFE with multivariate field equations for encryption. Here the idea is to change
the description of the function f given in paragraph 2. We can notice that what
we need for f is that:

1. In a hasis, f is a multivariate quadratic function.

2. For any value q, it is easy to find all the = so that f(x) = a.

3. f is a function with inputs and outputs with at least 64 bits (the reason for
this is that we can not have small “branches” in the algorithm: we will give more
details about this in the next paragraph).

The solution given in paragraph 2 was to choose for f a polynomial in only one
variable x over F . so that, in a basis, f is a multivariate quadratic function.
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In the extended version of this paper we present some different candidates for
f: polynomials in two variables x; and g, or more. An efficient algorithm of
resolution of f(z) = a (for example with Grébner basis or with something else)
will be hidden by the two affine functions s and ¢.

HFE with more than one branch. In the original Matsumoto-Imai Algorithm [6]
the values are split in different branchs after the first affine transformation s.
We could also imagine to do this in a HFE scheme. However, in the extended
version of this paper we show that if the branchs are small then it is always easy
to attack the scheme by detecting and isolating the small branchs. So we do not
recommend to use more than one branch.

HRE: Hidden Rings Equations. In paragraph 2 we said that the field Fg» is
typically F [x]/(g(x)), where g(z) € F[z] is irreductible of degree n.

If g(x) is not irreductible, then F[x]/(g(z)) will then not be a finite field, but
a finite ring. In such a space the resolution of f(x) =y, where f is a univariate
polynomial is still feasible. For example the linearized polynomial algorithm still

works. So we can design an asymetric scheme in such a space exactly as HFE in
the finite field F ..

HFE wnth public polynomials of degree > 3. Of course we can also choose for f
a polynomial with some exponents in z of Hamming Weight still small but > 3.
A very important subcase, from a practical point of view, if when this function
is f(z) = 1_1+qe+q¢7 i.e. with only one monomial and Hamming Weight 3. The
study of these functions is one of the main subject of [10].

Concatenation of two basic HFE or HRE for fast decryptions. Let x be the
cleartext. Let yv; = HF E|(x) be the encryption of & with a first III'E encryption
with secret affine functions s, and t;. Let yg = HF Ey(z) be the encryption of
x with another HFE, such that H F'F; and H F'E, have different polynomials f;
and f, and independent secret affine functions £ and £9, but the same extension
field Fyn, and the same secret affines functions s; = s;. Then let y;||lys be the
encryption of x, where || is the concatenation function.

The main advantage of this scheme is that decryption with the secret keys may
be very fast, as we will see now. From y; and yy, f1(a) and f3(a) will be obtained,
and then GCD(fi(a), f2(a)) will be computed. Then from this GCD the value
of a will be obtained with one of the classical algorithm of resolution of equation.
Then = = 57" (a) will be obtained.

In average the time of computation of GC D(f1{a), f2(a)) is expected to be dom-
inant. This time is < 0(d%n?), where d = sup(d;,ds). So if d; and dy are not
too large decryption will really be very fast (and much faster than in the basic
HFE).

For example the complexity of decryption may be < O(nIn®n) for well chosen
f1and fy with degree (f;) < 0(lnn) and degree (f2) < 0(Inn).

However it is not recommended generally in cryptography to encrypt the same
message twice by two different encryptions. Moreover this is generally particulary
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not recomnmended when the two encryptions are not independents. So if this
variation is really used we recommend to be extra-careful in the choice of the
polynomials f; and f,. For example not only f; and f, should avoid the “Affine
multiple attack”, but also fi + fo.

6 HFE in signature or Authentication

All encryption algorithm can also be use as an authentication algorithm: the
verifier will encrypt a challenge and ask for the cleartext. So HFE can be use
for authentications. Moreover HFE can also be slightly modified in order to give
asymmetric signatures. We will now give two examples of such transformations.
In the first example the signatures will have 160 bits, and in the second example
the signature will have about 128 bits. However in these examples the time
needed to compute a signature is not constant: some messages may be much
easier to sign than some others.

Example 1

T
s
Y
@
f
?
b
i
r
Yy
Piag, ..., Pieo
y" B e —
1
Y -
Pl, crey P1'28

Fig. 1. Example 1 of HFE in signature. r : the signature (160 bits). 3’ : the hash to
sign (128 bits). Pi,..., Pias are public. Piaq,. .., Plo are secrets.
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Let us consider an HFE algorithm, as described in the next paragraphs, with =
and y of about 128+32=160 bits.

Let p1,...,p, be the n public polynomials that give y from z, with n = 160 and
F, = F, for example.

If only p; to pi1as of these polynomials are public (the over are secret), then the
polynomials py, ... pi2s, give a value z of 128 bits from a value = of 160 bits.

In our algorithm here z is the hash of a message to sign and z will be the
signature of 2. When z is given, then with the secret polynomials p1g9 to piso
and the other secret values we will be able to find a value z so that from this z,
the polynormials py, ..., p19s will give exactly the value z.

For this we will padd z with 32 extra bits and try to find an z with a decryption
of the HFE algorithm. If it fails we try with another padding until we succeed.
In figure 1 we illustrate such a use of HFE in signature.

Example 2

Computation of the signature In this example 2 to sign a message M there
will be three steps.

Step 1. We generate a small integer B with no block of numbers with 10000 in
its expression in base 2 (for example R = 0 to start).

Step 2. We compute h(R|[10000|{M) where h is a public collision free hash
function with an output of 128 bits (for example h is the MD5 algorithm).
Step 3. We consider an HFE algorithm (as in paragraph 3) with values = and
y of 128 bits.

If we take y = h({R||10000{|M), then we can (with the secret key) try to find a
cleartext = so that HFE(z) = y.

If we succeed, then R||x will be the signature of M.

If we do not succeed (because since HFE is not a permutation some value y have
no corresponding z) then we try again at Step 1 with another R (for example
with the new R equal to the old R + 1 if this new R has no block of 10000 in
base 2).

Verification of a signature The message M and a signature R||z of M is
given. First, we separate R and z (since z has a fix length of 128 bits this is
easy). Then we compute A({(R||10000||M ) and HF E(z) and the signature is valid
if A(R||10000{|M) = HF E(x).

Length of the signature In this example 2 the length of the signature is not
fixed. However in average R will be very small so that the signature R||z will
have in average just a few more than 128 bits.

Note. Of course the pattern 10000 is just an example and another pattern P
can be chosen. More precisely the property that we want is that from R||P||M
we can recover R and M when we know that R do not have the pattern P. (So
the pattern will have at least one 1 and one 0).
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7 The Isomorphism of Polynomials (IP) authentication
and signature scheme

7.1 Introduction

We will now present a new authentication scheme called “Isomorphism of Poly-
nomials” (IP).

IP authentications have a few nice properties:

- It is proved zero-knowledge.

- We know exactly the problem on which the security of the scheme relies.

- The scheme is very symmetric, and the design of the scheme is very similar to
the well known “Graph Isomorphism Authentication scheme” (cf. [11] p. 88-89
for example).

- No hash functions are needed.

- IP illustrates the fact that if in HFE the function f is public the HFE scheme
may be still secure.

However if all these nice properties show that IP is a scheme of theoretical
interest IP may not be as practical in Authentication as the schemes of [12] or
{13] or as HFE. (Essentially because of the large number of bits to exchange
or because of the lenght of the public key). Moreover HFE can be used for
authentication, signatures, or encryption, and IP is just for authentication or
signatures.

7.2 The Isomorphism of Polynomials Problem with two secrets s
and t

Let « and n be two integers. Let F be a finite field.

Let A be a public set of u quadratic equations with n variables =y, ..., z, over
the field F;. We can write all these equations like this:
yk:ZZ’Yukwiw;‘ +ka$1+f5k7 fork=1,...u (1
i i

Now let s be a bijective and affine transformation of the variables z;,1 <1 < n,
and let ¢ be a bijective and affine transformation of the variables yz, 1 < k < u.
Let s(w1,. ., o) = (4, .., ), and Lyn, -, ) = (8, - - 8L).

From (1) we will obtain k equations that gives the y} values from the z} values

like this:

yr = ZZ’)’:]k.E:J; + zp;kwé + 6, fork=1,.. . u. (2)
i g i

Let B be the set of these u equations. We will say that A and B are “isomorphic”,
i.e. there is a double bijective and affine transformation that gives B from A.
And we will say that (s,t) is an “isomorphism” from A to B. The “Isomorphism
of Polynornials Problem” is this problem: when A and B are two public sets of u

quadratic equations, and if A and B are isomorphic, find an isomorphism (s,t)
from A to B.
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Fzample. If u = n no polynomial algorithms to solve this problem are known.
If such an algorithm were found then it would give us a way to find the keys of
the Matsumoto-Imai algorithm (and not only a way to decrypt most of the mes-
sages). So it would give us a new, and more powerful, attack on the Matsumoto-
Imai Algorithm. Moreover if such an algorithm were found then in HFE it would
be essential for security to keep f secret. On the contrary as long as no such
algorithm is found HFE may be still sccure if f is public.

Note. We could think to proceed like this in order to find s and ¢: to introduce
the matrix of s and ¢ values and to formaly identify the equations (1) and (2).
However we will obtain like this some equations of total degree three in the
values of s and ¢ and the general problem of solving equations of degree > two
in a finite field is VP hard. So this idea does not work.

7.3 The IP authentication scheme with two secrets s and ¢

Public: Two isomorphic sets A and B of « quadratic equations with n variables
over a field F,.

Secret: An isomorphism (s,t) from A to B.

Notations The equations of A are the equations (1) of paragraph 7.2, they give
the y values from z; values, and the equations of B are the equations (2) of
paragraph 7.2, they give the y, values from the x values.

Let us assumne that Alice knows the secret (s,t) and that Alice wants to convince
Bob of this knowledge, without revealing her secret. Alice and Bob will follow
this protocol:

Step 1. Alice randomly computes a set C of equations isomorphic to A.

For this, she randomly computes an affine bijection s’ of the values z;,1 < i < n,
and an affine bijection t’ of the variables yg, 1 < & < w.

The u equations of C' are u equations like this:

V= 30D e+ Yl 0, for k=1, 3)
J i

1

— s gives the trausformation z — z’.
t gives the transformation y — y'.
s’ gives the transformation « — z”.
t’ gives the transformation y — ¢,

Step 2. Alice gives the set C of equations (3) to Bob.
Step 3. Bob asks Alice either to

(a) Prove that A and ' are isomorphic.
(b) Prove that B and C are isomorphic.



45

Moreover Bob choose to ask (a) or (b) randomly with the same probability 1/2.

Step 4. Alice complies.

If Bob ask (a), then she reveals s’ and t’.

If Bob ask (b), then she reveals s'os~! and #' ot~! (i.e. the transformations
¢ — 2" and ¥ — y").

It is easy to prove that this protocol is zero-knowledge and that if somebody
doesn’t know an isomorphism (s,t) from A to B the probability to successfully
pass the protocol is at most 1/2.

So if Alice and Bob repeat steps (1) to (4) N times, the probability of success
will be at most 1/2V.

7.4 Parameters

Analogous to the problem of finding the secret affine transformations s and ¢
of HFE when f is public or of the Matsumoto-Imai Algorithm, we could have
u =n = 64 or 128 and F; = F; for example in a IP authentication scheme.
However more practical values may be sufficient for security.

In the extended version of this paper we give some comments about more prac-
tical values.

7.5 The IP problem with one secret s

Let » be an integer. Let F, be a finite field. Let A be one public cubic equa-
tion with » variables «y, ..., x, over the field F,. (Here in A we have only one
equation, but of degree 3 and not 2). We can write this equation (A) like this:

ZZZ’Tuk-’Uﬂjwk + ZZ/hjiﬂﬂj + Zaz-ﬂz + 86 =0 (A4).

Now let. s be a bijective and affine transformation of the variables z;,1 <1 < n.
Let s(aq,. .., zn) = (=], ..., ).

From (A) we will obtain one equation (B) in ] like this:

Z Z Z "/{jkil,'éll;llj.’ljlk + Z Zuljxi.z; + Z alxl+6 =0 (B).

We will say that (A) and (B) are “isomorphic”, i.e. there is a bijective and affine
transformation that gives B from A. And we will say that s is an “isomorphism”
from A to B. The “Isomorphism of Polynomials Problem” is now this prob-
lem: when A and B are two public sets of such equations, and if A and B are
isomorphic, find an isomorphisin s from A to B.

Note. For equations of total degree > 3, we know no polynomial algorithm to
solve this [P problems. However for equations of total degree 2 there is a polyno-
mial algorithm to solve the problem, becanse there is a “canonical” representa-
tion of each quadratic equations over a finite field (cf. [5], chapter 6 for example).
If (A) and {B) are isomorphic, then the two canonical representations of (A) and
(B) will be easilly found, will be the same, and this will give the isomorphism
from (A) to (B). This is the reason why we have chosen equations of degree > 3.
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7.6 The IP authentication scheme with one secret s

The IP problem with one secret s can easilly be use to design an authentication
scheme in the same way we used the IP problem with two secrets s and ¢ (more
details are given in the extended version of this paper).

7.7 Less computations with larger public keys

Instead of only two public isomorphic equations (A) and (B), less us now assume
that we have &k public isomorphic equations (Py), (F2), ... (Pk)-

We denote by wgl) the variables of (Py), ... and by :tfk) the variables of (Px). And
we denote by s; the secret affine transformation from z(D to 1) 2 < 5 < k.
{So all the k equations are isomorphic to (Py), so each couple of these equations
are isomorphic).

Of course we can assume if we want that all the secret affine transformations
84,2 € j < k, are computed from one small secret K, for example K is a secret
DES key and the matrix of the s; are obtained by some computations of DESk.
So the public key is larger, since we have k equations (P;), but the secret key
can be still small.

The authentication now proceed like this:

Step 1. Alice randomly computes, as usual, one equation C isomorphic to Fy.
Step 2. Alice gives this equation C to Bob.

Step 3. Bob randomly chose a value u, 1 < < k, and ask Alice to prove that
C and P, are isomorphic.

Step 4. Alice complies.

It is still easy to prove that this protocol is zero-knowledge and that if some-
body doesn’t know any isomorphismn s from one (F;) to one (P;), ¢ # j, then
the probability to successfully pass the protocol is at most 1/k.

So if Alice and Bob repeat steps (1) Lo (4) N times, the probability of success
will be at most 1/(kV).

7.8 1IP for asymmetric signatures

The Fiat-Shamir authentication scheme and the Guillou-Quisquater authenti-
cation scheme can be transformed in signature scheme by using a now classical
transformation by introducing hash function. This transformation works also
very well here for the [P algorithm.

Let M be the message to sign. The signature algorithm is this one:

Step 1. Alice randomly computes A equations C; isomorphic to P;.

Step 2. Alice computes hash (M{|C}]||...C)), where || is the concatenation
function, and hash a public hash function sufficiently large such that the first
bits of output can give X values ey, ..., ex, where each e; is a value between 1
and k.
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Step 3. Alice computes the X isomorphisms t;,1 < i < A, such that each t; is
an isomorphism from C; to F,,.

The signature on M by Alice is then (T, E) where T is the vector (¢,,%a,...1x)
and F is the vector (e, eq,...€ex).

To verify this signature, Bob proceeds like this:

Step 1. Bob computes Cj,...,Cy such that ¢;,1 < i < X is an isomorphism
from C; to P,,.

Step 2. Bob checks that the first bits of hash (M]|Cy]|...C>) are the entries ¢;
of E.

7.9 Numerical examples of IP signatures with one secret s

In signature we must have k* > 254 for security.

It is not clear what value of n should be taken, but we suggest n > 16 if K = F5.
With K = Fg,n = 16, A = 16 and k = 16 then the lenght of the public key is
1120 bytes and the lenght of the signature is about 4128 bits. With K = Fg,n =
16, A — 4 and k = 26 then the lenght of the public key is k.16.15.14/3! bits =
4,4 Mo. This is huge but can be store in a hard disc of a Personal computer, and
the lenght of the signature is ~4.(16 + 16.16) = 1088 bits.

8 Conclusion

We have designed two new classes of Algorithms: HFE and IP. These algorithms
are based on multivariate polynomials over a finite field of total degree two. One
interesting point of HFE is that these algorithms can lead to very short asym-
metric signatures (128 bits for example). Similarly they can encrypt messages
by blocks whith very short blocks (128 bits blocks for example).

Another interesting point of these algorithms is that their security do not depend
on factorisation or discret log, and very few algorithms for encryption or signa-
tures in asymmetric cryptography are known that do no rely on these problems.
However a lot of problems are still open, for example:

Are these algorithins really secure ?

Is it possible to design strong HFE, with public polynomials of degree two and
a secret function f with two or more monomials, that are also permutations ?
Is it possible to solve a general system of multivariate quadratic equations over
G F(2) much more quickly than with a quasi exhaustive search 7
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