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We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting

homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov

exponents under the condition that the proposed model has just two stable equilibrium states in cer-

tain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo

has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden

chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the

phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify

the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has

a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this

feature has not been previously reported in any other high-dimensional system. Moreover, the 5D

hyperchaotic system has been simulated using a specially designed electronic circuit and viewed

on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and

the oscilloscope outputs produce similar phase portraits. Such implementations in real time repre-

sent a new type of hidden attractor with important consequences for engineering applications.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977417]

In a series of papers, Leonov et al. have shown multi-
stability to be related to hidden attractors, whose basins
of attraction contain no neighborhoods of any equilib-
rium, and cannot be determined by conventional meth-
ods. After the idea of hidden attractor was coined, and
the first one was found in Chua’s circuit, hidden attrac-
tors have received much attention. A key matter is how
to identify systems with hidden attractors. Such knowl-
edge, including how to determine the properties of hidden
attractors, increase the chances that a given system
remains on the most desirable attractor, thereby avoiding
the risk of sudden transitions to undesirable dynamics.
We present typical examples of hidden attractors, review
their characteristics, and also discuss numerical methods
which enable hidden attractors to be located. The results
obtained expand the knowledge of hidden hyperchaos
and its potential use in higher-dimension dynamical
systems.

I. INTRODUCTION

For the past few decades, chaos and its control have been

extensively studied. For 3D autonomous systems with smooth

quadratic nonlinearities, Sprott used computer search techni-

ques to identify nineteen systems exhibiting chaotic dynamics,

but with a maximum of three equilibria.1 Multistability is a

feature in many nonlinear dynamical models, ranging from

the geophysical fluid dynamics (such as the climate and

marine ecosystems) to models of finance in economics,

together with engineering applications. Multistability depends

on the choice of initial conditions, as well as on small changes

in parameters, so that a sudden transition can occur to a differ-

ent attractor.2

The current paper is concerned with the multistability

and hyperchaos in a new 5D system, which extends a 3D

model for a self-exciting dynamo.3 Recent studies of hyper-

chaos in 4D, 5D, or 6D autonomous systems have mostly

focused on the generation of hyperchaos with at least one

unstable equilibrium; hyperchaotic attractors with two posi-

tive Lyapunov exponents (LEs) in 4D;4–7 hyperchaotic

attractors with three positive Lyapunov exponents in 5D;8–10

and hyperchaotic attractors with four positive Lyapunov

exponents in 6D.11 Such attractors are called “self-excited”

and are easily found by choosing an initial condition on the

unstable manifold in the vicinity of the unstable equilibrium.

Therefore, they are overwhelmingly the most common type

discussed in Refs. 12–15.

Recently, a new type of attractor called a “hidden

attractor,” that does not intersect with the neighborhood of

any fixed point, has been a topic of discussion.16–23 There

has been growing interest in some unusual attractors for 3D

or 4D autonomous quadratic systems including ones with noa)Electronic mail: weizhouchao@163.com
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equilibrium,24–28 a single non-hyperbolic equilibrium,29 sta-

ble equilibria,30–37 a line of equilibria,38,39 and with coexist-

ing attractors.40–42 Complex hidden dynamical behaviors

(such as hyperchaos) in high-dimensional systems are not

yet well understood. This provides an interesting new field

of research into multistability and hidden hyperchaotic

attractors.2,43,44 It is therefore of interest to ascertain whether

5D autonomous systems exist that have a hidden hyperchaos

with three positive Lyapunov exponents. Such systems are

hard to identify because there is no systematic procedure to

choose initial conditions and parameter values except by sys-

tematic but laborious numerical searches.

The investigation of hidden hyperchaotic attractors

in 5D autonomous systems also has significant practical

applications. Because of its inherent unpredictability, higher-

dimensional hyperchaotic systems are important in investiga-

tions of control and synchronization in electronic circuits,

as well as in encryption, etc., “Self-excited” hyperchaotic

attractors no longer satisfy this need in secure communica-

tion and circuit implementation. Therefore, it is necessary

albeit difficult to find and study the properties of new n-D

systems that exhibit hidden hyperchaos and have n � 2 posi-

tive Lyapunov exponents, where n> 4.15

Identification and location of coexisting attractors and

their basins of attraction as parameters vary is crucial for

understanding the behaviour of nonlinear systems. This

becomes more difficult for hidden or rare states. Some meth-

ods are discussed in Ref. 43. Here we report on hidden

hyperchaotic attractors with no unstable equilibria but with

three positive Lyapunov exponents in a 5D self-exciting

homopolar disc dynamo. Our hope is that this study will feed

into more studies of 5D systems with quadratic nonlinear-

ities, and so identify the geometrical characteristics of lower-

dimensional chaotic and hyperchaotic attractors.

The paper is structured as follows: In Section II, we

introduce the new 5D self-exciting homopolar disc dynamo

and discuss the existence of equilibrium solutions. In Section

III, hidden chaotic attractors, hidden hyperchaotic attractors,

and multistability are shown and discussed. In Section IV, a

re-scaled version of the 5D system is incorporated into an

electronic circuit and viewed on an oscilloscope and

observed in real-time. Section V summarizes the results and

provides concluding remarks.

II. 5D HYPERCHAOTIC SELF-EXCITING HOMOPOLAR
DISC DYNAMO

Hidden attractors can be obtained by carefully choosing

parameters and initial conditions in 3D or 4D systems. Here,

we consider the case n¼ 5 with attractors that are not “self-

excited” and thus cannot be found by means of the local

unstable manifold.43 Any novel 5D system of significance,

which exhibits hyperchaos, should satisfy at least one of the

two criteria: (1) The system should model an important

aspect of nature and provide insights into the problem; (2)

the system should exhibit previously unobserved dynamics.

To obtain unusual hidden hyperchaotic attractors in an

autonomous system, we demand the following conditions: (i)

The proposed system has a small number of quadratic

nonlinearities; (ii) It has either no or only stable equilibria so

that all attractors are hidden; (iii) It exhibits hidden hyper-

chaos with three positive Lyapunov exponents.

Idealized models of dynamo action have been exten-

sively investigated in the literature as a way of understanding

the generation of magnetic fields and their reversals in the

Earth, the Sun, and other astrophysical bodies. In order to

consider a segmentation of the disk, leaving the possibility

of azimuthal currents to exclude the magnetic field, Moffatt

proposed a heuristic model of the disk dynamo of Edward

Bullard45–47 taking into account the field exclusion process

necessary to satisfy the Alfven theorem of flux conservation3

_x ¼ r y� xð Þ;

_y ¼ mx� 1þ mð Þyþ xz;

_z ¼ g 1þ mx2 � 1þ mð Þxy
� �

:

8

>

<

>

:

(1)

Here, x(t) and y(t) are the non-dimensional magnetic fluxes

associated with the radial and azimuthal currents, respec-

tively, while z(t) is the dimensionless angular velocity of the

disc. The dot denotes differentiation with respect to re-scaled

time, and g, r, and m are positive constants which depend on

the inductances and the electrical resistance of the dynamo.

In the present paper, by modifying the characteristics of

the segmented disc dynamo (1), hidden chaotic or hyper-

chaotic spiral attractors have been observed numerically under

special initial conditions with two symmetric stable node-foci.

This leads to the interesting and striking observation of multi-

ple attractors involving coexisting point attractors, limit

cycles, or coexisting chaotic spiral attractors for a broad range

of parameters. As in many nonlinear dynamical systems, the

occurrence of multiple attractors implies the existence of mul-

tistability in the self-exciting dynamo, with the long-term

behavior being fundamentally different depending on which

basin of attraction, the initial conditions belong.

Motivated by the above ideals, we augment the existing

dynamo model (1) with the addition of two state variables u

and v to obtain the 5D autonomous system

_x ¼ r y� xð Þ þ u;

_y ¼ � 1þ mð Þyþ xz� v;

_z ¼ g 1þ mx2 � 1þ mð Þxy
� �

;

_u ¼ 2 1þ mð Þuþ xz� k1x;

_v ¼ �mvþ k2y;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(2)

where r, m, and g are positive parameters, and k1, k2 are

control parameters. System (2) is invariant under the transfor-

mation x; y; z; u; vð Þ ! �x;�y; z;�u;�vð Þ, i.e., it has a rota-

tional symmetry around the z-axis. Because the divergence of

the flow in (2) is 1� r, system (2) is dissipative and its phase

space volume contracts along a trajectory when r> 1.

Now in order to get the hidden hyperchaos with three

positive Lyapunov exponents, we can exclude some parame-

ter sets that cannot make system (2) show bounded chaotic

solutions.

Theorem 2.1. Consider the five-parameter family of

system (2) with two real parameters l1, l2. If parameters

r; gð Þ 2 0;þ1ð Þ � 0;þ1ð Þ and m; k1; k2; l1; l2 satisfy

033101-2 Wei et al. Chaos 27, 033101 (2017)



m ¼ �2þ l1 þ
1

l2
> 0;

k1 ¼
l1 �2þ l2 2� l1 þ rð Þð Þ

l2
;

k2 ¼
3� l2 3þ l1 �2þ rð Þð Þ

l22
; l1 < 2þ 2m; (3)

then (2) has no bounded chaotic or hyperchaotic solutions.

Proof. From system (2) with real parameters l1, l2, we

can form

_y � _u þ l1 _x þ l2 _v

¼ �1þ k2l2 � mþ l1rð Þyþ �2þ l1 � 2mð Þu

þ k1 � l1rð Þxþ �1� l2mð Þv: (4)

Under assumptions (3), Eq. (4) becomes

_y � _u þ l1 _x þ l2 _v ¼ p y� uþ l1xþ l2vð Þ; (5)

whose integral is

y tð Þ þ u tð Þ þ l1x tð Þ þ l2v tð Þ ¼ ae 2�l1þ2mð Þt;

where a is an arbitrary constant. Hence system (2) is not cha-

otic because at least one of y tð Þ; u tð Þ; l1x tð Þ; l2v tð Þ is not

bounded when l1 < 2þ 2m. The proof is complete.

To analyze system (2), we find its equilibria for a;m; g
positive and k1; k2 2 R. Let

r y� xð Þ þ u ¼ 0; �y 1þ mð Þ þ xz� v ¼ 0;

�g 1þ mð Þxyþ gþ mgx2 ¼ 0;

2 1þ mð Þuþ xz� k1x ¼ 0; k2y� mv ¼ 0: (6)

From the first, second, fourth, and fifth equations in (6), intro-

ducing D1 ¼ k1 � 2 1þ mð Þr; D2 ¼ k2 � m 1þ mð Þ 2r � 1ð Þ,
when D2 6¼ 0 we find that

y ¼
mxD1

D2

; z ¼
k2 þ mþ m2ð ÞD1

D2

;

u ¼
k2 þ m 1� k1 þ mð Þð Þrx

D2

; v ¼ �
k2xD1

D2

:

Combining the third equation with (7), we obtain

x2 ¼
k2 � m 1þ mð Þ 2r � 1ð Þ

m k1 1þ mð Þ þ 1þ mð Þ mþ 2rð Þ � k2ð Þ
: (7)

Therefore, we obtain the following results:

(i) It is impossible for system (2) to have only one

equilibrium.

(ii) System (2) has no equilibria when k2 ¼ m 1þ mð Þ

2r � 1ð Þ or k2ð �m 1þ mð Þ 2r�ð 1ÞÞ k2 � k1 1þ mð Þð

þ 1þ mð Þ mþ 2rð ÞÞ > 0.

(iii) System (2) has only two equilibria when k2�ð
m 1þmð Þ 2r�1ð ÞÞ k2�k1 1þmð Þþ 1þmð Þ mþ2rð Þð Þ<0.

This result suggests where to look for hidden hyper-

chaotic attractors.

III. HIDDEN ATTRACTORS AND MULTISTABILITY

Multistability, namely, the coexistence of different

attractors, is a feature of many nonlinear systems and has

recently been studied.23,35 Multistability shows the richness

of potential stable states to which a nonlinear system can

evolve, gives greater versatility of the dynamics, and offers

flexibility in applications such as image processing. We

investigate whether such multistability occurs in higher-

dimensional systems such as those that exhibit hidden

hyperchaos.

To locate the hidden attractors, we need to choose

parameters for which system (2) has either no equilibria or

only stable equilibria. If system (2) has two equilibria E1;2,

they will be symmetric about the z-axis and will share

the same characteristics. Therefore, we only consider

the stability of equilibrium E1 x0; y0; z0; u0; v0ð Þ, where

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�m 1þmð Þ 2r�1ð Þ

m k1 1þmð Þþ 1þmð Þ mþ2rð Þ�k2ð Þ

q

:

Perturbing system (2) about the equilibrium E1, and

neglecting nonlinear terms give the quintic characteristic

equation

k
5 þ d1k

4 þ d2k
3 þ d3k

2 þ d4kþ d5 ¼ 0; (8)

where the expression for di i ¼ 1; 2; 3; 4; 5ð Þ is too large to

print and thus is not shown here. The Routh-Hurwitz crite-

rion provides conditions for the real parts of all the eigenval-

ues k to be negative, namely, if and only if

D1 ¼ d1 > 0; D2 ¼

�

�

�

�

d1 d3

1 d2

�

�

�

�

> 0;

D3 ¼

d1 d3 d5

1 d2 d4

0 d1 d3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

> 0; D4 ¼

d1 d3 d5 0

1 d2 d4 0

0 d1 d3 d5

0 d1 d2 d4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

> 0;

d5 > 0: (9)

To simplify, we consider only the effect of the parameters

r and k1 and set the other parameters m ¼ 0:04; g ¼ 140:6;
k2 ¼ 12. Therefore, with condition (9) and complex calcula-

tions, E1;2 are both asymptotically stable if r and k1 lie in the

yellow regions of Fig. 1, giving a further clue for where to

look for hidden hyperchaotic attractors.

A. Hidden attractors with two stable equilibria

An important feature of the system is the existence of

hidden hyperchaos for a range of parameters in asymptoti-

cally stable regions of E1;2 (Fig. 1). Hidden hyperchaos can

occur for the choice m ¼ 0:04; g ¼ 140:6; k2 ¼ 12, and

r ¼ 7; k1 ¼ 34, for which the Lyapunov exponents48–50

are (0:9616; 0:5477; 0:1425; 0:0000;�7:6518). They can be

obtained from a standard Gram-Schmidt reorthonormaliza-

tion procedure, using a Jacobian matrix. The Lyapunov

exponents (LEs) we calculate are independent of initial con-

ditions provided they are in the basin of the attractor. The

LE is a running average of the local LEs along the orbit and

so any point that is visited by the orbit is like taking a new
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initial condition. Although there is an infinity of unstable

periodic orbits on the attractor, they form a set of measure

zero and so are easily avoided as initial starting points. The

Kaplan-Yorke dimension33,51,52 is DKY¼ 4.2159. The projec-

tions of the hyperchaotic attractor onto various planes are

shown in Fig. 2.

To examine the robustness of the hyperchaos and show

evidence of multistability, the dynamics of system (2) was

investigated in the range 3 < r < 8 with k1 ¼ 34 in Fig. 3

where the equilibria E1;2 are stable. The figure shows three

choices of initial conditions. In the left panel, the initial con-

ditions are kept constant at 0:05;�0:5; 0:1;�1; 2ð Þ, while in

the middle panel, r is increased without reinitializing, and in

the right panel, it is decreased without reinitializing. The fig-

ure clearly shows chaotic and hyperchaotic regions (two or

three positive LEs), quasiperiodicity (where DKY¼ 2) with

periodic windows (limit cycles) and hidden attractors as well

as hysteresis. The complicated structure at small r in the left

panel is a result of the initial conditions falling into a region

where the attractor basins are strongly intertwined as will be

illustrated later. In addition, every time a basin boundary is

crossed, there is an infinitely long transient, and that the

boundary is crossed countless times for small values of r.

FIG. 1. The equilibria E1;2 of system (2) are asymptotically stable in the yel-

low regions.

FIG. 2. Hidden hyperchaotic attractor of system (2) with parameters m ¼ 0:04;
g ¼ 140:6; k1 ¼ 34; k2 ¼ 12 and r¼ 7 and initial condition 0:05;�0:5;ð
0:1;�1; 2Þ.

FIG. 3. The first four Lyapunov exponents (the fifth is large and negative), Kaplan-Yorke dimension and bifurcation diagrams of system (2) versus parameters

m ¼ 0:04; g ¼ 140:6; k1 ¼ 34; k2 ¼ 12: Left: fixed initial condition 0:05;�0:5; 0:1;�1; 2ð Þ; Middle: the varied initial condition for increasing r from 3 to 8;

Right: the varied initial condition for decreasing r from 8 to 3.
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Fig. 4 shows the regions of various dynamical behaviors

in the space of the bifurcation parameters r; k1ð Þ 2 3; 8½ � �
32; 34½ � with the other fixed parameters m ¼ 0:04; g ¼ 140:6;
k2 ¼ 12. To produce Fig. 4, we set k1 ¼ 32 and incremented r

from 3 to 8. Then we integrated system (2) for 1500 time units

to eliminate transients, before beginning to compute the LEs.

For the first integration, we took as initial conditions those in

Fig. 3. Thereafter, the initial conditions for the next increment

in r were taken to be the final variable values from the previous

r, and the procedure was repeated until r¼ 8, when we incre-

mented k1 to k1 ¼ 32:01 and began again. Thus a horizontal

slice through Fig. 4 at k1 ¼ 34 should correspond to the middle

panel of Fig. 3.

To the best of our knowledge, the phenomenon of multi-

stability involving the coexistence of different kinds of

hidden attractors with no unstable equilibria has not been

reported in higher-dimensional systems (more than 4D), and

thus this example is a new contribution to the family of hid-

den chaotic attractors.

B. Coexistence of point, periodic, quasi-periodic,
and hidden chaotic attractors

Another form of complexity arises when two or more

asymptotically stable equilibrium points or attracting sets

coexist for a given set of system parameters. For such coex-

isting attractors, the trajectories of the system selectively

converge on one of the attracting sets depending on the ini-

tial state of the system.

In the region of parameter space of system (2) where

there are two stable equilibria, there can be more than one

hidden attractor. Fig. 5 shows an example with r¼ 3.5 and

FIG. 4. Choosing m ¼ 0:04; g ¼ 140:6; k2 ¼ 12 and initial conditions

0:05;�0:5; 0:1;�1; 2ð Þ, regions of various dynamical behaviors for the

bifurcation parameters r and k1 when both the equilibria E1;2 are asymptoti-

cally stable. Periodic regions in blue; Quasi-periodic regions with two zero

LEs in yellow; Quasi-periodic regions with three zero LEs in green; Chaos

with one zero LEs in purple; Hidden hyperchaotic regions with two positive

LEs in red; Hidden hyperchaotic regions with three positive LEs in black.

FIG. 5. Coexisting attractors of system (2) with r¼ 3.5 and k1 ¼ 34: period-

1 attractor in blue from initial condition (2, 1, 2, 0, 0); period-2 attractor in

red from initial condition (0, 2, 6, 11, 21).

FIG. 6. Coexisting attractors of system (2) with r¼ 2.9 and k1 ¼ 29:12:
periodic-1 attractor (blue) from initial condition (2, 2, 5, 2, 2); hidden chaos

with LEs (0.0628, 0, �0.1497, �0.4999, �1.3133) (red) from initial condi-

tion (2, 0, 1, �4, �2).

FIG. 7. Coexisting attractors of system (2) with r¼ 3.95 and k1 ¼ 38:

periodic-1 attractor (blue) from initial condition (0, 2, 6, 11.3, 21); hidden

chaos with LEs (0.1635,0, �0.0450, �0.3909, �2.6776) (red) from initial

condition (0, 2, 6, 11, 2).
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k1 ¼ 34 where a period-1 and period-2 limit cycle coexist

for initial conditions (2, 1, 2, 0, 0) and (0, 2, 6, 11, 21),

respectively. Fig. 6 with r¼ 2.9 and k1 ¼ 29:12, and Fig. 7

with r¼ 3.95 and k1 ¼ 38 show cases where a limit cycle

coexists with a strange attractor. Fig. 8 with r¼ 3.75 and

k1 ¼ 32 shows a case where a limit cycle coexists with a

quasiperiodic attracting torus. Additional evidence that this

is a torus rather than a high-period limit cycle or thin strange

attractor is provided by Fig. 9 which shows that the cross

section of the attractor for y¼ 0 consists of five closed loops.

In addition, the Kaplan–Yorke dimension in this region is

accurately 2.0.

Whenever there are coexisting attractors, it is useful to

examine the basins of attraction. In a 5D system, it is neces-

sary to choose one of the infinitely many planes through the

space of initial conditions. A typical case is shown in Fig. 10

where the plane is taken as z ¼ 20:428; u ¼ 6:525x,
and v ¼ 300y which for the parameters r ¼ 7; k1 ¼ 34;m
¼ 0:04; g ¼ 140:6; k2 ¼ 12 pass through the two stable equi-

libria shown as black dots in the figure. Basins of the two

symmetric stable equilibria E1;2 are indicated by red and

green, respectively, and the basin of the hyperchaotic attrac-

tor is in light blue. Two nearby initial conditions in the upper

left and lower right of the plot can lead either to the hyper-

chaotic attractor or to one of the equilibria. This well illus-

trates why there are long transients in some regions where

the basin boundary is extremely complicated.

It is worth noting that coexisting attractors and thus the

fractal basin may not be observed in a controlled experiment

where system parameters are smoothly varied. In such

instances, the initial condition for each parameter value is

the final condition (or state) for the previous parameter, and

the trajectories are thus locked in only one of the attracting

sets.

IV. ELECTRONIC CIRCUIT IMPLEMENTATION
OF THE 5D HYPERCHAOTIC SYSTEM (2)

Limitations involving components such as analog multi-

pliers and operational amplifiers in electronic circuits require

a linear re-scaling of the variables to avoid saturation.53,54

There is no need to rescale the x and y variable values since

they fall within the range of �15; 15ð Þ. However, z, u, and v

need to be scaled for observations on an oscilloscope.

Therefore, we take X¼ x, Y¼ y, Z ¼ z=10; U ¼ u=5 and

V ¼ v=2 so that system (2) becomes

FIG. 8. Coexisting attractors of system (2) with r¼ 3.75 and k1 ¼ 32:

periodic-1 attractor (blue) from initial condition (1.5, 4.5, 7.2, 8.5, �19);

hidden quasi-periodic orbit with two zero LEs (red) from initial condition

(0.05, �0.5, 0.1, �1, 2).

FIG. 9. Quasiperiodic on an attracting torus for cross-section y¼ 0 and

parameters r ¼ 3:75; k1 ¼ 32;m ¼ 0:04; g ¼ 140:6; k2 ¼ 12 of system (2)

from initial condition (0.05, �0.5, 0.1, �1, 2).

FIG. 10. Cross-section is z ¼ 20:428; u ¼ 6:525x, and v ¼ 300y for parame-

ters are r ¼ 7; k1 ¼ 34;m ¼ 0:04; g ¼ 140:6; k2 ¼ 12, the light blue is the

basin of the hidden hyperchaotic attractors of system (2).
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_X ¼ r Y � Xð Þ þ 5U;

_Y ¼ � 1þ mð ÞY þ 10XZ � 2V;
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10
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� �

;
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>

>
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>
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>

>

>

>

>

:

(10)

In making an electronic circuit exhibiting hidden hyper-

chaos, one is essentially making an analog computer for sys-

tem (10). The schematic of the electronic circuit for the

rescaled system (10), designed using ORCAD-PSpice, is

shown in Fig. 11. The circuit comprises of electronic compo-

nents such as resistors, capacitors, and operational ampli-

fiers. The electronic circuit for the hyperchaotic system uses

the parameter values of r ¼ 8;m ¼ 0:04; g ¼ 140:6; k1 ¼ 34;
k2 ¼ 12, and initial conditions of X 0ð Þ ¼ 0:05; Y 0ð Þ

¼ �0:5; Z 0ð Þ ¼ 0:1;U 0ð Þ ¼ �1;V 0ð Þ ¼ 2. The circuit uses

TL081 operational amplifiers and AD633 multipliers, with

values of R1¼R2¼ 50 kX, R3¼ 80 kX, R9¼R10¼R19

¼R20¼ 100 kX, R6¼ 200 kX, R7¼ 4 kX, R8¼ 384 kX,

R11¼ 71 kX, R12¼ 426 kX, R13¼ 27 kX, R14¼ 10 kX,

R15¼ 67 kX, R16¼ 59 kX, R17¼ 192 kX, R18¼ 20 kX,

C1¼C2¼C3¼C4¼ 1 nF, Vn¼�15V, Vp¼ 15V. The

AD633 multiplier IC has inputs in the range of �10V to

þ10V, while the output voltage is a multiple of the input

voltage, scaled by 10V. It is tempting to claim that a physi-

cal realization provides the real answer to what the system

performance is, since it is based on actual physical hardware.

A real environmental application of the hyperchaotic system

was implemented with electronic components on a bread-

board in Fig. 12.

FIG. 11. The electronic circuit schematic of the scaled hyperchaotic system (10) with r ¼ 8;m ¼ 0:04; g ¼ 140:6; k1 ¼ 34; k2 ¼ 12.
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The oscilloscope outputs, showing phase portraits of the

rescaled circuit (10) as seen in Fig. 13, agree well with the

solution of the equations (2) shown earlier. It is worth noting

that the ability to realise the theoretical hidden chaotic attrac-

tors plays a very important role in practical applications.55,56

V. CONCLUSION

This paper is a continuation of the study of hidden attrac-

tors. A 5D hyperchaotic generalization of a 3D model for a

self-exciting homopolar disc dynamo without unstable equi-

libria but with three positive Lyapunov exponents has been

proposed and investigated. Hidden hyperchaos with only sta-

ble equilibria has been observed. The study of such models

will lead to further analysis and suggest practical applications

of such phenomena. The behaviour presented here shows that

complex dynamics can be obtained in 5D systems with only

stable equilibria, including periodic attractors (limit cycles),

quasi-periodic attractors (tori), chaotic attractors, and hyper-

chaotic attractors (with two or three positive LEs), all hidden,

and suggest that any dynamical phenomenon not explicitly

forbidden could in principle feasibly occur. The requirement

is to find the right physical example. A future study will elab-

orate on other aspects of hidden hyperchaos.

FIG. 12. The experimental circuit of

hidden hyperchaos in the scaled hyper-

chaotic system (10) with r¼8;m¼0:04;
g¼140:6;k1¼34;k2¼12.

FIG. 13. The phase portraits on the

oscilloscope of hidden hyperchaos in

the scaled hyperchaotic system (10)

with r¼8;m¼0:04;g¼140:6;k1¼34;
k2¼12.
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