
Hidden Markov Map Matching
Through Noise and Sparseness

Paul Newson and John Krumm
Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA
+1 425 705 4507, +1 425 703 8283

{pnewson, jckrumm}@microsoft.com

ABSTRACT

The problem of matching measured latitude/longitude points to
roads is becoming increasingly important. This paper describes a
novel, principled map matching algorithm that uses a Hidden
Markov Model (HMM) to find the most likely road route
represented by a time-stamped sequence of latitude/longitude
pairs. The HMM elegantly accounts for measurement noise and
the layout of the road network. We test our algorithm on ground
truth data collected from a GPS receiver in a vehicle. Our test
shows how the algorithm breaks down as the sampling rate of the
GPS is reduced. We also test the effect of increasing amounts of
additional measurement noise in order to assess how well our
algorithm could deal with the inaccuracies of other location
measurement systems, such as those based on WiFi and cell tower
multilateration. We provide our GPS data and road network
representation as a standard test set for other researchers to use in
their map matching work.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition, --
Models (Statistical)

General Terms
Algorithms, Measurement.

Keywords
Map matching, road map, location, driving routes.

1. INTRODUCTION
Map matching is the procedure for determining which road a
vehicle is on using data from sensors. The sensors almost always
include GPS because of its nearly ubiquitous availability. Map
matching has been important for many years on in-vehicle
navigation systems which must determine which road a vehicle is
traversing in real time. More recently, map matching is becoming
important as vehicles are used as traffic probes for measuring road
speeds and building statistical models of traffic delays. These
models, in turn, can be used to find time-optimal driving routes
that avoid traffic jams. Data from such traffic probes has been

used in the commercial routing engines of Microsoft [6], Dash [7],
and Inrix [8]. Map matching is also growing in importance for
research in route prediction [11], interpreting GPS traces [1], and
activity recognition [14].

This paper makes three contributions to the research in map
matching. First, it presents a new map matching algorithm based
on the Hidden Markov Model (HMM). While the HMM has been
used before in map matching, e.g. by Hummel [9], our
formulation is novel in some important respects, detailed
subsequently. We place particular emphasis on maintaining a
principled approach to the problem while simultaneously making
the algorithm robust to location data that is both geometrically
noisy and temporally sparse. Our second contribution is a test of
our map matching algorithm where we vary the levels of noise
and sparseness of the sensed location data over a 50 mile urban
drive. Varying the amount of noise lets us intelligently speculate
about how map matching would work with less accurate location

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ACM GIS '09 , November
4-6, 2009. Seattle, WA, USA (c) 2009 ACM ISBN 978-1-60558-649-

6/09/11...$10.00.

1

2

3

actual path

Figure 1: Map matching consists of matching measured

locations (black dots) to the road network in order to

infer the vehicle’s actual path (light gray curve). Merely
matching to the nearest road is prone to mistakes.

336

sensors, like multilateration from cell towers and WiFi access
points. Varying the sampling rate shows the minimum amount of
data required for good map matching. This is important for
practitioners who must decide on how often their GPS receivers
should sample location data, which affects requirements for
memory and bandwidth. Our third contribution is that we make
our GPS data, ground truth, and road network representation
publicly available for other researchers to use in their map
matching work. We believe this is the first time that such a data
set has been made publicly available. Until now, all the work on
map matching used private data sets for testing, making it
impossible to objectively compare results from different
algorithms.

2. THE MAP MATCHING PROBLEM
The map matching problem is illustrated in Figure 1. There are
three measured locations in sequence shown as black dots. The
problem is to find which roads the vehicle was on. The most
obvious algorithm is to simply match each point with the nearest
road. Due to measurement noise, however, this algorithm is prone
to error. In the illustration, the actual path is obvious, but the 2nd
and 3rd point would be mismatched if they were associated with
the nearest road. Even using modern GPS receivers, we have
observed gross outliers and extended sequences of of erroneous
points, likely due to urban canyons and other terrestrial features
that affect GPS signals. Because of problems like this, modern
map matching takes into account sequences of points before
deciding on a match. In the example, there is really only one
reasonable path on the road network that could have produced the

observed measurements.

In our work, like most other map matching work, the raw input
data consists of vehicle locations measured by GPS, as shown in
Figure 2. Each measured point consists of a time-stamped
latitude/longitude pair. The roads are also represented in the
conventional way, as a graph of nodes and edges. The nodes are at
intersections, dead ends, and road name changes, and the edges
represent road segments between the nodes. Some edges are
directional to indicate one-way roads. Each node has an associated
latitude/longitude to indicate its location, and each edge has a
polyline of latitude/longitude pairs to represent its geometry.

Since point-by-point, nearest road matching often fails,
researchers have developed methods that match several points at
once. One way to do this is to create a (possibly smoothed) curve
from the location measurements and attempt to find matching
roads with similar geometry. As an example, White et al. [16]
present four algorithms, starting with the simple, nearest match
scheme. Their second algorithm adds orientation information to
the nearest match approach, comparing the measured heading to
the angle of the road. Their third algorithm evolves the second
algorithm to include connectivity constraints, and their fourth
algorithm does curve matching. They were surprised to discover
that their most sophisticated algorithm, the fourth one, was
outperformed by the simpler second algorithm when tested on a
total of about 17 km of driving data. Another purely geometric
approach comes from Greenfeld [5], whose algorithm builds up a
topologically feasible path through the road network. Matches are
determined by a similarity measure that weights errors based on
distance and orientation. The algorithm was found to perform

Figure 2: This is the GPS data we used for testing in the Seattle, Washington, USA area. The trip starts in the upper right near

Marymoor Park. It consists of 7531 GPS points sampled at 1 Hz, and it covers about 80 kilometers (50 miles) over about 2

hours.

337

flawlessly, even though the GPS data was collected while
Selective Availability was turned on, leading to noisier location
measurements than are available now. Kim and Kim [10] look at a
way to measure how much each GPS point belongs to any given
road, taking into account its distance from the road, the shape of
the road segment, and the continuity of the path. The measure is
used in a fuzzy matching scheme with learned parameters to
optimize performance. One of the most sophisticated geometric
matching algorithms is from Brakatsoulas et al. [3]. Their
algorithm uses variations of the Fréchet distance to match the
curve of the GPS trace to candidate paths in the road network.
They tested their algorithms on 45 routes in Athens, Greece. Alt et
al. [2]give a generalization of the Fréchet for matching curves.

One potential problem with purely geometric approaches is their
sensitivity to measurement noise and sampling rate. Clearly,
connecting the dots of a set of noisy measurements sampled at a
slow rate would not match well with the road geometry, especially
direction information. Hidden Markov Models (HMM) solve this
problem by explicitly modeling the connectivity of the roads and
considering many different path hypotheses simultaneously. One
of the earliest applications of the HMM to map matching is from
Lamb and Thiébaux [13] who use a combination of a Kalman
filter and HMM. Several Kalman filters track the vehicle along
different hypothesized paths, and the HMM chooses between
them. Other work from Hummel [9] and Krumm et al. [12] use an
HMM to balance the measurement noise and path probabilities.
We will compare and contrast this work with ours subsequently
after we explain the details of our algorithm.

3. HMM MAP MATCHING
As illustrated in Figure 1, the key problem in map matching is the
tradeoff between the roads suggested by the location data and the
feasibility of the path. While the location data is important as the
sole indicator of the path, naively matching each noisy point to the
nearest road will result in extremely unreasonable paths involving
strange U-turns, inefficient looping, and overall bizarre driving
behavior. To avoid unreasonable paths, we can introduce
knowledge of the connectivity of the road network to help pull the
solution away from clearly bizarre behavior. The Hidden Markov

Model is an algorithm that can smoothly integrate noisy data and
path constraints in a principled way.

The HMM models processes that involve a path through many
possible states, where some state transitions are more likely than
others and where the state measurements are uncertain. In speech
understanding, HMMs are used to model the time sequence of
spoken phonemes. The model fits well, because some phoneme-
to-phoneme transitions are more likely than others, and because
classifying each individual phoneme from microphone
measurements is not 100% accurate.

In our map matching algorithm, the states of the HMM are the
individual road segments, and the state measurements are the
noisy vehicle location measurements. The goal is to match each
location measurement with the proper road segment. This state
representation naturally fits the HMM, because transitions
between road segments are governed by the connectivity of the
road network.

More formally, the discrete states of the HMM are the 𝑁𝑟 road
segments, 𝑟𝑖 , 𝑖 = 1…𝑁𝑟 . In our representation, distinct road
segments run between intersections. For each 2D
latitude/longitude location measurement 𝑧𝑡 , the goal is to find the
road segment that the vehicle was actually on. Figure 3 shows an
illustration of the HMM for the map matching problem illustrated
in Figure 1. Here, each vertical slice represents a point in time
corresponding to a location measurement 𝑧𝑡 for the three times 𝑡 = 1, 2, 3. At 𝑡 = 1 there are three roads near 𝑧1, shown as three
black dots in the first column. There is a feasible driving path,
possibly very circuitous, from each of the nearest points on these
three roads to points on the two roads near 𝑧2 at 𝑡 = 2, and
similarly for 𝑡 = 3. The goal of our algorithm is to find the most
probable path through the lattice by picking one road segment for
each 𝑡. This path should be sensitive to both the measurements
and the reasonability of the paths between the road segments. This
tradeoff is made based on the probabilities governing the
measurements and probabilities governing the transitions between
the road choices at each time, which we describe next.

We note that our algorithm, as presented, solves map matching as
a batch problem, after all the data has been collected. We
speculate that a sliding window version of our algorithm would
work well for real time map matching, say, on a vehicle’s
navigation system.

3.1 Measurement Probabilities
Measurement probabilities (also called emission probabilities)
give the likelihood that a measurement resulted from a given state,
based on that measurement alone. For map matching, given a
location measurement 𝑧𝑡 , there is an emission probability for each
road segment 𝑟𝑖 , 𝑝(𝑧𝑡 |𝑟𝑖). This gives the likelihood that the
measurement 𝑧𝑡 would be observed if the vehicle were actually on
road segment 𝑟𝑖 . Our intuition is that road segments farther from
the measurement are less likely to have produced the
measurement. For a given 𝑧𝑡 and 𝑟𝑖 , we denote the closest point
on the road segment as 𝑥𝑡 ,𝑖 . An example of this notation is shown

in Figure 4. The great circle distance on the surface of the earth

between the measured point and the candidate match is �𝑧𝑡 −𝑥𝑡 ,𝑖‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 . For the correct match, this difference is due to

GPS noise. Based on previous work [15], we can model GPS
noise as zero-mean Gaussian, meaning that

r1

r2

r3

r4

r5

rNr

t=1

z1

...

t=2

z2

...

t=3

z3

...

road

segment

time

Figure 3: For each measurement zt, the HMM considers

all the road segments ri as well as all the transitions

between the road segments.

338

𝑝(𝑧𝑡 |𝑟𝑖) = 1√2𝜋𝜎𝑧 𝑒−0.5��𝑧𝑡−𝑥𝑡 ,𝑖�𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒𝜎𝑧 �2

(1)

Here 𝜎𝑧 is the standard deviation of GPS measurements, which we
estimate in Section 5.2 (Parameter Estimation). While we know
that GPS errors are not strictly Gaussian, this assumption proved
effective in our map matching algorithm.

Another required probability is the initial state probabilities 𝜋𝑖 , 𝑖 = 1…𝑁𝑟 , which in the case of map matching gives the
probability of the vehicle’s first road over all the roads at the
beginning of the drive. While some HMM formulations assign a
uniform distribution to 𝜋𝑖 , assuming no measurements have been
taken, we start at the first measurement and have 𝜋𝑖 = 𝑝(𝑧1|𝑟𝑖),
i.e. using the first measurement 𝑧1.
In practice, we do not consider matching to road segments that are
quite distant from the measurement. In our algorithm, we set to
zero any measurement probability from a road segment that is
more than 200 meters away from 𝑧𝑡 . This helps reduce the number
of candidate matches that our algorithm has to consider,
decreasing its running time. This is illustrated in Figure 3 with the
unfilled circles representing road segments that are too far away to
consider.

3.2 Transition Probabilities
Each measurement 𝑧𝑡 has a list of possible road matches, as does
the next measurement 𝑧𝑡+1. Transition probabilities give the
probability of a vehicle moving between the candidate road
matches at these two times. Intuitively, some transitions will be
very unlikely, such as those requiring a complicated set of
maneuvers. Practically, we favor transitions whose driving
distance is about the same as the great circle distance between the
measurements.

Specifically, for a measurement 𝑧𝑡 and candidate road segment 𝑟𝑖 ,
the latitude/longitude point on the road segment nearest the

measurement is 𝑥𝑡 ,𝑖 . For the next measurement 𝑧𝑡+1 and candidate
road segment 𝑟𝑗 , the corresponding point is 𝑥𝑡+1,𝑗 . We compute

the driving distance between these two points using a
conventional route planner configured to give the route with the
shortest distance. We note that the correct pair of matched points
typically results in a very short route, because the matched points
on the road come from closely spaced GPS points. We refer to

this driving distance as the “route distance”, notated as �𝑥𝑡 ,𝑖 −𝑥𝑡+1,𝑗‖𝑟𝑜𝑢𝑡𝑒 . We compare the route distance to the great circle

distance between the measured points, ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 .
Figure 4 shows an example of these distances.

Our intuition, confirmed by experiment, is that these two
distances will be about the same for correct matches. This is
because the relatively short distance traveled on the road(s)
between a pair of correct matches will be about the same as the
distance between the measured GPS points. We confirmed this by
looking at the ground truth matched roads, which we detail in
Section 5 (GROUND TRUTH DATA). We computed a histogram
of the absolute values of the differences between the great circle
distances and the route distances from the correct matches, shown
in Figure 5. This histogram fits well to an exponential probability
distribution given by Equation (2): 𝑝(𝑑𝑡) = 1𝛽 𝑒−𝑑𝑡 𝛽� (2)

Here 𝑑𝑡 = �‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 − �𝑥𝑡 ,𝑖∗ − 𝑥𝑡+1,𝑗 ∗�𝑟𝑜𝑢𝑡𝑒 � (3)

where 𝑖∗ and 𝑗∗ indicate the ground truth road segments of the
route that we describe in Section 5. We estimate the value of 𝛽 in
Section 5.2 (Parameter Estimation).

3.3 Optimal Path
With measurement probabilities from Equation (1) and transition
probabilities from Equation (2), we used the Viterbi algorithm to
compute the best path through the HMM lattice. The Viterbi
algorithm uses dynamic programming to quickly find the path
through the lattice that maximizes the product of the measurement
probabilities and transition probabilities. This gave us an

zt

zt+1

r1

r2

r3

xt,1

xt,3

xt+1,2

||xt,1-xt+1,2||route

||xt,3-xt+1,2||route

||z
t-
z t
+
1
|| g
re
at
 c
irc
le

Figure 4: This shows an example of our notation. There

are three road segments, r1, r2, and r3, and two measured

points, zt and zt+1. The first measured point, zt, has

candidate road matches at xt,1 and xt,3 . Each match

candidate results in a route to xt+1,2 , which is a match

candidate for the second measured point, zt+1. These two

routes have their own lengths, as does the great circle

path between the two measured points. Our data shows

that the route distance and great circle distance are closer

together for correct matches than for incorrect matches.

Figure 5: The histogram of �‖𝒛𝒕 − 𝒛𝒕+𝟏‖𝒈𝒓𝒆𝒂𝒕 𝒄𝒊𝒓𝒄𝒍𝒆 −�𝒙𝒕,𝒊 − 𝒙𝒕+𝟏,𝒋�𝒓𝒐𝒖𝒕𝒆� follows an exponential probability
distribution.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2

abs(great circle distance route distance) (meters)

Distance Difference Probability

Data Histogram

Exponential Distribution

339

inference of the correct road segment for each location
measurement.

Having explained our basic algorithm, we can now compare it to
two similar algorithms in the research literature. Hummel [9] used
an HMM for map matching. Her measurement probabilities used
the same Gaussian GPS noise assumption as ours, but she also
added a term for the heading mismatch between the vehicle and
the road. We did not use heading data, mostly because we are
assuming we have no compass data from the vehicle. While
heading can be computed from measured GPS points, this can be
very inaccurate when there is a long interval between GPS
measurements, which is a condition we investigated as part of our
research. Our transition probabilities are different from Hummel’s
in that ours take into account the empirical difference between
great circle distances and route distances, while Hummel uses a
simpler model that only accounts for roads immediately adjacent
to the current match candidate.

Compared to the work of Krumm et al. [12], our main difference
is in the transition probabilities. While we look at route distance
differences, Krumm et al. looked at route time differences. Time
differences are much more sensitive to traffic conditions, so are
likely less reliable than distance differences. They are also
sensitive to the peculiarities of the given route-finding algorithm,
with particular values to assess the time cost of turns and stops at
intersections. Also, in this paper’s algorithm, we test against
ground truth, test against inaccurate and subsampled GPS data,
make our data available for other researchers, and give several
practical implementation details, described in the next section.

4. ALGORITHM PARTICULARS
The HMM formulation described above represents a principled
approach to balancing the effects of measurement noise and
routing behavior. In practice, the algorithm can be made to work
better and faster with some simple enhancements that we
discovered by working with real GPS data.

4.1 Preprocessing
Before the GPS points are used to construct the HMM, we move
through the points in time sequence, removing points that are
within 2𝜎𝑧 of the previous included point. The justification for
this step is that until we see a point that is at least 2𝜎𝑧 away from
its temporal predecessor, our confidence is low that the apparent
movement is due to actual vehicle movement and not noise. This
has the benefit of reducing the number of steps in the HMM for
high sample rate data, which speeds processing. For our ground
truth data described in Section 5, this step eliminated about 38.9%
of the original data.

4.2 HMM Breaks
There are various conditions that induce a break in the HMM
lattice where all the transition probabilities from one time step to
the next are zero. We detail these conditions below, after which
we give a simple method to work around these breaks, effectively
removing unmatchable data.

The conditions that lead to a break are:

� Route Localization. In a pure implementation of the
algorithm, every road in the road network would be
considered as a potential match candidate, and a
complete route would be calculated between every one
of these match candidates. As mentioned in section 3.1,
to avoid an unreasonable amount of computation, we set

to zero the measurement probability of any road
segment more than 200 meters away from the GPS
point. From an implementation perspective, this means
we simply can ignore their existence and not add them
to the HMM. It is possible that there are GPS points in
our data set that have no match candidates within 200
meters, which causes our implementation to have no
match candidates for a particular time step in the HMM.
This situation may arise when the vehicle is travelling
on a road surface or parking structure that is not marked
on the map. It may also arise if the GPS is experiencing
particularly high noise, which we have seen when the
vehicle enters a tunnel or an urban canyon.

� Low Probability Routes. Assuming a connected road
network, it should be possible to find a route between
any two road segments on the map. However, once the

route distance �𝑥𝑡 ,𝑖 − 𝑥𝑡+1,𝑗�𝑟𝑜𝑢𝑡𝑒 becomes much larger

than the great circle distance ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 , the
transition probability 𝑝(𝑑𝑡) corresponding to that route
becomes very small. This can happen when the routes
become circuitous and strange. Rather than continue
seeking for a route that is obviously incorrect, we

terminate the search for a route when �𝑥𝑡 ,𝑖 −𝑥𝑡+1,𝑗‖𝑟𝑜𝑢𝑡 𝑒 becomes greater than ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 by 2000 meters or more, and

assign a probability of zero.

� GPS Outliers. There are two more tests for
reasonableness that we apply to any route calculated as
a transition between HMM states. Since we know we
are tracking ordinary vehicles on public streets, if a
calculated route would require the vehicle to exceed a
speed of 50 m/s (112 miles per hour, 180 kilometers per
hour), or travel in excess of three times the posted speed
limit, we consider the route to be unreasonable, and set
its probability to zero.

In the pure HMM model, which considers all match candidates
and all routes, however unlikely they may be, the Viterbi
algorithm will always be able to find a complete optimal path
through the HMM. However, because of the simplifications
described above, which limit the number of match candidates and
routes that will be considered, it is possible that there is no
complete path through the HMM.

In examining our data, we found that it typically follows a pattern
of long stretches of reasonably easy-to-match location
measurements, interspersed with occasional, short sequences that
are difficult to match, leading to the breaks described above. Our
first solution to this problem was to manually remove the
offending points, which was effective, but tedious. We automated
this process in the following way. When a break is detected
between time step 𝑡 and time step 𝑡 + 1, we remove measured
points 𝑧𝑡 and 𝑧𝑡+1 from the model, and check to see if the break
has been healed. The break is considered healed if the measured
points at 𝑡 − 1 and 𝑡 + 2 lead to a reconnection in the HMM after
rechecking the points with the bulleted conditions above. If the
break is still present, we continue to remove the points on either
side of the break until either the break is healed, or the break is
more than 180 seconds long. If the break exceeds this threshold,
we split the data into separate trips and do map matching on each
one separately. If the original data has a sampling period greater

340

than 180 seconds, we omit this heuristic and do not try to fix these
breaks.

5. GROUND TRUTH DATA
The data for our test route was collected by driving a known,
planned route in a vehicle containing a commercially available
consumer grade GPS device with a logging feature that records
the current latitude and longitude once per second. The device
uses the SiRF Star III GPS chipset and is enabled with WAAS. A
map of the route is shown in Figure 2. This route is about 80
kilometers (50 miles) long, and it took about 2 hours to drive. It
resulted in 7531 time stamped latitude/longitude pairs. This high
fidelity position data was then processed using a tool that applies
the map match algorithm and displays the result graphically so it
can be inspected and corrected if the algorithm has made an error.
The result of this “hand match” constitutes our ground truth data.
The scope of corrections available in the graphical tool is limited
to choosing alternate HMM states or transitions. Note that the
ground truth data is correct inasmuch that it represents the correct
path taken by the vehicle through the road network. The exact
location of the vehicle in the road network corresponding to each
GPS point in the ground truth data is unknowable, and therefore
the point selected as the match to each road, while reasonable,
should not be considered ground truth. Only the path that was
taken by the vehicle is known.

5.1 Degraded Data
We simulate degraded versions of the GPS data by removing
points and adding Gaussian random noise. We simulated sampling
periods of 2, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360,
420, 480, 540, and 600 seconds in addition to the original 1-
second data from our logger. We simulated random Gaussian
noise with standard deviations of 10, 15, 20, 30, 40, 50, 75, and
100 meters. We also included test data with no noise added. Note
that to simulate a particular noise level, we had to account for the
fact that there is already some random noise in the original data.
Fortunately, Gaussian noise is additive in the sense of the
equations below, so we could simulate any amount of additional
noise with knowledge of the original 𝜎𝑧 from the sensor. 𝑋1~𝑁(𝜇1 ,𝜎12) 𝑋2~𝑁(𝜇2,𝜎22) (𝑋1 + 𝑋2)~𝑁(𝜇1 + 𝜇2,𝜎12 + 𝜎22) (4)

In our case, since we assume zero-mean noise, 𝜇1 = 𝜇2 = 0.
5.2 Parameter Estimation
Our HMM needs two probability-related parameters. One is 𝜎𝑧 ,
which is the standard deviation of Gaussian GPS noise. We
estimate this starting with our 𝑧𝑡 measurements. For each of these,
we know the index 𝑖∗of the correctly matched road 𝑟𝑖∗ from our
manually matched ground truth data. Using the notation presented
in Section 3, the point on 𝑟𝑖∗ nearest 𝑧𝑡 is 𝑥𝑡 ,𝑖∗. If we assume this

was the actual location of the vehicle, then �𝑧𝑡 − 𝑥𝑡 ,𝑖∗�𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒
is an estimate of the magnitude of the GPS error. The standard
deviation of these values is our estimate of the GPS noise, 𝜎𝑧 . We
estimated 𝜎𝑧 using the median absolute deviation (MAD), which
is a robust estimator of standard deviation: 𝜎𝑧 = 1.4826 mediant ��𝑧𝑡 − 𝑥𝑡 ,𝑖∗�𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 � (5)

For our test data, this value was 𝜎𝑧 = 4.07 meters, which is a
reasonable value for GPS noise.

The other probability parameter we need is 𝛽 from the
exponential distribution in Equation (2). This describes the
difference between route distances and great circle distances. We
estimated 𝛽 with a robust estimator suggested by Gather and
Schultze [4]: 𝛽 = 1ln(2)mediant ��‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒− �𝑥𝑡 ,𝑖∗ − 𝑥𝑡+1,𝑗 ∗�𝑟𝑜𝑢𝑡𝑒 �� (6)

Note that in Equations (5) and (6) we use 𝑥𝑡 ,𝑖∗ and 𝑥𝑡+1,𝑗 ∗ . The
stared 𝑖∗ and 𝑗∗ indicate the ground truth road segment that we
found by manually matching the measured GPS points.

The parameters 𝜎𝑧 and 𝛽 are the two, basic, adjustable parameters
for our map matching algorithm, and they explicitly represent the
tradeoff between our trust in the location measurements and
candidate routes. A larger value of 𝜎𝑧 , which measures noise in
the location measurements, represents less trust in the location
measurements. A larger value of 𝛽, which measures the difference
between great circle distances and route distances, represents
more tolerance of non-direct routes. In our work, we estimate
these two parameters directly from the data. An alternative would
be to find the values of 𝜎𝑧 and 𝛽 that optimize performance of the
algorithm. We leave this for future work.

5.3 Public Data Availability
Our GPS data, ground truth, and relevant road network are
available on a public Web page1. We made this data available to
facilitate the fair comparison of map matching algorithms. We
believe this is the only public data set in existence for map
matching.

6. RESULTS
We ran our algorithm on the test route shown in Figure 2. This 50-
mile route was sampled at 1 Hz, giving 7531 time stamped
latitude/longitude pairs. After removing points as described in
Section 4.1 (Preprocessing), there were 4605 remaining. The
result of running our algorithm is a road segment match for each
point except for about 100 that were discarded due to breaks, as
described in Section 4.2 (HMM Breaks).

We quantified the accuracy of the map matching by comparing
the ground truth route to the route determined by our algorithm. In

1 http://research.microsoft.com/en-us/um/people/jckrumm/MapMatchingData/data.htm

d+

d-

d0= length of correct route

(d-+d+)/d0 = reported error

d-= length erroneously subtracted

d+= length erroneously added

correct route matched route

Figure 6: This illustrates how we measured the error

between the correct route and the route from map

matching.

341

particular, we sum the lengths of incorrect road added to
and subtracted from the correct route. We divide this sum
by the length of the correct route to compute the fraction
of incorrect route, which is the error value we report. This
is shown in Figure 6. We chose this way to quantify
accuracy over these other candidates:

� Locations on Road. This accuracy measure
says that the matched point should be in the
same location as the actual vehicle. Since we
measured the vehicle’s location with inherently
noisy GPS, we do not know its actual location.

� Road Segment. This accuracy measure says
that the matched point should be on the same
road segment as the actual vehicle. While the
correct road segment is easier to guess than the
correct location, it is still ambiguous at
intersections, where a noisy measurement could
match to any of the roads converging at that
point.

Our map matching algorithm gave exactly the same route
as our ground truth in our test, which means it worked
perfectly at a one second sampling period and with GPS
accuracy location measurements.

We are interested in the performance of our algorithm
with degraded input data, as described in Section 5.1 (Degraded
Data). We degraded the data by subsampling and adding noise.
Subsampling is interesting because it shows how robust our
algorithm would be if the location sensor were to collect data at a
slower rate. If the algorithm works well at lower sampling rates,
this can lead to savings in bandwidth and storage for institutions
that collect data with the intent to match it to roads. Figure 7
shows how our results degrade with subsampling. We note that
the error is only 0.11% even when the sampling period grows to
30 seconds.

Added noise is interesting, because it gives an idea of how the
algorithm would perform if the location sensor were less accurate,
such as multilateration from WiFi access points or cell towers.
The plot in Figure 8 shows how well our algorithm performs with
added noise at different sampling periods. Surprisingly, it is more
sensitive to noise with a 1 second sampling period than at longer
periods. This is likely because frequent, noisy points tend to pull
the route rather violently in different directions. At longer
sampling periods, the algorithm shows robustness to measurement
noise as high as 50 meters standard deviation, which is roughly

the accuracy of WiFi-based multilateration.

To our knowledge, these are the first reported tests of these kind
for a map matching algorithm. We believe tests like this are
important to assess when the algorithm breaks down, which in
turn guides choices for how to sense the data.

7. CONCLUSIONS
As map matching becomes increasingly important for probing
traffic and driving behavior, it is important to have principled,
well-characterized map matching algorithms. We have presented a
new algorithm based on the HMM that explicitly accounts for
measurement noise and the feasible routes through the road
network. We tested the algorithm on an 80-kilometer (50 mile)
drive. Compared to manually matching the data, our algorithm
performed perfectly. We also tested how the accuracy of our
algorithm degrades when the location sampling rate decreases and
when the measurement noise increases. Significantly, we found
that even with 30 seconds between measured locations, the
accuracy of our algorithm was barely degraded. We believe this is
the first reported test of this kind for a map matching algorithm.
Finally, we made our test data, ground truth data, and road
network publicly available for other researchers to develop, test,
and compare their own map matching algorithms.

REFERENCES
1. Agapie, E., et al., Seeing Our Signals: Combining Location

Traces and Web-Based Models for Personal Discovery, in
International Conference On Mobile Systems, Applications
And Services (MobiSys 2009). 2008: Napa Valley, California,
USA. p. 6-10.

2. Alt, H., et al., Matching Planar Maps. Journal of Algorithms,
2003. 49: p. 262–283.

3. Brakatsoulas, S., et al., On Map-Matching Vehicle Tracking
Data, in 31st International Conference on Very Large
Databases (VLDB 2005). 2005: Trondheim, Norway p. 853-
864.

Figure 8: This shows how well our map matching algorithm performs

with different sampling periods and noise on the location

measurements. A lower value is better.

0

0.2

0.4

0.6

0.8

1

1 2 5 1
0

2
0

3
0

4
5

6
0

9
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

Ro
ut

e
M

is
m

at
ch

 F
ra

ct
io

n

Sampling Period (seconds)

Error vs. Sampling Period

Figure 7: Our algorithm's performance is still quite good

when the GPS samples are 30 seconds apart.

342

4. Gather, U. and V. Schultze, Robust Estimation of Scale of an
Exponential Distribution. Statistica Neerlandica, 2001. 53(3):
p. 327-341.

5. Greenfeld, J.S., Matching GPS Observations to Locations on a
Digital Map, in 81th Annual Meeting of the Transportation
Research Board. 2002: Washington, DC, USA.

6. http://www.bing.com/maps/. [cited 2009].

7. http://www.dash.net/. [cited 2009].

8. http://www.inrix.com/. [cited 2009].

9. Hummel, B., Map Matching for Vehicle Guidance, in Dynamic
and Mobile GIS: Investigating Space and Time, J. Drummond
and R. Billen, Editors. 2006, CRC Press: Florida.

10. Kim, S. and J.-H. Kim, Adaptive Fuzzy-Network-Based C-
Measure Map-Matching Algorithm for Car Navigation
System. IEEE Transactions on Industrial Electronics, 2001.
48(2): p. 432-441.

11. Krumm, J., A Markov Model for Driver Turn Prediction, in
Society of Automotive Engineers (SAE) 2008 World
Congress. 2008: Detroit, Michigan, USA.

12. Krumm, J., J. Letchner, and E. Horvitz, Map Matching with
Travel Time Constraints, in Society of Automotive Engineers
(SAE) 2007 World Congress. 2007: Detroit, Michigan, USA.

13. Lamb, P. and S. Thiebaux, Avoiding Explicit Map-Matching
in Vehicle Location, in 6th World Conference on Intelligent
Transportation Systems (ITS-99). 1999: Toronto, Canada.

14. Patterson, D.J., et al., Inferring High-Level Behavior from
Low-Level Sensors, in Fifth Internation Conference on
Ubiquitous Computing (UbiComp 2003). 2003, Springer. p.
73-89.

15. VanDiggelen, F., GNSS Accuracy: Lies, Damn Lies, and
Statistics, in GPS World. 2007. p. 26-32.

16. White, C.E., D. Bernstein, and A.L. Kornhauser, Some map
matching algorithms for personal navigation assitants.
Transportation Reserach Part C: Emerging Technologies,
2000. 8(1-6): p. 91-108.

343

