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ABSTRACT 

The problem of matching measured latitude/longitude points to 
roads is becoming increasingly important. This paper describes a 
novel, principled map matching algorithm that uses a Hidden 
Markov Model (HMM) to find the most likely road route 
represented by a time-stamped sequence of latitude/longitude 
pairs. The HMM elegantly accounts for measurement noise and 
the layout of the road network. We test our algorithm on ground 
truth data collected from a GPS receiver in a vehicle. Our test 
shows how the algorithm breaks down as the sampling rate of the 
GPS is reduced. We also test the effect of increasing amounts of 
additional measurement noise in order to assess how well our 
algorithm could deal with the inaccuracies of other location 
measurement systems, such as those based on WiFi and cell tower 
multilateration. We provide our GPS data and road network 
representation as a standard test set for other researchers to use in 
their map matching work. 

Categories and Subject Descriptors 
I.5.1 [Computing Methodologies]: Pattern Recognition, -- 
Models (Statistical)  

General Terms 
Algorithms, Measurement. 

Keywords 
Map matching, road map, location, driving routes. 

1. INTRODUCTION 
Map matching is the procedure for determining which road a 
vehicle is on using data from sensors. The sensors almost always 
include GPS because of its nearly ubiquitous availability. Map 
matching has been important for many years on in-vehicle 
navigation systems which must determine which road a vehicle is 
traversing in real time. More recently, map matching is becoming 
important as vehicles are used as traffic probes for measuring road 
speeds and building statistical models of traffic delays. These 
models, in turn, can be used to find time-optimal driving routes 
that avoid traffic jams. Data from such traffic probes has been 

used in the commercial routing engines of Microsoft [6], Dash [7], 
and Inrix [8]. Map matching is also growing in importance for 
research in route prediction [11], interpreting GPS traces [1], and 
activity recognition [14]. 

This paper makes three contributions to the research in map 
matching. First, it presents a new map matching algorithm based 
on the Hidden Markov Model (HMM). While the HMM has been 
used before in map matching, e.g. by Hummel [9], our 
formulation is novel in some important respects, detailed 
subsequently. We place particular emphasis on maintaining a 
principled approach to the problem while simultaneously making 
the algorithm robust to location data that is both geometrically 
noisy and temporally sparse. Our second contribution is a test of 
our map matching algorithm where we vary the levels of noise 
and sparseness of the sensed location data over a 50 mile urban 
drive. Varying the amount of noise lets us intelligently speculate 
about how map matching would work with less accurate location 
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Figure 1: Map matching consists of matching measured 

locations (black dots) to the road network in order to 

infer the vehicle’s actual path (light gray curve). Merely 
matching to the nearest road is prone to mistakes. 
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sensors, like multilateration from cell towers and WiFi access 
points. Varying the sampling rate shows the minimum amount of 
data required for good map matching. This is important for 
practitioners who must decide on how often their GPS receivers 
should sample location data, which affects requirements for 
memory and bandwidth. Our third contribution is that we make 
our GPS data, ground truth, and road network representation 
publicly available for other researchers to use in their map 
matching work. We believe this is the first time that such a data 
set has been made publicly available. Until now, all the work on 
map matching used private data sets for testing, making it 
impossible to objectively compare results from different 
algorithms. 

2. THE MAP MATCHING PROBLEM 
The map matching problem is illustrated in Figure 1. There are 
three measured locations in sequence shown as black dots. The 
problem is to find which roads the vehicle was on. The most 
obvious algorithm is to simply match each point with the nearest 
road. Due to measurement noise, however, this algorithm is prone 
to error. In the illustration, the actual path is obvious, but the 2nd 
and 3rd point would be mismatched if they were associated with 
the nearest road. Even using modern GPS receivers, we have 
observed gross outliers and extended sequences of of erroneous 
points, likely due to urban canyons and other terrestrial features 
that affect GPS signals. Because of problems like this, modern 
map matching takes into account sequences of points before 
deciding on a match. In the example, there is really only one 
reasonable path on the road network that could have produced the 

observed measurements. 

In our work, like most other map matching work, the raw input 
data consists of vehicle locations measured by GPS, as shown in 
Figure 2. Each measured point consists of a time-stamped 
latitude/longitude pair. The roads are also represented in the 
conventional way, as a graph of nodes and edges. The nodes are at 
intersections, dead ends, and road name changes, and the edges 
represent road segments between the nodes. Some edges are 
directional to indicate one-way roads. Each node has an associated 
latitude/longitude to indicate its location, and each edge has a 
polyline of latitude/longitude pairs to represent its geometry. 

Since point-by-point, nearest road matching often fails, 
researchers have developed methods that match several points at 
once. One way to do this is to create a (possibly smoothed) curve 
from the location measurements and attempt to find matching 
roads with similar geometry. As an example, White et al. [16] 
present four algorithms, starting with the simple, nearest match 
scheme. Their second algorithm adds orientation information to 
the nearest match approach, comparing the measured heading to 
the angle of the road. Their third algorithm evolves the second 
algorithm to include connectivity constraints, and their fourth 
algorithm does curve matching. They were surprised to discover 
that their most sophisticated algorithm, the fourth one, was 
outperformed by the simpler second algorithm when tested on a 
total of about 17 km of driving data. Another purely geometric 
approach comes from Greenfeld [5], whose algorithm builds up a 
topologically feasible path through the road network. Matches are 
determined by a similarity measure that weights errors based on 
distance and orientation. The algorithm was found to perform 

 

Figure 2: This is the GPS data we used for testing in the Seattle, Washington, USA area. The trip starts in the upper right near 

Marymoor Park. It consists of 7531 GPS points sampled at 1 Hz, and it covers about 80 kilometers (50 miles) over about 2 

hours. 
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flawlessly, even though the GPS data was collected while 
Selective Availability was turned on, leading to noisier location 
measurements than are available now. Kim and Kim [10] look at a 
way to measure how much each GPS point belongs to any given 
road, taking into account its distance from the road, the shape of 
the road segment, and the continuity of the path. The measure is 
used in a fuzzy matching scheme with learned parameters to 
optimize performance. One of the most sophisticated geometric 
matching algorithms is from Brakatsoulas et al. [3]. Their 
algorithm uses variations of the Fréchet distance to match the 
curve of the GPS trace to candidate paths in the road network. 
They tested their algorithms on 45 routes in Athens, Greece. Alt et 
al. [2]give a generalization of the Fréchet for matching curves. 

One potential problem with purely geometric approaches is their 
sensitivity to measurement noise and sampling rate. Clearly, 
connecting the dots of a set of noisy measurements sampled at a 
slow rate would not match well with the road geometry, especially 
direction information. Hidden Markov Models (HMM) solve this 
problem by explicitly modeling the connectivity of the roads and 
considering many different path hypotheses simultaneously. One 
of the earliest applications of the HMM to map matching is from 
Lamb and Thiébaux [13] who use a combination of a Kalman 
filter and HMM. Several Kalman filters track the vehicle along 
different hypothesized paths, and the HMM chooses between 
them. Other work from Hummel [9] and Krumm et al. [12] use an 
HMM to balance the measurement noise and path probabilities. 
We will compare and contrast this work with ours subsequently 
after we explain the details of our algorithm. 

3. HMM MAP MATCHING 
As illustrated in Figure 1, the key problem in map matching is the 
tradeoff between the roads suggested by the location data and the 
feasibility of the path. While the location data is important as the 
sole indicator of the path, naively matching each noisy point to the 
nearest road will result in extremely unreasonable paths involving 
strange U-turns, inefficient looping, and overall bizarre driving 
behavior. To avoid unreasonable paths, we can introduce 
knowledge of the connectivity of the road network to help pull the 
solution away from clearly bizarre behavior. The Hidden Markov 

Model is an algorithm that can smoothly integrate noisy data and 
path constraints in a principled way. 

The HMM models processes that involve a path through many 
possible states, where some state transitions are more likely than 
others and where the state measurements are uncertain. In speech 
understanding, HMMs are used to model the time sequence of 
spoken phonemes. The model fits well, because some phoneme-
to-phoneme transitions are more likely than others, and because 
classifying each individual phoneme from microphone 
measurements is not 100% accurate. 

In our map matching algorithm, the states of the HMM are the 
individual road segments, and the state measurements are the 
noisy vehicle location measurements. The goal is to match each 
location measurement with the proper road segment. This state 
representation naturally fits the HMM, because transitions 
between road segments are governed by the connectivity of the 
road network. 

More formally, the discrete states of the HMM are the 𝑁𝑟  road 
segments, 𝑟𝑖  , 𝑖 = 1…𝑁𝑟 . In our representation, distinct road 
segments run between intersections. For each 2D 
latitude/longitude location measurement 𝑧𝑡 , the goal is to find the 
road segment that the vehicle was actually on. Figure 3 shows an 
illustration of the HMM for the map matching problem illustrated 
in Figure 1. Here, each vertical slice represents a point in time 
corresponding to a location measurement 𝑧𝑡  for the three times 𝑡 = 1, 2, 3. At 𝑡 = 1 there are three roads near 𝑧1, shown as three 
black dots in the first column. There is a feasible driving path, 
possibly very circuitous, from each of the nearest points on these 
three roads to points on the two roads near 𝑧2 at 𝑡 = 2, and 
similarly for 𝑡 = 3. The goal of our algorithm is to find the most 
probable path through the lattice by picking one road segment for 
each 𝑡. This path should be sensitive to both the measurements 
and the reasonability of the paths between the road segments. This 
tradeoff is made based on the probabilities governing the 
measurements and probabilities governing the transitions between 
the road choices at each time, which we describe next. 

We note that our algorithm, as presented, solves map matching as 
a batch problem, after all the data has been collected. We 
speculate that a sliding window version of our algorithm would 
work well for real time map matching, say, on a vehicle’s 
navigation system. 

3.1 Measurement Probabilities 
Measurement probabilities (also called emission probabilities) 
give the likelihood that a measurement resulted from a given state, 
based on that measurement alone. For map matching, given a 
location measurement 𝑧𝑡 , there is an emission probability for each 
road segment 𝑟𝑖 , 𝑝(𝑧𝑡 |𝑟𝑖). This gives the likelihood that the 
measurement 𝑧𝑡  would be observed if the vehicle were actually on 
road segment 𝑟𝑖 . Our intuition is that road segments farther from 
the measurement are less likely to have produced the 
measurement. For a given 𝑧𝑡  and 𝑟𝑖 , we denote the closest point 
on the road segment as 𝑥𝑡 ,𝑖 . An example of this notation is shown 

in Figure 4. The great circle distance on the surface of the earth 

between the measured point and the candidate match is �𝑧𝑡 −𝑥𝑡 ,𝑖‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 . For the correct match, this difference is due to 

GPS noise. Based on previous work [15], we can model GPS 
noise as zero-mean Gaussian, meaning that 
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Figure 3: For each measurement zt, the HMM considers 

all the road segments ri as well as all the transitions 

between the road segments. 
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𝑝(𝑧𝑡 |𝑟𝑖) = 1√2𝜋𝜎𝑧 𝑒−0.5��𝑧𝑡−𝑥𝑡 ,𝑖�𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒𝜎𝑧 �2
 

( 1 ) 

Here 𝜎𝑧  is the standard deviation of GPS measurements, which we 
estimate in Section 5.2 (Parameter Estimation). While we know 
that GPS errors are not strictly Gaussian, this assumption proved 
effective in our map matching algorithm. 

Another required probability is the initial state probabilities 𝜋𝑖 ,  𝑖 = 1…𝑁𝑟 , which in the case of map matching gives the 
probability of the vehicle’s first road over all the roads at the 
beginning of the drive. While some HMM formulations assign a 
uniform distribution to 𝜋𝑖 , assuming no measurements have been 
taken, we start at the first measurement and have 𝜋𝑖 = 𝑝(𝑧1|𝑟𝑖), 
i.e. using the first measurement 𝑧1. 
In practice, we do not consider matching to road segments that are 
quite distant from the measurement. In our algorithm, we set to 
zero any measurement probability from a road segment that is 
more than 200 meters away from 𝑧𝑡 . This helps reduce the number 
of candidate matches that our algorithm has to consider, 
decreasing its running time. This is illustrated in Figure 3 with the 
unfilled circles representing road segments that are too far away to 
consider. 

3.2 Transition Probabilities 
Each measurement 𝑧𝑡  has a list of possible road matches, as does 
the next measurement 𝑧𝑡+1. Transition probabilities give the 
probability of a vehicle moving between the candidate road 
matches at these two times. Intuitively, some transitions will be 
very unlikely, such as those requiring a complicated set of 
maneuvers. Practically, we favor transitions whose driving 
distance is about the same as the great circle distance between the 
measurements. 

Specifically, for a measurement 𝑧𝑡  and candidate road segment 𝑟𝑖 , 
the latitude/longitude point on the road segment nearest the 

measurement is 𝑥𝑡 ,𝑖 . For the next measurement 𝑧𝑡+1 and candidate 
road segment 𝑟𝑗 , the corresponding point is 𝑥𝑡+1,𝑗 . We compute 

the driving distance between these two points using a 
conventional route planner configured to give the route with the 
shortest distance. We note that the correct pair of matched points 
typically results in a very short route, because the matched points 
on the road come from closely spaced GPS points. We refer to 

this driving distance as the “route distance”, notated as �𝑥𝑡 ,𝑖 −𝑥𝑡+1,𝑗‖𝑟𝑜𝑢𝑡𝑒 . We compare the route distance to the great circle 

distance between the measured points, ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 . 
Figure 4 shows an example of these distances. 

Our intuition, confirmed by experiment, is that these two 
distances will be about the same for correct matches. This is 
because the relatively short distance traveled on the road(s) 
between a pair of correct matches will be about the same as the 
distance between the measured GPS points. We confirmed this by 
looking at the ground truth matched roads, which we detail in 
Section 5 (GROUND TRUTH DATA). We computed a histogram 
of the absolute values of the differences between the great circle 
distances and the route distances from the correct matches, shown 
in Figure 5. This histogram fits well to an exponential probability 
distribution given by Equation ( 2 ): 𝑝(𝑑𝑡) = 1𝛽 𝑒−𝑑𝑡 𝛽�  ( 2 ) 

Here 𝑑𝑡 = �‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 − �𝑥𝑡 ,𝑖∗ − 𝑥𝑡+1,𝑗 ∗�𝑟𝑜𝑢𝑡𝑒 � ( 3 ) 

where 𝑖∗ and 𝑗∗ indicate the ground truth road segments of the 
route that we describe in Section 5. We estimate the value of 𝛽 in 
Section 5.2 (Parameter Estimation). 

 

3.3 Optimal Path 
With measurement probabilities from Equation ( 1 ) and transition 
probabilities from Equation ( 2 ), we used the Viterbi algorithm to 
compute the best path through the HMM lattice. The Viterbi 
algorithm uses dynamic programming to quickly find the path 
through the lattice that maximizes the product of the measurement 
probabilities and transition probabilities. This gave us an 
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Figure 4: This shows an example of our notation. There 

are three road segments, r1, r2, and r3, and two measured 

points, zt and zt+1. The first measured point, zt, has 

candidate road matches at xt,1 and xt,3 .  Each match 

candidate results in a route to xt+1,2 , which is a match 

candidate for the second measured point, zt+1. These two 

routes have their own lengths, as does the great circle 

path between the two measured points. Our data shows 

that the route distance and great circle distance are closer 

together for correct matches than for incorrect matches. 

 

Figure 5: The histogram of �‖𝒛𝒕 − 𝒛𝒕+𝟏‖𝒈𝒓𝒆𝒂𝒕 𝒄𝒊𝒓𝒄𝒍𝒆 −�𝒙𝒕,𝒊 − 𝒙𝒕+𝟏,𝒋�𝒓𝒐𝒖𝒕𝒆� follows an exponential probability 
distribution. 
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inference of the correct road segment for each location 
measurement. 

Having explained our basic algorithm, we can now compare it to 
two similar algorithms in the research literature. Hummel [9] used 
an HMM for map matching. Her measurement probabilities used 
the same Gaussian GPS noise assumption as ours, but she also 
added a term for the heading mismatch between the vehicle and 
the road. We did not use heading data, mostly because we are 
assuming we have no compass data from the vehicle. While 
heading can be computed from measured GPS points, this can be 
very inaccurate when there is a long interval between GPS 
measurements, which is a condition we investigated as part of our 
research. Our transition probabilities are different from Hummel’s 
in that ours take into account the empirical difference between 
great circle distances and route distances, while Hummel uses a 
simpler model that only accounts for roads immediately adjacent 
to the current match candidate. 

Compared to the work of Krumm et al. [12], our main difference 
is in the transition probabilities. While we look at route distance 
differences, Krumm et al. looked at route time differences. Time 
differences are much more sensitive to traffic conditions, so are 
likely less reliable than distance differences. They are also 
sensitive to the peculiarities of the given route-finding algorithm, 
with particular values to assess the time cost of turns and stops at 
intersections. Also, in this paper’s algorithm, we test against 
ground truth, test against inaccurate and subsampled GPS data, 
make our data available for other researchers, and give several 
practical implementation details, described in the next section. 

4. ALGORITHM PARTICULARS 
The HMM formulation described above represents a principled 
approach to balancing the effects of measurement noise and 
routing behavior. In practice, the algorithm can be made to work 
better and faster with some simple enhancements that we 
discovered by working with real GPS data. 

4.1 Preprocessing 
Before the GPS points are used to construct the HMM, we move 
through the points in time sequence, removing points that are 
within 2𝜎𝑧  of the previous included point. The justification for 
this step is that until we see a point that is at least 2𝜎𝑧  away from 
its temporal predecessor, our confidence is low that the apparent 
movement is due to actual vehicle movement and not noise. This 
has the benefit of reducing the number of steps in the HMM for 
high sample rate data, which speeds processing. For our ground 
truth data described in Section 5, this step eliminated about 38.9% 
of the original data. 

4.2 HMM Breaks 
There are various conditions that induce a break in the HMM 
lattice where all the transition probabilities from one time step to 
the next are zero. We detail these conditions below, after which 
we give a simple method to work around these breaks, effectively 
removing unmatchable data. 

The conditions that lead to a break are: 

� Route Localization. In a pure implementation of the 
algorithm, every road in the road network would be 
considered as a potential match candidate, and a 
complete route would be calculated between every one 
of these match candidates. As mentioned in section 3.1, 
to avoid an unreasonable amount of computation, we set 

to zero the measurement probability of any road 
segment more than 200 meters away from the GPS 
point. From an implementation perspective, this means 
we simply can ignore their existence and not add them 
to the HMM. It is possible that there are GPS points in 
our data set that have no match candidates within 200 
meters, which causes our implementation to have no 
match candidates for a particular time step in the HMM. 
This situation may arise when the vehicle is travelling 
on a road surface or parking structure that is not marked 
on the map. It may also arise if the GPS is experiencing 
particularly high noise, which we have seen when the 
vehicle enters a tunnel or an urban canyon.  

� Low Probability Routes. Assuming a connected road 
network, it should be possible to find a route between 
any two road segments on the map. However, once the 

route distance �𝑥𝑡 ,𝑖 − 𝑥𝑡+1,𝑗�𝑟𝑜𝑢𝑡𝑒  becomes much larger 

than the great circle distance ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 , the 
transition probability 𝑝(𝑑𝑡) corresponding to that route 
becomes very small. This can happen when the routes 
become circuitous and strange. Rather than continue 
seeking for a route that is obviously incorrect, we 

terminate the search for a route when �𝑥𝑡 ,𝑖 −𝑥𝑡+1,𝑗‖𝑟𝑜𝑢𝑡 𝑒  becomes greater than ‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒  by 2000 meters or more, and 

assign a probability of zero. 

� GPS Outliers. There are two more tests for 
reasonableness that we apply to any route calculated as 
a transition between HMM states. Since we know we 
are tracking ordinary vehicles on public streets, if a 
calculated route would require the vehicle to exceed a 
speed of 50 m/s (112 miles per hour, 180 kilometers per 
hour), or travel in excess of three times the posted speed 
limit, we consider the route to be unreasonable, and set 
its probability to zero. 

In the pure HMM model, which considers all match candidates 
and all routes, however unlikely they may be, the Viterbi 
algorithm will always be able to find a complete optimal path 
through the HMM. However, because of the simplifications 
described above, which limit the number of match candidates and 
routes that will be considered, it is possible that there is no 
complete path through the HMM. 

In examining our data, we found that it typically follows a pattern 
of long stretches of reasonably easy-to-match location 
measurements, interspersed with occasional, short sequences that 
are difficult to match, leading to the breaks described above. Our 
first solution to this problem was to manually remove the 
offending points, which was effective, but tedious. We automated 
this process in the following way. When a break is detected 
between time step 𝑡 and time step 𝑡 + 1, we remove measured 
points 𝑧𝑡  and 𝑧𝑡+1 from the model, and check to see if the break 
has been healed. The break is considered healed if the measured 
points at 𝑡 − 1 and 𝑡 + 2 lead to a reconnection in the HMM after 
rechecking the points with the bulleted conditions above. If the 
break is still present, we continue to remove the points on either 
side of the break until either the break is healed, or the break is 
more than 180 seconds long. If the break exceeds this threshold, 
we split the data into separate trips and do map matching on each 
one separately. If the original data has a sampling period greater 
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than 180 seconds, we omit this heuristic and do not try to fix these 
breaks. 

5. GROUND TRUTH DATA 
The data for our test route was collected by driving a known, 
planned route in a vehicle containing a commercially available 
consumer grade GPS device with a logging feature that records 
the current latitude and longitude once per second. The device 
uses the SiRF Star III GPS chipset and is enabled with WAAS. A 
map of the route is shown in Figure 2. This route is about 80 
kilometers (50 miles) long, and it took about 2 hours to drive. It 
resulted in 7531 time stamped latitude/longitude pairs. This high 
fidelity position data was then processed using a tool that applies 
the map match algorithm and displays the result graphically so it 
can be inspected and corrected if the algorithm has made an error. 
The result of this “hand match” constitutes our ground truth data. 
The scope of corrections available in the graphical tool is limited 
to choosing alternate HMM states or transitions. Note that the 
ground truth data is correct inasmuch that it represents the correct 
path taken by the vehicle through the road network. The exact 
location of the vehicle in the road network corresponding to each 
GPS point in the ground truth data is unknowable, and therefore 
the point selected as the match to each road, while reasonable, 
should not be considered ground truth. Only the path that was 
taken by the vehicle is known. 

5.1 Degraded Data 
We simulate degraded versions of the GPS data by removing 
points and adding Gaussian random noise. We simulated sampling 
periods of 2, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360, 
420, 480, 540,  and 600 seconds in addition to the original 1-
second data from our logger. We simulated random Gaussian 
noise with standard deviations of 10, 15, 20, 30, 40, 50, 75, and 
100 meters. We also included test data with no noise added. Note 
that to simulate a particular noise level, we had to account for the 
fact that there is already some random noise in the original data. 
Fortunately, Gaussian noise is additive in the sense of the 
equations below, so we could simulate any amount of additional 
noise with knowledge of the original 𝜎𝑧  from the sensor. 𝑋1~𝑁(𝜇1 ,𝜎12) 𝑋2~𝑁(𝜇2,𝜎22) (𝑋1 + 𝑋2)~𝑁(𝜇1 + 𝜇2,𝜎12 + 𝜎22) ( 4 ) 

In our case, since we assume zero-mean noise, 𝜇1 = 𝜇2 = 0. 
5.2 Parameter Estimation 
Our HMM needs two probability-related parameters. One is 𝜎𝑧 , 
which is the standard deviation of Gaussian GPS noise. We 
estimate this starting with our 𝑧𝑡  measurements. For each of these, 
we know the index 𝑖∗of the correctly matched road 𝑟𝑖∗ from our 
manually matched ground truth data. Using the notation presented 
in Section 3, the point on 𝑟𝑖∗ nearest 𝑧𝑡  is 𝑥𝑡 ,𝑖∗. If we assume this 

was the actual location of the vehicle, then �𝑧𝑡 − 𝑥𝑡 ,𝑖∗�𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒  
is an estimate of the magnitude of the GPS error. The standard 
deviation of these values is our estimate of the GPS noise, 𝜎𝑧 . We 
estimated 𝜎𝑧  using the median absolute deviation (MAD), which 
is a robust estimator of standard deviation: 𝜎𝑧 = 1.4826 mediant ��𝑧𝑡 − 𝑥𝑡 ,𝑖∗�𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 � ( 5 ) 

For our test data, this value was 𝜎𝑧 = 4.07 meters, which is a 
reasonable value for GPS noise. 

The other probability parameter we need is 𝛽 from the 
exponential distribution in Equation ( 2 ). This describes the 
difference between route distances and great circle distances. We 
estimated 𝛽 with a robust estimator suggested by Gather and 
Schultze [4]: 𝛽 = 1ln(2)mediant ��‖𝑧𝑡 − 𝑧𝑡+1‖𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒− �𝑥𝑡 ,𝑖∗ − 𝑥𝑡+1,𝑗 ∗�𝑟𝑜𝑢𝑡𝑒 �� ( 6 ) 

 

Note that in Equations ( 5 ) and ( 6 ) we use 𝑥𝑡 ,𝑖∗ and 𝑥𝑡+1,𝑗 ∗ . The 
stared 𝑖∗ and 𝑗∗ indicate the ground truth road segment that we 
found by manually matching the measured GPS points. 

The parameters 𝜎𝑧  and 𝛽 are the two, basic, adjustable parameters 
for our map matching algorithm, and they explicitly represent the 
tradeoff between our trust in the location measurements and 
candidate routes. A larger value of 𝜎𝑧 , which measures noise in 
the location measurements, represents less trust in the location 
measurements. A larger value of 𝛽, which measures the difference 
between great circle distances and route distances, represents 
more tolerance of non-direct routes. In our work, we estimate 
these two parameters directly from the data. An alternative would 
be to find the values of 𝜎𝑧  and 𝛽 that optimize performance of the 
algorithm. We leave this for future work. 

5.3 Public Data Availability 
Our GPS data, ground truth, and relevant road network are 
available on a public Web page1. We made this data available to 
facilitate the fair comparison of map matching algorithms. We 
believe this is the only public data set in existence for map 
matching. 

6. RESULTS 
We ran our algorithm on the test route shown in Figure 2. This 50-
mile route was sampled at 1 Hz, giving 7531 time stamped 
latitude/longitude pairs. After removing points as described in 
Section 4.1 (Preprocessing), there were 4605 remaining. The 
result of running our algorithm is a road segment match for each 
point except for about 100 that were discarded due to breaks, as 
described in Section 4.2 (HMM Breaks). 

We quantified the accuracy of the map matching by comparing 
the ground truth route to the route determined by our algorithm. In 

                                                                 
1 http://research.microsoft.com/en-us/um/people/jckrumm/MapMatchingData/data.htm 

d+

d-

d0= length of correct route

(d-+d+)/d0 = reported error

d-= length erroneously subtracted

d+= length erroneously added

correct route matched route

 

Figure 6: This illustrates how we measured the error 

between the correct route and the route from map 

matching. 
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particular, we sum the lengths of incorrect road added to 
and subtracted from the correct route. We divide this sum 
by the length of the correct route to compute the fraction 
of incorrect route, which is the error value we report. This 
is shown in Figure 6. We chose this way to quantify 
accuracy over these other candidates: 

� Locations on Road. This accuracy measure 
says that the matched point should be in the 
same location as the actual vehicle. Since we 
measured the vehicle’s location with inherently 
noisy GPS, we do not know its actual location. 

� Road Segment. This accuracy measure says 
that the matched point should be on the same 
road segment as the actual vehicle. While the 
correct road segment is easier to guess than the 
correct location, it is still ambiguous at 
intersections, where a noisy measurement could 
match to any of the roads converging at that 
point. 

Our map matching algorithm gave exactly the same route 
as our ground truth in our test, which means it worked 
perfectly at a one second sampling period and with GPS 
accuracy location measurements. 

We are interested in the performance of our algorithm 
with degraded input data, as described in Section 5.1 (Degraded 
Data). We degraded the data by subsampling and adding noise. 
Subsampling is interesting because it shows how robust our 
algorithm would be if the location sensor were to collect data at a 
slower rate. If the algorithm works well at lower sampling rates, 
this can lead to savings in bandwidth and storage for institutions 
that collect data with the intent to match it to roads. Figure 7 
shows how our results degrade with subsampling. We note that 
the error is only 0.11% even when the sampling period grows to 
30 seconds. 

Added noise is interesting, because it gives an idea of how the 
algorithm would perform if the location sensor were less accurate, 
such as multilateration from WiFi access points or cell towers. 
The plot in Figure 8 shows how well our algorithm performs with 
added noise at different sampling periods. Surprisingly, it is more 
sensitive to noise with a 1 second sampling period than at longer 
periods. This is likely because frequent, noisy points tend to pull 
the route rather violently in different directions. At longer 
sampling periods, the algorithm shows robustness to measurement 
noise as high as 50 meters standard deviation, which is roughly 

the accuracy of WiFi-based multilateration. 

To our knowledge, these are the first reported tests of these kind 
for a map matching algorithm. We believe tests like this are 
important to assess when the algorithm breaks down, which in 
turn guides choices for how to sense the data. 

7. CONCLUSIONS 
As map matching becomes increasingly important for probing 
traffic and driving behavior, it is important to have principled, 
well-characterized map matching algorithms. We have presented a 
new algorithm based on the HMM that explicitly accounts for 
measurement noise and the feasible routes through the road 
network. We tested the algorithm on an 80-kilometer (50 mile) 
drive. Compared to manually matching the data, our algorithm 
performed perfectly. We also tested how the accuracy of our 
algorithm degrades when the location sampling rate decreases and 
when the measurement noise increases. Significantly, we found 
that even with 30 seconds between measured locations, the 
accuracy of our algorithm was barely degraded. We believe this is 
the first reported test of this kind for a map matching algorithm. 
Finally, we made our test data, ground truth data, and road 
network publicly available for other researchers to develop, test, 
and compare their own map matching algorithms. 
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