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Hidden Markov Model for Dynamic Obstacle 

Avoidance of Mobile Robot Navigation 

Qiuming Zhu 

Abstract-Models and control strategies for dynamic obstacle avoid
ance in visual guidance of mobile robot are presented. Characteristics 
that distinguish the visual computation and motion-control requirements 
in dynamic environments from that in static environments are discussed. 
Objectives of the vision and motion planning are formulated as: 1) 
finding a collision-free trajectory that takes account of any possible 
motions of obstacles in the local environment; 2) such a trajectory 
should be consistent with a global goal or plan of the motion; and 3) the 
robot should move at as high a speed as possible, subject to its 
kinematic constraints. A stochastic motion-control algorithm based on a 
hidden Markov model (HMM) is developed. Obstacle motion prediction 
applies a probabilistic evaluation scheme. Motion planning of the robot 
implements a trajectory-guided parallel-search strategy in accordance 
with the obstacle motion prediction models. The approach simplifies the 
control process of robot motion. 

l. INTRODUCTION 

Real-time visual guidance and control of mobile robots or au

tonomous vehicles is an area of growing interest to many computer 

scientists and engineers [l]-[6]. It is a challenging problem because 

of the complexity of the unknown environment encountered by 

mobile robots. The environment complexity includes the variations 

of physical appearances of obstacles, their kinematic behavior, and 

the planned or unplanned perturbations of their motion. This is 

particularly true for the collision avoidance where the obstacles 

(which may be other robots or human operators) in the environment 

are also moving at relatively high speed [5], [6]. Much research has 

been done on the visual guidance of mobile robots in static environ

ments where the positions of obstacles do not change [7], [8], [10]. 

One large and fruitful area is "motion planning" where, given a 

description of the environment and initial and final positions, a 

motion-planning algorithm computes a collision-free trajectory. 

Cognitive capability enables the mobile robot to form and modify a 

model of the world around it and relate this world model to the task 

objectives. However, the visual guidance and control of robot 
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motion in an unknown environment where the obstacles are also 

moving is less systematically studied. 

We call the environment where the obstacles are also moving in 

the dynamic environment. Visual guidance of a mobile robot in such 

an environment is dealt with in a sequence of operations consisting 

of obstacle motion detection and robot trajectory planning [6], [17), 

[ 18). In the obstacle motion detection, the vision system acquires 

necessary information from the scene and determines whether any 

object, static or in motion, might interfere with the planned trajec

tory of the mobile robot. If the obstacle in the environment is also in 

motion, the vision system will have to determine the velocity and 

acceleration of the obstacle, predict its moving trajectory, and check 

for possible interferences. If an interference is detected, the trajec

tory planning process of the robot must be activated to identify a 

collision-free path for the robot. The reliability and effectiveness of 

the path planning depends largely upon the correctness of the 

detection and prediction of the motion states of the obstacle. Obsta

cle motion may be predicted by a deterministic estimation. In this 

approach, anticipated motion states of the obstacle are computed by 

using a linear combination (weighted average) of the previous 

motion states [6]. Because of the diversity of obstacle motion 

models, the estimation is not easily justified. 

A hidden Markov model (HMM) is used in our research to 

describe and predict the motions of obstacles in a dynamic environ

ment [12). Obstacle motions are modeled as a stochastic process in 

HMM. Probabilistic evaluations are used to represent the obstacle 

motions and the potential variations of the motion states. A trajec

tory-guided path-planning approach has been developed in our 

research [6], [12). In this approach, the determination of motion 

trajectory is exercised as a parallel pursuit of several alternatives. 

The algorithm searches for a collision-free trajectory by inspecting a 

finite set of candidate trajectories. These candidate trajectories are 

formed according to the current motion state of the robot and the 

given goal of the robot motion. A motion trajectory is selected in 

terms of the probabilistic evaluation. The result of the planning is 

represented in motion-control parameters directly. The method does 

not require the construction of a complete environment map and an 

exhaustive search. Computation therefore is simplified. 

Section II of this paper presents, in general, a computational 

model for dynamic obstacle avoidance in visual guidance of mobile 

robots. Section III addresses the modeling of motion characteristics 

of the obstacles in the dynamic environments. The HMM for object 

motion prediction is illustrated in Section IV. Section V presents the 

trajectory-guided path-planning algorithm. Computer simulation and 

performance evaluation are presented in Section VI. Section VII 

contains concluding remarks. 

II. VISUAL GUIDANCE OF ROB()T MOTION 

A. Global and Local Path Planning

Motion planning for mobile robots and autonomous vehicles in 

dynamic environments is conducted in two processes: 1) global path 

planning, which is aimed at the accomplishment of the mission to be 

carried out by the robot, and 2) local path planning, which focuses 

on the finding of a collision-free path within the sight of the robot. 

Global path planning is performed in terms of the task requirement 

and a static view of the environment. It is called task-level planning. 

The result of this planning can be just an outline of the route or a set 

of subgoal points to be followed by the robot. It does not deal with 

the details of the motion trajectory and does not foresee any 

variations of the environment. Dynamic obstacle detection and 
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Fig. 1. Diagram of the visual guidance for dynamic obstacle avoidance. 

collision avoidance are dealt with in the local path-planning process. 
Such a planning process emphasizes the safety of the motion. A 
collision-free trajectory within the sight of the robot is identified in 
this process. This work addresses on the local path planning. 

While local path planning focuses on collision avoidance, it 
should also consider the global goal of the motion. The objectives of 
local path planning can then be stated as: 

1) finding a collision-free trajectory that takes account of any 
possible motions of the obstacles in the local environment; 

2) such a trajectory should be consistent with the global goal of 
the motion; and 

3) the robot should move at as fast a speed as possible, subject to 
its kinematic constraints. 

B. Motion State Description
The local path planning of mobile robots in dynamic environ

ments is modeled as a discrete-time process. A control cycle starts 
at the moment that a sample (an image) of a local scene is acquired 
by a visual sensing device. The image is processed immediately by a 
visual information processing unit. Any potential obstacles in the 
environme�t are detected. Predictions of the obstacle motion 
are made. A collision-free path is searched for according to the 
visual information gathered. Maneuver commands are then generated 
by the motion-control unit. As the robot proceeds, this 
"sampling-visual processing-collision detection-path planning 
-maneuver'' cycle repeats. Fig. 1 shows a diagram of this process.
A series of maneuvers leads to the accomplishment of the task
objectives. 

The motion state of a robot at a time instance t is represented by 

(p,(t), 11,(t), a,(t))) ( 1) 

where p,(t) denotes the position of the robot, 11,(t) is the velocity, 
and a,(t) the acceleration of the robot at time t. We use s,(t) to 
denote the path actually travelled by the robot in the time interval 
[ t, t + .:it], where !J. t is the control cycle. The motion of the robot 
can be described as 

where 

!1+111 
s,(t) =p,(t+!J.t)-p,(t) = 11,(r) dr 

t 

11,(r) = 11,(t) + r a,(t) dt.
I 

(2) 

(3) 

We use Tc(t) to denote the vision and control processing time 
of the robot. T

c
(t) includes the time spent by the robot to process 

the scene image, detect the moving obstacles, and identify a colli
sion-free path. This Tc(t) mainly determines, or constrains, the 
motion speed of the robot. Basically, we should have 

Tc(t) < !J.t(t). (4) 

The notation !J.t(t) indicates that the control cycle is also a function 
oft. Let Tit) denote the time delay incurred due to the kinematics 
of the robot; we then have 

(5) 

l··" 
0,<

t) 

(a) (b) 

Fig. 2. Relation of s,, s,, and S
a 

in (a) vectorial, and (b) regional 
diagrams. 

Replacing the !J.t of (2), by (5), the (2) becomes 

J
I+ Tc(t)+ Td(I) 

s,(t) :S 11,(r) dr. 
t 

C. Safety Motion Principle 

(6) 

The central problem in local path planning is to explore the values 
of 11,( r) in (6). The values are affected by the presence of obstacles 
in the environment. We classify the moving obstacles in two cate
gories: their motion parameters are known or unknown. One princi
ple for a safe motion of the robot in the dynamic environments is 
that a robot should always keep a certain distance away from any 
obstacle whose motion parameters are unknown. 

We define a safety range s a within which the robot has sufficient 
time to go through a number of sampling and control cycles. By 
these cycles, the motion states of the obstacles can be detected and 
proper actions can be taken by the robot to avoid any possible 
collision. Note that, for a static obstacle, this s

a 
could be a very 

small number. For moving obstacles, it must be carefully computed. 
Let 1101(() denote the velocity of obstacle O;, and s

a
,U) the safety 

range of the robot with respect to obstacle O;. s
a
,U) is a function of 

1101(() and 11,(t), such that 

!1+111 !1+111 
S

a
,( t) = ex 1101( T) dr - (3 11,( T) dr + 'Yo (7a) 

t I 

where ex and (3 are two coefficients; ex, (3 � 0. The 'Yo is a constant 
in which the kinematics of the mobile robot is embedded. Simply 
assuming 110,(t) and 11,(t) to be constants during the time interval 
!J.t(t), the above equation becomes 

s
a,(t) = exs01

(t)!J.t(t) - {3s,(t)!J.t(t) + 'Yo· 

s
a
(t) can be computed as the maximum of s

a1
(t)'s: 

s
a(t) = max{s

a,(t)}. 

(7b) 

(8) 

A trajectory-planning range s1(t) denotes a space within which 
local planning is made. From the safety motion principle, we see 
that 

(9) 

We call (9) the motion-planning constraint equation. Fig. 2 
illustrates the relations of s 1, s,, and s 

a 
in vectorial and regional 

diagrams. 
The field of view s

v
(t) is the scope observed by the vision 

system. It represents how far the robot vision system looks ahead 
and how widely it looks around. We should have 

s
v(t) > s,(t). (10) 

The inequality means that obstacles must be observed before reach
ing the range of local motion planning. Let's use s0(t) to denote the 
observing range in which the motion states of obstacles are de-



(a) (b) 

Fig. 3. Relation of s,, s,, and s
0 in (a) vectorial and (b) regional 

diagrams. 

tected; then we have 

( 11) 
We call (11) the visual guidance constraint equation. Fig. 3 
illustrates the relations of s,, s" and s0 

in vectorial and regional 
diagrams. 

Combining (9) and (11), the vision and control requirement of a 
local path planning can be specified as 

s,(t) ss.(t)-s0
(t)-sa(t). (12) 

Inserting (12) into (6), we get J t+Tc(t)+Td(t) 

vr(r) dT s s.(t) -s0(t) - sa(t). 
t 

( 13) 

We also have Jt+Tc(t)+Td(t) 

v,(T) dT S s,(t) - sa(t). 
t 

(14) 

D. Environment Complexity and Optimal Motion States
It is essential that the motion of robots is affected by several

aspects of the environment complexity. One such complexity is the 
number of obstacles nob

/() within the range s.(t). We define the 
obstacle density, d0bp}, which is the number of obstacles n0bp) 
within the unit area of s.(t): 

(15) 

In general, the vision and control processing time T/t) is a function 
of the following components: 

[s.(t), d0b/t), Pc] 

where pc stands for the processing capability of the vision and 
control system. An optimal control state of robot motion can be 
derived from the above discussion, which is 

(16) 

An optimal setting of the robot controller system, thus, should be 

s,(t) = s,(t) -sa(t) = s.(t) - s0(t) - sa(t). (17) 

III. OBSTACLE MOTION MODELS 

Many researchers have indicated that the problem of dynamic 
obstacle avoidance is substantially more difficult than the static 
problem [8], [10]. Unlike static obstacle avoidance, the process in 
dyrniµuc environments must consider any possible moves of the 
obstacles in terms of a time axis. In this work, we simply restrict the 
motion of robots in a two-dimensional space [ X, Y]. The dynamic 
obstacle avoidance is then carried out in a three-dimensional space 
[X, Y, t]. The difficulty of dynamic obstacle avoidance lies also on 
the uncertainty of the obstacle motions. To properly predict the 

obstacle motions, analysis of their motion models should be made. 
The following three models are studied in our work: 1) constant 
velocity model, 2) random motion model, and 3) intentional motion 
model. Motion states of obstacles can generally be represented by 
(p0 (t)v

0
(t}, a0 (t)}. For simplicity, the subscript O; is omitted in 

the follo�ing des�riptions. 

A. Constant Velocity Model
This is the simplest case of obstacle motion. We have in this 

model 
a(t) = 0 

v ( t) = c ( c is a constant vector) 

p(x, y, t +At)= p(x, y, t) + cAt.

(18) 

(19) 

(20) 
Although obstacles seldom move at a constant velocity, this motion 
model may serve as a basis for the description of other more 
complicated motion models. When measuring the motion history of 
an obstacle, it is considered as moving in a constant velocity within 
every time interval [ t, t + At]. 

B. Random Motion Model
This model considers that the changes of the motion states of an 

obstacle are governed by certain probability distribution functions. 
For example: 

a(t) = {3w(t) {21) 
where w(t) is a random vector. In most cases, the probability 
distribution functions are unknown. Sometimes they can be assumed 
as a Gaussian or a uniform distribution. The function can be 
represented as 

Prob(w(t)) =JP(µ(w(t)), u2 (w(t))) (22) 

where µ( w(t)) and o-2 ( w(t)) are the mean and variance vectors, 
respectively, that regulate the distribution of w(t). The /

p 
is a 

probability distribution function. It follow that the obstacle velocity 
can be calculated by 

v(t) = v(t -At)+ r w(T) dT. (23) 
t-t>.t 

The random-motion model can be described alternatively as 

a(t) = a 1 a(t - At)+ {31w(t) (24) 
where a 1 

specifies the mechanism of how the obstacle tries to 
maintain its original acceleration, and {3

1 is the intensity of random 
vector w(t). The velocity is then given by 

v(t) = v(t -At)+ f 1 [ a1 a( T - At)+ {31w( T)] dT.
t-t>.t 

(25) 

C. Intentional Motion Model 
In this model an obstacle moves in a scheduled route, such as a

predetermined destination, or a programmed route. The obstacle 
may also try to avoid collision with others. In this case, we have 

a(t)=e(t) (26) 
or 

(27) 
where e( t) represents the variations of accelerations resulting from 
any interval or external forces of the obstacle. a

2 and {32 
are two 

constants that specify the tendency of acceleration change. The 
function e(t) depends very much on the particular environmental 



e(t) The acquisition of e(t) relies very much on the background knowledge of the obstacles and a thorough observation of the motionhistories of the obstacles. It should be pointed out that the actual motions of obstacles in the environment are often a combination of the above motion models. Itis obvious that the motions of obstacles in most cases are best described by a stochastic process. 
IV. HIDDEN MARKOV MODEL FOR OBSTACLE-MOTION 

PREDICTION 

Prediction of obstacle motion is a fundamental step toward theidentification of a collision-free trajectory of the robot motion. In
this section we present a computational scheme for the prediction ofobstacle motion states in time interval [ t, t + k], k 2: 1. The statesof obstacle motion are denoted as (p

0 
(t + k), v

0 
(t + tk), a

0 
(t 

+ k)). 
' ' ' 

A. Hidden Markov Model 

The motion states of obstacles in dynamic environments can be presented in a formal way through Markov models. The simplestform of a Markov model is a Markov chain [9]. An interesting 
extension of the Markov chain appears in what has become known as the hidden Markov model (HMM) [9]. The name comes from the 
consideration that the Markov states cannot be observed directly. They can only be inferred from observation of the time series of other relevant events. Thus, the underlying Markov model is "hidden." In HMM, a number of different stochastic processes are combined to produce observations. HMM's are useful for a variety of problems where the time series of observations may go throughdistinct characteristic changes. Obstacle-motion prediction is one such problem. 

In applying the HMM for obstacle-motion prediction, a sequence of probability functions and their parameters are defined. They are: 
a) an initial motion state description of an obstacle O;: (p

0 
(t), 

v
0 

(t), a
0 

(t)), which comes from the vision processing pr�ce-
du'res; b) an initial probability description of the motion dynamics of an obstacle o;: Prob(a0

(t)); c) a set of Markov ' transition parameters [µ(a0 
(t + })),

a 2(a
0 

(t + }))], which represent the mean and vari�nce vectors of a probability transition function; d) a presumed form of Markov transition function, denoted as 
P(a0 

(t + })); e) a co�putation scheme for deriving Prob( a O (t + })) fromapplying the Markov transition functions; and 
t) a computation scheme for deriving Prob( v O (t + }) ) and Prob(P

0;
(t + })). 

Starting with the mean and variance vectors 
[ µ( a0 ;( t + J)), a2 ( a0;( t + J))] , j = 1, 2, ... , k (28)

we have the Markov transition function 

where p is a probability density function. The initial mean andvariance vector of the transition function are calculated by 
µ(a0;(t)) =J,,.(a0;(t - 1), a0Jt - 2), ... , a0;(t - N)) 

(30)

Fig. 4. Gaussian Markov transition function. 

and 
a 2(a 0;(t)) =fa ((a0 ;(t- 1) - a0Jt- 2))2, 

(a0
;(t -2) - a

0
;(t -3))2 ,

· · ·, (a0;(t -N + 1) -a
0;(t - N)) 2). (31)

The /,,. and fa 
are two linear functions obtained by applying anautoregressive moving average (ARMA) method [6]. We call the

mean and variance vectors of the above expressions the hidden Markov parameters. When no knowledge about the actual motionmodel is available, the Markov transition function is presumed to satisfy a two-dimensional Gaussian density 
(32)

A diagram of such a probability assumption is shown in Fig. 4. The Markov transition function P(a0 
(t)) is extended to theentire time interval [ t, t + k]. That is ' 

P(a0;(t +})) = P(a 0;(t +}- 1)) = ... = P(a0;(t)). 
(33)

We then have the predicted probability of a
0 

(t + k) at the time 
t + k 

Prob(a0
Jt + k)) 

= Prob[a0;(t), a 0Jt + 1), ... , a0;(t + k- 1)]
[ k-1 

] 
= IJ-0P(a0Jt+J)) . (34)

We also have the mean and variance vectors for the hidden Markov transition function P(v0
p)) and P(p0

;(t)) 

[µ(v0;(t+J)), a2 (v0 ;(t+J))], }=0,1, ... ,k

(35)
[µ(PoJt +})), }=0,1, ... ,k.

(36)
The initial states of above parameters can be computed by 

µ(v0;(t)) = µ(v0;(t - 1) + (a0Jt - 1)) 
= (v0

;(t-1)) +µ(a0
/t- l )) (37)

a2(v0 ;(t)) = a 2(v0 ;(t - 1) + (a0;(t - 1)) = a2(a0;(t- 1))
(38)and 

µ(p0;(t)) = µ( Po;(t - 1) + v0Jt - 1) + � a0Jt - 1))
1 

= Po;(t - 1) + µ( IJ0 ;(t - 1)) + 
2 

µ(a 0Jt - 1))
(39)



u 2 (P0,(t)) = u2 ( P0 ,(t - 1) + v
0,(t - 1) + � a

0,(t - 1)) 

1 
= u2 (v0,(t 

- 1)) + 2 u
2 (a01

(t 
- 1)). (40) 

Notice that the time interval tlt = 1 in the above equations. We 
then have the hidden Markov transition function 

(41) 

and 

(42) 

The description of the velocity and the position of the obstacle will 
be expressed in probability density functions 

and 

Prob(v
01

(t + k)) 

=Prob[v
0,(t),v

0
1
(t+ l), ... ,v

01
(t+k- l)] 

[k-1 
l = }]0

P(v
0,(t+j))J 

Prob(p
0
,(t + k)) 

= Prob[p
01

(t), P0,(t + 1), ... , p01
(t + k - 1)] 

= [»�P(P0,(t+j))] 

(43) 

(44) 

where the P(a
0

(t + j)), P(v
0

(t + j)), and P(p
0

(t + j)) are the 
Markov transiti�n functions. Equation (44) represe�ts the probabil
ity value of position p(x, y) being occupied by obstacle O; at time 
t + k. In practice, we need to find the probability that position 
p(x, y) is occupied by any obstacle in the scene. This is calculated 
by 

Prob(p(t + k)) = Max{Prob(p
01

(t + k) Jvo;}. (45) 

V. TRAJECTORY-GUIDED MOTION PLANNING 

An image-space-based search approach is commonly used for 
robot motion planning in a static environment [3)-[S]. The approach 
can be extended to dynamic environments. To apply the approach, a 
collision-free trajectory is determined in a local map constructed 
from the scene images. The map depicts the positions and expected 
position changes of obstacles. These positions form "forbidden 
regions." A graph search is conducted to identify a collision-free 
path in a collision-free space of the map. The processing involves 
the search of a (11assive number of map elements, and therefore is 
computationally intensive. Moreover, the results need to be further 
converted from the geometric representation of the trajectory to the 
robot motion-control parameters, which are usually the driving 
forces corresponding to motion acceleration values. The map-based 
search approach therefore is less attractive than a direct control 
approach. 

We have developed a trajectory-guided strategy [6], (12] for 
robot motion planning. The method inspects a finite set of candidate 
trajectories based on the probabilistic evaluations of the candidates 
using the HMM. The planning process attempts to proceed in 
several directions simultaneously, i.e., perform a parallel search. 

SW SE 

Fig. 5. Tessellation of local path planning space. 

A. Representation of Candidate Trajectory 

Recall the description of the motion state of a mobile robot: 

(p,(t), v,(t), a,(t)) = ([p,}t), P,,(t)], 

[ u,,(t), u,,(t)], [ a,}t), a,,(t)]). (46) 

It is more convenient to describe the maneuvers of robot motion in 
terms of 1) moving direction changes and 2) moving speed changes. 
Polar coordinates are then used here: 

a,(t) = [8
0
,(t), A

0
,(t)] (47) 

where 

oa
,(t) = tan-1(a,,(t)/a,Jt)) (48) 

and 

A
0
,(t) = J a,x(t)2 + a,y(t)2

• 
(49) 

Considering a grid space that is tessellated in eight geographical 
directions, a candidate trajectory of the robot can always have a 
8

0
,Ct) points to one of these directions: 

{E,NE, N, NW, W,SW, S, SE}. 

It is the quantization of 8
0
,(t). The A0

,(t} can also be quantized 
into 

{ ... ,- 2A,, - lA,,O, 1A,,2A,, . .. } 

where A, is the unit speed change. A candidate-trajectory set is a 
Cartesian production of the above quantization. A collision-free 
trajectory is evaluated within the planning range s rC t). A time 
interval [t, t + k] is Flated to si(t) by 

J

t+k [ 
J

t+k ] 
I 

v,(t)+ 
1 

(a;(T))dT dt=S
1
(t). (SO) 

B. Formation of Candidate Trajectory Set

Let p
g

(x, y) be l! subgoal identified in the global planning. x
and y are the two-dimensional coordinates of the point. p,(t) 
denotes the current position of the robot. A vector 

8(t) =Pg
(x,y)-p,(t) (51) 

gives a quantitative expression of the relative position of the robot 
and the goal. Dividing the tessellated motion space into eight 
sections, as denoted by the letters A' to H' in Fig. 5, O(t) is always 
allocated in one of these sections. A priority list of () a (t) can then 
be formed according to its relative position with O(t). This priority 
list is shown in Tiiple I. Numbers on the first row denote the priority 
order. The smaller number represent a higher priority. A simplifi
cation of the above case can be made by transforming the point 
p gC x, y) to one fixed direction, say, north. A vertical line pas
sing p

g
( x, y) will then allocate O(t) to only three possible sectors: 



TABLE I 

DIRECTION PR!ORJTY LISTS OF IJ
0

,({) 

IJ(t) 2 4 

A' E NE SE N s NW SW w 

B' NE N E NW SE w s SW 

C' N NW NE w E SW SE s 

D' NW w N SW NE s E SE 

E' w SW NW s N SE NE E 

F' SW s w SE NW E N NE 

G' s SE SW E w NE NW N 

H' SE E s NE SW N w NW 

� T 7' 
'1 2 1 

"'I/ 
{--5- ·-3---} 

P/t) 

(1) (2) (3) 

Fig. 6. Motion direction priority with respect to a global direction. 

"B," "C ," and "D." Priorities of (} a (t) in these cases are depicted in Fig. 6. The number on the directional line indicates priority. 
C. Evaluation of Candidate Trajectories

The candidate trajectory is selected according to a probabilisticevaluation of collisions. Using a;(t) = [00
(t), A 0

(t)] to denote the ith trajectory in the candidate set, the �orresponding velocities and positions of the robot in [ t, t + k] can be obtained by 
Jt+k v,(t+kla;(t))=v,(t)+ a;(r)dr 

t 

and 
Jt+k P,(t+kla;(t)) =p,(t) + v,(rla;(t))dr 

t 

where a;(t) = [a;,(t),a;,(t)] 7 

(52) 

(53) 

[A 0,(t)cos(00,(t)), A 0,(t)sin(00,(t))]. 
(54) 

The probability that a position p,(t + j I a;(t)), j = 1, 2, ... , k, is occupied by an obstacle, Prob(p,(t + j I a;(t))), is computed by 
Prob(p,( t + j I a;( t)) = max(Prob(p

01
( t + J)) I Vo;)). (55)

A threshold value P, is used to control the termination of an evaluation process. When Prob(p,(t +})I a;(t)) > P,, the evaluation of a i(t) is abandoned. An overall evaluation of a candidate trajectory consists of two parts: 1) a deterministic value and 2) a probabilistic value. It is expressed as 
Val(a;(t+J)) = [D(p,(t+Jla;(t))), 

(1- Prob(p,(t+Jla;(t))))]. (56)

Here, D(p,(t + j I a;)) is the Euclidean distance or 
D(p,(t +JI a;(t))) = I P,(t +JI a;(t)) 

-p,(t+J- lla;(t))I. (57)

A step-by-step description of the procedure is listed below. 

D. Trajectory-Guid ed Path Planning (An HMM Pr oc ess) 
1) Form a candidate trajectory set, C/t) = {a;(t), i = 1, 2, ... , m}, a;(t) = [00

(t), A 0
(t)]. 2) Order {a;(t), i = 1, 2,. '.., m} �ccording to the relative position of O(t) and 0

0
((). 3) Evaluate {a;(t), i = 1:2, ... , m} simultaneously while processors are available,FOR each candidate trajectory a;(t), 3. 1) Initialize an evaluation value VAL( a;( t)) = 0. 3.2) FOR each anticipated motion step}, j = 1, 2, ... , k, of a;(t), where 

r +j [v,(t)+ r +j (a;(r))dr]dt::;S1(t) 
3.2.l) Calculate 

Prob(p,( t + j I a;( t)) = Max(Prob(p
0 1( t + J) I vo;)

3.2.2) IF Prob(p,(t + j I a;(t)) > P,, terminate the evaluation of a;(t); Otherwise calculate 
Val(a;(t)) = Val(a;(t)) + [D(p,(t+Jla;(t))), 

(1 - Prob(p,(t +JI a;(t))))] 
3.3) When j = k, issue motion command in a;(t), process terminates. 4) If no motion command has been issued, select an a;(t) that has the largest Val(a;(t)) and issue the motion command. 

VI. COMPUTER SIMULATION 

The computer simulation starts with a binary image where the number of obstacles and the motion models can be set a priori. Initial positions and the motion parameters of obstacles are generated randomly. The system is simulated with 1) a different number of obstacles, d
0bi(t), 2) a different combination of obstacle motion models, and 3) different values of the field of view su. A global goal is specified by a center line of the motion space. Performances of the algorithms are evaluated according to the following criteria: 1) the collision-warning rate, 2) the average vision and control processing time Tc(t), and 3) the deviation of the local path from the global route. A collision-warning signal is generated when the distance between the robot and an obstacle is less than s0(t). The summation of warning signals is divided by the total number of motion steps to get the collision-warning rate. The average deviation indicates how well the robot has kept the designated global route when making maneuvers to avoid obstacles. The performance of the HMM for obstacle-motion prediction was compared with a deterministic prediction approach (DPA) [6]. The results of the simulation expose many important properties. Fig. 7 shows a sequence of graphical display of the simulation, where obstacles are presented in different shapes and patterns. Simulation results are illustrated as follows. For the convenience of comparison, all measurements are scaled to a range of 1 to 10. Fig. 8(a) shows the collision-warning rate with respect to the changes of su(t) for the HMM and the DPA. Fig. 8(b) shows the collision warning rate with respect to d

0b/t) of the two approaches. Fig. 9(a) shows the average Tc(t) with respect to the changes of su(t) for the HMM and the DPA. Fig. 9(b) shows the average Tc(t) with respect to the obstacle density d
0b/() of the two approaches. Fig. lO(a) shows the average deviation of the motion trajectory with respect to the changes of su(t) for the HMM and the DPA. Fig. lO(b) shows the average deviation with respect to d ob/ t) of the two approaches. It can be easily seen from Fig. 8 that the HMM approach has a 



Fig. 7. A sequence of display of the motion simulation. 

lower collision-warning rate than the DPA. The slope of the curve is 
also slower in the HMM approach than the DPA when the dobp) 
increases. On the other hand, as a tradeoff for safety, the results 
also show that the Tc< t) and deviation increases more in HMM than 
the DPA. This is worthwhile as safety is the main consideration in 

Collision Warning 

10 

Colillion We.rnin.i: 

10 

1 Deterministic Approach 

317(1) 

(a) 

(b) 

Fig. 8. Collision-warning rate with respect to (a) s.(t) and (b) d
obp). 
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2 Hidden Markov Model 

(a) 

! Detenn.inl:Jtic Approach 

2 Hidden Markov Model 

(b) 

Fig. 9. Average T
c(t) with respect to (a) s.(t) and (b) d00p). 

most robot motion environments. From the simulation results, we 
also observe that, when the s.(t) is beyond a certain range, its 
increase has only a very limited effect on the improvement of the 
motion parameters. This is because collision avoidance in dynamic 
environments is basically a local operation. When the s.(t) is 
sufficiently large, compared to the s

t
(t), the further increase of 

s.(t) does not proportionally improve the motion performance. It is 
also worth indicating that the ratio of s. versus s,(t), expressed as 
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Fig. 10. Average deviation of trajectory with respect to (a) s.(t) and (b) 

dobp). 

Is. I/ I s,(t) I, reflects the controllability of the visual guidance 
system at a certain level. The larger this ratio is, the easier for the 
robot to avoid collisions. 

VII. CONCLUSIONS 

The problem of visual guidance and dynamic obstacle avoidance 
of a mobile robot or autonomous vehicle navigating in an unknown 
environment has been investigated. For collision avoidance in dy
namic environments, where both the robot and the obstacles in the 
scene are moving, one critical problem is to accurately predict the 
motions of the obstacles. The prediction has to be made using only 
the limited amount of information from the observations. The 
uncertain nature of obstacle motion makes such a prediction diffi
cult. Basic motion models of obstacles have been studied in this 
paper. The HMM for obstacle-motion prediction is described and 
simulated. The visual guidance and motion-control algorithms dis
cussed in this paper have the following properties: 1) the stochastic 
model provides an appropriate description of obstacle motions in 
dynamic environments; 2) the HMM for obstacle-motion prediction 
reflects the stochastic nature of obstacle motions and is consistent 
with the motion characteristics of the obstacles; and 3) the trajec
tory-guided local-path planning algorithm unifies the visual process
ing and motion control processes in a systematic representation of 
candidate trajectories. The algorithm is especially beneficial for 
being able to pursue several potential paths in parallel. 
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Weld Pool Edge Detection for Automated Control 

of Welding 

D. Brzakovic and D. T. Khani 

Abstract-This work describes a vision system that determines the 
edges of the weld pool in sequences of gas-tungsten-arc welding images 
acquired by a coaxial viewing system. The vision system employs a 
transformation that maps the edge of a weld pool into a vertical line. 
The weld pool edge is detected in the transform domain by employing a 
directional filter, which retains only intensity changes of interest, and a 
one-dimensional edge detector. The edge of the weld pool, in the 
physical domain, is determined using the inverse transformation. The 
transformation employs parameters that are updated when processing a 
sequence of images and are initially determined by analyzing the first 
image frame in the physical domain. 

Key Words-Directional filtering, edge detection, inverse transforma
tion, temporal changes, transformation. 

I. INTRODUCTION 

For the past two decades there has been a great deal of interest in 
automating various welding processes. The objective of the automa
tion is to ease the job of the machine operator and in some cases 
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