
Washington University School of Medicine Washington University School of Medicine

Digital Commons@Becker Digital Commons@Becker

Open Access Publications

2010

Hidden Markov model speed heuristic and iterative HMM search Hidden Markov model speed heuristic and iterative HMM search

procedure procedure

L Steven Johnson
Washington University School of Medicine in St. Louis

Sean R. Eddy
Howard Hughes Medical Institute

Elon Portugaly
Hebrew University of Jerusalem

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

 Part of the Medicine and Health Sciences Commons

Recommended Citation Recommended Citation
Johnson, L Steven; Eddy, Sean R.; and Portugaly, Elon, ,"Hidden Markov model speed heuristic and iterative
HMM search procedure." BMC Bioinformatics. 11,. 431. (2010).
https://digitalcommons.wustl.edu/open_access_pubs/42

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker.
For more information, please contact vanam@wustl.edu.

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu

RESEARCH ARTICLE Open Access

Hidden Markov model speed heuristic and
iterative HMM search procedure
L Steven Johnson1*, Sean R Eddy2, Elon Portugaly3

Abstract

Background: Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology
detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence
databases.

Results: We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring
algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we
obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity
relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER,
which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation
that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more
remote protein homologs than SAM’s iterative method T2K.

Conclusions: Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM
against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search
method, JackHMMER, which detects significantly more remote protein homologs than SAM’s T2K and NCBI’s PSI-
BLAST.

Background
Profile hidden Markov models (profile-HMMs) are sen-
sitive tools for remote protein homology detection.
Unfortunately, current implementations of the Viterbi
and Forward scoring algorithms, which are commonly
used to compare a sequence to a profile-HMM, require
considerable time. Scoring an average length profile-
HMM against the NCBI NR database (See Methods sec-
tion.) using the Forward algorithm takes approximately
5 hours on a 2.66 Ghz desktop using HMMER [1]. In
comparison, the heuristic pairwise sequence comparison
method WU-BLAST is greater than 200-fold faster [2,3].
WU-BLAST achieves this speed, in part, by using sev-
eral incremental steps to determine whether a database
sequence is sufficiently similar to the query. If a data-
base sequence fails at any of these stages, the sequence
comparison is halted and the next database sequence is
examined. This fast elimination of the majority of

database sequences contributes to the significant reduc-
tion in search time [2,3].
Such sequence-level filtering can be easily and simply

combined with existing profile hidden Markov model
search strategies. In this study, we describe a series of
filtering steps that are applied prior to the Viterbi and
Forward profile-HMM scoring algorithms as implemen-
ted in an exploratory branch of the HMMER2 software
package, HMMER 2.5.1. These filtering steps were
selected with the goal of reducing profile-HMM search
time against large sequence databases while minimizing
the reduction in remote homology detection.
This scoring heuristic was then utilized in an itera-

tive profile hidden Markov model search method.
Iterative search methods perform multiple searches of
a sequence database. Once novel homologous
sequences are identified, they are incorporated into the
statistical model of the query sequence. This new
model is then re-searched against the sequence data-
base. Iterative search approaches have been utilized for
sequence to position-specific scoring matrix compari-
son methods, e.g. PSI-BLAST, as well as profile hidden

* Correspondence: stevej@pathology.wustl.edu
1Department of Immunology and Pathology, Washington University School
of Medicine, St. Louis, Missouri, USA
Full list of author information is available at the end of the article

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

© 2010 Johnson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:stevej@pathology.wustl.edu
http://creativecommons.org/licenses/by/2.0

Markov model to sequence scoring, e.g. SAM’s tar-
get2k [3-6]. At the core of these methods is a probabil-
istic model of the query protein built from multiple
homologous sequences. One major factor in the sensi-
tivity of these methods is how well these homologous
sequences represent the diversity of the protein family
being modelled. In principle, by incorporating distant
homologous sequences, while avoiding contaminating
non-homologous sequences, into the model after each
search, iterative methods are able to build a more
diverse and potentially more sensitive model of the
query protein.
Current iterative methods for profile hidden Markov

models are dependent on creating a subdatabase from a
larger sequence database using a less sensitive pairwise
sequence comparison method, such as WU-BLAST.
This subdatabase is then used in the iterative searches
due to the speed issues inherent in using profile-HMM
scoring algorithms on large databases [4,5]. However,
using a less sensitive pairwise sequence method in the
creation of the subdatabase presents a potential limita-
tion to current iterative profile-HMM methods. By tak-
ing advantage of our newly developed search heuristic,
we have eliminated the requirement of this subdatabase.
In order to determine any sensitivity loss by our search
heuristic and to measure the performance of our itera-
tive search method, we have created a remote protein
homology benchmark.

Methods
Non-Redundant NCBI NR database, NRDB90
The non-redundant database, NRDB90, used in this
study was created from NCBI’s NR, 1/12/06, database
which was filtered to remove sequences with greater
than 90% identity using Holm and Sander’s method [7].
The script used is available at: http://ekhidna.biocenter.
helsinki.fi/downloads/rsdb/nrdb90.pl.

Remote Protein Homology Benchmark
One crucial aspect of a remote protein homology bench-
mark is a set of trusted protein homologs. Current data-
sets of homologous proteins primarily utilize either
protein structure or sequence conservation to infer
homology [8-10]. Since using a sequence-based protein
homolog dataset to test sequence-based homology
detection algorithms could be a source of confounding
circularity, we chose to use the structure-based SCOP
database as a trusted source of true homologs. It should
be noted that this database consists of single domain
proteins that are relatively less compositionally biased
and repetitive than those in the large sequence reposi-
tories. Similar to several other studies, we used the
Astral Compendium version of the SCOP 1.5 database
filtered for 40% identity [5,11-13].

In order to generate multiple sequence alignments for
each test sequence, we utilized an approach similar to
that used by Madera and Gough [13]. Each test
sequence was searched against a non-redundant version
of NCBI’s NR database, NRDB90, using WU-BLAST
blastp 2.0 MP-WashU [7]. Those NRDB90 sequences
that matched the test sequence with an E-value less
than 1 × 10-3 were aligned, with the test sequence, using
ClustalW 1.82. These multiple sequence alignments
were then used in the construction and calibration of
profile hidden Markov models using HMMER 2.5.1 (see
Methods) and SAM 3.5 in the HMMERHEAD bench-
marking studies. However, in benchmarking the iterative
methods, each program was given the individual test
sequence and allowed to iteratively search NRDB90 to
build a model.
Almost as crucial as a set of true homologs in a

remote protein homology benchmark is the set of true
non-homologs. A common utilization of the SCOP clas-
sification system in a protein homology benchmark is to
declare that those proteins that share the same SCOP
Superfamily classification are homologs [5,13]. Those
proteins that belong to different SCOP Fold classifica-
tions are considered non-homologous.
We, as well as others, have observed complications

with using the SCOP classification scheme to distinguish
non-homologous proteins [5,13]. Using several different
sequence comparison methods, we observed highly sig-
nificant scores between specific models and sequences
with different SCOP Folds. Later versions of the SCOP
database reclassified these sequences as being in the
same Superfamily. This raises the important issue that
one can not be positive two sequences are not homolo-
gous just because of their current SCOP Fold classifica-
tion. In previous studies, the authors excluded hits
between certain Folds from their benchmarking results
due to the similarity and high level of cross-Fold hits
they observed. Instead of selectively excluding hits
between certain Folds, we decided to utilize shuffled
SCOP sequences as a trusted source of non-homologous
sequences. The program shuffle, from the HMMER
2.5.1 SQUID library, was used to create five different
shuffled copies of each Astral sequence.
Under our benchmarking scheme, those proteins that

share the same SCOP Superfamily classification will be
considered a true homologous relationship. Those
SCOP Superfamilies that consisted of one sequence
were discarded from our benchmark. Any hit between a
model and a shuffled SCOP sequence is considered a
false homologous relationship and a hit between SCOP
sequences not of the same Superfamily are considered
ambiguous. Given the above design and homology cri-
teria, we have produced a benchmark of 2,521 query
alignments and a test database of 16,986 sequences. By

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 2 of 8

http://ekhidna.biocenter.helsinki.fi/downloads/rsdb/nrdb90.pl
http://ekhidna.biocenter.helsinki.fi/downloads/rsdb/nrdb90.pl

comparing each query to the test database, there exists a
total of 39,733 true homologous pairwise relationships
and 36,466,265 non-homologous relationships.

Sensitivity and Specificity Measures
The most common measures of sensitivity and specifi-
city used in our studies was true positives identified ver-
sus errors per query. Errors per query, EPQ, is
calculated by false positives divided by the number of
search queries, 2521. Thus, the EPQ of 1, 3, 12, 25, 125,
and 250 false positives are 0.0004, 0.001, 0.005, 0.01,
0.05, and 0.1.
For the studies examining HMMERHEAD parameter

settings effects on performance we used minimum error
rate to measure sensitivity and specificity in a combined
metric [14]. We calculated minimum error rate as the
minimum sum, over all possible choices of E-value
threshold, of false positives and false negatives.

Bootstrapping
In order to assess the significance of the performance
differences between algorithms on our benchmark, we
have utilized a bootstrapping approach [15]. We mea-
sure the performance of a program on 1000 replicate
query sets which were generated by sampling the test
database models with replacement. The performance of
each method, e.g. HMMER or JackHMMER, was
assessed for each query set. Therefore, for each query
set we were able to calculate the 1000 values of TP1-
TP2, where TP1 is the number of true positives identi-
fied at a given value of errors per query by method 1.
e.g. HMMER. TP2 is the same value using method 2.
e.g. JackHMMER. We then calculated a 95% confidence
interval on the difference in true positives detected by
the two different methods. This was accomplished by
taking the 0.95 × 1000 = 950 middle values. If this
distribution does not overlap zero, there is a statistical
difference in the performance of these two methods.

HMMER 2.5.1
HMMER 2.5.1 is an exploratory branch of the
HMMER2 software where the major changes relevant to
HMMER 2.3.2 are the incorporation of entropy weight-
ing of sequences in the input alignment and the capabil-
ity of calibrating a model’s E-values using either Viterbi
or Forward scoring. All models in this study were built
using entropy weighting.

HMMERHEAD Filtering Algorithm
HMMERHEAD’s initial step is the generation and iden-
tification of significant “words”. This step consists of
identifying ungapped four residue words from a profile
hidden Markov model’s match state emission scores
that possess a score above some threshold, θ. A word

score is calculated as the sum of the log-odds emission
scores of the word amino acid residues, as determined
from the profile-HMM model. These words are then
identified in the database sequences using a determinis-
tic finite automaton.
In the next filtering step, each word identified in a

database sequence is the seed for an ungapped align-
ment between the sequence and the profile-HMM. The
alignment extension starts at the left end of the word
and proceeds until the alignment score drops a thresh-
old, δ/2, amount below the optimum score observed.
Since this is an ungapped alignment, the alignment
score is calculated as the sum of the match emission
scores for the observed residues in the corresponding
region of the profile-HMM. This extension is then per-
formed on the opposite end of the word. Those
extended-word alignments that possess a score above a
threshold, μ, are passed on to the remaining filtering
steps. Those database sequences that contain at least
two qualifying extended-word hits are then examined
further.
The final step consists of performing gapped Viterbi

alignment between the sequence and the profile-HMM
in the region between the two extended-word hits. If
the Viterbi score is greater than the threshold, h, the
sequence is then scored using HMMER’s specified full
scoring algorithm. i.e. Viterbi or Forward.
The HMMERHEAD search heuristic is accessible as a

command line option in the HMMER 2.5.1 hmmsearch
program. Execution of HMMER’s hmmsearch program
with the option “-h” will produce a full list of
hmmsearch and HMMERHEAD command line options.
For the HMMERHEAD benchmarking, models were
built and calibrated from the benchmarking alignments
using HMMER 2.5.1 hmmbuild and hmmcalibrate.

JackHMMER
The JackHMMER procedure begins by identifying initial
homologs to a single query sequence using either a default,
or with user-defined parameters, NCBI or WU-BLAST
database search. Subsequences of database targets identi-
fied with E-values less than 1 × 10-3 are extracted and
aligned using ClustalW. A hidden Markov model is built
from this alignment and calibrated using HMMER. This
model is then searched against a large sequence database,
preferably filtered for fragmented and redundant
sequences to decrease runtime, using HMMERHEAD
Viterbi. Novel homologs are identified at each iteration
and then aligned to the existing profile-HMM. The model
is rebuilt and further searches are performed until no
additional homologs are identified in the database or the
maximum number of iterations has been performed.
The JackHMMER iterative search method is imple-

mented as a stand-alone Perl script in HMMER 2.5.1.

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 3 of 8

JackHMMER relies on several additional programs, such
as either WU-BLAST or NCBI-BLAST, HMMER, and
ClustalW. Paths to these programs are specified in the
jhmmer_params file in the HMMER 2.5.1 src/directory
and should be edited to the relevant locations of these
programs in a user’s file system. Execution of JackHM-
MER with no arguments will provide a full list of com-
mand line options.
JackHMMER performance in this study was deter-

mined using WU-BLAST and the non-redundant data-
base NRDB90. Initial WU-BLAST hits with an E-value
less than or equal to 1 × 10-3 were aligned with the
query using ClustalW. This multiple sequence align-
ment was used to build a HMMER Local/Local model
using HMMER’s hmmbuild, with default parameters,
and calibrated using HMMER’s hmmcalibrate, using
2000 random sequences. This profile-HMM was
searched against NRDB90 using HMMERHEAD
Viterbi with default parameters. The default E-value
thresholds used in the iterative HMMERHEAD
searches are [1 × 10-5, 1 × 10-5, 1 × 10-4, 3 × 10-4, 3 ×
10-4, ...] for iterations 1 to the maximum number of
iterations. The default maximum number of iterations
is seven. The final alignment created from the
JackHMMER iterative procedure was then used to
build a local/local model, calibrated for Forward scor-
ing, and searched against the test database.

WU-BLAST and WU-BLAST FPS
The WU-BLAST searches used in the HMMERHEAD
studies utilized WU-BLAST blastp 2.0 MP with default
settings. WU-BLAST FPS used the Family Pairwise
Search method [16]. This method consists of comparing
a ‘family’ of sequences to a database using a pairwise
sequence comparison method. In a Family Pairwise
Search, when more than one ‘family’ sequence hits the
same database sequence, their E-values are combined.
We compared the performances of several methods of
combining the E-values in this approach, such as mean
log E-value, mean E-value, and minimum E-value. Since
they provided the best performance on our benchmark,
we used minimum E-values.

NCBI PSI-BLAST
NCBI PSI-BLAST version 2.2.17 was used in this study.
PSI-BLAST models were built by iteratively searching,
using default settings, NRDB90 with the maximum
number of iterations set to seven. The final PSI-BLAST
model was then searched, using default settings, against
the test database.

SAM 3.5
SAM version 3.5 was used in this study. SAM’s iterative
search program target2k was searched against NRDB90

using default parameters. The alignments produced
from this procedure were then used to build profile-
HMMs using SAM’s buildmodel using default para-
meters. These models were then calibrated and searched
against the test database using SAM’s hmmscore and
submodel to subsequence (also termed local/local) scor-
ing. Model to subsequence scoring (also termed global/
local) calibration and searching was performed but did
not perform as well on our benchmark. Likewise, SAM’s
various model building scripts were all tested on our
benchmark and it was found that the model building
script w0.5 performed the best (Data not shown). This
script was used to construct the SAM profile-HMMs
used in our study.

Computational Resources
All computational experiments in this study were per-
formed using the HHMI Janelia Farm’s compute
resources. The compute cluster consists of 504 nodes
with 4,032 cores where each core is a 2.66 Ghz Intel
Gainestown X5560 processor. All nodes have 25 GB
RAM and are running RHEL 5.

Results
HMMERHEAD
We assessed whether we could reduce HMMER’s search
time by applying a series of filtering steps to the
sequences in a large database (See Methods). The full
Viterbi or Forward scoring algorithms would be per-
formed on only those database sequences that passed all
the filtering steps. A HMMER search performed with
these filtering steps is referred to as HMMERHEAD
Viterbi or HMMERHEAD Forward, according to the full
scoring algorithm is performed if a sequence passes the
filtering steps.

HMMERHEAD Parameter Settings
In order to assess the effect of the various parameter
settings, we randomly selected 250 benchmarking mod-
els to be used in database searches where the four
HMMERHEAD parameters, θ, δ, μ, and h, were varied.
Parameter effects on runtime were determined by
searching the models against a non-redundant version
of NCBI’s NR database(NRDB90) and effects on sensi-
tivity and specificity, as measured by minimum error
rate (MER) [14] (See Methods), were determined by
searching against our benchmarking database using both
HMMERHEAD Viterbi and Forward scoring. While the
data shown below are for the HMMERHEAD Viterbi
searches, HMMERHEAD Forward closely mirrors these
results. All possible combinations of the following para-
meter settings were tested: θ =[8.4, 7.2, 6, 4.8, 3.6], δ =
[2.8, 2.4, 2, 1.6, 1.2], μ = [9.8, 8.4, 7, 5.6, 4.2], and h =
[28, 24, 20, 26[12]].

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 4 of 8

To select HMMERHEAD’s default parameters, we
eliminated parameter settings that resulted in a greater
than 0.5% increase in MER relative to HMMER’s default
search performance. We then selected the parameter
settings that yielded the fastest runtime from the 218
different parameter combinations that passed the MER
cutoff. This resulted in the HMMERHEAD Viterbi and
Forward parameter settings of θ = 6, δ = 2, μ = 7, and
h = 20 (×1000 bits) for HMMER models built using
default settings.
Examination of individual parameter settings revealed

that the θ and h parameters had the most effect on run-
time and MER (Data not shown). Plotting mean search
time versus minimum error rate for the various θ and h
settings reveals a strong increase in minimum error rate
relative to a minor decrease in mean search time for θ and
h parameter values greater than 6 and 20, respectively
(Figure 1). This further supports our choice of these para-
meter values for HMMERHEAD’s default settings.

HMMERHEAD Search Times
In order to assess HMMERHEAD’s improvement in
search time, we randomly selected 500 benchmarking
models and searched them against NRDB90 using
Forward and Viterbi final scoring. The average time
of these HMMERHEAD searches were then compared
against the average default HMMER 2.5.1 search
times to determine the average fold speedup (Table
1).
Only 6,805 comparisons, out of 2,313,578, passed the

HMMERHEAD filtering steps. This reduced the effec-
tive database size that the full scoring algorithms were
performed on by 99.7%. HMMERHEAD Forward pro-
vides an approximate 20-fold speedup versus default
HMMER 2.5.1 Forward scoring. HMMERHEAD Viterbi
is approximately 6-fold faster. HMMER’s Forward
implementation is approximately 4-fold slower than
Viterbi and explains the difference in HMMERHEAD
speedup between algorithms.

 2850

 2900

 2950

 3000

 3050

 3100

 3150

 800 1000 1200 1400 1600 1800 2000

M
in

im
um

 E
rr

or
 R

at
e

Mean Search Time (secs)

Theta
Eta

8.4

7.2

6

4.8 3.6

28

24

20

16 12

Default Parameters

Figure 1 Minimum Error Rate Relative to Mean Search Time. 250 randomly chosen benchmarking models were used in HMMERHEAD Viterbi
searches of NRDB90 and the test database utilizing a range of θ and h values. All other parameters were kept at their default value (θ = 6, δ = 2,
μ = 7, and h = 20). Plotting minimum error rate versus mean search time for searches using these parameter values reveals a dramatic increase
in minimum error rate, relative to a minor decrease in search time, for θ and h parameter values greater than 6 and 20, respectively. This further
supports our choice of these parameter values for HMMERHEAD’s default settings. The total number of true homologous pairs between those
250 models and the test benchmark was 3,617. The number of true positives identified at these parameter settings at 0 false positives is 938 or
26% of the possible true positives.

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 5 of 8

Remote Homology Detection of HMMERHEAD Versus
HMMER 2.5.1
Since HMMERHEAD’s speed gain is due to the utiliza-
tion of search heuristics, we determined the cost of
these heuristics on sensitivity. Using our remote protein
homology benchmark, we compared the sensitivity and
specificity of HMMERHEAD versus HMMER 2.5.1 for

Forward and Viterbi scoring. In addition, we included
the performance of WU-BLASTP and the WU-BLAST
Family Pairwise Search method. This method has been
previously described and consists of comparing a ‘family’
of sequences in a pairwise fashion to a database [16].
The E-values of any shared targets are then combined
(See Methods) to determine the similarity between the
sequence family and database targets.
On our benchmark, HMMERHEAD Forward detects

an average of 269 fewer true positives than HMMER
2.5.1 Forward across the measured specificity range
(Figure 2). While this is a statistically significant
amount, as determined using bootstrapping and a 95%
confidence limit, this represents only a 4% loss in the
number of true homologs identified by HMMER 2.5.1
Forward. HMMERHEAD Viterbi detects an average of
173 fewer true positives than HMMER 2.5.1 Viterbi
on our benchmark (Figure 2). Again, this is a statisti-
cally significant amount but represents only a 2% loss

Table 1 HMMERHEAD Speed Improvement

Model Algorithm θ δ μ h Db Reduction Fold Speedup

Local Forward 6 2 7 20 6,805/2,313,578 =
0.3%

19,880s/957s =
20.8X

Local Viterbi 6 2 7 20 6,805/2,313,578 =
0.3%

5,066s/858s =
5.9X

Average search time for 500 benchmarking models was calculated using
HMMERHEAD Forward or Viterbi with several different filtering thresholds. This
average time was then compared to the average search time of default
HMMER 2.5.1 Forward or Viterbi, 19,880 and 5,066 seconds, respectively.
HMMERHEAD Forward provides the greatest speed improvement, ~24X, due
the increased average time of this scoring algorithm.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.001 0.01 0.1

HMMER 2.5.1 Default Forward
HMMERHEAD Forward

Wu-Blast
Wu-Blast FPS

Errors/Query

Tr
ue

 P
os

iti
ve

s

HMMER 2.5.1 Default Viterbi
HMMERHEAD Viterbi

Figure 2 Remote Homology Detection of HMMERHEAD and HMMER 2.5.1 Forward and Viterbi. Each of the 2,521 benchmarking models
was scored against the test database using either HMMER 2.5.1 or HMMERHEAD with Forward or Viterbi scoring. The results of the searches
were combined and scored. This procedure was then repeated for each of the 1000 bootstrapping replicate test sets. The average number of
true positives was plotted versus errors per query. Minimum and maximum numbers of true positives from the replicates are shown as error
bars. HMMERHEAD Forward (Red) performance is shown relative to default HMMER 2.5.1 Forward (Blue), WU-BLAST (Black dashed), and WU-
BLAST Family Pairwise Search (Black). Default HMMERHEAD Forward detects an average of 269 fewer true positives than default HMMER 2.5.1
Forward and detects significantly more true positives than either pairwise sequence comparison method. HMMERHEAD Viterbi (Red dashed)
performance is shown relative to default HMMER 2.5.1 Viterbi (Blue dashed). Default HMMERHEAD Viterbi detects an average of 173 fewer true
positives than default HMMER 2.5.1 Viterbi and again outperforms either pairwise comparison method. The total number of true homologous
pairs between the 2,521 models and the test database is 39,733, and thus 8,000 true positives correspond to identifying 20% of the homologs.

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 6 of 8

in the number of true homologs identified by
HMMER 2.5.1 Viterbi. Both pairwise comparison
methods were significantly outperformed by HMMER
2.5.1 with and without HMMERHEAD. The HMMER-
HEAD speed gains of 20X and 6X compared to the
sensitivity losses of 4% and 2% were deemed to be
acceptable tradeoffs.

JackHMMER
We implemented an iterative Profile hidden Markov
model procedure that took advantage of our develop-
ment of HMMERHEAD. This allowed us to iteratively
search over a large sequence database instead of using
the subdatabase approach utilized by other iterative pro-
file-HMM implementations [4,5]. We refer to our itera-
tive search procedure as JackHMMER.

JackHMMER Performance
The individual benchmarking sequences were used in
iterative searches against NRDB90 using JackHMMER,
SAM’s target2k, and NCBI’s PSI-BLAST. The final mod-
els created by these iterative methods were then
searched against the benchmarking database to deter-
mine the sensitivity and specificity of each method.
On our benchmark, JackHMMER is able to detect an

average of 1,337 more remote protein homologs than
target2k and an average of 2,476 more homologs than
PSI-BLAST across the measured specificity range (Fig-
ure 3). Thus, on our benchmark, JackHMMER is able to
detect 14% more true homologs than target2k and 28%
more than PSI-BLAST. Using bootstrapping and a 95%
confidence limit, these increases in homolog detection
are statistically significant.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.001 0.01 0.1

JHMMER
SAM 3.5 target2k
NCBI Psi-BLAST

Errors/Query

Tr
ue

 P
os

iti
ve

s

Figure 3 Performance of Iterative Methods. The individual 2,521 benchmarking sequences were used to iteratively search a non-redundant
version of NCBI’s NR database. The iterative models created from this process were then scored against the test database. The results of the
searches were combined and scored. This procedure was then repeated for each of the 1000 bootstrapping replicate testsets. The average
number of true positives was plotted versus errors per query. Minimum and maximums numbers of true positives from the replicates are shown
as error bars. JackHMMER (Red) detects an average of 1,337 more homologs than SAM 3.5’s target2k (Blue) and an average of 2,476 more
homologs than NCBI’s PSI-BLAST (Black) across the errors per query range. This represents an increase of 14% and 28% in remote protein
homologs detected. As before, the total number of true homologous pairs between the 2,521 models and the test database is 39,733, and thus
12,000 true positives correspond to identifying 30% of the homologs.

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 7 of 8

Discussion and Conclusions
In this study, we have implemented several heuristic
database filtering steps, HMMERHEAD, in an effort to
decrease the time required to score profile hidden Mar-
kov models against a large protein sequence database.
Utilizing four filtering steps, we have managed to
decrease the search time by 6 or 20-fold relative to
using traditional Viterbi or Forward scoring. This
decrease in search time is achieved with only a 2% or
4% loss in true homologs identified on our benchmark.
This study demonstrates such heuristic database filtering
steps can be successfully utilized to speedup scoring
profile hidden Markov models against large sequence
databases with a minimal loss in sensitivity.
Additionally, we have developed an iterative profile-

HMM approach, JackHMMER. JackHMMER takes an
initial query sequence and is capable of iteratively
searching over a large sequence database. Due to the
length of time utilized by full profile-HMM scoring
algorithms, previous published iterative profile-HMM
approaches required the creation of a subdatabase using
a less sensitive pairwise sequence comparison method.
We have leveraged HMMERHEAD’s speed gains to
eliminate this step from our iterative search method.
Utilizing our protein homology benchmark, JackHM-
MER detects 28% and 14% more remote protein homo-
logs than NCBI’s PSI-BLAST and SAM’s iterative
profile-HMM method, target2k, which are statistically
significant improvements.

Availability
HMMER 2.5.1, which contains both HMMERHEAD and
JackHMMER, is available for download from http://selab.
janelia.org/publications/Johnson10/hmmer2.5.1.tar.gz.
The multiple sequence alignments, test database, and

Perl scripts used in our benchmark are available as a
compressed tar archive at http://selab.janelia.org/publi-
cations/Johnson10/scripts_aln_dbs.tar.gz.

Acknowledgements
This work was initiated when SRE and SJ were at Washington University in
St. Louis. They gratefully acknowledge past support from NIH R01-HG01363,
the Howard Hughes Medical Institute, and Alvin Goldfarb. EP was supported
by a fellowship from the Leibniz Center for Research in Computer Science,
by an Eshkol fellowship from the Israeli Ministry of Science and by the
Sudarsky Center for Computational Biology. EP also thanks Matan Ninio for
his involvement in the initial stages of the HMMERHEAD development.

Author details
1Department of Immunology and Pathology, Washington University School
of Medicine, St. Louis, Missouri, USA. 2Janelia Farm Research Campus,
Howard Hughes Medical Institute, Ashburn, Virginia, USA. 3School of
Computer Science & Engineering, The Hebrew University of Jerusalem,
Jerusalem, Israel.

Authors’ contributions
LSJ contributed to the design and testing of the HMMERHEAD algorithm,
designed and tested the JackHMMER algorithm, and drafted the manuscript.
EP conceived of and contributed to the design and testing of the
HMMERHEAD algorithm. SRE oversaw the design of this study. All authors
read and approved the final manuscript.

Received: 28 April 2010 Accepted: 18 August 2010
Published: 18 August 2010

References
1. HMMER: biosequence analysis using profile hidden Markov models.

[http://hmmer.org/].
2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 3:403-410.
3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

4. Karplus K, Barrett C, Hughey R: Hidden Markov models for detecting
remote protein homologies. Bioinformatics 1998, 14(10):846-856.

5. Scheeff ED, Bourne PE: Application of protein structure alignments to
iterated hidden Markov model protocols for structure prediction. BMC
Bioinformatics 2006, 7:410.

6. Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI,
Koonin EV, Altschul SF: Improving the accuracy of PSI-BLAST protein
database searches with composition-based statistics and other
refinements. Nucleic Acids Res 2001, 29:2994-3005.

7. Holm L, Sander C: Removing near-neighbour redundancy from large
protein sequence collections. Bioinformatics 1998, 14(5):423-429.

8. Brenner SE, Chothia C, Hubbard TJ: Assessing sequence comparison
methods with reliable structurally identified distant evolutionary
relationships. Proc Natl Acad Sci USA 1998, 95(11):6073-6078.

9. Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C: SCOP: a
structural classification of proteins database. Nucleic Acids Res 2000,
28(1):257-259.

10. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G,
Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein
families database. Nucleic Acids Res 2008, 36:D281-8.

11. Brenner SE, Koehl P, Levitt M: The ASTRAL compendium for protein
structure and sequence analysis. Nucleic Acids Res 2000, 28:254-256.

12. Chandonia JM, Walker NS, Lo Conte L, Koehl P, Levitt M, Brenner SE:
ASTRAL compendium enhancements. Nucleic Acids Res 2002, 30:260-263.

13. Madera M, Gough J: A comparison of profile hidden Markov model
procedures for remote homology detection. Nucleic Acids Res 2002,
30(19):4321-4328.

14. Pearson WR: Comparison of methods for searching protein sequence
databases. Protein Sci 1995, 4:1145-1160.

15. Price GA, Crooks GE, Green RE, Brenner SE: Statistical evaluation of
pairwise protein sequence comparison with the Bayesian bootstrap.
Bioinformatics 2005, 21:3824-3831.

16. Grundy WN: Homology detection via family pairwise search. J Comput
Biol 1998, 5(3):479-491.

doi:10.1186/1471-2105-11-431
Cite this article as: Johnson et al.: Hidden Markov model speed
heuristic and iterative HMM search procedure. BMC Bioinformatics 2010
11:431.

Johnson et al. BMC Bioinformatics 2010, 11:431
http://www.biomedcentral.com/1471-2105/11/431

Page 8 of 8

http://selab.janelia.org/publications/Johnson10/hmmer2.5.1.tar.gz
http://selab.janelia.org/publications/Johnson10/hmmer2.5.1.tar.gz
http://selab.janelia.org/publications/Johnson10/scripts_aln_dbs.tar.gz
http://selab.janelia.org/publications/Johnson10/scripts_aln_dbs.tar.gz
http://hmmer.org/
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9927713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9927713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16970830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16970830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11452024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11452024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11452024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9682055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9682055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9600919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9600919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9600919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7549879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7549879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16105900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16105900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773344?dopt=Abstract

	Hidden Markov model speed heuristic and iterative HMM search procedure
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Non-Redundant NCBI NR database, NRDB90
	Remote Protein Homology Benchmark
	Sensitivity and Specificity Measures
	Bootstrapping
	HMMER 2.5.1
	HMMERHEAD Filtering Algorithm
	JackHMMER
	WU-BLAST and WU-BLAST FPS
	NCBI PSI-BLAST
	SAM 3.5
	Computational Resources

	Results
	HMMERHEAD
	HMMERHEAD Parameter Settings
	HMMERHEAD Search Times
	Remote Homology Detection of HMMERHEAD Versus HMMER 2.5.1
	JackHMMER
	JackHMMER Performance

	Discussion and Conclusions
	Availability
	Acknowledgements
	Author details
	Authors' contributions
	References

