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Hidden Markov Modeling of Flat Fading Channels
William Turin, Senior Member, IEEE, and Robert van Nobelen

Abstract— Hidden Markov models (HMM’s) are a powerful
tool for modeling stochastic random processes. They are general
enough to model with high accuracy a large variety of processes
and are relatively simple allowing us to compute analytically
many important parameters of the process which are very dif-
ficult to calculate for other models (such as complex Gaussian
processes). Another advantage of using HMM’s is the existence
of powerful algorithms for fitting them to experimental data and
approximating other processes. In this paper, we demonstrate
that communication channel fading can be accurately modeled
by HMM’s, and we find closed-form solutions for the probability
distribution of fade duration and the number of level crossings.

Index Terms— Fading channels, hidden Markov models, pa-
rameter estimation.

I. INTRODUCTION

M ANY papers and books are devoted to modeling fading
communication channels. A common feature of the

models is that they all have memory. The most widely used
model describes fading as a Gaussian process [3]. However,
this model is difficult to use in applications. For example, there
are no closed form expressions for characteristics associated
with the model such as the probability density function (PDF)
of fade durations and the probability distribution of the number
of fades inside a fixed time interval. Several approximations
for these probability distributions are available in the literature
[9], [12], [16].

Hidden Markov models (HMM’s), on the other hand, allow
us to calculate many important system parameters (such as
probabilities of various error sequences and other performance
characteristics) in closed form [27]. Also, there are many effi-
cient statistical algorithms for fitting HMM’s to experimental
data and for approximating various stochastic processes with
HMM’s [1], [15], [22], [27].

Many papers use HMM’s to model channels with memory.
Gilbert initiated the study of the HMM for real communication
channels error statistics [8]. His model is popular because
of its simplicity. However, measurements of various channels
showed a necessity of using more complex models [7], [10],
[21].

Many experimental results demonstrate that HMM’s can
be used to model error sequences in digital communications
over fading channels [6], [18]–[20], [23]. Several papers are
devoted to modeling the fading process itself with HMM’s
[17], [25], [24]. The important problem arises when ap-
proximating one process with the other is how to select a
measure of the approximation quality: a distance between the
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processes. The most general approach is to fit a high-order
multidimensional probability distribution of one process to the
other which can be accomplished by minimizing a distance
measure between the distributions (such as mean-squared
error, Kullback–Leibler divergence [11], or This approach
can be computationally expensive [22]. Alternatively, we can
simulate one process and treat the simulation results as exper-
imental data for estimating parameters of the other process.

Since the method of fitting multidimensional probability
distributions requires calculation of complex multidimensional
integrals, the method of moments is often used. This method
consists of calculating the probability distribution moments for
both processes (such as means, autocorrelation functions, etc.)
and finding parameters of the approximating process from the
corresponding system of equations. This approach is simple,
but often leads to a poor approximation.

The other question that should be asked when approximating
with HMM’s is how to choose the model structure, the tran-
sition probability matrix structure, and a type of observation
probability distribution. In this paper we compare different
models in terms of the complexity of fitting the models to the
fading process and difficulty of their use in applications.

Our paper is organized as follows. In Section II we analyze
the most widely used model for the Rayleigh fading [3]. In
Section III we consider various Markov models for the fading
envelope. Modeling with HMM’s is addressed in Section IV.
Section V describes various algorithms for HMM parameter
estimation. In Sections VI and VII we demonstrate that there
are closed-form solutions for the fade duration distribution and
level crossing number distributions for the fading HMM which
are not available for the Gaussian model. In Section VII we
introduce an HMM for modeling the combination of fading
and additive noise.

II. FADING CHANNEL MODEL

Let be a low-pass equivalent of the transmitted signal
with the in-phase component and quadra-
ture component Consider a frequency-
nonselective fading channel with additive noise This
channel can be modeled as [13, p. 716]

(1)

where is the received signal and fading is modeled by the
complex random process Different models are based on
different assumptions about and

Usually it is assumed that is zero-mean complex
additive white Gaussian noise (AWGN), and is a complex
stationary zero-mean Gaussian process with independent and
identically distributed (i.i.d.) real and imaginary parts. The
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PDF of a sequence has the form

(2)

where denotes the determinant of denotes the
conjugate transpose of and is the process covariance
matrix

(3)

is the process autocorrelation function. The noise multi-
dimensional distribution has a similar form.

This model is called a Rayleigh fading because its envelope
is Rayleigh distributed

Different models of fading channels are based on different
assumptions about the power spectral density or, equiva-
lently, the autocorrelation function of In this study
we consider the model in which

(4)

where is the Bessel function of the first kind, is the
maximal Doppler frequency, and is the power of the fading
process We will refer to this model as Clarke’s model [3].
The other models include rational functions [12], [16], [19],
simple irrational functions [12], [16], and Gaussian PDF’s
[16]. It is well known that stationary Gaussian stochastic
processes can be modeled by filtering white Gaussian noise

[13].
Alternatively, it can be simulated by the following equation

[9]:

(5)

In practical systems, the transmitted signal has the form

(6)

where is the symbol rate, is the transmitted symbol
value (a complex number corresponding to a point of the signal
constellation), and represents the shaping pulse. If we
assume that is slowly varying so that it is nearly constant
over a symbol duration the sampled output of the coherent
demodulator followed by the receiver matched filter can be
approximated by

(7)

where is the sample of the filtered Gaussian noise and
is a sample of the fading process.

A. Fading Envelope Model

For slow fading, the communication system performance
depends mainly on the value of the envelope
The envelope can be described by its multidimensional PDF

which can be obtained from (2) by using the equation [24]

(8)

where is the matrix whose th
element is where is the element in
the th row and th column of and

If we have the Rayleigh PDF

(9)

If we have [9, p. 50]

(10)

where is the modified Bessel
function of the first kind.

Obviously, this model is difficult to use in applications in
which distribution of high-dimension is needed. In these
applications, the Monte Carlo method is usually applied. It is
possible, however, to approximate the model with an HMM
which is simpler to apply.

III. MARKOV MODELS

Markov processes are popular in modeling fading because
they can model processes with memory and their theory is well
developed. We consider different model structures commonly
used in describing fading channels.

A. Multiple Markov Chains

Multiple Markov processes are processes with finite
memory. If the process has memory the conditional PDF
of given all past observations depends only on the

previous observations (where symbol denotes
i.e.,

Since the correlation function tends to zero and is
Gaussian it can be approximated with a Markov process if
is large enough so that (because and
become uncorrelated and hence independent). The envelope
transitional PDF has the form

(11)

where The size of
the process memory can be determined using an approximation
accuracy measure (an example of such a measure is given in
Section V-B). For the simple Markov process the
transition PDF is the Rician PDF.

If we perform the envelope quantization into levels, the
quantized process can be approximated by the Markov
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chain with states. In particular, for the simple Markov chain
we have the transition probabilities

(12)
where is given by (10). If the quantization intervals
are small, we can write
and

Reference [24] suggested that the first-order model ap-
proximation is satisfactory for Rayleigh fading whose power
spectral density is given by (4). This approximation, however,
is satisfactory for relatively short intervals only.

To approximate the Bessel function arising in (4) we need
Markov chains with larger memory (we address the question
of fitting the autocorrelation function in Section IV-A).

Since the number of states grows exponentially with the
process memory, this approach is not practical.

B. Quantized Autoregressive and Moving Average (ARMA)

Using standard methods of the infinite impulse response
(IIR) filter design [14] we can approximate the fading power
spectral density with a rational function of the form

(13)

where In this case can be modeled by the
complex ARMA process

(14)

where are i.i.d. Gaussian variables. If we have an AR
process The ARMA approximation of the fading
is a special case of the Markov process whose state is defined
by the vectors

To obtain a Markov chain with
the finite number of states, we need to quantize these vec-
tors. This approach is more directly related to approximating
the autocorrelation function than the one considered in the
previous section. Moreover, it allows us to use the standard
methods of filter design for building the model. In the case of a
Butterworth filter [16], [19] we have a simple Markov process.
The fading envelope is a function of the Markov
chain and, therefore, is a special case of an HMM. The ARMA
model complexity grows linearly with process memory. This
model, however, is difficult to use for calculating model
statistics. For example, there is no closed-form expression
for the fade duration and level crossing distributions for the
ARMA model.

As in the case of the multiple Markov chains, the size of
this model transition probability matrix grows exponentially
with the process memory. The matrix is large, but sparse.

C. Birth-and-Death Processes

Birth-and-death processes are a special case of a Markov
model [4], [17], [25]. These models assume that the quantized
fading amplitude from the current th level can jump only to
the adjacent levels if If is large, this
structure allows us to model slowly varying processes.

It is possible to improve this model by splitting each state
into two and , depending on the transition slope [17].
corresponds to the start of fading below the level and

corresponds to its end.
The accuracy of this model depends on the selection of

quantization levels. The quantization levels must satisfy two
conditions: given by (12) should be close to zero for

and the original model state duration distributions
should be close to exponential distributions (since the state
durations of a Markov chain have exponential probability
distributions). These two conditions are difficult to satisfy.
In order to fit the exponential state duration distribution the
number of quantization levels must be large, but in this case
the probabilities of transitions to the nonadjacent levels

are not negligibly small. The model approximation
can be improved by allowing nonadjacent level jumps.

D. Monte Carlo Method

Since it is difficult to evaluate the integrals which are needed
for the Markov process approximation, the model parameters
can be estimated using the results of computer simulation.
After sampling and quantizing the envelope we
obtain a sequence Now we can apply the well-known
methods of fitting Markov chains to experimental data [2].
The state transition probabilities are estimated by

(15)

where is the number of transitions from state to state

IV. MODELING FADING WITH HMM

An HMM is a probabilistic function of a Markov chain
and can be defined as where

is the set of the Markov chain states,
denotes the HMM output (observation) set, is a vector
of state initial probabilities, is a matrix
of state transition probabilities and

is a diagonal matrix of the output
conditional probability densities in state If is discrete,

is a matrix of probabilities Without
loss of generality, we denote states by their indexes

Alternatively, HMM can be represented by the so-called
state–space equations

(16)

(17)

where and are i.i.d. variables. Indeed, it follows from
(16) that is a Markov process, generally with an infinite
number of states. If has a finite discrete range (number
of possible values which it can take), however, then we have
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a Markov chain with the finite number of states and state-
transition probabilities

(18)

According to (17), observations are conditionally in-
dependent variables, given the state sequence, and have the
following PDF:

(19)

Conversely, for any HMM we can find and
by inverting (18) and (19), respectively.

In order to understand the limitations of the HMM approx-
imation, let us study the class of autocorrelation functions of
HMM’s.

A. HMM Autocorrelation Function

To calculate the autocorrelation function

we evaluate the probability densities of an HMM output
sequences These probability densities
have the form [21]

(20)

where is the matrix PDF of and is the
column matrix of ones.

Using these equations, we can write

for

where

are the matrix expectations of and respectively.
It follows from these equations that the -transform of

for is a rational function

(21)

Expanding it into partial fractions we obtain

(22)

where are the matrix eigenvalues. Thus

(23)

In particular, if all the eigenvalues are different, is a
mixture of exponential functions

(24)

It follows from these equations that an HMM power spectral
density is a rational function of

where

According to (23), the autocorrelation function must have the
form

where and are polynomials and
If all eigenvalues are different takes the

form

Obviously this class of functions is rich enough to approximate
any autocorrelation function. Let us consider now different
methods of approximating the fading process with HMM’s.

V. HMM PARAMETER ESTIMATION

Once we selected a class of models, we need to fit a model
from this class to the fading process. There are several methods
for fitting the model.

A. Method of Moments

The method of moments consists of finding the model’s
parameters by equating moments of two models and solving
the corresponding equations. Usually one of the models is
represented by its experimental data. Examples of such an
approximation of the Rayleigh fading by an HMM are given
in [17].

There are several problems with the method of moments.
One of the problems is that the system of equations for
the moments is often ill posed. The moments are the same
for quite different models. The model structure is usually
selected using our intuition and the model accuracy must be
evaluated separately. The other problem is that the moment
selection is quite arbitrary. For example, we can find an
HMM whose autocorrelation function is close to that of
the fading process. However, this does not mean that the
multidimensional probabilities associated with these processes
are close.

Therefore, the method of moments could be used for se-
lecting initial values of the model parameters which are then
improved by more sophisticated statistical algorithms.

B. Approximating Multidimensional Probability Densities

One of the most powerful methods of approximating a
stochastic process with an HMM consists of fitting multidi-
mensional probability distributions of an HMM to that of the
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original process. The HMM parameters can be obtained as
those which minimize the Kullback–Leibler divergence

(25)

where

(26)

and are given by (8) and (20), respectively and
is the HMM parameter vector. The minimum in (25) can

be obtained iteratively by the expectation-maximization (EM)
algorithm [27]: its version for fitting HMM’s is called the
Baum–Welch algorithm [1].

We would like to point out that the computational efficiency
of the algorithm depends on the nature of statistical data.
Obviously, for slow fading, an HMM approximation should be
close to the birth-and-death process. Since the model matrix is
sparse, direct application of the previous equations for the slow
fading data is very inefficient. We can improve the algorithm
efficiency by using matrix fast exponentiation [27]. Another
improvement can be achieved by taking advantage of the
following property of the Baum–Welch algorithm: if
at some iteration step then Therefore, at each
iteration we can replace small elements with zeroes and apply
the sparse matrix multiplication algorithms.

Alternatively, we can start with the birth-and-death process
approximation. If the state transitions satisfy the Markovian
property, but the state duration distributions are not exponen-
tial, we have a semi-Markov process approximation which can
be transformed into an HMM as follows [21, p. 48].

Let

(27)

be the transition process transition probability matrix. Sup-
pose that we were able to approximate the state duration
distributions with the phase-type matrix-geometric distribution

(28)

where is a square matrix, is a row vector, and is a
column vector such that

is a stochastic matrix (that is all its elements are nonnegative
and each row sums to one Then the semi-Markov
process is equivalent to an HMM whose state transition
probability matrix is given by

(29)

In this presentation, the diagonal matrices represent the
transitions between states of the HMM that correspond to
the th quantization level of the fading process (that is the

probability of observing the level in those states is equal to
one).

The matrix-geometric distribution parameters can be esti-
mated using the Baum–Welch algorithm if we notice that the
state holding process is a binary HMM whose state transition
probability matrix is

To illustrate this method, we performed simulation using
Clarke’s model of the Rayleigh fading channel with the
parameters Hz, the normalized fade rate

We simulated 1 million steps of the fading amplitude
to estimate the state transition probability matrix where the
states are represented by the quantization intervals (0, 0.0149),
(0.0149, 0.0329), (0.0329, 0.0725), (0.0725, 0.1601), (0.1601,
0.3535), (0.3535, 0.7805), (0.7805, 1.7234), (1.7234,

The state duration distributions are typically not exponential
(as also shown in [17]). As an example, the state duration dis-
tribution of the sixth quantization interval is shown in Fig. 1,
together with the matrix-geometric distribution approximation
using a five-state model. The matrix is

The quality of the fit is illustrated in Fig. 1. The quantized
fading level process is described by the HMM whose transition
probability matrix is given by (29).

VI. FADE DURATION DISTRIBUTION

As we pointed out before, it is possible to find a closed-form
solution for the fading-duration distribution of an HMM fading
model. To calculate fade-duration probability distribution we
can use the method of matrix probabilities [21]. Let

(30)

be the matrix probability of the fading to be above the level
and

(31)

be the matrix probability of the fading to be below level
Then the probability that the fade duration is equal to can
be written as

(32)

The probability distribution of intervals between consecutive
fades can be found similarly

As we see, these probability distributions are matrix geometric.
The comparison between the cumulative matrix-geometric
distribution of fade durations

and simulated by both Clarke’s model and HMM is presented
in Fig. 2.
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Fig. 1. A typical state duration distribution and its approximation.

Fig. 2. Fade-duration distribution.

The mean duration of fades can be easily found using (31)

and the mean duration between the fades is equal to

If is a stationary probability vector, these equations can be
simplified

There is a closed-form solution for the mean duration of fades
[12, p. 189]

where and is the standard deviation of the
process first derivative. Fig. 3 compares with for
different levels
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Fig. 3. Mean duration of fades.

VII. LEVEL CROSSING NUMBER DISTRIBUTION

The other important parameter which characterizes the
fading process is the number of fades below a certain level
during a fixed time interval. This parameter is closely related
to the number of the level crossings by the fading process
(if we neglect the interval boundary condition the number of
fades is one half of the number of crossings). It is not difficult
to derive this distribution for the HMM.

Indeed, let be a characteristic function of the fading
amplitude below a level

if
otherwise.

The number of the level crossings is equal to the number of
transitions and in the binary HMM which
is described by the matrix probabilities and

To derive the number of level crossing probability distribu-
tion it is convenient to consider the level transition process

This process is also an HMM with the matrix
probabilities

(33)

Since is an HMM the number of crossings probability
distribution is a matrix binomial distribution
which can be evaluated by the following forward algorithm

[21, p. 76]

for

(34)

It is not difficult to verify that the stationary distribution of
the transition HMM is

(35))

These equations can be simplified since matrices and
contain many zeroes

(36)

and

(37)

The corresponding cumulative probability distribution is
compared with the results of computer simulation in Fig. 4.

It is not difficult to show that the mean number of level
crossings equals to [21, p. 70]

Thus, the level crossing rate is

(38)

while for the Clarke’s model it is [12, p. 182]

we compare and in Fig. 5.
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Fig. 4. Level crossing number distribution.

Fig. 5. Level crossing rates.

VIII. CHANNELS WITH FADING AND AWGN

Let us consider now modeling the slow-fading channel
output according to (7). If we assume that the source sequence

is generated by an HMM, then the channel output
is an HMM whose state space is the Cartesian product of
the states of the source and fading HMM’s and its transition
probability matrix is a Kronecker product of the source and
fading transition probability matrices

The output conditional probability is given by

where and are the states of the source and fading,
respectively. This PDF has the form

where and are source and fading conditional
probability densities and is the noise PDF.
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If the fading is Markovian, the output conditional PDF is
just a convolution

If the source is discrete

then

IX. CONCLUSION

There are many reasons for modeling fading with HMM’s.
It is convenient to have a common model for different types of
fading. The class of HMM’s is broad enough to approximate
accurately various types of fading. We have demonstrated that
different approaches to modeling Rayleigh fading represent
special cases of an HMM.

If fading is modeled by an HMM, then bit errors and block
errors in data communications over fading channels can be
modeled by an HMM.

On the other hand, HMM’s are comparatively simple al-
lowing us to find closed-form expressions for various fading
characteristics which are not available in the closed form
for other models. We illustrate this by considering probabil-
ity distributions of fade durations and the number of level
crossings.

We have also considered relationships between various
models and HMM’s and shown how to approximate these
models with HMM’s.
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