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Outline

Brief introduction to Markov models
Hidden Markov Models
Three typical problems on HMMs:

— Evaluation - forward-backward algorithms

— Inference - Viterbi decoding algorithm

— Learning - Baum-Welch (Expectation
Maximization) algorithm

Applications in Bioinformatics

— Segmentation of biological sequences

— Multiple alignment of biological sequences

— Case study (reading matter): odorant receptors
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A Markov System

Has N states, called s,, S, ...S
Current state 1 =2 N

L$ o There are discrete timesteps, =0, t=1...
| |

L ! On the f'th timestep the system is in

exactly one of the available states.

Call it g,
Note: q; € {S, S, ...Sp\}

Between each time step, the next state
is chosen randomly.



P(gn=sila=s) =12 | A Markov System
P(9:.1=8,l97s,) = 1/2

Has N states, called s,, S, ...S
P(9.1=S5l97S,) =0 b2 N

There are discrete timesteps, t=0, t=1...

P(911=8419784) = 0 @

P(q1=S,l9751) = 0 On the fth timestep the system is in

P(g,.1=S5197S,) = 1 exactly one of the available states.
Call it g,

ORO

P(9,.=S4197S5) = 1/3
P(9,.1=S,lq/S;3) = 2/3
P(9..1=S5|97S3) =0

Note: q; € {S, S, ...Sp\}

Between each time step, the next state
is chosen randomly.

The current state determines the
probability distribution for the next state.
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P(gn=sila=s) =12 | A Markov System
P(9:.1=8,l97s,) = 1/2

Has N states, called s,, S, ...S
P(9.1=S5l97S,) =0 b2 N

There are discrete timesteps, t=0, t=1...

P(q.1=84l97s7) = 0 aﬂ
P(9,1=S,19754) =0
=1

1/2 On the fth timestep the system is in
P(91=S3197$1)

2/3 exactly one of the available states.
Call it g,
S~ Note: g; € {S4, S, ...Sp}
P(9,.=S4197S5) = 1/3

P(9,.1=S,lq/S;3) = 2/3
P(9..1=S5|97S3) =0

Between each time step, the next state
is chosen randomly.

Often notated with arcs The current state determines the

between states

probability distribution for the next state.
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P(9,.1=S4l97S,) = 1/2
P(9,.1=S,lq~S,) = 1/2
P(q:.1=85l97s,) = 0

1/2

P(Gye,=511i=5;) = 0 aﬂ
P(qt+1=32|qt=31) =0
= 1

P(q1.1=S3197$,) 2/3
W

A Markov System

q,., IS conditionally independent of
{9t1> Qro--- G1s o} Given ..

In other words:

P(Qu1=S; | 9Fs) =

P(9.1=S; | gFs;, any earlier history)

™S

Notation:

P(g,.1=S4l9785) = 1/3
P(9,.1=S,lq/S;3) = 2/3
P(q:.1=8;5|q7S5) = 0

a; = P(qu1=S;| 9Fs)




A Blind Robot

A human and a
robot wander
‘ around randomly
‘ on a grid...
R
H
STATE q = Location of Robot,

Location of Human




Dynamlcs of System Each timestep the

o =

R

H

Typical Questions:

human moves
randomly to an
adjacent cell. And
Robot also moves
randomly to an
adjacent cell.

«“What's the expected time until the human is

crushed like a bug?”

«“What's the probability that the robot will hit the
left wall before it hits the human?”

*“What's the probability Robot crushes human

on next time step?”
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Example Question

“It's currently time t, and human remains uncrushed. What's the

probability of crushing occurring attime t + 1 ?”

If robot Is blind:
< We'll do this first

We can compute this in advance.

If robot is omnipotent:

(LLE. If robot knows state at time t), t

Too Easy. We
won’t do this

can compute directly.

1

<

]

Main Body
of Lecture
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What is P(q; =s)? slow, stupid answer

Step 1: Work out how to compute P(Q) for any path Q
- 419245 G
Given we know the start state g,
P(q4Q; .- ) = P(qy 93 .- 9¢4) P(Q:94 9z -- G.4)
(41 92 -- Gt.1) P(QdAe.4) WHY?
(92194)P(a3]qy)-..P(qq; )

Step 2: Use this knowledge to get P(q, =s) N 1S
Compuirit
P(q, =s)= > P(0) expOnene

Q<=Paths of length 7 that end in s

=P
=P

12



What is P(q; =s) ? Clever answer

« For each state s;, define
p«(1) = Prob. state is s; at time ¢

= P(q;,=s)
« Easy to do inductive definition

Vi py(i)=

Vi Pa(N)=Pq.,=s;)=

13



What is P(q; =s) ? Clever answer

« For each state s;, define
p:(1) = Prob. state is s; at time ¢

=P(q;=s)
« Easy to do inductive definition
_ _ 1 1t s, 1s the start state
Vi py(i)=

0 otherwise

Vj Pa() =P, =5;)=
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What is P(q; =s) ? Clever answer

» For each state s;, define
p«(1) = Prob. state is s, at time ¢

=P(q;=35)
« Easy to do inductive definition
_ _ 1 1t s, 1s the start state
Vi py(i)=

0 otherwise

Vi pa()=Pq,. =s,)=

ZP(QHI_S AQr_g)_
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What is P(q; =s) ? Clever answer

» For each state s; define
p:(i) = Prob. state is s; at time ¢

=P(q;=s)
« Easy to do inductive definition

i () 1 1t s, 15 the start state
l 1) =
Po 0 otherwise
Vi pa(=Pq,,=s)=
Remember,
ZP(‘L+1‘9 NG =S;)= a,=P(q,,=s,|q,=s,)

N N
ZP(QH-I = Sj ‘Qr = S}')P(QI = Sf) = Za.gpr(l)
i=1 i=l
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What is P(q, =s) ? Clever answer

« For each state s;, define Computation is simple.
Just fill in this table in

p:(i) = Prob. state is s; at time ¢ ' order: )

=P(q;=s) /
« Easy to do inductive definition t PA1) | Pd2) | ... | PAN)
i 0 1 if s, is the start state 0 0 1
l l)=
Po 0 otherwise 1
Vi pa()=Pq,, =5)= L

ZP((]H-]_S /\Qr_g)_

N N
ZP(QH-I = Sj ‘ Qr = S;')P(Qr = Sf) = Zaypr(l)
i=1 i=1
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What is P(q; =s) ? Clever answer

» For each state s;, define

« Cost of computing P(i) for all

p(i) = Prob. state is s; at time ¢ states S, is now O(t N2)
=P(q;=s) » The stupid way was O(NY)
+ Easy to do inductive definition ~ |* This was a simple example
. |1 if s, is the start state | LU SRl WL Ve L
Vi p,(i)= _ to this trick, called Dynamic
10 otherwise Programming, because
' . HMMs do many tricks like
Vi pa()=Pq., =5;)= this. (")

N
ZP(QH-] :Sj AQI :Si) —
i=1

N N
2 PG =5, lq,=s)Plq =s)= 2 a;p,(i)
i=1 i=1

(*) Read the basics on Dynamic Programming (D.P.) here (in Spanish):
http://webdiis.unizar.es/asignaturas/EDA/ea/slides/4-Programacion%?20dinamica.pdf
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Outline

Brief introduction to Markov models
Hidden Markov Models
Three typical problems on HMMs:

— Evaluation - forward-backward algorithms

— Inference - Viterbi decoding algorithm

— Learning - Baum-Welch (Expectation
Maximization) algorithm

Applications in Bioinformatics

— Segmentation of biological sequences

— Multiple alignment of biological sequences

— Case study (reading matter): odorant receptors
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Hidden State

“It's currently time t, and human remains uncrushed. What's the
probability of crushing occurring at time t + 1 ?”

If robot is blind:

< We'll do this first
We can compute this in advance.

If robot is omnipotent:

Too Easy. We
(I.E. If robot knows state at time t), <: won'’t do this
can compute directl

If robot has some sensors, but
iIncomplete state information ... <,‘:

Hidden Markov Models are
applicable!

Main Body
of Lecture
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idden State

* The previous example tried to estimate P(q; = s)
unconditionally (using no observed evidence).

« Suppose we can observe something that's affected
by the true state.

« Example: Proximity sensors. (tell us the contents of
the 8 adjacent squares)

R, W W W

v w

® 1  denotes

H “WALL”
What the robot sees:
Observation O,

X

observations are also
called emissions 21

True state g,




Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

= w [ w [ w "
H ® 1 denotes
— H “WALL’
True state g; Uncorrupted Observation
\
W W
® =
- 5

What the robot sees:
Observation O,



Noisy Hidden State

« Example: Noisy Proximity sensors. (unreliably tell us
the contents of the 8 adjacent squares)

R, 2 w w W
- W
& ® denotes
" H “WALL”
True state g, Uncorrupted Observation
O, is noisily determined depending on \
the current state. ™ ™
Assume that O, is conditionally ® W
independent of {d, 4, ;5. ... Ay, dy Oy, H H
Orz, - Oy, Og } given g, What the robot sees:
In other words: Observation O,
P(O:= Xlg;=s)) =

P(O,= X|q,= s;,any earlier history)

Notation:
b{k)=P(O;= k| q;= s))




Hidden Markov Models

Our robot with noisy sensors is a good example of an HMM
* Question 1: State Estimation
What is P(q;=S, | 0,0,...0)
It will turn out that a new cute D.P. trick will get this for us.
* Question 2: Most Probable Path
Given O,0,...0+, what is the most probable path that | took?
And what is that probability?

Yet another famous D.P. trick, the VITERBI algorithm, gets
this.

* Question 3: Learning HMMs:

Given O,0,...0;, what is the maximum likelihood HMM that
could have produced this string of observations?

Very very useful. Uses the E.M. Algorithm

X

Expectation Maximization

24



Are H.M.M.s Useful?

Robot planning + sensing when there’s uncertainty
Speech Recognition / Understanding

Consumer decision modeling

Economics & Finance

.. i.e. complicated stuff your lecturer knows nothing about.

Bioinformatics

« Segmentation (define regions’ boundaries in gene & protein sequences)
 Alignment of biological sequences
* Gene finding

Plus at least 5 other things | haven’t thought of.
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Outline

Brief introduction to Markov models
Hidden Markov Models
Three typical problems on HMMs:

— Evaluation - forward-backward algorithms

— Inference = Viterbi decoding algorithm

— Learning - Baum-Welch (Expectation

Maximization) algorithm

Applications in Bioinformatics

« Segmentation of biological sequences

* Multiple alignment of biological sequences

« Case study (reading matter): odorant receptors
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Some Famous HMM Tasks

Question 1: State Estimation
What is P(g+=S, | 0,0,...0;)

27



Some Famous HMM Tasks

Question 1: State Estimation
What is P(g+=

M o
Y
l.'t"'j“r‘ H’ | H\f |
g 1,4%%’ IJ W\‘ (.
'm)hl ] .J ’ Mv ".1 hlm
i

28



Some Famous HMM Tasks
|

What is P(q=

Question 1: State Estimation —r | u
WHE Gla%E eat =i =laep zhan Fi 1
]




Some Famous HMM Tasks

Question 1: State Estimation
What is P(q:=S, | 0,0,...0y)
Question 2: Most Probable Path

Given O,0,...0;, what is
the most probable path
that | took?

30



Some Famous HMM Tasks

Question 1 State Estimation
Question 2: Most Probable

Given O,0,...0;, what i
the most probable path
that | took?

FRI Rl FR1 FRI
Je-23-2004  JAN-23-2004  JAN-23-2004  TAN-23-2004
15:42 17230 18218 19:06




Some Famous HMM Tasks

Question 1: State Estimation |
What is P(g:=S, | O,0,...0,| Woke up at 8.35, Got on Bus at 9.46,
Question 2: Most Probable Sat in lecture 10.05-11.22. ..

Given O0,0,...0;, what i
the most probable path
that | took?

FRI FRI FRI FRI
J-23-2008  WN-23-2004  TN-23-2004  TAh-23-2004
15:42 17220 18218 19:06

32



Some Famous HMM Tasks

Question 1: State Estimation
What is P(q:=S, | 0,0,...0,)
Question 2: Most Probable Path

Given 0,0,...0;, what is
the most probable path
that | took?

Question 3: Learning HMMs:

Given O,0,...0;, what s
the maximum likelihood
HMM that could have
produced this string of
observations?

33



Question 1: State Estimation
What is P(q:=S, | 0,0,...0
Question 2: Most Probable P

Given O,0,...0;, what |
the most probable pa
that | took?

Question 3: Learning HMMs:

Given O,0,...01, what is
the maximum likelihood
HMM that could have
produced this string of
observations?

FRI FRI FRI FRL
F-23-2004  JAn-23-2004  JN-23-2004  TRN-23-2004
15:42 17220 18718 19:06




Question 1: State Estimation
What is P(q:=S; | 0,0,...0
Question 2: Most Probable P

Given 0,0,...0;, what |
the most probable pa
that | took?

Question 3: Learning HMMs:

Given 0,0,...0;, whatis
the maximum likelihood
HMM that could have
produced this string of
observations?

FRI FRI FRI FRL
Jb-23-2004  JAN-23-2004  JAN-23-2004  TAN-23-2004
15242 17230 18;18 19:06




Basic Operations in HMMs

For an observation sequence O = O,...O4, the three basic HMM
operations are:

Problem Algorithm Comelexity
Evaluation: Forward-Backward O(TNz)
Calculating P(g=S, | 0,0,...0))
Inference: Viterbi Decoding O(TN2)
Computing Q" = argmax, P(Q|O)
Learning: Baum-Welch (EM) O( TN2)

Computing A" = argmax, P(O| )

T = # timesteps, N = # states \j

36



7/ T~l. R. Rabiner, "A Tutorial on

HMM Notation
(from Rabiner’'s Survey) cce: ameston n apeecn

Recognition," Proc. of the |IEEE,
The states are labeled S; S, .. Sy vol.77, No.2, pp 257286, 1989.

Available from

For a particular trial....
LetT be the number of observations

T IS also the number of states passed
through

O =0, 0, .. O;is the sequence of observations
Q=q4Q0,..97 Isthe notation for a path of states

A= (N,M,{m },{a;},{bj(J)}) Is the specification of an
HMM

37


http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00018626

HMM Formal Definition

An HMM, A, is a 5-tuple consisting of
» N the number of states

M the number of possible observations Z This is new. In our
{nq, m,, .. m;y} The starting state probabilities SUELLILE )

start state was

P(do=S) = deterministic
* Ay Az 1N h
Ay ayr an The state transition probabilities
. . P(9u1=S;| 9=S))=3;
an{ an aNn -~
-~
* by(1) b(2) ... b,(M) |
b,(1) b,(2) ... b, (M) _ The observation probabilities
: : ; P(O&=k | 9=5)=b;(k)
by(1) by(2) by(M) -~

38



H ere,S a n H M M Start randomly in state 1 or 2

Choose one of the output
/"'_""--«\\82 symbols in each state at
1/3 ' 7y | random.

Ay =13 a,; =23
=13 a,, = a3 = 2/3
A3 =13 yp = 1/3 a5 = 173
=172 b, (Y) =122 b, (Z)=0
= b, (Y) =112 b, (Z) = 112
b; (Y)=0 b, (Z) = 112



Here’'s an HMM

v~ .S, symbols in each state at

= 2

A

Start randomly in state 1 or 2

Choose one of the output

XY . 1 [ 7y | random.
N \‘ﬁ\_/ Let's generate a sequence of
observations:
,, 50-50 choice
| between S, and
M, = 2 n,=0 S,
8.12 = % 8.13 = /3
22 = 413 =% 9
ISR A3 =73 Q= | = O~ |_
9= | — Os= |_
b, (Y) =" b, (Z)=0 = o
b, (Y)="2 b, (Z) =Y 2 — 2 —
b,y (Y)=0 b, (Z) =

40



H ere,S a n H M M Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let's generate a sequence of
observations:

50-50 choice
between X and Y

A, =" A3=% -
A, =" Ay = a3=% -
a;3= " a3 =7 a;3=7% do= O= |Z
= (Y) = % (Z)=0 o B i
- /2 - /2 1 - - -
4= | __ O,= |__




Here’'s an HMM

N=3
M=3
="
A =

Ay ="
A3 =7
b, (X) =
b, (X) = 0
b, (X) =

TeRyy //_ H\S2
SXY e ZY
o Y E Y L \‘%\ .

(Z)=0
(Z)="%
(Z) =%

Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let's generate a sequence of
observations:

Goto S; with
probability 2/3 or
S, with prob. 1/3

)
q0= O OO= X
q9,= i O= |_
o —— S -

42



H ere’S a n H M M Start randomly in state 1 or 2

Choose one of the output
v .S, symbols in each state at

XY B 7Y random.

s Let’'s generate a sequence of
:_/ observations:
13

50-50 choice
between Z and X




H el'e’S a n H M M Start randomly in state 1 or 2

Choose one of the output
.5, symbols in each state at

XY 1/3 7Y random.
>~ Let's generate a sequence of

53 F St
\: 7X :/ observations:

Each of the three
next states is

equally likely
<D
qo= : 0= |X
(-
9= |S; 0= |X
=" b, (Y)="2 b, (£)=0 = < =
=0 b = 1 =1 927 — O~ —
= ,(Y) =" b, (Z)="2
= by (Y)=0 by (£) =7



H ere,S a N H M M Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let’'s generate a sequence of
observations:

50-50 choice
between Z and X

A, =7 a3 =%
A, = s Ay = a3 =% D
a,;; =" asg, =" a3 =" 9= Oo=/_lx
1 1 9= |S; = | X
=7 (Y) = % =0 I, s, -




H ere’S 8 n H M M Start randomly in state 1 or 2

Choose one of the output
symbols in each state at
random.

Let's generate a sequence of
observations:

qo= Op= |X
= b, (Y) =% b, (Z)=0 9= 15 2= 2
-2 1 -2 1 - = =
=0 b, (Y) =% b, (Z) = ¥ 9z >3 O~ |2
=% b, (Y)=0 b, (Z) =%



State Estimation

Start randomly in state 1 or 2

Choose one of the output

/---—-----\Sz symbols in each state at

random.

Let’'s generate a sequence of
observations:

This is what the
observer has to

work with. ..
Qo= ? O,= X
q.= O,= X
9= |? 0= |Z

47



Prob. of a series of observations
What is P(0) = P(O, 0, O;) = _
P(O,=X"0,=X"0,=2)? g

7N
| XY «——— ZY |
Slow, stupid way: 23— \4%\ /

P(O)= Y POAQ) %{_\ ZX _jﬁ:%‘

QecPaths of length 3 ~ £

= > PO|QPrQ)

QePaths of length 3

How do we compute P(Q) for
an arbitrary path Q7

How do we compute P(O|Q)
for an arbitrary path Q?

48



Prob. of a series of observations

What is P(O) = P(O, O, O,) = _ s
PO, =X"0,=X"0,=2)? SN
(©: 2 3 ) XY .._J——@———+ ZY |
Slow, stupid way: 28—
PO)= > P(OAQ) .} ZX %‘
Q<Paths of length 3 ) ~_~ S
3
= > P(O|Q)P(Q)

Q&Paths of length 3 P(Q)= P(q1,q2,q3)

How do we compute P(Q) foz P(q,) P(a2.9sld4) (chain rule)

an arbitrary path Q7 ) =P(@)) P(azla;) P(as] az.0y) (chain)
How do we compute P(O|Q) | =P(a;) P(alay) P(asl az) (why?)
for an arbitrary path Q7 Example in the case Q = 5, S5 S;!

=1/2*2/3*1/3=1/9

49



Prob. of a series of observations
What is P(0) = P(O, O, O,) =

PO = X0, = X720, =2)7 | XY ‘,_____1@———4 Z Y\
Slow, stupid way: 23— e
PO)= Y POAQ) S zx s
QePaths of length 3 A - S
3
= Y PO|Q)PQ) "
Q<Paths of length 3 = ( 0 | Q )
How do we compute P(Q) for|=P(0;0,0;(q;9;9;3)
an arbitrary path Q? = P(0; | d;) P(O; ] q; ) P(O5 ] 45 ) (why?)
How do we compute P(O|Q)| ~ Example in the case Q = S, S; S;!
for an arbitrary path Q7 = P(X| S;) P(X| S3) P(Z| S) =
=1/2*1/2*1/12=1/8

50



Prob. of a series of observations
What is P(0) = P(O, O, O,) =

PO, =XA0,=X"0,=2)? ° P
1 | 2 3 - XY ‘,___1@__—4 ZY ,_..3
Slow, stupid way: U o 4

P(O)= > P(OAQ)

Qc<Paths of length 3

- Y. PO|QPQ)

Q<=Paths of length 3

How do we compute P(Q
an arbitrary path Q7

How do we compute P(O|
for an arbitrary path Q7

So let’s be smarter...

51



he Prob. of a given series of
observations, non-exponential-cost-style

Given observations O, O, ... O;

Define

a(1)=P(O; 0, ...0, Aq,=S,| V) where 1 <t<T

a(1) = Probability that, in a random trial,
« We'd have seen the first t observations

» We’'d have ended up in S; as the t'th state visited.

In our example, what is a,(3) ?

52



o,(1): easy to define recursively

Ott(l) — P(O1 02 e OT AN Qs — Si | }L) (oy(1) can be defined stupidly by considering all paths length “t". How?)

al(f):P(Ol N, = Sz')
— P(Q] =95, )P(OI‘QI :Sz')
— what?
ar+1 (JT): P(Oloz “'OrOr+1 N QHI — Sj)

53



o(1): easy to define recursively

(Ir(l) — P(O1 02 OT AN Si | ;‘\,) (o4(1) can be defined stupidly by considering all paths length “t”. How?)

a,i)=P(O,Ang, =S,)
= P(% =5, )P(O1‘Q1 =S.:‘)
what?

(J) P(OO OOH]Aqu:Sj)

.f+1

P(OO O NG, = S;"I\OHIAqu =Sj)

.P"%

i=1

P(O 2 Qg =9 "0102'*-(); NGy = S;')P(O1O:3-"Or NG, = Sr.')

3

.

1

I

P(Or+1 Grq =9; “?r S, }Z
P(‘*}'m =3, ‘Qr S; )P( O,

=Z 30,0, ), (7)

-M -

Gr1 =9 }1

54



In our example

a,(i)=P(0,0,.0,nq,=5|4) XY = ZY
a'(.‘::) b(O );r. A )

& ] Za{f j .f+1

aa(l)ﬁ “2)=0 @)=

|
a,(1)=0 a,(2)=0 o (fs):E
=0 @@= @)=

55



Easy Question

We can cheaply compute
o0,(1)=P(040,...0Aq=S))
(How) can we cheaply compute
P(O,0,...0,) 7

(How) can we cheaply compute
P(9=S5|0,0,...0,)

56



Easy Question

We can cheaply compute

04(1)=P(0,0,...0Aq=S))

(How) can we cheaply compute

P(0,0,...0,) ?

(How) can we cheaply compute

P(9=S;|0,0,...0,)

57



Most probable path given observations

What's most probable path given O,0,...0;,1.¢.
Whatis argmax P(Q|O1 0,..0, )‘?
Q

Slow, stupid answer :

argmax P(0|0,0,..0;)
Q

P(0,0,...0,|0)P(0)
P(0,0,..0;)

-argmax
Q

=dlrgmax P(Oloz---or ‘Q)P(Q)
Q

58



=fficient MPP computation

We’re going to compute the following variables:
O(l)=  max P(@19; .- Ay A 9t=S;A 04 .. Oy)
d192--Yt.1

= The Probability of the path of Length t-1 with the
maximum chance of doing all these things:
...OCCURING
and

and
...PRODUCING OUTPUT 0O,...0,
DEFINE: mpps(i) = that path

So: Oy(i)= Prob(mppy(i))
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The Viterbi Algorithm

(Sr(f)= ¢d19->---4:_4 P(Q1Q:---Qr—1 NG, =S, AOlOz"Or)
mpp, (i) = Gd19->---4:_4 P(Q1Q:---Qr—1 NG =8, 10,0,.0,)

max

5,(i) = one choice P(g, =S, A O,)

= P(% =5, )P(O1“i'1 = S::)
=ﬁibi(01)
Now, suppose we have all the &,(i)’'s and mpp,(i)'s for all i.

HOW TO GET &,,.(j) and mMpp..1(j)?

mpp{ 1) —WW —(s,)

mpp,(2 (o) o
Pp(2) S s

( /;\.
Mpp(N) Prob=5,(N) Sy

o Qs
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The Viterbi Algorithm

time t time t+1
s .
NV /N The most prob path with last
J\/\/_} A \S i) two states S; S;
i) .
3 is
7
N the most prob path to S, ,
followed by transition S; — S;




The Viterbi Algorithm

time t time t+1
/ N _
\ v/ ~ The most prob path with last
/’“\ NEV P two states S, Sj
\ ) .
IS
=
N the most prob pathto S, ,
fallowed hyv transition S — S

What is the prob of that path?
5t()xP(S — S;A Oyq | N)
= 6’[(') ij ™~ (Ot+‘|)
SO The most probable path to S; has
S as its penultimate state

where |*—argmax (1) @ b; (Or.q)



The Viterbi Algorithm

time t time t+1
/8 N
Ny )
/E';‘\ \J/
N
N
N

What is the prob of that path?

The most prob path with last
r two states S; S,

IS

the most prob path to S,
followed by transition Si — Sj

LA\

(1) X P(S;— S; A
= 04I) a; b; (Oyy4)
SO The most probable

Summary:
O,.1(1) = O(i) ay b, (om)} with i* defined
mMpp..+(j) = MppP.(i*)S. to the left

S;. as its penultimate s

where *=argmax 0(i) a

[ = R 8

Ij bj (Ot+1)
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What’s Viterbi used for?

Classic Example
Speech recognition:
Signhal — words
HMM — observable is signal

— Hidden state is part of word
formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not
one big jump.
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HMMs are used and useful
But how do you design an HMM?

Occasionally, (e.g. in our robot example) it is reasonable to
deduce the HMM from first principles.

But usually, especially in Speech or Genetics, it is better to infer
it from large amounts of data. O, O, .. O; with a big “T".

Observations previously

=~ 0,0,..0
in lecture | 1 Yo T
Observationsinthe |
next bit 0,0, OT
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Inferring an HMM

Remember, we've been doing things like
P(O,0,..0:|A)
That “A” is the notation for our HMM parameters.

Now We have some observations and we want to
estimate A from them.

AS USUAL: We could use

(i) MAX LIKELIHOOD A =argmax P(O, .. O |A)
A

(i) BAYES

Work out P(A| O, .. O;)

and then take E[\]ormax P(A | O, .. O;)
A
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Max likelihood HMM estimation

Define
V(1) = P(q = S; [ 040,...07, A)
g(1,)) = P(q; = S; A Gty = 55| 040,...07 A )

Vi(1) and g(i,J) can be computed efficiently Vit
(Details in Rabiner paper)

Z )/r (l) — Expected number of transitions
= out of state i during the path

Z E (l ]) — Expected number of transitions from
—1 P state i to state j during the path
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0,0,.0;.7)

HMM
estimation

-1 (expected frequency
S 0.1) o
. =1 I\ 1 _)' J
Notice — = S
: expected frequency
7.(i) |
r=1 \ 1

= Estimate of Prob(Next state S| This state S, )

We can re - estimate

> &i.j)

We can also re - estimate
b, (0, )« - (See Rabiner)
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We want @; = new estimate of P(q,,, =5,|q, =s;)
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We want @, = new estimate of P(q,,, =5, |q, =s,)

Expected # transitionsi — j| A”,0,,0,,-+- O,

N
> Expected # transitions i - k | A, 0,,0,.,---O,
k=l

70



We want @, = new estimate of P(q,., =5, |q, =5,)

Expected # transitionsi — j | 17, 0,,0,,---O,

N
Z Expected # transitions i — k | 7, 0,,0,,--- O,

k=1

T
Zp(qm =54 =5, ‘ﬁoldaolaoza'”or)
1

=

N
k

T
Zzp(qz‘ﬂ :Sﬁrﬂ% :Sr’ ‘iolda()lﬂ()zﬂ'”()f)

=1 =1
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We want a; " = new estimate of P(q,,, =5, [q, =s,)

Expected#transmonsz—) il A, 0,,0,,0;

Z Expected # transitions i — k | 17, 0,,0,,---O

T

Z:P(c]Hl =S..4, =5, 24.0,,0,,--0.)

o \ T
ZZP(C]HI =54 =5, |2'01d?()1:()2:'”()f)

k=1 t=1

— N J where Sfj :ZP(QHI :Sjaqf* :SMOD'“OT |/101d)

=l = What?
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We want @, = new estimate of P(q,,, = s:1q,=s;)

Expected # transitions i — j | 2”¢,0,,0,,--- O,

N
Z Expected # transitionsi — k| 2", 0,,0,,-+- O,
k=1

T
2 P(Ga =526, =5 44.0,.0,.-:0p)

v T
ZZP(‘LH =54, =93, M’Old 0,,0,,-0;)

k=1 t=1

T
B ¥ 1 old
N where LSU' :ZP(QHI :Sj:Qf :S;«':Ol:”'OT |/1 )
~1

— ag Z &, (i)/BHl (])bj (Or+1 )
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We want a

new

ZLS where LF

0,301, (0.)
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We want ane“ =5 /ZS where L'F..

1,2, (1)b,(0,.)
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EM for HMMs

If we knew A we could estimate EXPECTATIONS of quantities
such as

Expected number of times in state |
Expected number of transitions i — |

If we knew the quantities such as
Expected number of times in state |

Expected number of transitions i — |
We could compute the MAX LIKELIHOQOD estimate of

A= ({ay){bi0)}, m)

Roll on the EM Algorithm...
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on

s~ b~

EM 4 HMMs

Get your observations O, ...O+
Guess your first A estimate A(0), k=0
K =Kk+1

Given O, ...O+, A(k) compute
vi(i), e(ij) V1<tsT, v1<isN, V1<j<N

Compute expected freq. of state I, and expected freq. i—]

Compute new estimates of a;, b(k), n; accordingly. Call
them A(k+1)

Goto 3, unless converged.

Also known (for the HMM case) as the BAUM-WELCH
algorithm.
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Bad News

* There are lots of local minima

Good News

* The local minima are usually adequate models of the
data.

Notice

« EM does not estimate the number of states. That must
be given.

« Often, HMMs are forced to have some links with zero
probability. This is done by setting a;=0 in initial estimate
A(O)

« Easy extension of everything seen today: HMMs with
real valued outputs
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N al Nl i

Trade-off between too few states (inadequately
modeling the structure in the data) and too many

(fitting the noise).
* There are lots | o
Thus #states is a regularization parameter.

Blah blah blah... bias variance tradeoff...blah
blah...cross-validation...blah blah....AlIC,

* The local minin gic_ . blah blah (same ol same ol

data.
ICE
« EM does notestimate the number of states. That must
be given.

+ Often, HMMs are forced to have some links with zero
probability. This is done by setting ;=0 in initial estimate
A(O)

+ Easy extension of everything seen today: HMMs with
real valued outputs
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What You Should Know

« Whatis an HMM ?
« Computing (and defining) a,(i)

* The Viterbi algorithm DON'T PANIC:
starts on p. 257.

« Qutline of the EM algorithm
* To be very happy with the kind of maths and
analysis needed for HMMs

* Fairly thorough reading of Rabiner* up to page 266*

[Up to but not including “IV. Types of HMMs™].

*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2,
pp.257--286, 1989.

http://ieeexplore.ieee.orq/iel5/5/698/00018626.pdf?arnumber=18626
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http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626
http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626

And now...

Applications in Bioinformatics
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Segmentation of sequences
« Switching between fair and loaded dice

g‘fair An example of visible sequence:
(, a2y T S= 4553653163363555133362665132141636651666
\\ ‘

If we know the properties of the two dice and of the
underlying HMM, can be find the most likely sequence of
hidden states behind it? i.e. can we guess which die was
used at each time point in the sequence?

loaded
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Segmentation of sequences
« Switching between fair and loaded dice

fair An example of visible sequence:
C

(, 15’-. P O = 4553653163363555133362665132141636651666
\\ ‘

If we know the properties of the two dice and of the
underlying HMM, can be find the most likely sequence of
016 hidden states behind it? i.e. can we guess which die was
. C l/F\ ﬁ_) D .., Usedateach time point in the sequence?

Voo Visible O = 4553653163363555133362665132141636651666

1 ) 1 (0.1000)
2 ) 2 (0.1000)
3 ) 3 (0.1000)
4 (0.1667) 4 (0.1000)
5( )
6 ( )

loaded

5 (0.1000)
(0.5000)
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Segmentation of sequences
Switching between fair and loaded dice

g‘fair An example of visible sequence:
(, ) e O = 4553653163363555133362665132141636651666

If we know the properties of the two dice and of the

loaded underlying HMM, can be find the most likely sequence of
om0 hidden states behind it? i.e. can we guess which die was
" \ used at each time point in the sequence?
0.90 |\ ) D 0.90
| o l Visible O = 4553653163363555133362665132141636651666

201000, Hidden Q= 1111111111111111111122221111111222222222

1 )

2( )

3 (0.1667) 3 (0.1000)

4 (0.1667) 4 (0.1000) N
5 (0.1667) 5 (0.1000)

il 0= 1| Computation: Viterbi Algorithm, given a sequence of
observations, what is the most probable path that | took
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Segmentation of sequences
Switching between fair and loaded dice

g‘fair An example of visible sequence:
(, ) e O = 4553653163363555133362665132141636651666

If we know the properties of the two dice and of the

loaded underlying HMM, can be find the most likely sequence of
om0 hidden states behind it? i.e. can we guess which die was
" \ used at each time point in the sequence?
0.90 |\ ) D 0.90
| o l Visible O = 4553653163363555133362665132141636651666

201000, Hidden Q= 1111111111111111111122221111111222222222

1 )

2( )

3 (0.1667) 3 (0.1000)

4 (0.1667) 4 (0.1000) N
5 (0.1667) 5 (0.1000)

il 0= 1| Computation: Viterbi Algorithm, given a sequence of
observations, what is the most probable path that | took

Segmentation = detecting boundaries between statistically different regions.

But we can also estimate the model parameters given some training data
where both the hidden and the observed states are known - EM algorithm
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The anatomy of a genome (1)

Genome = set of all DNA contained in a cell.

Formed by one or more long stretches of DNA
strung together into chromosomes.

Chromosomes are faithfully replicated by a cell
when it divides.

The set of chromosomes in a cell contains the DNA
necessary to synthesize the proteins and other
molecules needed to survive, as well as much of the
information necessary to finely regulate their
synthesis

— Each protein is coded for by a specific gene,
a stretch of DNA containing the information necessary for
that purpose.
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The anatomy of a genome (2)

DNA molecules consist pf a chain of smaller mole_cules called
nucleotides that are distinct from each other only in a chemical
element called a base.

For biochemical reasons, DNA sequences have an orientation

— Itis possible to distinguish a specific direction in which to read
each chromosome or gene

— The directions are often represented as the left and right end of
the sequence

A DNA sequence can be single-stranded or double-stranded.
The double-stranded nature is caused by the pairing of bases
(base pairs, bp).

When it is double-stranded, the two strands have opposite
direction and are complementary to one another.

This complementarity means that for each A, C, G, T in one
strand, thereisa T, G, C, or A, respectively, in the other
strand.
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The anatomy of a genome (3)

Chromosomes are double-stranded (= “double helix”)
Information about a gene can be contained in either strand.

This pairing introduces a complete redundancy in the encoding

— allows the cell to reconstitute the entire genome from just one
strand (enables faithful replication)

— for simple convenience, we usually just write out the single strand
of DNA sequence we are interested in from left to right

The letters of the DNA alphabet are variously called
nucleotides (nt), bases, or base pairs (bp) for double stranded
DNA.

The length of a DNA sequence can be measured in bases, or
in kilobases (1000 bp or Kb) or megabases (1000000 bp or
Mb).

The genomes present in different organisms range in size from
kilobases to megabases.
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Viral genomes

At least 1000 viral genomes have been sequenced (2006
data), starting from what is considered the “pre-genomic” era
(late 1970s).

They are usually very short (5 to 50 Kb) and contain very few
genes.

Their sequencing was a milestone for biology.

They enabled scientists to develop conceptual tools that would
become essential for the analysis of the genomes of larger,
free-living organisms.

Their analysis is also highly relevant for epidemiological and

clinical applications, as has been demonstrated in cases
involving HIV and SARS.

Peculiarly, viral genomes can be either single or double-
stranded, and either DNA- or RNA-based.

Because of their small size, we can analyze a large number of
viral genomes simultaneously on a laptop, a task that would
require a large cluster of machines in the case of longer
genomic sequences.
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Organism

phage phiX174
human mtDNA
lambda phage
HIV

H. influenzae
M. genitalium

S. cerevisiae

E. coli KI2

C. trachomatis
D. melanogaster
A. thaliana

H. sapiens

SARS

The A-phage virus genome

Phages are viruses that infect bacteria, and A-phage infects
the bacterium E. coli, a very well-studied model system.

Bacteriophage A was one of the first viral genomes completely

sequenced (1982). It is 48502 bases long.

Completion
date

1978
1980
1982
1985
1995
1995
1996
1997
1998
2000
2000
2001
2003

Size

5,368 bp
16,571 bp
48,502 bp
9,193 bp
1,830 Kb
580 Kb
125 Mb
4.6 Mb
1,042 Kb
180 Mb
125 Mb
3,000 Mb
29,751 bp

Description

| st viral genome

| st organelle genome
iImportant virus model
AIDS retrovirus

| st bacterial genome
smallest bacterial genome
| st eukaryotic genome
bacterial model organism
internal parasite of eukaryotes
fruit fly, model insect
thale cress, model plant
human

coronavirus

Example of an 18 base-paired DNA sequence:
ATCGATTGAGCTCTAGCG
TAGCTAACTCGAGATCGC

bp (base pair) = two
nucleotides on opposite
complementary DNA or RNA
strands connected via
hydrogen bonds (in DNA,
adenine forms a base pair
with thymine, as does guanine
with cytosine).

L
S
e ‘\_ﬁf
"y A N
o <,1._—_-ff \.‘}_q,

--------

——
S

) i
Guanine M Cytosina 90



Change point analysis and the A-phage

The analysis of frequencies of the 4 nucleotides is overly complex for most

biological needs.

What most papers report (and is all that is generally necessary) is the
aggregate frequencies for C and G (called GC content) versus the aggregate

frequencies for A and T (AT content).

Given that these two quantities are required to always sum to 1, only the GC

content is typically reported.

The motivation for reporting simply the
GC content is that —due to a number of
chemical reasons— the content of G and
C in a genome is often very similar, as is
the content of A and T.

In this way, only one value needs to be
reported instead of four.

The phage genome is composed of

two halves with completely different

GC content: the first half G+C rich,

the second A+T rich.

This is a simple example of a change

point in a genome, clearly dividing it into
homogeneous regions of base composition.

—F—A
o4r C |1
o~ -~ — < / =~ S Bt Gl
03 _;.,:__: - it ' o P \"(- : .'/:”-_ - ;: ‘ - T
02F = = = _ <L T e
01 1 1 1
2 3 4
. x 10
A-T C-G density
0.7 . .
R — AT
0.6} N ) - - —-C-G
:"‘II /
N \
04 \ / <
2 3 4

Nucleotide density

Nucleotide density in A-phage
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Segmentation of the A-phage genome (1..

« Use HMM to segment the A-phage genome into

blocks of GC-rich subsequences and AT-rich

subsequences.

 Phase 1: learning HMM

— Start with random transition (a) and emission (b) matrices

for HMM.

— Use EM algorithm to better estimate those parameters
(assuming 2 hidden states and 4 observable symbols).

CG
0.9998 | @

\__—

|

very rare change points

n 0002 ——

m D 0.9998

RICH

0.0002 l

A (0.2462)
C (0.2476)
G (0.2985)
T (0.2077)

A (0.2700)
C (0.2084)
G (0.1981)
T (0.3236)

)
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Segmentation of the A-phage genome (and 2)

 Phase 2: inference with the HMM

— Use Viterbi algorithm to get the segmentation of the GC
content plot.

09
0.0002
A a 08}
0.9998 @ @ ) 0.9998 0.7t
“"‘n—_ﬂ/
} ooz = 06
2
=
A (0.2462) A (0.2700) Q
C (0.2476) C (0.2084) i
G (0.2985) G (0.1981) ol
T (0.2077) T (0.3236) '
02}

o
i

o

o
o
n
wp- .
'S
(8]

x10°
segmentation found by a two-state HMM
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Sequence alignment

|t is probably the most important task in
bioinformatics. Many uses:
— Prediction of function
— Database searching
— Gene finding
— Sequence divergence
— Sequence assembly

|t is routinely applied to both amino acid and
DNA sequences.

* |ts ultimate purpose is to measure sequence
similarity, or how closely sequences
resemble each other.
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Pairwise sequence alignment

« Global alignment of two sequences (a.k.a. pairwise alignment)

It is a representation of the correspondence between their
respective symbols (i.e. their nucleotides).

If two sequences have the same ancestor, we expect them to
have many symbols —and indeed entire substrings— in common.

VIIVALASYVEGAS
I N |

VI VADA-V--1S5

To identify the corresponding homologous position in the other
sequence.

Mutations between the sequences appear as mismatches and
indels (insertions or deletions) appear as gaps in one of the two
sequences.

Because we do not know what the ancestor of these two
sequences looked like, we do not know if the length difference is
due to insertions in one sequence, deletions in the other, or some
combination of the two.
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Optimal global alignment

« Scoring function of a pair of symbols in
position i of the alignment: o(x;y;)

— Example
o(-,a)=o0(a,-)=0(a, b)=-1 Va=b
o(a, b)=1 VYa=b

* Total alignment score:

M = fo{.r;. Vi)
i=1

* Optimal global alignment of strings s and t:

— the alignment of s and t that maximizes the total
alignment score over all possible alignments
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Local alignment

* More realistic situation: we are interested Iin
the best alignment between two parts of s
and t (that is, two subsequences)

— two homologous regions of DNA might contain
smaller conserved elements within them

* The best alignment of subsequences of s
and t is called the optimal local alignment

* This can be thought of as removing a prefix
and a suffix in each of the two sequences,
and testing how well we can align the
remaining internal substrings.
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Multiple alignment of sequences

* Problem in computational genomics:

To characterize sets of homologous proteins (gene families)
based on common patterns in their sequence.

This allows us, for example, to determine if a new protein belongs
to a certain family or not.

« We introduce a “profile HMM” (pHMM):

pHMMs can be seen as abstract descriptions of a protein family,
or statistical summaries of a multiple sequence alignment.

They are constructed from multiple alignments of homologous
sequences.

They contain match states, which describe the distribution of
amino acids at each position, as well as insertion and deletion
states that allow for the addition or removal of residues.

There is a match state, insertion state, and deletion state for each
column of a multiple alignment

For each match and insertion state there is a specific probability
of emitting each of the 20 amino acids. No amino acids are
emitted from deletion states.
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Profile HMMs for multiple alignment

they start with the VIVALASVEGAS all finish with
same 4 amino acids VIVADA-VI--S <| symbol S

vV I VADATLTL - &
then various choices are possible common amino acid variable # of positions with # amino acids

'AREEEA BT B AEEEEN A RN

A
@@@@@@@@@x\
@@v = | L fv' }Al:—HE{: ‘jsn_"“ JviLk '}EII... S ;@

« HMM: each path between beginning and end nodes represents a possible sequence

 Transitions with low probability are denoted by dotted lines, and those with high
probability by solid lines

» At each square node, a symbol can be emitted, according to the emission probability
associated with that position. For readability, we write only the dominant symbols of the
emission matrix (in general any symbol is possible, with different probabilities)

* Insertion (diamonds) and deletion (circles) states are present, so certain paths allow us to
insert gaps or extra symbols in the profile

« This model allows to compute the degree to which a given sequence fits the model
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Profile HMMs for multiple alignment

* Profile HMMs allow us to summarize the salient
features of a protein alignment into a single model,
against which novel sequences can easily be tested
for similarity.

* Also, since pHMMs are an abstract representation
of a multiple alignment, they can be used to produce
pairwise or multiple alignments; sequences are said
to be aligned to the model.

* Aligning a sequence with a pHMM is equivalent to
aligning it with the hundreds of sequences used to
produce the model.

* There are free online repositories, like Pfam, that
store pHMMSs of many protein families.
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http://pfam.sanger.ac.uk/

Case study: odorant receptors
* What you should be able to do:

— Read and understand section 4.5 of the book ()
Introduction to Computational Genomics: A Case
Studies Approach, by Cristianini and Hahn.

« To see HMMs in action by studying the protein family to
which odorant receptors (ORs) belong:
7/-transmembrane (7-TM) G-protein coupled receptors

« This is an important family containing (in humans) 250
proteins in addition to the 400 ORs.
— It includes receptors found in the retina to sense light as

well as receptors for hormones and neurotransmitters
such as melatonin, serotonin, and dopamine.

— More than half of today’s pharmaceuticals target these
receptors.

(*) Also available at the course webpage (“material adicional”).
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http://books.google.es/books?id=XqJjHIAKfk0C&lpg=PP1&dq=Introduction%20to%20Computational%20Genomics&pg=PA70#v=onepage&q&f=false
http://webdiis.unizar.es/asignaturas/SPN/?page_id=104
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