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A Markov
 

System

qt+1
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A Blind
 

Robot
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(*) Read

 

the

 

basics

 

on

 

Dynamic

 

Programming

 

(D.P.) here

 

(in Spanish): 

http://webdiis.unizar.es/asignaturas/EDA/ea/slides/4-Programacion%20dinamica.pdf

(*)

http://webdiis.unizar.es/asignaturas/EDA/ea/slides/4-Programacion dinamica.pdf
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21

observations

 

are also

 
called

 

emissions
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Notation:

bi

 

(k)= P(Ot

 

= k

 

| qt

 

= si

 

) 
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Expectation Maximization
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Are H.M.M.s
 

Useful?

�
 

Robot planning + sensing
 

when
 

there’s
 

uncertainty

�
 

Speech
 

Recognition
 

/ Understanding

�
 

Consumer
 

decision
 

modeling

�
 

Economics
 

& Finance

… i.e. complicated stuff your lecturer knows nothing about.

�
 

Bioinformatics

�

 

Segmentation

 

(define regions’

 

boundaries

 

in gene & protein

 

sequences)

�

 

Alignment

 

of

 

biological

 

sequences

�

 

Gene finding

�
 

Plus at least
 

5 other
 

things
 

I haven’t
 

thought
 

of.
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http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626

http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626
http://ieeexplore.ieee.org/iel5/5/698/00018626.pdf?arnumber=18626
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And
 

now…

Applications
 

in Bioinformatics
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Segmentation
 

of
 

sequences
�

 
Switching

 
between

 
fair and

 
loaded

 
dice

fair

loaded

An

 

example

 

of

 

visible sequence:

s

 

= 4553653163363555133362665132141636651666

If

 

we

 

know the

 

properties

 

of

 

the

 

two

 

dice and

 

of

 

the

 underlying

 

HMM, can be find

 

the

 

most

 

likely

 

sequence of

hidden

 

states

 

behind

 

it?  i.e. can we

 

guess

 

which

 

die

 

was

used

 

at each

 

time point

 

in the

 

sequence?
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Segmentation

 

= detecting

 

boundaries

 

between

 

statistically

 

different

 

regions.

But

 

we

 

can also

 

estimate

 

the

 

model

 

parameters

 

given

 

some

 

training data 

where

 

both

 

the

 

hidden

 

and

 

the

 

observed

 

states

 

are known

 

 EM algorithm
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The anatomy of a genome (1)
�

 
Genome = set of all DNA contained in a cell.

�
 

Formed by one or more long stretches of DNA 
strung together into chromosomes.

�
 

Chromosomes are faithfully replicated by a cell 
when it divides.

�
 

The set of chromosomes in a cell contains the DNA 
necessary to synthesize the proteins

 
and other 

molecules needed to survive, as well as much of the 
information necessary to finely regulate their 
synthesis
–

 

Each protein is coded for by a specific gene,

 a stretch of DNA containing the information necessary for 
that purpose.
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The anatomy of a genome (2)
�

 

DNA molecules consist of a chain of smaller molecules called 
nucleotides

 

that are distinct from each other only in a chemical 
element called a base.

�

 

For biochemical reasons, DNA sequences have an orientation
–

 

It is possible to distinguish a specific direction in which to read 
each chromosome or gene

–

 

The directions are often represented as the left and right end of 
the sequence

�

 

A DNA sequence can be single-stranded or double-stranded.

�

 

The double-stranded nature is caused by the pairing

 

of bases 
(base pairs, bp).

�

 

When it is double-stranded, the two strands have opposite 
direction and are complementary to one another. 

�

 

This complementarity

 

means that for each A, C, G, T in one 
strand, there is a T, G, C, or A, respectively, in the other 
strand.
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The anatomy of a genome (3)
�

 

Chromosomes are double-stranded (“double helix”) 

�

 

Information about a gene can be contained in either strand.

�

 

This pairing introduces a complete redundancy in the encoding

–

 

allows the cell to reconstitute the entire genome from just one 
strand (enables faithful replication)

–

 

for simple convenience, we usually just write out the single strand 
of DNA sequence we are interested in from left to right

�

 

The letters of the DNA alphabet are variously called 
nucleotides (nt), bases, or base pairs (bp) for double stranded 
DNA.

�

 

The length of a DNA sequence can be measured in bases, or 
in kilobases

 

(1000 bp

 

or Kb) or megabases

 

(1000000 bp

 

or 
Mb).

�

 

The genomes present in different organisms range in size from 
kilobases

 

to megabases.
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Viral genomes
�

 

At least 1000 viral genomes have been sequenced (2006 
data), starting from what is considered the “pre-genomic”

 

era 
(late 1970s).

�

 

They are usually very short (5 to 50 Kb) and contain very few 
genes.

�

 

Their sequencing was a milestone for biology. 

�

 

They enabled scientists to develop conceptual tools that would 
become essential for the analysis of the genomes of larger, 
free-living organisms.

�

 

Their analysis is also highly relevant for epidemiological and 
clinical applications, as has been demonstrated in cases 
involving HIV and SARS.

�

 

Peculiarly, viral genomes can be either single or double-

 stranded, and either DNA-

 

or RNA-based.

�

 

Because of their small size, we can analyze a large number of 
viral genomes simultaneously on a laptop, a task that would 
require a large cluster of machines in the case of longer 
genomic sequences.



90

The
 

-phage
 

virus genome
�

 

Phages are viruses that infect bacteria, and -phage

 

infects 

the bacterium E. coli, a very well-studied model system.

�

 

Bacteriophage

 

λ
 

was one of the first viral genomes completely 

sequenced (1982). It is 48502 bases long.

bp

 

(base pair) = two 

nucleotides on opposite 

complementary DNA or RNA 

strands connected via 

hydrogen bonds (in DNA, 

adenine forms a base pair 

with thymine, as does guanine 
with cytosine).

Example

 

of

 

an

 

18 base-paired

 

DNA sequence: 

ATCGATTGAGCTCTAGCG 

TAGCTAACTCGAGATCGC
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Change
 

point analysis and the -phage

�

 

The analysis of frequencies of the 4 nucleotides is overly complex for most 
biological needs.

�

 

What most papers report (and is all that is generally necessary)

 

is the 
aggregate frequencies for C and G (called GC content) versus the

 

aggregate 
frequencies for A and T (AT content).

�

 

Given that these two quantities are required to always sum to 1,

 

only the GC 
content is typically reported.

�

 

The motivation for reporting simply the 
GC content is that –due to a number of 
chemical reasons–

 

the content of G and 
C in a genome is often very similar, as is

 
the content of A and T.

�

 

In this way, only one value needs to be 
reported instead of four.

�

 

The phage genome is composed of 

two halves with completely different 

GC content: the first half G+C rich, 

the second A+T rich. 

This is a simple example of a change 

point in a genome, clearly dividing it into 

homogeneous regions of base composition. Nucleotide density in -phage
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Segmentation
 

of
 

the -phage genome (1…)

�
 

Use HMM to
 

segment
 

the
 

-phage
 

genome
 

into
 blocks

 
of

 
GC-rich

 
subsequences

 
and

 
AT-rich

 subsequences.

�
 

Phase 1: learning
 

HMM

–

 

Start

 

with

 

random

 

transition

 

(a) and

 

emission

 

(b) matrices 

for

 

HMM.

–

 

Use EM algorithm

 

to

 

better

 

estimate

 

those

 

parameters

 (assuming

 

2 hidden

 

states

 

and

 

4 observable symbols).

very

 

rare

 

change

 

points
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Segmentation
 

of
 

the -phage genome (and 2)

�
 

Phase 2: inference
 

with
 

the
 

HMM

–

 

Use Viterbi

 

algorithm

 

to

 

get

 

the

 

segmentation

 

of

 

the

 

GC 

content

 

plot.

segmentation

 

found

 

by a two-state

 

HMM
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Sequence
 

alignment
�

 
It

 
is

 
probably

 
the

 
most

 
important

 
task

 
in 

bioinformatics. Many
 

uses:
–

 
Prediction

 
of

 
function

–
 

Database
 

searching

–
 

Gene finding

–
 

Sequence
 

divergence

–
 

Sequence
 

assembly

�
 

It
 

is
 

routinely
 

applied
 

to
 

both
 

amino acid
 

and
DNA sequences.

�
 

Its
 

ultimate
 

purpose
 

is
 

to
 

measure
 

sequence
similarity, or

 
how closely

 
sequences

 resemble
 

each
 

other.
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Pairwise
 

sequence
 

alignment
�

 

Global alignment

 

of

 

two

 

sequences

 

(a.k.a. pairwise

 

alignment)

–

 

It

 

is

 

a representation

 

of

 

the

 

correspondence

 

between

 

their

 respective

 

symbols

 

(i.e. their

 

nucleotides).

–

 

If

 

two

 

sequences

 

have

 

the

 

same

 

ancestor, we

 

expect

 

them

 

to

 have

 

many

 

symbols

 

–and

 

indeed

 

entire

 

substrings–

 

in common.

V I V A L A S V E G A S
| | | |   |   |       |
V I V A D A - V - - I S

–

 

To

 

identify

 

the

 

corresponding

 

homologous

 

position

 

in the

 

other

 sequence.

–

 

Mutations

 

between

 

the

 

sequences

 

appear

 

as mismatches

 

and

 indels

 

(insertions

 

or

 

deletions) appear

 

as gaps

 

in one

 

of

 

the

 

two

 sequences.

–

 

Because

 

we

 

do not

 

know what

 

the

 

ancestor

 

of

 

these

 

two

 sequences

 

looked

 

like, we

 

do not

 

know if

 

the

 

length

 

difference

 

is

 due

 

to

 

insertions

 

in one

 

sequence, deletions

 

in the

 

other, or

 

some
combination

 

of

 

the

 

two.
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Optimal
 

global alignment
�

 
Scoring

 
function

 
of

 
a pair

 
of

 
symbols

 
in 

position
 

i
 

of
 

the
 

alignment: σ(xi

 

,yi

 

)

–
 

Example

σ(−, a) = σ(a,−) = σ(a, b) = −1  a

 


 

b

σ(a, b) = 1  a

 

= b

�
 

Total alignment
 

score: 

�
 

Optimal
 

global alignment
 

of
 

strings
 

s and
 

t:

–
 

the
 

alignment
 

of
 

s and
 

t that
 

maximizes
 

the
 

total 

alignment
 

score
 

over
 

all
 

possible
 

alignments

...
 

xi ...

|

...
 

yi ...
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Local
 

alignment
�

 
More realistic

 
situation: we

 
are interested

 
in 

the
 

best alignment
 

between
 

two
 

parts
 

of
 

s 

and
 

t (that
 

is, two
 

subsequences)

–
 

two
 

homologous
 

regions
 

of
 

DNA might
 

contain
 smaller

 
conserved

 
elements

 
within

 
them

�
 

The
 

best alignment
 

of
 

subsequences
 

of
 

s 

and
 

t is
 

called
 

the
 

optimal
 

local alignment

�
 

This
 

can be thought
 

of
 

as removing
 

a prefix
 and

 
a suffix

 
in each

 
of

 
the

 
two

 
sequences, 

and
 

testing
 

how well
 

we
 

can align
 

the
 remaining

 
internal

 
substrings.
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Multiple
 

alignment
 

of
 

sequences
�

 

Problem

 

in computational

 

genomics: 

–

 

To

 

characterize

 

sets of homologous

 

proteins

 

(gene families) 
based

 

on

 

common

 

patterns

 

in their

 

sequence.

–

 

This

 

allows

 

us, for

 

example, to

 

determine if

 

a new

 

protein

 

belongs
to

 

a certain

 

family

 

or

 

not.

�

 

We

 

introduce a “profile

 

HMM”

 

(pHMM):

–

 

pHMMs

 

can be seen

 

as abstract

 

descriptions

 

of

 

a protein

 

family, 
or

 

statistical

 

summaries

 

of

 

a multiple

 

sequence

 

alignment.

–

 

They

 

are constructed

 

from

 

multiple

 

alignments

 

of

 

homologous

 sequences.

–

 

They

 

contain

 

match

 

states, which

 

describe the

 

distribution

 

of

 amino acids

 

at each

 

position, as well

 

as insertion

 

and

 

deletion

 states

 

that

 

allow

 

for

 

the

 

addition

 

or

 

removal

 

of

 

residues.

–

 

There

 

is

 

a match

 

state, insertion

 

state, and

 

deletion

 

state

 

for

 

each
column

 

of

 

a multiple

 

alignment

–

 

For

 

each

 

match and

 

insertion

 

state

 

there

 

is

 

a specific

 

probability

 of

 

emitting

 

each

 

of

 

the

 

20 amino acids. No amino acids

 

are 
emitted

 

from

 

deletion

 

states.
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Profile
 

HMMs
 

for
 

multiple
 

alignment
V I V A L A S V E G A S

V I V A D A - V I - - S

V I V A D A L L - - A S

they

 

start

 

with

 

the

 
same

 

4 amino acids

then

 

various

 

choices

 

are possible common

 

amino acid variable # of

 

positions

 

with

 



 

amino acids

all

 

finish

 

with

symbol

 

S

�

 

HMM: each

 

path

 

between

 

beginning

 

and

 

end

 

nodes

 

represents

 

a possible

 

sequence

�

 

Transitions with low probability are denoted by dotted lines, and those with high 

probability by solid lines

�

 

At each square node, a symbol can be emitted, according to the emission probability 

associated with that position. For

 

readability, we

 

write

 

only

 

the

 

dominant

 

symbols

 

of

 

the

emission

 

matrix

 

(in general any

 

symbol

 

is

 

possible, with

 

different

 

probabilities)

�

 

Insertion (diamonds) and deletion (circles) states are present, so certain paths allow us to 

insert gaps or extra symbols in the profile

�

 

This model allows to compute the degree to which a given sequence fits the model
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Profile
 

HMMs
 

for
 

multiple
 

alignment

�
 

Profile
 

HMMs
 

allow
 

us
 

to
 

summarize
 

the
 

salient
 features

 
of

 
a protein

 
alignment

 
into

 
a single model, 

against
 

which
 

novel sequences
 

can easily
 

be tested

for
 

similarity. 

�
 

Also, since
 

pHMMs
 

are an
 

abstract
 

representation
 of

 
a multiple

 
alignment, they

 
can be used

 
to

 
produce 

pairwise
 

or
 

multiple
 

alignments; sequences
 

are said

to
 

be aligned
 

to
 

the
 

model.

�
 

Aligning
 

a sequence
 

with
 

a pHMM
 

is
 

equivalent
 

to
 aligning

 
it

 
with

 
the

 
hundreds

 
of

 
sequences

 
used

 
to

 produce the
 

model.

�
 

There
 

are free online repositories, like
 

Pfam, that
 store pHMMs

 
of

 
many

 
protein

 
families.

http://pfam.sanger.ac.uk/
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Case study: odorant
 

receptors
�

 
What

 
you

 
should

 
be able

 
to

 
do:

–
 

Read
 

and
 

understand
 

section
 

4.5 of
 

the
 

book
 

(*)

 Introduction to Computational Genomics: A Case 
Studies Approach, by Cristianini

 
and Hahn.

�

 

To

 

see

 

HMMs

 

in action

 

by studying

 

the

 

protein

 

family

 

to
which

 

odorant

 

receptors

 

(ORs) belong:

7-transmembrane

 

(7-TM) G-protein

 

coupled

 

receptors

�

 

This is an important family containing (in humans) 250 
proteins in addition to the 400 ORs.

–

 

It includes receptors found in the retina to sense light as 
well as receptors for hormones and neurotransmitters 
such as melatonin, serotonin, and dopamine.

–

 

More than half of today’s pharmaceuticals target these 
receptors.

(*) Also

 

available

 

at the

 

course

 

webpage

 

(“material adicional”).

http://books.google.es/books?id=XqJjHIAKfk0C&lpg=PP1&dq=Introduction%20to%20Computational%20Genomics&pg=PA70#v=onepage&q&f=false
http://webdiis.unizar.es/asignaturas/SPN/?page_id=104
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