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Abstract

This paper presents an event detector for emergencies

in crowds. Assuming a single camera and a dense crowd

we rely on optical flow instead of tracking statistics as a

feature to extract information from the crowd video data.

The optical flow features are encoded with Hidden Markov

Models to allow for the detection of emergency or abnormal

events in the crowd. In order to increase the detection sen-

sitivity a local modelling approach is used. The results with

simulated crowds show the effectiveness of the proposed ap-

proach on detecting abnormalities in dense crowds.

1 Introduction

There is nowadays a stronger demand for automated

video surveillance systems which can infer or understand

more complex behaviour and scene semantics [4]. In partic-

ular large-scale video surveillance of public places, which

has a huge amount of data to be monitored, would bene-

fit a system capable of recognising hazardous and anoma-

lous situations to alert the system operators. There are

many application for such systems in emergency detection

and surveillance scenarios. In this work we concentrate

specifically on monitoring emergency situations in crowds

by learning patterns of normal crowd behaviour in order to

identify unusual or emergency events. These events are of

great interest for surveillance purposes and generate dis-

turbances in normal flow pattern. For instance, someone

falling over, or a fight disruption in the middle of the crowd

changes the flow pattern and might locally alter crowd flow

density. Previous work in the analysis of crowds usually as-

sumes that individuals can be tracked and identified inside

the crowd [10]. Most systems only analyse crowd densi-

ties and distributions [5] aiming to derive statistics from the

crowd for traffic planning. There are few publications ad-

dressing the detection of complex events within the crowd.

In [8] the analysis looks for pre-defined circular flow pat-

terns in the crowd to characterise potential emergency situ-

ations. To the best of our knowledge this work is one of the

first attempts to interpret optical flow patterns of a human

crowd by composing a model of crowd motion from train-

ing data. The optical flow variations of typical sequences

are observed to characterise a normal crowd activity model

(section 2), concentrating the analysis only on significant

motion in the foreground areas. This information is used

to train a Hidden Markov Model (HMM) which learns the

variations in optical flow pattern allowing discrimination

of abnormal behaviour. In the computer vision literature

HMMs have been extensively used for gesture recognition,

and interpretation of human interactions [6] and activities

[3]. Our work further extends the use of HMMs to the anal-

ysis of optical flow patterns from human crowds. We show

that there is sufficient perturbation in the optical flow pattern

emergencies and abnormal events are detected (sections 3

and 4).

2 Crowd Flow Analysis

The flow analysis involves three phases: 1) Preprocess-

ing and Feature Extraction: background modelling and opti-

cal flow computation; 2) HMM training: parameter estima-

tion for a Mixture of Gaussians Hidden Markov Model in

two scales; and 3) Anomaly detection: the analysis consist-

ing of identifying unusual events in the crowd by comparing

the new observations’ likelihood to a detection threshold.

Details of this are given in the next subsections.

2.1 Preprocessing

The change detection module starts with the adaptive

mixture of Gaussians algorithm described in [9]. The re-

sulting mask then gates with the output of the optical flow

calculation. Prior to the optical flow calculation a 5x5x5



Gaussian spatio-temporal filter (σ = 0.8) is applied for

noise reduction. The optical flow calculation module im-

plements the robust dense optical flow method described in

[2]. Although more computationally expensive, it provides

a smooth optical flow at the motion boundaries, making it

an ideal candidate to evaluate the usefulness of flow infor-

mation. The resulting optical flow is decimated using a me-

dian filter in 8x8 windows to further reduce noise and the

number of flow vectors inside the model. The combination

of flow information with the foreground mask allows the

analysis modules to only consider flow vectors inside fore-

ground objects, reducing observation noise. All the flow

vectors outside the foreground mask are set to zero to em-

phasise the static areas.

2.2 Hidden Markov Models

HMMs [7] and related graphical models are a ubiqui-

tous tool for modelling time series data. In order to en-

code optical flow spatio-temporal variations a HMM with

mixture of Gaussians (MOGHMM) is used. The formal-

isation for the HMM with mixture of Gaussians output is

based on [7]. The observation vector is defined as O =
[O1

T1
, O2

T2
, ..., OK

TK
], allowing K multiple observation se-

quences, each observation sample k at time t is a vec-

tor Ok
t = (x, y, u, v), where x and y are the pixel po-

sition and u and v are the horizontal and vertical opti-

cal flow components. The model parameters to be deter-

mined by the Expectation-Maximisation (EM) algorithm

are λ = (πi, aij , cim, µim,Σim), where πi is the prior

probability for state i = 1..N , aij is the state transition ma-

trix (i = 1..N ; j = 1..N), cim is the mixture coefficient,

µim is the mean vector and Σim is the full covariance ma-

trix for Gaussian m in state i, with each state having a bank

of M Gaussian (m = 1..M).

The probability of being in state i at time t is

γt(i) =
αt(j)βt(j)

∑N
i=1

αt(i)βt(i)
(1)

where α and β are the forward and backward variables [7].

The probability that an observation is generated by Gaus-

sian m in state i at time t is

κt(i, m) =

[

αt(j)βt(j)
∑N

i=1
αt(i)βt(i)

][

cimℵ(O; µim,Σim)
∑M

m=1
cimℵ(O; µim,Σim)

]

(2)

where ℵ is the Gaussian pdf, with

bj(O) =

M
∑

m=1

cimℵ(O; µim,Σim), 1 ≤ j ≤ N (3)

The update equations for the EM procedure are:

π̂i =

∑K
k=1

γk
1 (i)

K
(4)

âij =

∑K
k=1

∑Tk

t=1
ξk
t (ij)

∑K
k=1

∑Tk

t=1
κk

t (i)
(5)

where ξk
t (ij) is the transition probability from state i to state

j.

ĉim =

∑K
k=1

∑Tk

t=1
γk

t (i, m)
∑K

k=1

∑Tk

t=1

∑M
m=1

γk
t (i, m)

(6)

µ̂im =

∑K
k=1

∑Tk

t=1
γk

t (i, m).Ok
t

∑K
k=1

∑Tk

t=1
γk

t (i, m)
(7)

Σ̂im =

∑K
k=1

∑Tk

t=1
γk

t (i, m).(Ok
t − µim)(Ok

t − µim)′
∑K

k=1

∑Tk

t=1
γk

t (i, m)
(8)

In the optical flow modelling the mixture of Gaussians

emissions encode the spatial distribution of motion clusters

present in the training set. Whereas the coefficients in the

transition matrix (aij) encode the transitions between the

observed motion patterns.

3 Training

The models are trained using simulated crowd flow data

for a dense crowd. The crowd simulation is based on

[1]. The training sequence representing normal behaviour

is composed of 6000 frames where a dense crowd moves

across the scene in one direction. The original frame size is

384x288 pixels which after preprocessing results in a 48x36

optical flow field. An example of the simulated sequences

used in the modelling is shown in Fig. 1. The MOGH-

MMs defined in the previous subsection are trained with

the optical flow observations using two distinct structures.

In the first structure, named global, only one MOGHMM

is trained for the whole frame capturing the global changes

in the motion patterns. The second structure, named local,

divides the image in blocks of size bw=4 and bh=4 and one

MOGHMM is assigned to each block. This allows the de-

tection of smaller variations of the motion pattern. For the

global structure the MOGHMM topology is ergodic with

N = 10 states with M = 10 Gaussians per state. The lo-

cal model has the same topology with N = 4 states with

M = 4 Gaussians per state in each block. For the local

model each block in the optical flow field has a size of 4x4

flow vectors segmenting the flow field into 108 blocks with

one MOGHMM per block. The number of states and gaus-

sians in the HMM is determined empirically by selecting an



HMM structure with the best likelihood for the training set

among a set of different configurations of number of states

and Gaussians per state.

Figure 1. Crowd simulation example. (a)
Simulated frame. (b) Simulated optical flow,

lighter shades indicate larger displacement

and arrows indicate flow direction per block.

4 Experimental Results

The experiments to evaluate the sensitivity of the HMM

for abnormality detection consist of comparing the model

for the normal crowd flow against two emergency scenar-

ios. The first emergency event is the simulation of a blocked

exit in the scene, where after the event people density in

the scene starts to increase and the motion becomes more

constrained whilst the people push each other against the

blocked exit. The second emergency event is a person

falling on the floor, which changes the trajectory of the other

persons whilst they try to avoid stepping over the fallen per-

son. Prior to the events the motion of the persons in the

scene is similar in speed and direction to the training set.

Both events occur at frame 2000 in the simulated test se-

quences. In all the experiments the window size to compute

the model likelihood is 25 frames (1 second). For the sen-

sitivity test five independent occurrences of each event are

simulated resulting in a total of 10 test sequences of 3000

frames each.

The variations of the global model likelihood are shown

in Fig. 2. For the blocked exit event Fig. 2.(a) the likelihood

quickly drops to a level below the oscillations of the normal

crowd behaviour. Whereas for the person falling event (see

Fig. 2.(b) the global model is not able to detect the small

perturbation in the model caused by the fallen person. Ta-

ble 1 summarises the statistics for the five test runs of the

blocked exit scenario. For comparison the likelihood statis-

tics are computed in the intervals before the event (frame

1000 to 2000) and after the event (frame 2001 to 3000). The

difference between the normal and blocked exit scenarios is

easily identifiable by observing the variations in the model

log-likelihood response.

Figure 2. Global detection results. (a)

Blocked exit scenario. (b) Person fall sce-

nario.

The local model is applied to all 108 blocks in the flow

field. Fig. 3 shows the model likelihood variations for the

blocks adjacent to the area of the image where the person

falls. We can note the sharp drop in model likelihood for

the block which contains most of the person’s body. No

other significant likelihood drops were detected for the re-

maining 105 blocks. Table 2 shows an accentuated drop in

likelihood for the local model in the proximity of the event

location. To allow for on-line event detection the likelihood

drops are measured with a simple edge filter on the like-

lihood function. Long lasting likelihood drops within the

filter indicate the abnormal events. The filter delays are ad-

justed to provide the desired false alarm rate. The detection

filter equation is:

De(t) = |

∑t
l=t−Ws/2

L(l)

Ws/2 + 1
−

∑t+Ws/2

l=t+1
L(l)

Ws/2
| (9)

where t is the current frame, Ws = 250 is the observation

window and L(l) is the model log-likelihood for the l-th



Mean Std.

Before -15.5178 0.0223

After -16.1328 0.2317

Table 1. Blocked exit scenario. Loglikelihood

mean and standard deviation for R = 5 inde-
pendent simulation runs before and after the

event.

Block Position Relative to the Event

Left Block Event Block Right Block

Mean Std. Mean Std. Mean Std.

Before -1.0491 0.2168 -1.0351 0.1792 -1.1677 0.2751

After -1.3658 0.2794 -2.3174 0.3366 -1.8767 0.2966

Table 2. Person fall scenario. Loglikelihood
mean and standard deviation for R = 5 inde-

pendent simulation runs before and after the

event for the blocks around the person.

frame. Fig. 4 shows the response of this temporal edge

filter for all five runs of the person fall event. The filter is

applied to the likelihood response of each block around the

area where the person falls. The only noticeable increases

in the response are on the blocks close to the person falling

and no other detections above 0.8 are present in the other

blocks through the whole sequence.

Figure 3. Local detection results.

5 Conclusions

We presented a framework for the analysis of crowd be-

haviour. It relies on optical flow information from video

evidence to represent the crowd behaviour as optical flow

variations in time. These variations are encoded in MOGH-

MMs, which allow detection of unusual events. Two differ-

ent detection methods are implemented to detect global and

local emergency scenarios. The experimental results show

that MOGHMMs are able to detect emergency situations in

a dense crowd. The assumption of having a dense crowd

to detect enough flow changes can be lifted if the video se-

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frame Number

D
e(

t)

Left
Event
Right

Figure 4. Person fall scenario R = 5 simu-

lation runs. Response of the filter De with
Ws = 250.

quences are modeled with banks of HMMs trained for nor-

mal motion in different density scenarios. This would be

applicable from modelling of dense crowds to pedestrian

traffic and is a subject for future work.
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