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S1 Continuous-time HMM simulation study8

S1.1 Petrel analysis with multistate Brownian motion9

This simulation study is based on realistic parameter values, obtained from the analysis of a real10

data set of Antarctic petrels (Thalassoica antarctica) from the Movebank data repository (Descamps11

et al., 2016a,b). The code for this analysis is included as supplementary material, and we describe it12

briefly here. We first converted the locations from longitude-latitude to Easting-Northing (measured13

in kilometres), and then kept only the first trajectory of the data set to decrease the computational14

cost of the analysis.15

We modelled the location Xt of the animal with a 2-state Brownian motion model, and we denote16

(x1, . . . , xn) the observations at times t1 < · · · < tn. The likelihood of each movement step from xi17

to xi+1 is assumed to depend on the state at time ti+1, i.e.,18

Xti+1|{Xti
= xi, Sti+1 = j} ∼ N(xi, σj∆i), (S1)
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where ∆i = ti+1 − ti. The σj are diffusion parameters, related to the speed of movement of the19

animal. Here, we note that the multistate Brownian motion does not satisfy the snapshot property,20

because the distribution of Xti+1 really depends on the state process over the whole interval [ti, ti+1),21

rather than only at the time of observation ti+1. Fitting this model as a continuous-time HMM is22

therefore an approximation, and the associated error is evaluated in the simulations.23

This continuous-time HMM is defined by a latent 2-state continuous-time Markov chain (the state24

process), and by an observation model given in Equation S1. There were therefore four parameters25

to estimate in this analysis: the two transition rates q12 and q21 of the latent state process, and the26

two diffusion parameters σ1 and σ2 of the observation process. We fitted this model as a continuous-27

time HMM using the forward algorithm (Zucchini et al., 2017), and found the parameter estimates28

given in the main text.29

S1.2 Simulation procedure30

We simulated time series from a model which violates the snapshot property (state-switching31

Brownian motion), and then tried to recover the model parameters using a continuous-time HMM32

(i.e., under the assumption that the snapshot property is satisfied). For different time intervals33

∆ ∈ {0.25, 0.5, 1, . . . , 16} (in hours), we repeated the following steps 200 times:34

(1) Generate 2000 irregular observation times uniformly from [0, 2000∆], i.e., such that the mean35

time interval between observations is ∆, and sort them to obtain a time grid t1 < t2 < · · · < t2000.36

(2) Simulate a continuous-time 2-state Markov chain from t1 to t2000 to get the times of behavioural37

switches, with transition rates q12 and q21.38

2



(3) Simulate a 2-state Brownian motion between t1 and t2000 with diffusion parameters (σ1, σ2). To39

do this, we augmented the observation times with the switching times, such that the state is40

fixed over each time interval, and then simulated Brownian motion over each interval with the41

appropriate diffusion parameter.42

(4) Exclude the switching times from the simulated data and only retain the data simulated at the43

observation times t1, . . . , t2000 (similarly to a real scenario where the switching times are not44

known).45

(5) Fit a 2-state HMM to the remaining observations to recover σ1, σ2, λ12 and λ21.46

(6) Estimate the hidden states at the times of observations using the Viterbi algorithm.47

S2 Hierarchical HMM simulation study48

S2.1 Further details on the simulation procedure49

In this section, we provide further details on the procedure of the simulation experiment outlined50

in Section 3.2.51

Over 200 replications, we conducted the following steps:52

(1) We generated 1000 realisations from a 2-state coarse-scale Markov chain with transition probab-

ility matrix

Γ =

0.9 0.1

0.1 0.9

 .

Conditional on the simulated coarse-scale states, we draw 1000 coarse-scale observations of step53

length from a gamma distribution with state-dependent means µ1 = 5, µ2 = 20 and variances54
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σ1 = 4, σ2 = 8 and 1000 observations of turning angle from a von Mises distribution with mean55

0 and state-dependent concentrations κ1 = 0.5, κ2 = 5. Coarse-scale state 1 thus captured small,56

undirected steps, while coarse-scale state 2 captured large, directed steps.57

(2) For each simulated coarse-scale state, we generated 100 realisations from a 2-state fine-scale

Markov chain with transition probability matrix

Γ(k)∗ =

0.9 0.1

0.1 0.9

 ,

k = 1, 2. The simulated fine-scale states were then progressively shifted by 0, 5, 10, 15, and 2058

observations, such that the assumption of aligned state processes is violated. Conditional on59

the shifted fine-scale states, we draw 100 fine-scale observations of acceleration from a normal60

distribution with state-dependent means µ
(1)∗
1 = 1, µ

(1)∗
2 = 3, µ

(2)∗
1 = 2, µ

(2)∗
2 = 4 and variances61

σ
(1)∗
1 = 0.5, σ

(1)∗
2 = 0.25, σ

(2)∗
1 = 0.25, σ

(2)∗
2 = 0.5.62

To assess the consequences of such a violation of the dependence structure, we computed the63

percentage bias as (θ̂i/θ −1) ·100, where θ̂i denotes the estimate for θ obtained in the ith replication.64

S2.2 Full results from the simulation experiment65

In this section, we provide full results from the simulation experiment outlined in Section 3.2.66

Fig. S1 displays the percentage bias obtained across all 200 replications. The parameters associated67

with the coarse-scale process, which are displayed in Fig. S1 (a), (d), and (e), are not affected by68

the shifting of the fine-scale process. However, the parameters associated with the fine-scale process69

become biased as the shifting progresses: the transition probabilities associated with the two fine-70

scale HMMs (Fig. S1 (b) and (c)) are, on average, biased by about 4 % (regardless of whether the71
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Fig. S1. Full results from the simulation experiment. Displayed is the percentage bias obtained across all 200 replications.

The transition probabilities of the coarse-scale state process are denoted by γi,j (a); the transition probabilities associated

with fine-scale HMM k are denoted by γ
(k)∗
i,j ((b) and (c)). The means of the step lengths under state i are denoted by µi (d);

the corresponding variances are denoted by σi (e). The concentrations of the turning angles under state i are denoted by κi

(f). The means of the accelerations under state i associated with fine-scale HMM k are denoted by µ
(k)∗
i ((g) and (h)); the

corresponding variances are denoted by σ
(k)∗
i ((i) and (j)).

fine-scale process was shifted by 5 or 20 observations), which indicates that the persistence within72

the fine-scale states is underestimated (or, in other words, the estimates suggest more switching73

between the fine-scale states than there is in the true data-generating process). The bias in the74
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means (Fig. S1 (f) and (g)) and variances (Fig. S1 (h) and (i)) of the accelerations increases as the75

shifting progresses, where the largest bias is observed for the variances.This severe bias is due to the76

fact that each of the two fine-scale HMMs must accommodate observations within each hour that77

truly belong to the alternate fine-scale HMM: a restriction imposed by having an hourly coarse-scale78

process.79

S3 Random Effects80

S3.1 Simulation 181

We present a simulation to demonstrate potential pitfalls with the inclusion of random effects in82

the observation process of an HMM when analyzing time series collected across multiple individuals.83

Let K = 20 indicate the number of individuals, T = 100 be the length of each time series, with84

yt,k denoting the tth observation from individual k for t ∈ {1, . . . , T} and k ∈ {1, . . . , K}. For an85

N -state HMM, assume the state-dependent distributions follow a normal distribution, i.e. fn(yt,k) ∼86

Normal(µn, σn), with E(yt,k|St,k = n) = µn and V ar(yt,k|St,k = n) = σ2
n. One manner to allow87

for variation across individuals in the observation process is to allow for individual-specific state-88

dependent means so that E(yt,k|St,k = n) = µk,n. We can further make the assumption of a89

population-level state-dependent mean, µk,n ∼ N(µn, τn).90
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For this simulation, let

µk,1 ∼ N(0, 0.1) µk,2 ∼ N(2, 0.1) µk,3 ∼ N(5, 0.1)

σ1 = 0.3 σ2 = 1 σ = 1.5

Γ =



0.8 0.1 0.1

0.2 0.7 0.1

0.05 0.3 0.65


δ = [1/3, 1/3, 1/3]

The K × N state-dependent distributions are shown in Figure S2.91
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Fig. S2. Simulated state-dependent distributions across 20 time series.

We fit the model to the simulated data in a Bayesian framework using the software Stan. Priors were92

given as, Γi,· ∼ Dirichlet(1), δ ∼ Dirichlet(1), σ ∼ N+(0.5, 1), µ ∼ N(2, 3), τ ∼ N+(0.1, 0.3),93

with a further ordering of the population and individual-specific means, i.e. µ1 < µ2 < µ3 and94

µk,1 < µk,2 < µk,3, for k ∈ {1, . . . , K}.95

As demonstrated in Figure S3, fitting the correctly specified model to the generated data does not96

necessarily imply that the individual-specific state-dependent densities will be captured perfectly.97

The results for Time Series 4 show that state 1 is captured adequately, while both the means of98
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Fig. S3. Estimates of state-dependent distributions for the population and first six time series along with 95% pointwise

credible intervals with the true values in grey.

state 2 and 3 are, respectively, under and overestimated. Similarly for other time series we can see99

that the state-dependent distributions are not always captured perfectly.100

The estimated transition probability matrix and 95% credible intervals also demonstrate a lack of101

fit in terms of the state-switching dynamics of state 2 and 3.102

Γ̂ =



0.79(0.78, 0.80) 0.10(0.10, 0.11) 0.10(0.09, 0.11)

0.21(0.20, 0.23) 0.66(0.65, 0.68) 0.12(0.11, 0.14)

0.04(0.04, 0.05) 0.26(0.24, 0.28) 0.70(0.68, 0.72)
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S3.2 Garter Snakes103

Additional information for the garter snake analysis. For the 3-state HMM, priors were given as,104

Γi,· ∼ Dirichlet(1), δ ∼ Dirichlet(1), σ ∼ T +
3 (0, 1), µ ∼ N(3, 1), τ ∼ T +

3 (0, 1), with a further105

ordering of the population and individual-specific means, i.e. µ1 < µ2 < µ3 and µk,1 < µk,2 < µk,3,106

for k ∈ {1, . . . , K}.107

S4 Continuous state spaces108

# Packages needed

library(Matrix)

library(ggplot2)

library(numDeriv)

library(pathintegrateR)

# remotes::install_github("r-glennie/pathintegrateR")

In this appendix, we provide an introduction to implementing spatial hidden Markov models109

(HMMs) with diffusion and state-switching animal movement models (Pedersen et al., 2008; Thy-110

gesen et al., 2009; Pedersen et al., 2011a). We then introduce how advection processes can be111

incorporated and the shortcomings with the current, most popular approaches.112

We intend for this tutorial to be a practical, short introduction to those unfamiliar with the113

implementation of spatial HMMs, leading to their further use in practice and as an opening for114

statistical researchers to progress development in these methods.115

For this tutorial, we will be working in continuous time.116
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Fig. S4. Estimated state-dependent distributions along with 95% pointwise credible intervals for each snake.
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S4.1 Diffusion in 1D117

Before constructing two-dimensional spatial HMMs, we will begin by describing the process of118

constructing these models in the simplest case: simple Brownian motion in one dimension (c.f.119

Okubo and Levin (2001)).120

Let’s simulate some Brownian motion movement in 1D with irregular time intervals between121

observations.122

set.seed(52810)

n <- 100 # number of observations

sd <- 1 # diffusion standard deviation

obst <- cumsum(runif(n, 1, 10)) # observation times

dt <- diff(obst) # time between observations

x <- cumsum(c(0, rnorm(n - 1, 0, sd * sqrt(dt))))

plot(obst, x, xlab = "time")
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The idea behind spatial HMMs is to discretize the space where movement occurs, so here that is124

approximately between 0 and 23. Let’s create the grid.125

dx <- 0.1 # grid spacing

g <- seq(0, 23, by = dx) # grid

ng <- length(g) # number of grid cells

hist(x, breaks = 30, main = "")

rug(g)
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Let’s suppose we know the animal begins at position x = 0. We can describe this in a vector with a127

1 for the grid cell that represents 0 (1 because we know the individual occupies that grid cell with128

probability 1).129

p0 <- rep(0, ng)

p0[1] <- 1

plot(g, p0, xlab = "x", ylab = "Initial Probability", pch = 20)
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130

The goal when applying spatial HMMs is to predict from this initial probability vector, the prob-131

ability the animal will be at any other position x some time t in the future. Once we can compute132

this prediction, we can compare it to what is truly observed and therefore determine the optimal133

value for the movement parameters.134

For Brownian motion, we know that in continuous space, continuous time, the probability of being135

at location x after a time t, p(x, t), is described by the equation (Okubo and Levin, 2001):136

∂p

∂t
= σ2

2
∂2p

∂x2

An HMM requires you to specify the transition rates (rates here, not probabilities as we are working137

in continuous time) between grid cells (Zucchini et al., 2017). This equation describes transitions138

in continuous space, so we must discretize it onto the grid we just created.139
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One way to do this is to use finite differencing (Quarteroni and Valli, 2008). Inside a grid cell k where140

k > 1 and less than the total number of grid cells, ng, the second derivative can be approximated141

by:142

pk+1 − 2pk + pk−1

h2

where pi is the probability mass in grid cell i and h is the grid spacing. When k = 1 or k = ng, we143

have respectively,144

pk+1 − pk

h2 ,
pk − pk−1

h2

as we can effectively assume the derivative is zero at the boundary of the grid.145

This means that for the vector of probability masses over the whole grid, p, the equation becomes146

∂p
∂t

= σ2

2
Gp

where G is a sparse matrix with kth row all zeroes except in positions (k − 1, k, k + 1) that have147

entries (1, −2, 1)/h2. The first row has first two entries (−1, 1)/h2 and the last row has last two148

entries (1, −1)/h2.149

We can create this matrix in R:150

G <- bandSparse(ng, ng, k = c(-1, 0, 1),

diagonals = list(rep(1, ng - 1),

c(-1, rep(-2, ng - 2), - 1),

rep(1, ng - 1)))
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G <- G / dx^2

G[1:10, 1:10]

## 10 x 10 sparse Matrix of class "dgCMatrix"151

##152

## [1,] -100 100 . . . . . . . .153

## [2,] 100 -200 100 . . . . . . .154

## [3,] . 100 -200 100 . . . . . .155

## [4,] . . 100 -200 100 . . . . .156

## [5,] . . . 100 -200 100 . . . .157

## [6,] . . . . 100 -200 100 . . .158

## [7,] . . . . . 100 -200 100 . .159

## [8,] . . . . . . 100 -200 100 .160

## [9,] . . . . . . . 100 -200 100161

## [10,] . . . . . . . . 100 -200162

G[(ng - 9):ng, (ng - 9):ng]

## 10 x 10 sparse Matrix of class "dgCMatrix"163

##164

## [1,] -200 100 . . . . . . . .165

## [2,] 100 -200 100 . . . . . . .166

## [3,] . 100 -200 100 . . . . . .167

## [4,] . . 100 -200 100 . . . . .168
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## [5,] . . . 100 -200 100 . . . .169

## [6,] . . . . 100 -200 100 . . .170

## [7,] . . . . . 100 -200 100 . .171

## [8,] . . . . . . 100 -200 100 .172

## [9,] . . . . . . . 100 -200 100173

## [10,] . . . . . . . . 100 -100174

This matrix differential equation only involves continuous-time. We have removed the continuous175

space component and replaced it with discrete space in terms of vectors and a matrix. We will176

not go into detail how the continuous-time, discrete-space equation is solved. It is well known (c.f.177

Sidje (1998)) in matrix calculus that the solution is given by178

pt = exp
(

σ2

2
Gt

)
p0

where pt is the probability mass vector over the grid at time t. So, for example, the kth entry of pt179

would give the probability the animal is in grid cell k after t time units. Notice that to compute pt,180

we must compute the matrix exponential.181

In this one-dimensional case, the matrix G is a 231 × 231 matrix. This is not unreasonably large182

when calculating the matrix exponential. In two-dimensional cases, however, unreasonably large183

matrices will be easily encountered.184

There are many methods to compute the matrix exponential (see the main paper for a discussion185

of these). In this appendix, we will use the Krylov subspace method (Sidje, 1998) which we have186

implemented in the pathIntegrateR package. This method takes advantage of the fact that the187

matrix G is sparse.188
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To use this method we will convert the sparse matrix G into a row-major matrix as this speeds up189

computation (since the multiplication above is done by row of the matrix):190

Q <- sd^2 / 2 * G

Q <- as(Q, "RsparseMatrix") # convert to row-major

Now, let’s compute pt for t = 1:191

pt <- sparse_action(Q, p0, t = 1)

plot(g, pt, xlab = "x", ylab = "Probability after 1 time unit", pch = 20)
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Notice this method of computing the matrix exponential is still beneficial in this case:193

# krylov subspace way

system.time(pt <- sparse_action(Q, p0, t = 1))

## user system elapsed194
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## 0.001 0.000 0.001195

# manual way

system.time(pt2 <- Matrix::expm(Q * 1) %*% p0)

## user system elapsed196

## 0.090 0.006 0.020197

# get the same answer

plot(pt, pt2, xlab = "Krylov Subspace way", ylab = "Manual way")

abline(a = 0, b = 1)
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198

We now have a method to compute the probability an individual will be in position x at time t199

given the animal is in position x0 at time t0. This is all that is needed for a Markov process model.200

We can then write the standard HMM negative log-likelihood as follows (Zucchini et al., 2017):201
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#' Compute negative log-likelihood for 1D diffusion spatial HMM

#'

#' @param log_sd log of diffusion standard deviation parameter

#' @param obs grid cells where locations are observed

#' @param obst times of observations

#' @param G second-derivate matrix

#' @param p0 initial probability vector

#'

#' @return negative log-likelihood

calc_diffusion_nllk <- function(log_sd, obs, obst, G, p0) {

# initial probability

p <- p0

nllk <- 0

# compute diffusion parameter

sd <- exp(log_sd)

# create transition rate matrix

Q <- as(sd^2 / 2 * G, "RsparseMatrix")

# loop over observations

# first observation is taken as given and not modelled

for (i in 2:length(obst)) {

# update probability mass to new time

p <- sparse_action(Q, p, t = obst[i] - obst[i - 1])

20



# get probability of new location observed

tmp <- p[obs[i]]

# set to zero for locations not observed

p <- rep(0, length(p0))

p[obs[i]] <- tmp

# add to negative log-likelihood

psum <- sum(p)

nllk <- nllk - log(psum)

# rescale p

p <- p / psum

}

return(nllk)

}

Let’s estimate the diffusion parameter from the data. To make computation faster, we will work202

out what grid cell each observation lands in.203

# find out grid cell each observation is in

grid_cell_centers <- g + dx / 2

obs <- sapply(x, FUN = function(i) {which.min(abs(grid_cell_centers - i))})

# set initial parameter value for optimiser

ini_sd <- log(runif(1, 0.2, 2))
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# fit model

opt <- nlminb(ini_sd, calc_diffusion_nllk,

obs = obs, obst = obst, G = G, p0 = p0,

control = list(trace = 1))

## 0: 452.24250: 0.396538204

## 1: 442.71725: 0.133984205

## 2: 441.96067: -0.0870146206

## 3: 441.20726: 0.0135727207

## 4: 441.19130: 0.00165007208

## 5: 441.19116: 0.000430700209

## 6: 441.19116: 0.000447534210

So our final estimate is 1.0004 compared to the true value of 1. We can now treat this like any211

other HMM: check pseudo-residuals, compute state probabilities, and use the Viterbi algorithm to212

decode the most likely path (sequence of grid cells) the animal moved through (see Zucchini et al.213

(2017) for all these details).214

This was a simple example and, of course, for diffusion we can estimate the diffusion parameter215

without spatial HMMs. The advantage of this approach will be clearer when state-switching is216

introduced. Nonetheless, two clear advantages of this approach are already apparent: (1) any217

observation type can be accommodated as with standard HMMs; (2) spatially-varying diffusion218

parameters naturally can be accommodated, a case where a closed, analytic solution is not readily219

available.220
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S4.2 Diffusion in 2D221

The two-dimensional spatial HMM is very similar to the 1D case discussed above. An obvious222

alternation is the need to specify a 2D grid over space. The most complicated change, however, is223

in the G matrix.224

Let’s start the same way as in the 1D case and simulate Brownian motion:225

set.seed(42162)

n <- 100 # number of observations

sd <- 1 # diffusion standard deviation

obst <- cumsum(runif(n, 1, 10)) # observation times

dt <- diff(obst) # time between observations

x <- cumsum(c(0, rnorm(n - 1, 0, sd * sqrt(dt)))) # x-direction

y <- cumsum(c(0, rnorm(n - 1, 0, sd * sqrt(dt)))) # x-direction

plot(x, y, pch = 20, type = "b")
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The discrete grid can be, in theory, any segmentation of space either into irregular or regular227

polygons (for example, see Pedersen et al. (2011b)). For simplicity, we will use a regular square228

grid.229

dx <- 0.5 # grid spacing in each dimension

g <- seq(-13, 18, by = dx) # grid in 1D

gr <- expand.grid(g, g) # 2D grid

ng <- length(g) # number of grid cells

# plot grid

plot(gr, pch = 20, col = "grey80", xlab = "x", ylab = "y")

abline(v = g, col = "grey80")

abline(h = g, col = "grey80")

points(x, y, pch = 20, col = "red")
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Now, for the finite difference matrix. Recall, in the 1D case that G is a sparse matrix with kth row231

all zeroes except in positions (k − 1, k, k + 1) that have entries (1, −2, 1)/h2. Intuitively, this is so232

because in an infinitesimally small time, the individual can either stay in the grid cell they are in,233

move left, or move right. In the 2D case, by analogy, we would then expect G to have nine non-zero234

entries: stay in the cell you are in, move left, move right, move up, move down, or move diagonally235

in one of four directions. Using the mathematical partial differential equation (as we did above),236

this is not exactly how it turns out. Instead we have five non-zero entries: stay where you are, move237

left, move right, move up, and move down. This is because the diagonal cells meet at only a single238

point that is, theoretically, infinitely small and so no transitions can occur in that direction over an239

infinitely small time period.240

25



Mathematically, for 2D Brownian motion we have that the probability density at time t in 2D241

location (x, y) is p(x, y, t) and242

∂p

∂t
= σ2

2

(
∂2p

∂x2 + ∂2p

∂y2

)

Now, how can this be translated into a discrete-space, continuous-time equation? Again, one can243

use finite differencing (Quarteroni and Valli, 2008), the right-hand side derivatives become:244

pL − 2pC + pR

h2 + pU − 2pC + pD

h2

where L, C, R, U, D reference the cell to the left, centre, right, up, and, down relative to the centre245

cell.246

An efficient (and for more complicated models easier) way to specify the matrix G is by using247

Kronecker products.248

# number of grid points in x direction and total

Nx <- Ny <- length(g)

N <- Nx * Ny

# compute derivative matrices in 1D

Gx <- bandSparse(Nx, Nx, k = c(-1, 0, 1),

diagonals = list(rep(1, Nx - 1),

rep(-2, Nx),

rep(1, Nx - 1)))

Gx[1, 1] <- -1

Gx[Nx, Nx] <- -1
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Gy <- bandSparse(Ny, Ny, k = c(-1, 0, 1),

diagonals = list(rep(1, Ny - 1),

rep(-2, Ny),

rep(1, Ny - 1)))

Gy[1, 1] <- -1

Gy[Ny, Ny] <- -1

# make these into 2D operators

Ix <- diag(Nx)

Iy <- diag(Ny)

G <- (Iy %x% Gx) + (Gy %x% Ix)

G <- G / dx^2

The matrix G, for each row (ignoring boundary cells), has five non-zero entries. The rows are249

ordered so that they describe the movement from each cell in order of y-value first and x-value250

second, i.e. the order of the rows corresponds to tracing your finger over the 2D spatial grid by row251

(along the x-axis first).252

We can look at the structure of this matrix:253

image(G, xlim = c(Nx*10, Nx*12), ylim = c(Nx*9, Nx*13))
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What we can see is that for every grid cell (row) there is a chance of staying in that grid cell (the255

diagonal), a chance of moving left or right (the cells immediately around the diagonal) and a chance256

of moving up or down (the cells far to the left and right of the diagonal).257

We can now do an example of a single step of Brownian motion using the Krylov subspace method.258

The solution to the 2D partial differential equation once in discrete-space is the same as the 1D259

case.260

# initial distribution

p0 <- rep(0, N)

p0[2500] <- 1
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ggplot(data.frame(x = gr[,1], y = gr[,2], z = p0)) +

geom_point(aes(x = x, y = y, col = z)) +

scale_color_viridis_c()
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Notice in this case that we have nearly a 4000 × 4000 matrix to compute the matrix exponential of.262

This is a more difficult computation and where the Krylov method will reap more benefits.263

Q <- sd^2 * G / 2

Q <- as(Q, "RsparseMatrix")

p <- pathintegrateR::sparse_action(Q, p0, t = 5)

ggplot(data.frame(x = gr[,1], y = gr[,2], z = p)) +
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geom_point(aes(x = x, y = y, col = z)) +

scale_color_viridis_c()
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As in the 1D case, we can now estimate the diffusion parameter. In fact, we can use the same265

likelihood function. We must first determine what grid cell each observation occurs within.266

# find out grid cell each observation is in

cell_centresx <- g + dx / 2

xobs <- sapply(x, FUN = function(x) {which.min(abs(x - cell_centresx))})

cell_centresy <- g + dx / 2

yobs <- sapply(y, FUN = function(x) {which.min(abs(x - cell_centresy))})

obs <- xobs + (yobs - 1) * Nx
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# set initial parameter value for optimiser

ini_sd <- log(runif(1, 0.2, 2))

# fit model

opt <- nlminb(ini_sd, calc_diffusion_nllk,

obs = obs, obst = obst, G = G, p0 = p0,

control = list(trace = 1))

## 0: 629.08525: 0.664719267

## 1: 620.83102: -0.335281268

## 2: 586.04078: 0.164719269

## 3: 584.47011: 0.0944038270

## 4: 584.30258: 0.0603501271

## 5: 584.30075: 0.0636157272

## 6: 584.30075: 0.0635239273

## 7: 584.30075: 0.0635230274

The final estimate is 1.0656 and the true value is 1.275

S4.3 State-switching276

State-switching is were spatial HMMs are most useful (Pedersen et al., 2011a). This is because277

using the above framework we can allow for continuous-time state-switching without needing to278
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assume that switches occur at specific times only and without needing to discretise the movement279

model in time.280

The adaptation of 2D to state-switching 2D is similar to the adaptation from 1D to 2D. By adding281

a dimension (1D to 2D) we added non-zero elements to the matrix G to capture the intuitive idea282

of where an individual can move in 2D over a infinitely small time interval. State-switching is283

just another dimension. The difference is that instead of adding a new spatial dimension (which is284

discretised into hundreds of cells), we add a behaviour state, intuitively a behaviour space that is285

discretised, typically, into two or three cells. The idea is that the individual moves in a different286

way depending on where it is in behaviour space.287

As with the adaptation to 2D, adding state-switching involves adding new non-zero elements to the288

G matrix and expanding the space we are discretising from a 2D grid to a 3D grid. Each cell in the289

3D grid represents a 2D location and a particular behaviour. You can imagine a series of 2D grids290

stacked on top of each other. The animal can now move not only only in 2D space (along these291

horizontal grids), but can also change behaviour (move up and down the stack). Depending on its292

behaviour, the animal will move differently in 2D space.293

Mathematically, this is described by adding more terms to the partial differential equation (Pedersen294

et al., 2011a). Let pb(x, y, t) be the probability density that an animal is in location (x, y) at time295

t in behaviour b. Further, suppose there are B behaviours in total (typically B = 2, 3 or 4). The296

equation is now297

∂pb

∂t
= σ2

b

2

(
∂2pb

∂x2 + ∂2pb

∂y2

)
+

B∑
s=1

γs,bps
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The first part is the 2D Brownian motion as before, it only affects what happens within each298

behaviour. The final term describes the movement between behaviours: γs,b is a switching rate299

from state s to state b and by definition γb,b = −∑
s ̸=b γb,s . Intuitively, γs,b controls how much of300

the probability from state s flows to state b (i.e. how likely it is the animal will change behaviour301

from state s to state b).302

Ultimately, for B behaviours, every row of G has B −1 additional non-zero entries, representing the303

chance an animal will switch behaviour. In this approximation, animals do not switch behaviour304

and move in an infinitely small amount of time: they do one or the other. If you think of this as 3D305

movement, this is for the same reason as why diagonal movement was not included in the 2D case.306

Let’s simulate some state-switching Brownian motion with two behaviours.307

# true diffusions

sd <- c(0.5, 1.0)

# behaviour switching

mean_duration <- c(15, 30)

rates <- 1 / mean_duration

trm <- diag(-rates)

trm[!diag(2)] <- rates

trm <- t(trm)

# simulate movement
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obst <- 1:1000

x <- 0

y <- 0

now <- 0

dt <- 0.1

tpm <- expm(trm * dt)

curt <- 0

cur <- 1

b <- 1

bs <- b

dat <- data.frame(x = 0, y = 0, t = 0)

while (now < max(obst)) {

x <- x + rnorm(1, 0, sd[b] * sqrt(dt))

y <- y + rnorm(1, 0, sd[b] * sqrt(dt))

b <- sample(1:nrow(tpm), size = 1, prob = tpm[b,])

bs <- c(bs, b)

while (now + dt > curt & cur < length(obst) + 1) {

dat <- rbind(dat, c(x, y, now + dt))

curt <- obst[cur]

cur <- cur + 1

}

now <- now + dt
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}

dat <- dat[-1,]

# plot simulated data

plot(dat$x, dat$y, pch = 20, type = "b")
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The setup of the grid and the diffusion matrix for 2D is the same as above:309

# set grid spacing

dx <- 1

# set boundary of space

xrange <- c(min(dat$x) - dx, max(dat$x) + dx)

yrange <- c(min(dat$y) - dx, max(dat$y) + dx)
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# plot grid

grx <- seq(xrange[1], xrange[2], by = dx)

gry <- seq(yrange[1], yrange[2], by =dx)

gr <- expand.grid(grx, gry)

plot(gr, pch = 20)

abline(v = grx)

abline(h = gry)

points(dat$x, dat$y, pch = 20, col = "red")
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# number of grid points in x direction and total

Nx <- length(grx)

Ny <- length(gry)

N <- Nx * Ny
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# compute derivative matrices in 1D

Gx <- bandSparse(Nx, Nx, k = c(-1, 0, 1),

diagonals = list(rep(1, Nx - 1),

rep(-2, Nx),

rep(1, Nx - 1)))

Gx[1, 1] <- -1

Gx[Nx, Nx] <- -1

Gy <- bandSparse(Ny, Ny, k = c(-1, 0, 1),

diagonals = list(rep(1, Ny - 1),

rep(-2, Ny),

rep(1, Ny - 1)))

Gy[1, 1] <- -1

Gy[Ny, Ny] <- -1

# make these into 2D operators

Ix <- diag(Nx)

Iy <- diag(Ny)

G <- (Iy %x% Gx) + (Gy %x% Ix)

G <- G / dx^2
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Rather than add the state-switching to G directly, we will create a matrix for the movement in 2D311

and another matrix for the state-switching. This means all I want to do for G is have two copies,312

representing 2D movement in each behaviour state. Again, I use Kronecker products.313

# make into behavior-switching operators

Ib <- diag(2)

Gb <- Ib %x% G

The state-switching matrix is dependent on the parameter values and so I will compute it when314

needed rather than in advance (as I have did with G).315

Let’s compute a single update. First, I will compute the state-switching matrix for this update316

using the true transition rate matrix for the behaviour-switching:317

T <- t(trm) %x% Diagonal(N)

Next, I need to multiply by sd. Yet, unlike in previous examples, there are two values of the318

Brownian motion standard deviation as it depends what behaviour the animal is in. Again, it is319

important to understand how the grid cells (in 3D space) relate to the rows of G. In the 2D case320

they were ordered in terms of y first and x last. In the state-switching case, they are ordered321

behaviour first, y next, and x last. So, to compute the correct movement matrix, I need to multiply322

the top-left N × N block of G by sd[1] (where N is the total number of cells in 2D space) and the323

bottom-right N × N block by sd[2].324

# compute diagonal to multiply rows of G

D <- Diagonal(2 * N, x = c(rep(sd[1], N), rep(sd[2], N)))
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# compute update matrix: movement + behaviour switching

Q <- Gb %*% D / 2 + T

Q <- drop0(Q) # removes unnecessary zeroes

Q <- as(Q, "RsparseMatrix") # make row-major form

Let’s specify an initial probability vector in this 3D space and then update it.325

# initial distribution

p0 <- rep(0, N * 2)

p0[3000] <- 0.5 # equally likely to be in each behaviour

p0[3000 + N] <- 0.5

tmp <- data.frame(x = rep(gr[,1], 2),

y = rep(gr[,2], 2),

state = rep(1:2, each = nrow(gr)),

p0 = p0)

ggplot(tmp) +

geom_point(aes(x = x, y = y, col = p0)) +

facet_wrap(~state) +

scale_color_viridis_c()
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In this case we are taking the matrix exponential of a sparse matrix with approximately 12000 rows327

and columns.328

p <- pathintegrateR::sparse_action(Q, p0, t = 10)

tmp$p <- p

ggplot(tmp) +

geom_point(aes(x = x, y = y, col = p)) +

facet_wrap(~state) +

scale_color_viridis_c()
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You will notice in behaviour 1 that the animal is predicted to diffuse more slowly, as expected. This330

graphic, however, only shows where the animal would be; we can also see this picture in behaviour331

space only.332

pb <- c(sum(p[1:N]), sum(p[(N + 1): (2 * N)]))

pb

## [1] 0.394646573523 0.605353426477333

# manual way to compute this

c(0.5, 0.5) %*% expm(trm * 10)

## 1 x 2 Matrix of class "dgeMatrix"334
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## [,1] [,2]335

## [1,] 0.394646573529 0.605353426471336

Thus, not only are we solving for where the animal is in space, but also allowing for the animal337

switching behaviour at any time in between observations.338

Now, to fit the model. First, we compute what grid cells in 2D space the animal was observed in.339

# work out cell for each observation

cell_centresx <- grx + dx / 2

xobs <- sapply(dat$x, FUN = function(x) {which.min(abs(x - cell_centresx))})

cell_centresy <- gry + dx / 2

yobs <- sapply(dat$y, FUN = function(x) {which.min(abs(x - cell_centresy))})

obs <- xobs + (yobs - 1) * Nx

The likelihood function is a little different for state-switching as the animal, when observed, could340

occupy either behaviour (i.e. only location in 2D space is observed).341

calc_ss_nllk <- function(par, obs, obst, p0, Gb, N) {

llk <- 0

p <- p0

D <- Diagonal(2 * N, x = c(rep(exp(par[1]), N), rep(exp(par[2]), N)))

trm <- matrix(0, nr = 2, nc = 2)

trm[!diag(2)] <- exp(par[3:4])

diag(trm) <- -rowSums(trm)
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T <- t(trm) %x% Diagonal(N)

Q <- as(Gb %*% D / 2 + T, "RsparseMatrix")

for (i in 2:length(obst)) {

p <- pathintegrateR::sparse_action(Q, p, t = obst[i] - obst[i - 1])

tmp <- c(p[obs[i]], p[obs[i] + N])

p <- rep(0, length(p))

p[obs[i]] <- tmp[1]

p[obs[i] + N] <- tmp[2]

psum <- sum(p)

llk <- llk + log(psum)

p <- p / psum

}

return(-llk)

}

Let’s fit the model. Recall, the parameters we have here are the standard deviation of the Brownian342

motion under each state (2 parameters) and the switching rates between these two states (which are343

equal to the reciprocal of the mean time spent in each state, c.f. continuous time Markov chains).344

# set initial distribution

p0 <- rep(0, 2 * N)

p0[obs[1]] <- 0.5

p0[obs[1] + N] <- 0.5
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# starting values for optimiser

inipar <- log(c(0.2, 1.5, 1 / 10, 1 / 10))

# fit model

opt <- nlminb(inipar,

calc_ss_nllk,

obs = obs,

obst = obst,

p0 = p0,

G = Gb,

N = N,

control = list(trace = 1))

## 0: 2698.9345: -1.60944 0.405465 -2.30259 -2.30259345

## 1: 2680.2431: -1.49537 0.144582 -2.35726 -2.25958346

## 2: 2670.5308: -1.31284 0.234126 -2.54410 -2.16126347

## 3: 2666.7671: -1.18612 0.118571 -2.61042 -2.12413348

## 4: 2664.2541: -1.08605 0.262477 -2.67341 -2.10186349

## 5: 2661.0265: -0.746487 0.203915 -2.63173 -2.24426350

## 6: 2659.3653: -0.775358 0.230482 -2.87443 -2.52765351

## 7: 2659.3367: -0.772096 0.265733 -2.97473 -2.52182352

## 8: 2658.8810: -0.805632 0.216330 -3.06071 -2.54155353
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## 9: 2658.7652: -0.809061 0.221838 -3.15366 -2.59317354

## 10: 2658.7367: -0.786582 0.216929 -3.16966 -2.63457355

## 11: 2658.7133: -0.803886 0.207413 -3.21495 -2.64217356

## 12: 2658.7062: -0.802806 0.212270 -3.25359 -2.66687357

## 13: 2658.7052: -0.803220 0.210681 -3.24537 -2.65844358

## 14: 2658.7052: -0.803225 0.210702 -3.24515 -2.65882359

## 15: 2658.7052: -0.803224 0.210702 -3.24518 -2.65878360

The estimated and true values are shown below:361

# Estimated

est <- round(c(exp(opt$par[1:2]), exp(-rev(opt$par[3:4]))), 2)

# True

true <- c(sd, -1/diag(trm))

# Compare

cbind(est, true)

## est true362

## [1,] 0.45 0.5363

## [2,] 1.23 1.0364

## [3,] 14.28 15.0365

## [4,] 25.67 30.0366
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S4.4 Advection367

Thus far we have considered diffusion motion only. Animals typically move preferentially in a given368

direction, driven by environmental conditions (Preisler et al., 2004). Advection is a term used to369

refer to this tendency in partial differential equation methods. In an advection-diffusion motion,370

animals diffuse (as we have discussed above) but they also drift and this drift is biased toward (or371

away, depending on the direction of preference) from environmental features.372

There are, however, current limitations on how advection can be used in this context. To highlight373

these limitations, we will restrict ourselves to 1D advection. The partial differential equation to374

describe advection is given by375

∂p

∂t
= −v

∂p

∂x

376

where v is the velocity in the positive x direction and p(x, t) is the probability at location x at time377

t. The solution to this equation is known, you simply take the initial shape p(x, 0) and shift it vt378

units to the right for v > 0.379

The key idea is the advection speed v can change over space and that advection can be combined380

with diffusion (Pedersen et al., 2011a). This would allow us to build a 2D movement model where381

animals move in biased random walks where the preferential direction of movement may depend on382

environmental covariates that affect v.383
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The advection equation can be discretised by finite differencing (Quarteroni and Valli, 2008). There384

are two popular ways to do this: central differencing and forward differencing. Both have severe385

drawbacks when implemented.386

For central differencing in 1D, the first derivative for grid cell i is approximated by (pi+1−pi−1)/(2h).387

For forward differencing where v > 0, the derivative is approximated by (pi+1 − pi)/h.388

Let’s build a grid in 1D and the associated differencing matrices:389

dx <- 0.01

gr <- seq(0, 1, 0.01)

N <- length(gr)

# central difference

D <- bandSparse(N, N, k = c(-1, 1),

diagonals = list(rep(-1, N - 1), rep(1, N - 1)))

D <- D / (2 * dx)

# forward difference (v > 0)

Df <- bandSparse(N, N, k = c(0, -1),

diagonals = list(rep(1, N), rep(-1, N - 1)))

Df[N, N] <- 0

Df <- as(Df, "dgCMatrix") / dx

Now, we can observe the approximate solutions using the Krylov subspace method.390
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# initial condition

p0 <- rep(0, N)

p0[50] <- 1

# set velocity

v <- 0.2

# set Q matrix for central

Q <- as(-v*D, "RsparseMatrix")

# set Q matrix for forward

Qf <- as(-v*Df, "RsparseMatrix")

# update using central

p <- sparse_action(Q, p0, t = 1)

# update using forward

pf <- sparse_action(Qf, p0, t = 1)

Let’s consider the central difference solution. Recall, as the initial condition specifies the animal391

starts exactly at x = 0.5 and we know v = 0.2, we already know the correct solution is the animal392

is exactly at x = 0.7.393
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# plot initial condition

plot(gr, p0, pch = 20, xlab = "x", ylab = "Probability")
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# plot central solution

plot(gr, p, pch = 20, xlab = "x", ylab = "Probability")

abline(v = 0.7, col = "red")

49



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x

P
ro

ba
bi

lit
y

395

We can see that the central difference solution is nonsense. The reason behind this is because of396

small propagated errors that accumulate as you progress this approximation through time. The397

approximate solution can even become negative and highly oscillatory. If we compute the central398

difference solution over a small time period we will see the error is smaller:399

plot(gr, sparse_action(Q, p0, t = 0.1),

pch = 20, xlab = "x", ylab = "Probability")

abline(v = 0.5 + 0.2 * 0.1, col = "red")
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This issue with the central difference operator is well-known. The problem is less acute when the401

initial condition is more smooth or when diffusion is included in the movement and largely dominates402

the advection component. Nonetheless, this underlying problem remains and means when advection403

is large relative to diffusion or initial conditions are peaked (because of good information on animal404

location, for example) then the likelihood calculation could become nonsensical (i.e. negative values)405

or high oscillatory (i.e. unrealistic animal movement predictions).406

There are methods to prevent these oscillations called limiters. In simple terms, these limiters407

stop the solution from rapidly changing over space, thereby preventing oscillations. However, the408

downside of using limiters is that you must solve the equation in discrete time. There is no problem409

with this in theory, but does burden the problem with further computational complexity.410

An alternative is the forward difference. It has a different drawback.411
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# plot forward solution

plot(gr, pf)

abline(v = 0.7, col = "red")
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You will notice that this solution is strictly positive and smooth. It is almost centred on the right413

value of x = 0.7. In many respects this approximation is a good one. The drawback is that in reality414

the solution should be a single point, not a bell curve: there is some diffusion in this approximation415

despite the fact the continuous-space model is advection only.416

This is known as artificial diffusion or numerical diffusion as it is introduced by the choice of417

approximation to the advection. The amount of numerical diffusion that occurs depends on the418

spacing of the grid. For example, here is the forward difference solution with a very small grid419

spacing:420
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dx <- 0.0001

gr <- seq(0, 1, dx)

N <- length(gr)

Df <- bandSparse(N, N, k = c(0, -1),

diagonals = list(rep(1, N), rep(-1, N - 1)))

Df[N, N] <- 0

Df <- as(Df, "dgCMatrix") / dx

p0 <- rep(0, N)

p0[5000] <- 1

Qf <- as(-v*Df, "RsparseMatrix")

pf <- sparse_action(Qf, p0, t = 1)

plot(gr, pf)

abline(v = 0.7, col = "red")
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The problem with the forward difference is that the amount of numerical diffusion introduced422

depends on the grid and the value of v. If this advection model were combined with a diffusion423

model, the estimated diffusion standard deviation will be negatively biased compared to the true424

diffusion as some of the diffusive movement of the animal will be absorbed by the numerical diffusion425

induced by the advection component. This is a drawback because it weakens the link between the426

discrete-space approximation and the continuous-space model.427

Overall, there is not yet an efficient, robust way to include advection in spatial HMMs without428

suffering the drawbacks outlined above.429

S4.5 Conclusion430

This brief appendix is intended to provide the necessary details for researchers to begin to under-431

stand the basic methods used to build and fit state-switching spatial HMMs with diffusive animal432

movement.433
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There are many extensions possible: restricting animal movement to certain cells (by setting434

elements of Q to zero), allowing for spatially-varying diffusion (by multipling rows of G by different435

values of sd), using HMM tools such as the Viterbi algorithm to make joint inference on location and436

behaviour, and incorporating measurement error (rather than assuming exact location is observed,437

up to grid cell resolution, as we have here).438
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