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Digital information: easily reproduced and distributed without 
loss of fidelity

Watermarking: 
Embedding of a digital signal specifying legitimate 
owner/receiver of data directly in the data
Part of a general system, not a complete solution

PROPERTIES
Secret key known only to legal owner
Imperceptibility, Robustness
Kerkhoff’s Law : The system is secure even if an attacker knows 
the principles and methods of watermark embedment but not 
the secret key
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WATERMARK DETECTION/EXTRACTION
Availability of original data
Detection = Binary hypothesis test for watermark existence
Extraction = extraction of message as well (fingerprinting)
Accurate statistical model ⇒ efficient watermark detection

SPREAD SPECTRUM WATERMARKING
DCT image values x[k] at pixels k = (i,j) : Noise
Anti-jamming properties of Spread Spectrum make it robust to 
some attacks
Message M encoded to N – D vector b that is “spread” over the 
image (expansion process)
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Secret key K = random generator seed for the pseudorandom 
sequence s[k]
Watermark strength determined by perceptual mask for DCT 
data a[k] (Ahumada et. al., Watson)
Watermark detection: one bit (b=1, N=1) is repeated over 
pixels – increases robustness
Mask a[k] multiplied pixelwise by:

pseudorandom sequence s[k]
bits b[k] (b=1 for watermark detection)

to give watermark W[k]=a[k]s[k]b[k]
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WATERMARK EMBEDDING
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LAPLACIAN: tails decay exponentially with x

GENERALIZED GAUSSIAN:

c = 1 Laplacian, c = 2 Gauss
c can be estimated theoretically for each DCT coefficient
In practice c = 0.5 is satisfactory (Hernandez et. al.) 
Cannot adequately model samples in the tails
with high magnitudes
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ALPHA– STABLE MODELS :

Often used to describe heavy-tailed data
Defined in closed form only by their characteristic function

Parameters are estimated from the data (Max Likelihood 
Estimates)
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Parameters:
location δ (-∞ < δ < ∞) :
mean for 1 < α ≤ 2, median for 0 < α ≤ 1
scale γ (γ > 0) : equivalent to variance
skewness β (-1 ≤ β ≤ 1) : β = 0 for symmetric pdf
characteristic exponent α (0 < α ≤ 2) : determines 
distribution shape:  small α ⇒ heavy tails
Tail probabilities

Closed form expression of pdf only for:
α = 2 ⇒ GAUSSIAN
α = 1 ⇒ CAUCHY
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EXPERIMENTAL MODELING OF DCT 
COEFFICIENTS

Model using the Amplitude Probability Density function (APD)

Consider Symmetric Alpha Stable (SaS, β=0) model
Theoretical APD : 
Uses ML parameter estimates from the data
Empirical APD : 
Block DCT : distribution of each coefficient over all blocks.
256x256 images : 1024x1 vector

( )aXP >
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Cameraman DCT #5: SaS gave closest fit to empirical APD
Woman DCT #30: SaS and gen. Gaussian give very good fit
to empirical APD
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WATERMARK DETECTION

Binary hypothesis test :

Log-likelihood ratio test :

Watermark = signal, image = noise
Low, mid frequency DCT coefficients
Original and watermarked images have 
similar statistical properties
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Neyman – Pearson Testing
Receiver Operating Characteristics :

Mean and variance of l(Y) :

Threshold :
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Generalized Gaussian log – likelihood ratio:

Experimental verification of l(Y) mean, variance

11.8111.814.82-4.59Wom. (exp.)
12.4112.414.71-4.71Woman (th.)

17.4017.403.65-3.66Lena (exp.)
16.5516.553.66-3.66Lena (th.)
σ1

2σ0
2m1m0IMAGE

GENERALIZED GAUSSIAN (c = 0.5)
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58.0858.089.7110.36Wom. (exp.)

58.0758.079.75-10.05Wom. (th.)
3.163.162.95-2.86Lena (exp.)

3.313.312.90-2.96Lena (th.)
σ1

2σ0
2m1m0IMAGE

CAUCHY

Experimental verification of l(Y) mean, variance
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The mean and variance of the log – likelihood ratio determine the
Signal to Noise Ratio SNR:
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Detection performance is determined by the ROC curves that 
depend only on the SNR:

High SNR gives better detection performance :
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5.001.31Boat (#10)

G.G. (c=0.5)CauchyIMAGE coefficient

2.413.96Woman (#30)

2.544.21Lena (#5)
3.755.60Cam. (#5)

SNR (dB)
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WATERMARK DETECTION
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EXPERIMENTAL RESULTS
Experimental results (Monte Carlo) verify theoretical ones.

Boat DCT #5, #10: Cauchy detector is expected to be:
Better for #5 because of better modeling results
Worse for #10 – not so heavy tails, closer to Laplacian
distribution
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Cameraman DCT #5, woman DCT #30:
Cauchy gave more accurate modeling and a higher SNR
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CONCLUSIONS

Blind watermark detector
Improved statistical model for the data – alpha stable model
Cauchy detector is in closed form
Cauchy detectors are in general very robust:
their performance remains nearly optimal even for data that 
deviates from the Cauchy distribution


