

Hidden Messages in Heavy Tails: DCT-Domain Watermark Detection Using Alpha-Stable Models

- Alexia Briassouli, Panos Tsakalides, Athanasios Stouraitis
- Master's Thesis in Signal and Image Processing Systems: Theory, Implementations, Applications, University of Patras, Greece, 2000

- Importance of watermarking
- Watermark generation and embedding
- "Blind" watermark detection
- Statistical modeling of DCT coefficients
- Comparison of nearly optimal detectors: generalized Gaussian, Cauchy
- Experimental Results
- Conclusions

Digital information: easily reproduced and distributed without loss of fidelity

- Watermarking:
 Embodding of a digital sign:
 - Embedding of a digital signal specifying legitimate owner/receiver of data *directly in the data*
- Part of a general system, not a complete solution

PROPERTIES

- Secret key known only to legal owner
- Imperceptibility, Robustness
- Kerkhoff's Law: The system is secure even if an attacker knows the principles and methods of watermark embedment but not the secret key

WATERMARK DETECTION/EXTRACTION

- Availability of original data
- Detection = Binary hypothesis test for watermark existence
- Extraction = extraction of message as well (fingerprinting)
- Accurate statistical model ⇒ efficient watermark detection

SPREAD SPECTRUM WATERMARKING

- DCT image values x[k] at pixels k = (i,j) : Noise
- Anti-jamming properties of Spread Spectrum make it robust to some attacks
- Message M encoded to N D vector **b** that is "spread" over the image (expansion process)

- Secret key K = random generator seed for the pseudorandom sequence s[k]
- Watermark strength determined by perceptual mask for DCT data a[k] (Ahumada et. al., Watson)
- Watermark detection: one bit (b=1, N=1) is repeated over pixels – increases robustness
- Mask a[k] multiplied pixelwise by:
 - pseudorandom sequence s[k]
 - bits b[k] (b=1 for watermark detection)

to give watermark W[k]=a[k]s[k]b[k]

WATERMARK EMBEDDING

MODELING OF DCT COEFFICIENTS

LAPLACIAN: tails decay exponentially with x

$$f_X(x) = \frac{b}{2} \exp(-b|x-\alpha|)$$

$$\begin{cases} mean(x) = a \\ var(x) = 2/b^2 \end{cases}$$

GENERALIZED GAUSSIAN:

$$f_X(x) = A \exp \left| -\beta x \right|^c$$
 $\beta = \frac{1}{\sigma} \left(\frac{\Gamma(3/c)}{\Gamma(1/c)} \right)^{1/2}, A = \frac{\beta c}{2\Gamma(1/c)}$

- c = 1 Laplacian, c = 2 Gauss
- c can be estimated theoretically for each DCT coefficient
- In practice c = 0.5 is satisfactory (Hernandez et. al.)
- Cannot adequately model samples in the tails with high magnitudes

ALPHA- STABLE MODELS:

- Often used to describe heavy-tailed data
- Defined in closed form only by their characteristic function

$$\varphi_{X}(\omega) = E[e^{j\omega X}]$$

$$\varphi(\omega) = \exp\left(-j\delta\omega - \gamma |\omega|^{\alpha} \left[1 + j\beta sign(\omega)\phi(\omega,\alpha)\right]\right)$$

$$\phi(t,\alpha) = \begin{cases} \tan \frac{\alpha\pi}{2} & \alpha \neq 1 \\ \frac{2}{\pi} \log |t| & \alpha = 1 \end{cases}$$

Parameters are estimated from the data (Max Likelihood Estimates)

Parameters:

- *location* δ (- ∞ < δ < ∞) : mean for 1 < α ≤ 2, median for 0 < α ≤ 1
- *scale* γ ($\gamma > 0$) : equivalent to variance
- *skewness* β (-1 $\leq \beta \leq$ 1) : β = 0 for symmetric pdf

Tail probabilities
$$P(X > x) = c_{\alpha} x^{-\alpha}$$

Closed form expression of pdf only for:

$$a = 2 \Rightarrow GAUSSIAN$$

 $a = 1 \Rightarrow CAUCHY$

EXPERIMENTAL MODELING OF DCT COEFFICIENTS

Model using the Amplitude Probability Density function (APD)

- Consider Symmetric Alpha Stable (SaS, β=0) model
- Theoretical APD :

Uses ML parameter estimates from the data

Empirical APD :

Block DCT: distribution of each coefficient over all blocks.

256x256 images: 1024x1 vector

Cameraman DCT #5: SaS gave closest fit to empirical APD Woman DCT #30: SaS and gen. Gaussian give very good fit to empirical APD

WATERMARK DETECTION

Binary hypothesis test :

$$H_1: Y[k] = X[k] + W[k]$$

 $H_0: Y[k] = X[k]$

- Log-likelihood ratio test : $l(Y) = \ln \left(\frac{f(Y | H_1)}{f(Y | H_0)} \right)^{H_1} > \eta$
- Watermark = signal, image = noise
- Low, mid frequency DCT coefficients
- Original and watermarked images have similar statistical properties

4

Neyman – Pearson Testing
 Receiver Operating Characteristics :

$$P_{fa} = Q\left(\frac{t - m_0}{\sigma_1}\right), P_{det} = Q\left(\frac{t - m_1}{\sigma_1}\right) \qquad Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt$$

- Mean and variance of I(Y): $m_0 = -m_1, \sigma_0 = \sigma_1$
- Threshold: $t = m_0 + \sigma_1 Q^{-1} (P_{fa})$

Generalized Gaussian log – likelihood ratio:

$$l(Y) = \sum_{k} \beta[k]^{c[k]} (|Y[k]|^{c[k]} - |Y[k] - a[k]s[k]|^{c[k]})$$

Experimental verification of I(Y) mean, variance

GENERALIZED GAUSSIAN (c = 0.5)					
IMAGE	m_0	m_1	σ_0^2	σ_1^2	
Lena (th.)	-3.66	3.66	16.55	16.55	
Lena (exp.)	-3.66	3.65	17.40	17.40	
Woman (th.)	-4.71	4.71	12.41	12.41	
Wom. (exp.)	-4.59	4.82	11.81	11.81	

Experimental verification of I(Y) mean, variance

CAUCHY				
IMAGE	m_0	$m_{\scriptscriptstyle{1}}$	σ_0^2	σ_1^2
Lena (th.)	-2.96	2.90	3.31	3.31
Lena (exp.)	-2.86	2.95	3.16	3.16
Wom. (th.)	-10.05	9.75	58.07	58.07
Wom. (exp.)	10.36	9.71	58.08	58.08

■The mean and variance of the log — likelihood ratio determine the Signal to Noise Ratio SNR:

$$SNR = m_1^2 / \sigma_1^2$$

Detection performance is determined by the ROC curves that depend only on the SNR:

$$P_{\text{det}} = Q(Q^{-1}(P_{fa}) - 2\sqrt{SNR})$$

High SNR gives better detection performance :

SNR (dB)					
IMAGE coefficient	Cauchy	G.G. (c=0.5)			
Boat (#10)	1.31	5.00			
Cam. (#5)	5.60	3.75			
Lena (#5)	4.21	2.54			
Woman (#30)	3.96	2.41			

WATERMARK DETECTION

- Experimental results (Monte Carlo) verify theoretical ones.
 - Boat DCT #5, #10: Cauchy detector is expected to be:
 - Better for #5 because of better modeling results
 - Worse for #10 not so heavy tails, closer to Laplacian distribution

Cameraman DCT #5, woman DCT #30: Cauchy gave more accurate modeling and a higher SNR

CONCLUSIONS

- Blind watermark detector
- Improved statistical model for the data alpha stable model
- Cauchy detector is in closed form
- Cauchy detectors are in general very robust: their performance remains nearly optimal even for data that deviates from the Cauchy distribution