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ABSTRACT Oxygen usually plays crucial roles in tuning the

phase structures and functionalities of complex oxides such as

high temperature superconductivity, colossal magnetoresis-

tance, catalysis, etc. Effective and considerable control of the

oxygen content in those functional oxides could be highly

desired. Here, using perovskite manganite (La0.5Sr0.5)MnO3 as

a paradigm, we develop a new pathway to synthesize the epi-

taxial thin films assisted by an in-situ chemical process, where

the oxygen content can be precisely controlled by varying

oxidative activity tuned by the atmospheric temperature (Tatm)

during the growth. A hidden metal-insulator transition (MIT)

emerges due to the phase competition, which is never shown in

the phase diagram of this classic manganite. The oxygen-

mediated interaction between Mn ions together with the

change of carrier density might be responsible for this emer-

ging phase, which is compatible with the results of first-

principle calculations. This work demonstrates that, apart

from traditional cation doping, a precise modulation of anion

(O
2−
, S

2−
, etc.) may provide a new strategy to control phase

structures and functionalities of epitaxial compound thin

films.

Keywords: oxidative-activity, oxygen-content, manganites, hid-

den metal-insulator transition

INTRODUCTION
As a prominent control parameter in oxide compounds,
oxygen plays a crucial role in strongly correlated beha-

viors and functionalities, which is usually coupled with
other degrees of freedom such as spin, orbital, charge and
lattice [1,2]. Excess oxygen (EO) can induce secondary
oxidized phases in perovskite manganites such as
LaMnO3+δ and YMnO3+δ [3]. Oxygen vacancy (VO) can be
the source of mobile carriers as an electron donor [4] in
high temperature superconductors [1], solid-oxide fuel
cells [5], gas sensors and multiferroics [6], etc. The ex-
istence of VO and/or EO at the surface [7], interface [8], as
well as their bulk forms [9] of various oxide materials can
also give rise to intriguing insights for both the funda-
mental physics/chemistry and potential opportunities of
practical applications. In order to achieve the integration
of oxide-based electronic devices, there is a strong im-
petus to pursue a precise and homogeneous control of
oxygen component during the growth of high-quality
oxide thin films. Advanced epitaxial growth techniques
(e.g., pulsed laser deposition (PLD), laser-molecular beam
epitaxy (Laser-MBE), sputtering deposition, etc.) are
employed to in-situ tune oxygen-stoichiometry under
different oxygen atmospheres. From the analysis of elec-
tron energy-loss spectra, plenty of cation and oxygen
vacancies may appear close to the surface, boundary and
interface of epitaxial films due to the deficient inactive
oxygen (“cold oxygen”) during the growth [10–12],
leading to severe deterioration of their structures and
properties of some epitaxial oxide films. Ex-situ annealing
under a flowing active oxygen (“hot oxygen”) atmosphere
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is also a popular way to reduce the oxygen vacancies and
defects. However, desired homogeneous control of oxy-
gen content and stoichiometry possibly occurs at only top
layers of some films [13], indicating an oxygen distribu-
tion along the thickness direction of the films, especially
for the compounds with a relative short oxygen diffusion
length.

Under these circumstances, there is a strong motivation
to explore a new film growth strategy, where both the
precise control and uniform distribution of oxygen con-
tent may be achieved, especially for those dysoxidizable
materials. In conventional physical deposition proce-
dures, such as classic PLD [14], the expansion of plasma
plume, corresponding to the composition and mean en-
ergy distributions of desorbed particles, is very sensitive
to the chemical atmospheres [15,16] and can determine
the growth dynamics/compositions. When they reach the
subsequent substrates, ionic and excited species suffer a
prominent delay of kinetic energy transfer in the rela-
tively inert (“cold”) conditions [17], accompanied with a
decrease of the sufficient reaction and crystallization
[18,19]. This is one of the major factors that may induce
off-stoichiometry and defects in oxide thin films [10].
Contrary to the physical depositions, chemical vapor
deposition (CVD) provides a more chemically-reactive
atmosphere during the growth of oxide nanocrystals and
thin films [20], so that the excited oxygen molecule and
oxygen-metal species may endure a low decay rate and a
significant enhanced reactivity when they reach the sub-
strates. Nevertheless, the relatively low thermal excitation
energy (lower than the vapor point of most transition
metal oxides) and poor stoichiometric control of metal
elements restrict the effective high-quality growth of
correlated complex oxides. Therefore, a laser-ablated
process in CVD system may provide a new strategy to
control epitaxial complex oxide growth with a precise and
homogeneous elemental stoichiometry. Among the
functional complex oxides, perovskite manganites possess
intriguing structures and strong electron correlations,
exhibiting high spin-polarization, high Curie temperature
in oxide magnets and colossal magnetoresistance (CMR)
[21,22]. La0.5Sr0.5MnO3 (LSMO) is a classic manganite in
CMR family, which lies in the boundary between ferro-
magnetic/antiferromagnetic metallic phases modulated
by the 50/50 ratio of cation La3+ and Sr2+ (half-doped)
[23–25]. It has attracted peoples’ interest to investigate its
intriguing properties under various stimuli (e.g., epitaxial
strain [26–29], electric [30] and magnetic field [31]).
None of these methods succeeded in creating a charge
ordering phase and corresponding CMR behavior [27],

which is usually observed and controlled in other man-
ganites with an A-site elemental ratio about 50/50 [32].

In this work, a laser-ablated CVD is employed in LSMO
to demonstrate an in-situ precise control of oxygen
content with homogenous distribution during high-
quality epitaxial growth. A hidden antiferromagnetic/in-
sulating-to-ferromagnetic/metal transition is discovered
around 150 K in this LSMO with optimized oxygen
content, which is not shown in its phase diagram. This
antiferromagnetic/insulating phase is very sensitive to the
oxygen content (EO or VO) that can be tuned by varying
the atmospheric temperature (Tatm). The ferromagnetic
(FM) and antiferromagnetic (AFM) phase separation/
transition was directly visualized using magnetic force
microscopy (MFM) at 4 K as a function of magnetic field.
The detailed understanding of correlation between elec-
tronic/magnetic phases and chemical structures of these
LSMO films with a precise control of oxygen helps unveil
a temperature-oxygen stoichiometry (δ) phase diagram.

RESULTS AND DISCUSSION
Fig. 1a shows the schematic design of our laser-ablated
CVD equipped with a quartz tube. Ceramic target and
substrate are placed at the center of the tube. The branch
tube is tilted by 45°. Laser beam (purple color) goes
through the branch tube and interacts with the ceramic
target to generate plasma plume (light blue). The flowing
high-temperature oxygen (orange cluster) with high
chemical-reactivity recombines layer by layer with the
cations and composites on the substrate (red rectangle).
The Tatm of the laser-ablated CVD system can be main-
tained uniform up to 1,500 K for the entire space inside
the tube. Two thermocouples are placed near the sub-
strate and at the center of the tube respectively, which
reveals that temperature of the substrate has the same
value as the Tatm. Using this new method, epitaxial LSMO
thin films have been grown on perovskite (001)-oriented
LaAlO3 (LAO). X-ray diffraction (XRD) pattern of LSMO
film on LAO substrate (Fig. 1b and Fig. S1a, see Sup-
plementary information) reveals a high-quality epitaxial
structure with a set of (001)-oriented diffraction peaks.
Energy dispersive X-ray spectroscopy analysis (Fig. S1b)
confirms that the chemical ratio of the as-grown LSMO
epitaxial film is well consistent with the perovskite stoi-
chiometry. Crystal structure of the LSMO thin films is
characterized by high-resolution transmission electron
microscopy (TEM). The high-angle annular dark-field
(HAADF) micrograph of the LSMO film on LAO taken
by an aberration-corrected STEM is shown in Fig. 1c.
Since the intensity of an atomic column is approximately
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proportional to Z
1.7 (Z, atomic number), the brighter area

in Fig. 1c corresponds to the LAO substrate, and the less
bright area to the LSMO film. Zoom-in image of the
rectangular solid area in Fig. 1c is presented in Fig. 1d,
and the intensity line profiles along the purple arrow (Fig.
1d) arranging in a way to cross both the A-site cations
(i.e., La/Sr) and the B-site cations (i.e., Mn/Al) is shown
in Fig. 1e. An abrupt contrast of La and La/Sr provides a
well-defined localization of the interface, which is marked
by the yellow dashed line in Fig. 1e. The epitaxial growth
of the high-quality LSMO film with this laser-ablated
CVD provides us a platform to explore the competing
electronic/magnetic phases by in-situ tuning chemical
reactivity of “hot oxygen”.

Three representative LSMO films (approximately
120 nm) were obtained by laser-ablated CVD with Tatm at
973, 1,073 and 1,173 K respectively. The laser (248 nm
excimer) energy density was about 2 J cm−2 with the re-
petition rate of 3 Hz in the oxygen environment of 20 Pa
during the growth. The (002)-peak in Fig. 2a gradually

shifts towards lower angle as Tatm decreases from 1,173 K
to 973 K, which indicates an expansion of c-axis lattice
constant from 3.863 Å to 3.899 Å, a value larger than the
bulk value of 3.858 Å. The expansion of the lattice con-
stant is due to the effect of oxygen vacancies that weaken
the lattice interatomic forces [33]. Considering that dif-
ferent Mn valence states have different ionic radii (Mn3+

= 0.645 Å, Mn4+ = 0.53 Å), the existence of more Mn3+ is
most likely responsible for the expansion of the lattice
constant with lower Tatm, other than Mn4+ ions which are
usually caused by excess oxygen [34]. The Mn 3s has a
relatively higher sensitivity for determining Mn valence
states than Mn 2p signal due to the strong influence from
the outer electron configuration. The value of Mn 3s
exchange splitting ΔE3s has a linear dependence on the
Mn valence states, VMn = 9.67−1.27ΔE3s/eV [11]. A de-
crease of the Mn 3s exchange splitting energy in Fig. 2b is
qualitatively visible with increasing Tatm, which implies
the increasing of Mn valence. Fig. 2c shows the peak
splitting of Mn 2p in the three films mentioned above. It

Figure 1 High-quality crystallographic structure of the epitaxial LSMO films by laser-ablated CVD. (a) Schematic of our home-designed laser-ablated
CVD. (b) X-ray diffraction pattern of 120 nm LSMO thin film grown on LAO substrate, indicating a typical (001)-oriented epitaxial oxide thin film.
(c) HAADF micrograph of the LSMO film on LAO substrate taken by an aberration-corrected STEM. (d) Zoom-in image of the rectangular solid area
in (c). The yellow-dashed line indicates the LSMO/LAO interface location. (e) Intensity line profile of the region marked by the purple arrows in (d).
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gives the change of Mn3+/Mn4+ ratio estimated by the
areas of the Mn3+ and Mn4+ peaks, which permits us,
using the principle of electroneutrality, to approximately
calculate the nonstoichiometric oxygen content δ from
(0.5−2δ)/(0.5+2δ), where δ denotes the nonstoichiometric
oxygen content of LSMO3+δ. Fig. 2d–f show schematically
the corresponding δ varying from −0.11 to 0.054 as Tatm

increases from 973 K to 1,173 K, which is well consistent
with the valence change derived from the Mn 3s exchange
splitting energy in Fig. 2b. Depth-dependent XPS mea-
surements on films grown by the laser-ablated CVD
system are also performed (Fig. S2), which reveals a
homogenous distribution of manganese valence states.
Thus, oxygen stoichiometry is efficiently tuned from a VO

to EO state. It implies that “hot oxygen” in the laser-
ablated CVD system has a remarkable influence on the
chemical-reactivity of oxygen-related species and chemi-
cal sates of Mn in the film. Both VO and EO can be
considered as mobile carrier donors, which will in turn
affect the carrier density and mobility. Moreover, the
magnetic and electric transport behaviors have a close
relationship with the carrier itinerant activity. As shown
in Fig. 3a, as Tatm changes from 973 to 1,173 K, insulating
phase changes to metallic phase which corresponds to the
change of δ from −0.11 to 0.054. In comparison with

laser-ablated CVD growth, traditional PLD is also used to
grow LSMO films on LAO at various substrate tem-
peratures, which shows insulating behavior and off-stoi-
chiometry even after post annealing (Figs S3, S4) as also
observed elsewhere [26,27].

Temperature- and magnetic-field-dependent magneti-
zations of these films by laser-ablated CVD are given in
Fig. 3b. Curie temperature and saturation magnetization
monotonically increase with increasing Tatm. For the film
grown at Tatm = 1,073 K, zero-field cooling measurement
reveals an obvious suppression of magnetization below
150 K (the magnetization at 4 K is about 2.9 μB/Mn,
which is smaller than previous experimental and theo-
retical studies (3.28 μB/Mn) [35]), corresponding to a
ground AFM/FM phase competition/separation and a
hidden MIT. This hidden MIT is so sensitive to the
oxygen content and can be controlled by a precise oxi-
dization. External magnetic field (up to 5 T) applied both
in the plane and out of the plane (Fig. 3c) can partially
suppress the AFM-insulating phase and reveals a mag-
netoresistance (MR) up to 70% at 4 K.

To further elucidate the underlying physical mechan-
ism of the phase transition at low temperature, MFM is
used to visualize FM and AFM phase at mesoscopic scale.
Due to its sensitivity to stray field gradients and having

Figure 2 Tatm-dependent lattice and valence structure. (a) An expanded view of the (002) peak of LSMO films acquired at Tatm = 1,173, 1,073 and
973 K. (b) Mn 3s XPS spectra of the LSMO films. (c) The XPS peaks splitting analysis of Mn 2p of the three LSMO films after subtraction of the
background. (d–f) Schematics of the nonstoichiometric oxygen content (δ) distribution in LSMO films.
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no response to the paramagnetic (PM) and AFM phase,
MFM has been used to direct visualize FM and AFM

phases in mixed-phase magnets [36–38]. Fig. 4b–e show
field-dependent MFM images of LSMO thin film (Tatm =

Figure 3 Hidden MIT and corresponding CMR. (a) Temperature-dependent resistance of films grown at varying Tatm(973, 1,073 and 1,173 K). (b)
Temperature-dependent magnetization measured during warming under 1,000 Oe after zero field cooling. Inset in (b) shows magnetic-field-
dependent magnetization at 4 K after zero field cooling. (c) Temperature-dependent magnetoresistance (MR) of LSMO/LAO film grown at Tatm =
1,073 K by laser-ablated CVD system.

Figure 4 Direct visualization of phase separation using MFM at 4 K. (a) Magnetization as a function of magnetic field along in plane and out of plane
of film grown at Tatm = 1,073 K. Inset in (a) is the temperature-dependent magnetization measured during warming under 1,000 Oe after zero field
cooling. (b–e) Magnetic-field-dependent MFM for direct visualization of FM and AFM regions. External magnetic field is applied perpendicular to the
film surface in the same direction of initial magnetization of tip.
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1,073 K). Fig. 4b shows inhomogeneous FM ground states
and due to large stray field from magnetic domains, AFM
phase cannot be detected. As the magnetic field increases,
MFM phase contrast gets stronger and 5 T is strong en-
ough that it can align all the FM moments in the direction
of applied magnetic field. In Fig. 4e (5 T) negative signal
(blue) is from FM phase due to attractive force between
tip and sample; positive signal (red) is from AFM phase
due to repulsive force between tip and sample. Repulsive
force at AFM region is due to the opposite stray field
from FM region which is one of the direct evidences
about AFM phase (see Fig. S5 for more details) in LSMO
thin film grown at Tatm = 1,073 K using laser-ablated
CVD system. Pure ferromagnetic La0.67Sr0.33MnO3/
LaAlO3 thin film (Fig. S6) is used for comparison which
shows a saturated magnetic domain when it is exposed to
magnetic field. MFM for the metallic thin film (Tatm =
1,173 K) by laser-ablated CVD (Fig. S7) also shows a
much smaller areal ratio of AFM phase in local areas. The
corresponding AFM and FM areas in LSMO films as a
function of external field are fitted by exponent curves
(Fig. S8), which reveals intrinsically the competition be-
tween AFM and FM phase modulated by the change of
oxygen content.

The electronic and magnetic phase diagram as a func-
tion of δ is shown in Fig. 5a. Phase transformation from
PM-I (I: insulating) phase to AFM-I phase occurs in
samples with VO when temperature decreases. When the

concentration of VO is reduced gradually, a hidden AFM-
I/FM-M (M: metallic) transition (red rectangular area)
appears at low temperature. FM-M phase predominates
in the samples with EO. Fig. 5b shows that when LSMO
thin film suffers compressive strain (~−1.7%) from LAO
substrate and has a lattice distortion of c/a = 1.023,
oxygen octahedra is compressed in the plane and the
films favor the C-type AFM-I ground states [26–28,39].
The magnetic property of LSMO, such as different oxi-
dation states of Mn (i.e., Mn3+ and Mn4+), can be medi-
ated by the double exchange mechanism as well as the
superexchange mechanism (Fig. 5c). The interaction be-
tween Mn and O orbitals is essential for both of the two
mechanisms. Apparently, VO/EO can change the rotation
and tilt of the oxygen octahedral [40,41], which will un-
doubtedly influence the hybridization between Mn 3d
orbitals and O 2p orbitals via the variations of Mn–O
bond length and Mn–O–Mn bond angle. More im-
portantly, one VO could offer two electrons and change
the valence of Mn cations, meaning that some Mn4+ ca-
tions transform into Mn3+. As the simple picture illu-
strated in Fig. 5c, neighboring Mn cations with different
valences (Mn3+ and Mn4+) favor the FM configuration via

double exchange interaction while Mn3+ cations neigh-
boring to Mn3+ cations favor the AFM configuration via

superexchange interaction. Therefore, a relatively high
concentration of VO will stabilize the AFM state over FM
state. Furthermore, the effect of oxygen stoichiometry on

Figure 5 Temperature-δ phase diagram of LSMO3+δ and mechanism of phase transition. (a) Temperature-oxygen stoichiometry (δ) phase diagram in
LSMO films. The electronic states (metal: M, insulating: I) are indicated as well as magnetic structures [paramagnetic: PM (dark yellow), ferro-
magnetic: FM (yellow), antiferromagnetic: AFM (orange)], red rectangular area indicates the hidden metal-insulator transition. (b) The perovskite
structure of LSMO where the red dotted circle denotes the position of an oxygen vacancy. (c) Schematic illumination for the physical mechanism,
showing that oxygen in the LSMO films has a significant influence on the Mn–O–Mn orbital hybridization through double exchange and super-
exchange.
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the electric property is reflected by oxygen influence on
the concentration and mobility of the charge carriers. In
the p-type LSMO films, holes are the majority carriers,
and can recombine with the two electrons donated by
every VO. Such decreased carrier density leads to a low
conductivity and the insulating behaviors in the films that
contain rich VO. On the contrary, EO increases the hole
carrier concentration and improves the metallic con-
ductivity. Besides, first-principles calculations (Fig. S9)
show that removing enough oxygen ions from bulk
LSMO in a certain way can reduce the density of state
near the Fermi level, which is compatible well with the
experimental results.

CONCLUSION
In conclusion, a new pathway is developed to synthesize
the epitaxial oxide thin films combined with an in-situ

chemical process, where the oxygen stoichiometry can be
tuned in oxides. LSMO is used as a model system to study
the in-situ effect of chemical reactivity on the oxygen
stoichiometry in epitaxial thin films. It is found that the
electric/magnetic properties are very sensitive to the mi-
croscopic oxygen configuration, and the competition
between the AFM and FM phases induced by the oxygen
content change enriches the phase diagram of LSMO.
Our home-designed laser-ablated CVD system provides a
new method to precisely modulate the properties in the
materials that are sensitive to anion-stoichiometry, espe-
cially near the phase boundaries.
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可控氧化方法制备的锰氧化物中隐藏的金属-绝缘体转变研究
宋创业1, Iftikhar Ahmed Malik1, 李梦蕾2, 张庆华3, 王立辰2, 王静1,4, 陈荣艳1,5, 郑仁奎6, 董帅7, 谷林3, 段文晖8, 南策文4, 张金星1*

摘要 氧在调节复杂氧化物中的相结构和功能方面扮演着重要的角色, 比如高温超导体、庞磁电阻、催化等, 人们急需在这些功能氧化
物中实现有效且可控的氧含量调控. 在此工作中我们通过改变气体氛围温度来精确的调控氧化活性, 从而实现一种新的化学辅助的高质
量外延薄膜的制备方法. 以钙钛矿锰氧化物La0.5Sr0.5MnO3(LSMO)为例, 通过调控薄膜样品中氧的化学计量比, 我们首次发现了该体系中
隐藏的由相竞争产生的金属-绝缘体转变. 氧组分引起的Mn离子间的交换相互作用以及载流子浓度的变化可能是此相转变产生的原因,

这与第一性原理计算十分符合. 不同于传统的阳离子掺杂, 有效的阴离子(O2−, S2−等)调节提供了一种新的实现复杂氧化物外延薄膜中调
控相结构和功能的技术手段.
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