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Abstract 27 

 28 

Polygenic risk scores (PRS) are poised to improve biomedical outcomes via precision 29 

medicine. However, the major ethical and scientific challenge surrounding clinical 30 

implementation is that they are many-fold more accurate in European ancestry 31 

individuals than others. This disparity is an inescapable consequence of Eurocentric 32 

genome-wide association study biases. This highlights that—unlike clinical biomarkers 33 

and prescription drugs, which may individually work better in some populations but do 34 

not ubiquitously perform far better in European populations—clinical uses of PRS today 35 

would systematically afford greater improvement to European descent populations. 36 

Early diversifying efforts show promise in levelling this vast imbalance, even when non-37 

European sample sizes are considerably smaller than the largest studies to date. To 38 

realize the full and equitable potential of PRS, we must prioritize greater diversity in 39 

genetic studies and public dissemination of summary statistics to ensure that health 40 

disparities are not increased for those already most underserved. 41 

 42 

Keywords: health disparities, genetic risk prediction, polygenic risk scores, diversity, 43 

population genetics, statistical genetics 44 

 45 

Polygenic risk scores (PRS), which predict complex traits using genetic data, are of 46 

burgeoning interest to the clinical community as researchers demonstrate their growing 47 

power to improve clinical care, genetic studies of a wide range of phenotypes increase 48 

in size and power, and genotyping costs plummet to less than US$50. Many earlier 49 
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criticisms of limited prediction power are now recognized to have been chiefly an issue 50 

of insufficient sample size, which is no longer the case for many outcomes1. For 51 

example, polygenic risk scores alone already predict breast cancer, prostate cancer, 52 

and type 1 diabetes risk in European descent patients more accurately than current 53 

clinical models2-4. Additionally, integrated models of PRS together with other lifestyle 54 

and clinical factors have enabled clinicians to more accurately quantify the risk of heart 55 

attack for patients; consequently, they have more effectively targeted the reduction of 56 

LDL cholesterol and by extension heart attack by prescribing statins to patients at the 57 

greatest overall risk of cardiovascular disease5-9. Promisingly, return of genetic risk of 58 

complex disease to at-risk patients does not induce significant self-reported negative 59 

behavior or psychological function, and some potentially positive behavioral changes 60 

have been detected10. While we share enthusiasm about the potential of PRS to 61 

improve health outcomes through their eventual routine implementation as clinical 62 

biomarkers, we consider the consistent observation that they are currently of far greater 63 

predictive value in individuals of recent European descent than in others to be the major 64 

ethical and scientific challenge surrounding clinical translation and, at present, the most 65 

critical limitation to genetics in precision medicine. The scientific basis of this imbalance 66 

has been demonstrated theoretically, in simulations, and empirically across many traits 67 

and diseases11-22.  68 

 69 

All studies to date using well-powered genome-wide association studies (GWAS) to 70 

assess the predictive value of PRS across a range of traits and populations have made 71 

a consistent observation: PRS predict individual risk far more accurately in Europeans 72 
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than non-Europeans15,16,18-24 . Rather than chance or biology, this is a predictable 73 

consequence of the fact that the genetic discovery efforts to date heavily 74 

underrepresent non-European populations globally. The correlation between true and 75 

genetically predicted phenotypes decays with genetic divergence from the makeup of 76 

the discovery GWAS, meaning that the accuracy of polygenic scores in different 77 

populations is highly dependent on the study population representation in the largest 78 

existing ‘training’ GWAS. Here, we document study biases that underrepresent non-79 

European populations in current GWAS, and explain the fundamental concepts 80 

contributing to reduced phenotypic variance explained with increasing genetic 81 

divergence from populations included in GWAS. 82 

 83 

Predictable basis of disparities in PRS accuracy 84 

Poor generalizability of genetic studies across populations arises from the 85 

overwhelming abundance of European descent studies and dearth of well-powered 86 

studies in globally diverse populations25-28. According to the GWAS catalog, ~79% of all 87 

GWAS participants are of European descent despite making up only 16% of the global 88 

population (Figure 1). This is especially problematic as previous studies have shown 89 

that Hispanic/Latino and African American studies contribute an outsized number of 90 

associations relative to studies of similar sizes in Europeans27. More concerningly, the 91 

fraction of non-European individuals in GWAS has stagnated or declined since late 92 

2014 (Figure 1), suggesting that we are not on a trajectory to correct this imbalance. 93 

These numbers provide a composite metric of study availability, accessibility, and use—94 

cohorts that have been included in numerous GWAS are represented multiple times, 95 
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which may disproportionately include cohorts of European descent. However, whereas 96 

the average sample sizes of GWAS in Europeans continue to grow, they have 97 

stagnated and remain several-fold smaller in other populations (Supplementary Figure 98 

1).  99 

 100 

The relative sample compositions of GWAS result in highly predictable disparities in 101 

prediction accuracy; population genetics theory predicts that genetic risk prediction 102 

accuracy will decay with increasing genetic divergence between the original GWAS 103 

sample and target of prediction, a function of population history13,14. This pattern can be 104 

attributed to several statistical observations which we detail below: 1) GWAS favor the 105 

discovery of genetic variants that are common in the study population; 2) linkage 106 

disequilibrium (LD) differentiates marginal effect size estimates for polygenic traits 107 

across populations, even when causal variants are the same; and 3) environment and 108 

demography differ across populations. Notably, the first two phenomena degrade 109 

prediction performance across populations substantially even when there exist no 110 

biological, environmental, or diagnostic differences, whereas the environment and 111 

demography may interact to drive differential forces of natural selection that in turn drive 112 

differences in causal genetic architecture. (We define the causal genetic architecture as 113 

the true effects of variants that impact a phenotype that would be identified in a 114 

population of infinite sample size. Unlike effect size estimates, true effects are typically 115 

modeled as invariant with respect to LD and allele frequency differences across 116 

populations.)  117 

 118 
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Common discoveries and low-hanging fruit 119 

First, the power to discover an association in a genetic study depends on the effect size 120 

and frequency of the variant29. This dependence means that the most significant 121 

associations tend to be more common in the populations in which they are discovered 122 

than elsewhere13,30. For example, GWAS catalog variants are more common on 123 

average in European populations compared to East Asian and African populations 124 

(Figure 2B), an observation not representative of genomic variants at large. 125 

Understudied populations offer low-hanging fruit for genetic discovery because variants 126 

that are common in these groups but rare or absent in European populations could not 127 

be discovered even with very large European sample sizes. Some examples include 128 

SLC16A11 and HNF1A associations with type II diabetes in Latino populations, as well 129 

as APOL1 associations with end-stage kidney disease and associations with prostate 130 

cancer in African descent populations31-34. If we assume that causal genetic variants 131 

have an equal effect across all populations—an assumption with some empirical 132 

support that offers the best case scenario for transferability35-40—Eurocentric GWAS 133 

biases mean that variants associated with risk are disproportionately common and 134 

discovered in European populations, accounting for a larger fraction of the phenotypic 135 

variance there13. Furthermore, imputation reference panels share the same study 136 

biases as in GWAS41, creating challenges for imputing sites that are rare in European 137 

populations but common elsewhere when the catalog of non-European haplotypes is 138 

substantially smaller. These issues are insurmountable through statistical methods 139 

alone13, but rather motivate substantial investments in more diverse populations to 140 

produce similar-sized GWAS of biomedical phenotypes in other populations. 141 
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 142 

Linkage disequilibrium 143 

Second, LD, the correlation structure of the genome, varies across populations due to 144 

demographic history (Figure 2A,C-E). These LD differences in turn drive differences in 145 

effect size estimates (i.e. predictors) from GWAS across populations in proportion to LD 146 

between tagging and causal SNP pairs, even when causal effects are the same 35,37-40 147 

(Supplementary Note). Differences in effect size estimates due to LD differences may 148 

typically be small for most regions of the genome (Figure 2C-E), but PRS sum across 149 

these effects, also aggregating these population differences. While it would be ideal to 150 

use causal effects rather than correlated effect size estimates to calculate PRS, it may 151 

not be feasible to fine-map most variants to a single locus to solve issues of low 152 

generalizability, even with very large GWAS. This is because complex traits are highly 153 

polygenic, meaning most of our prediction power comes from small effects that do not 154 

meet genome-wide significance and/or cannot be fine-mapped, even in many of the 155 

best-powered GWAS to date42.  156 

 157 

Complexities of history, selection, and the environment 158 

Lastly, other cohort considerations may further worsen prediction accuracy differences 159 

across populations in less predictable ways. GWAS ancestry study biases and LD 160 

differences across populations are extremely challenging to address, but these issues 161 

actually make many favorable assumptions that all causal loci have the same impact 162 

and are under equivalent selective pressure in all populations. In contrast, other effects 163 

on polygenic adaptation or risk scores such as long-standing environmental differences 164 
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across global populations that have resulted in differing responses of natural selection 165 

can impact populations differently based on their unique histories. Additionally, residual 166 

uncorrected population stratification may impact risk prediction accuracy across 167 

populations, but the magnitude of its effect is currently unclear. These effects are 168 

particularly challenging to disentangle, as has clearly been demonstrated for height, 169 

where evidence of polygenic adaptation and/or its relative magnitude is under 170 

question43,44. Comparisons of geographically stratified phenotypes like height across 171 

populations with highly divergent genetic backgrounds and mean environmental 172 

differences, such as differences in resource abundance during development across 173 

continents, are especially prone to confounding from correlated environmental and 174 

genetic divergence43,44. This residual stratification can lead to over-predicted differences 175 

across geographical space45.  176 

 177 

Related to stratification, most PRS methods do not explicitly address recent admixture 178 

and none consider recently admixed individuals’ unique local mosaic of ancestry; further 179 

methods development is needed. Additionally, comparing PRS across environmentally 180 

stratified cohorts, such as in some biobanks with healthy volunteer effects versus 181 

disease study datasets or hospital-based cohorts, requires careful consideration of 182 

technical differences, collider bias, as well as variability in baseline health status among 183 

studies. It is also important to consider differences in definitions of clinical phenotypes 184 

and heterogeneity of sub-phenotypes among countries.  185 

 186 
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Differences in environmental exposure, gene-gene interactions, gene-environment 187 

interactions, historical population size dynamics, statistical noise, some potential causal 188 

effect differences, and/or other factors will further limit generalizability for genetic risk 189 

scores in an unpredictable, trait-specific fashion46-49. Complex traits do not behave in a 190 

genetically deterministic manner, with some environmental factors dwarfing individual 191 

genetic effects, creating outsized issues of comparability across globally diverse 192 

populations. Among psychiatric disorders for example, whereas schizophrenia has a 193 

nearly identical genetic basis across East Asians and Europeans ( =0.98)40, 194 

substantially different rates of alcohol use disorder across populations are partially 195 

explained by differences in availability and genetic differences impacting alcohol 196 

metabolism50. While non-linear genetic factors explain little variation in complex traits 197 

beyond a purely additive model51, some unrecognized nonlinearities and gene-gene 198 

interactions can also induce genetic risk prediction challenges, as pairwise interactions 199 

are likely to vary more across populations than individual SNPs. Mathematically, we can 200 

simplistically think of this in terms of a two-SNP model, in which the sum of two SNP 201 

effects is likely to explain more phenotypic variance than the product of the same SNPs. 202 

Some machine learning approaches may thus modestly improve PRS accuracy beyond 203 

current approaches for some phenotypes52, but most likely for atypical traits with simpler 204 

architectures, known interactions, and poor prediction generalizability across 205 

populations, such as skin pigmentation53.  206 

 207 

Limited generalizability of PRS across diverse populations 208 
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So far, multi-ethnic work has been slow in most disease areas54, limiting even the 209 

opportunity to assess PRS in non-European cohorts. Nonetheless, some previous work 210 

has assessed prediction accuracy across diverse populations in several traits and 211 

diseases for which GWAS summary statistics are available and identified large 212 

disparities across populations (Supplementary Note). These disparities are not simply 213 

methodological issues, as various approaches (e.g. pruning and thresholding versus 214 

LDPred) and accuracy metrics (R2 for quantitative traits and various pseudo-R2 metrics 215 

for binary traits) illustrate this consistently poorer performance in populations distinct 216 

from discovery samples across a range of polygenic traits (Supplementary Table 1). 217 

These assessments are becoming increasingly feasible with the growth and public 218 

availability of global biobanks as well as diversifying priorities from funding 219 

agencies55,56. We assessed how prediction accuracy decayed across globally diverse 220 

populations for 17 anthropometric and blood panel traits in the UK Biobank (UKBB) 221 

when using European-derived summary statistics (Supplementary Note). Consistent 222 

with previous studies, we find that relative to European prediction accuracy, genetic 223 

prediction accuracy was far lower in other populations: 1.6-fold lower in Hispanic/Latino 224 

Americans, 1.7-fold lower in South Asians, 2.5-fold lower in East Asians, and 4.9-fold 225 

lower in Africans on average (Figure 3). 226 

 227 

Prioritizing diversity shows early promise for PRS 228 

Early diversifying GWAS efforts have been especially productive for informing on 229 

questions surrounding risk prediction. Rather than varying the prediction target dataset, 230 

some GWAS in diverse populations have increased the scale of non-European 231 
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summary statistics and also varied the study dataset in multi-ethnic PRS studies23,24,40. 232 

These studies have shown that even when non-European cohorts are only a fraction the 233 

size of the largest European study, they are likely to have disproportionate value for 234 

predicting polygenic traits in other individuals of similar ancestry. 235 

 236 

Given this background, we performed a systematic evaluation of polygenic prediction 237 

accuracy across 17 quantitative anthropometric and blood panel traits and five disease 238 

endpoints in British and Japanese individuals23,57,58 by performing GWAS with the exact 239 

same sample sizes in each population. We symmetrically demonstrate that prediction 240 

accuracy is consistently higher with GWAS summary statistics from ancestry-matched 241 

summary statistics (Figure 4, Supplementary Figures 2-6). Keeping in mind issues of 242 

comparability described above, we note that BBJ is a hospital-based disease-243 

ascertained cohort, whereas UKBB is a healthier than average59 population-based 244 

cohort; thus, differences in observed heritability among these cohorts (rather than 245 

among populations) due to differences in phenotype precision likely explain lower 246 

prediction accuracy from the BBJ GWAS summary statistics for anthropometric and 247 

blood panel traits, but higher prediction accuracy for five ascertained diseases 248 

(Supplementary Table 2). Indeed, other East Asian studies have estimated higher 249 

heritability for some quantitative traits than BBJ using the same methods, such as for 250 

height (h2 = 0.48±0.04 in Chinese women60). Some statistical fluctuations in the relative 251 

differences in prediction accuracy across populations are likely driven by differences in 252 

heritability measured in each population and/or trans-ethnic genetic correlation (i.e. of 253 

common variant effect sizes at SNPs common in two populations, Supplementary 254 
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Figures 7-10, Supplementary Tables 2–5). These trans-ethnic correlation estimates 255 

indicate that effect sizes were mostly highly correlated across ancestries, with a few 256 

traits that were somewhat lower than excepted (e.g. height and BMI, with ρge=0.69 and 257 

0.75, respectively). Prediction accuracy was far lower in individuals of African descent in 258 

the UK Biobank (Supplementary Figures 4 and 11) using GWAS summary statistics 259 

from either European or Japanese ancestry individuals, consistent with reduced 260 

prediction accuracy with increasing genetic divergence (Figures 3 and 4). These 261 

population studies demonstrate the power and utility of increasingly diverse GWAS for 262 

prediction, especially in populations of non-European descent. 263 

 264 

While many other traits and diseases have been studied in multi-ethnic settings, few 265 

have reported comparable metrics of prediction accuracy across populations. 266 

Cardiovascular research, for example, has led the charge towards clinical translation of 267 

PRS1. This enthusiasm is driven by observations that a polygenic burden of LDL-268 

increasing SNPs can confer monogenic-equivalent risk of cardiovascular disease, with 269 

polygenic scores improving clinical models for risk assessment and statin prescription 270 

that can reduce coronary heart disease and improve healthcare delivery efficiency5-7. 271 

However, many of these studies have been conducted exclusively in European descent 272 

populations, with few studies rigorously evaluating population-level applicability to non-273 

Europeans. Those existing findings indeed demonstrate a large reduction in prediction 274 

utility in non-European populations11, though often with comparisons of odds ratios 275 

among arbitrary breakpoints in the risk distribution that make comparisons across 276 

studies challenging. To better clarify how polygenic prediction will be deployed in a 277 
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clinical setting with diverse populations, more systematic and thorough evaluations of 278 

the utility of PRS within and across populations for many complex traits are still needed. 279 

These evaluations would benefit from rigorous polygenic prediction accuracy 280 

evaluations, especially for diverse non-European patients61-63.  281 

 282 

Clinical use of PRS may uniquely exacerbate disparities  283 

Our impetus for raising these statistical issues limiting the generalizability of PRS across 284 

population stems from our concerns that, while they are legitimately clinically promising 285 

for improving health outcomes for many biomedical phenotypes, they may have a larger 286 

potential to raise health disparities than other clinical factors for several reasons. The 287 

opportunities they provide for improving health outcomes means they inevitably will and 288 

should be pursued in the near term, but we urge that a concerted prioritization to make 289 

GWAS summary statistics easily accessible for diverse populations and a variety of 290 

traits and diseases is imperative, even when they are a fraction the size of the largest 291 

existing European datasets. Individual clinical tests, biomarkers, and prescription drug 292 

efficacy may vary across populations in their utility, but are fundamentally informed by 293 

the same underlying biology64,65. Currently, guidelines state that as few as 120 294 

individuals define reference intervals for clinical factors (though often smaller numbers 295 

from only one subpopulation are used) and there is no clear definition of who is 296 

“normal”64. Consequently, reference intervals for biomarkers can sometimes deviate 297 

considerably by reported ethnicity66-68. Defining ethnicity-specific reference intervals is 298 

clearly an important problem that can provide fundamental interpretability gains with 299 

implications for some major health benefits (e.g. need for dialysis and development of 300 
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Type 2 diabetes based on ethnicity-specific serum creatinine and hemoglobin A1C 301 

reference intervals, respectively)67. Simply put, some biomarkers or clinical tests scale 302 

directly with health outcomes independent of ancestry, and many others may have 303 

distributional differences by ancestry but are equally valid after centering with respect to 304 

a readily collected population reference.  305 

 306 

In contrast, PRS are uniformly less useful in understudied populations due to 307 

differences in genomic variation and population history13,14. No analogous solution of 308 

defining ethnicity-specific reference intervals would ameliorate health disparities 309 

implications for PRS or fundamentally aid interpretability in non-European populations. 310 

Rather, as we and others demonstrate, PRS are unique in that even with multi-ethnic 311 

population references, these scores are fundamentally less informative in populations 312 

more diverged from GWAS study cohorts.  313 

 314 

The clinical use and deployment of genetic risk scores needs to be informed by the 315 

issues surrounding tests that currently would unequivocally provide much greater 316 

benefit to the subset of the world’s population which is already on the positive end of 317 

healthcare disparities. Conversely, African descent populations, which already endure 318 

many of the largest health disparities globally, are often predicted marginally better, if at 319 

all, compared to random (Figure 4F). They are therefore least likely to benefit from 320 

improvements in precision healthcare delivery from genetic risk scores with existing 321 

data due to human population history and study biases. This is a major concern globally 322 

and especially in the U.S., which already leads other middle- and high-income countries 323 
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in both real and perceived healthcare disparities69,70. Thus, we would strongly urge that 324 

any discourse on clinical use of PRS include a careful, quantitative assessment of the 325 

economic and health disparities impacts on underrepresented populations that might be 326 

unintentionally introduced, and raise awareness about how to eliminate these 327 

disparities. 328 

 329 

How do we even the ledger? 330 

What can be done? The single most important step towards parity in PRS accuracy is 331 

by vastly increasing the diversity of participants included and analyzed in genetic 332 

studies, which will improve utility for all and most rapidly for underrepresented groups. 333 

Regulatory protections against genetic discrimination are necessary to accompany calls 334 

for more diverse studies; while some already exist in the U.S., including for health 335 

insurance and employment opportunities via the Genetic Information Nondiscrimination 336 

Act (GINA), stronger protections in these and other areas globally will be particularly 337 

important for minorities and/or marginalized groups. An equal investment in GWAS 338 

across all major ancestries and global populations is the most obvious solution to 339 

generate a substrate for equally informative risk scores but is not likely to occur any 340 

time soon absent a dramatic priority shift given the current imbalance and stalled 341 

diversifying progress over the last five years (Figure 1, Supplementary Figure 1). 342 

While it may be challenging or in some cases infeasible to acquire sample sizes large 343 

enough for PRS to be equally informative in all populations, some much-needed efforts 344 

towards increasing diversity in genomics that support open sharing of GWAS summary 345 

data from multiple ancestries are underway. Examples include the All of Us Research 346 
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Program, the Population Architecture using Genomics and Epidemiology (PAGE) 347 

Consortium, as well as some disease-focused consortia, such as the T2D-genes and 348 

Stanley Global initiatives on the genetics of type II diabetes and psychiatric disorders, 349 

respectively. Supporting data resources such as imputation panels, multi-ethnic 350 

genotyping arrays, gene expression datasets from genetically diverse individuals, and 351 

other tools are necessary to similarly empower these diverse studies for all populations. 352 

The lack of supporting resources for diverse ancestries creates financial challenges for 353 

association studies with limited resources, e.g. raising questions about whether to 354 

genotype samples on GWAS arrays that may favor European allele frequencies versus 355 

sequence samples, and how dense of an array to choose or how deeply to 356 

sequence71,72.  357 

 358 

Additional leading global efforts also provide easy unified access linking genetic, clinical 359 

record, and national registry data in more homogeneous continental ancestries, such as 360 

the UK Biobank, BioBank Japan, China Kadoorie Biobank, and Nordic efforts (e.g. in 361 

Danish, Estonian, Finnish, and other integrated biobanks). Notably, some of these 362 

biobanks such as UK Biobank have participants with considerable global genetic 363 

diversity that enables multi-ethnic comparisons; although minorities from this cohort 364 

provide the largest deeply phenotyped GWAS cohorts for several ancestries, these 365 

individuals are often excluded in current statistical analyses in favor of single ancestries, 366 

large sample sizes, and the simplicity afforded by genetic homogeneity. These 367 

considerations notwithstanding, there are critical needs and challenges for expanding 368 

the scale of genetic studies of heritable traits in diverse populations; this is especially 369 
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apparent in Africa where humans originated and retain the most genetic diversity, as 370 

Africans are understudied but disproportionately informative for genetic analyses and 371 

evolutionary history27,73. The most notable investment here comes from the Human 372 

Heredity and Health in Africa (H3Africa) Initiative, increasing genomics research 373 

capacity in Africa through more than $216 million in funding from the NIH (USA) and 374 

Wellcome Trust (UK) for genetics research led by African investigators55,74. The 375 

increasing interest and scale of genetic studies in low- and middle-income countries 376 

(LMICs) raises ethical and logistical considerations about data generation, access, 377 

sharing, security, and analysis, as well as clinical implementation to ensure these 378 

advances do not only benefit high-income countries. Frameworks such as the 379 

H3ABioNet, a pan-African bioinformatics network designed to build capacity to enable 380 

H3Africa researchers to analyze their data in Africa, provide cost-effective examples for 381 

training local scientists in LMICs75. 382 

 383 

The prerequisite data for dramatically increasing diversity also hypothetically exist in 384 

several large-scale publicly funded datasets such as the Million Veterans Project and 385 

Trans-Omics for Precision Medicine (TOPMed), but with problematic data access issues 386 

in which even GWAS summary data within and across populations are not publicly 387 

shared. Existing GWAS consortia also need to carefully consider the granularity of 388 

summary statistics they release, as finer scale continental ancestries and phenotypes in 389 

large, multi-ethnic projects enable ancestry-matched analyses not possible with a single 390 

set of summary statistics. While there is an understandable patient privacy balance to 391 

strike when sharing individual-level data, GWAS summary statistics from all publicly 392 
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funded and as many privately funded projects as possible should be made easily and 393 

publicly accessible to improve global health outcomes. Efforts to unify phenotype 394 

definitions, normalization approaches, and GWAS methods among studies will also 395 

improve comparability.  396 

 397 

To enable progress towards parity, it will be critical that open data sharing standards be 398 

adopted for all ancestries and for genetic studies of all sample sizes, not just the largest 399 

European results. Locally appropriate and secure genetic data sharing techniques as 400 

well as equitable technology availability will need to be adopted widely in Asia and 401 

Africa as they are in Europe and North America, to ensure that maximum value is 402 

achieved from existing and ongoing efforts that are being developed to help counter the 403 

current imbalance. Simultaneously, ethical considerations require that research capacity 404 

is increased in LMICs with simultaneous growth of diverse population studies to balance 405 

the benefits of these studies to scientists and patients globally versus locally to ensure 406 

that everyone benefits. Methodological improvements that better define risk scores by 407 

accounting for population allele frequency, LD, and/or admixture differences 408 

appropriately are underway and may help considerably but will not by themselves bring 409 

equality. All of these efforts are important and should be prioritized not just for risk 410 

prediction but more generally to maximize the use and applicability of genetics to inform 411 

on the biology of disease. Given the acute recent attention on clinical use of PRS, we 412 

believe it is paramount to recognize their potential to improve health outcomes for all 413 

individuals and many complex diseases. Simultaneously, we as a field must address the 414 

disparity in utility in an ethically thoughtful and scientifically rigorous fashion, lest we 415 
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inadvertently enable genetic technologies to contribute to, rather than reduce, existing 416 

health disparities. 417 
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 439 

Figures 440 

 441 

Figure 1 – Ancestry of GWAS participants over time compared to the global 442 

population. Cumulative data as reported by the GWAS catalog76. Individuals whose 443 

ancestry is “not reported” are not shown. 444 
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 445 

Figure 2 – Demographic relationships, allele frequency differences, and local LD 446 

patterns between population pairs. Data analyzed from 1000 Genomes, in which 447 

population labels are: AFR = continental African, EUR = European, and EAS = East 448 

Asian. a) Cartoon relationships among AFR, EUR, and EAS populations. b) Allele 449 

frequency distributions in AFR, EUR, and EAS populations of variants from the GWAS 450 

catalog. c-e) Color axis shows LD scale (r2). LD comparisons between pairs of 451 

populations show the same region of the genome for each comparison (representative 452 

region is chr1, 51572kb-52857kb) among pairs of SNPs polymorphic in both 453 

populations, illustrating that different SNPs are polymorphic across some population 454 

pairs, and that these SNPs have variable LD patterns across populations. 455 

 456 
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 457 

Figure 3 – Prediction accuracy relative to European ancestry individuals across 458 

17 quantitative traits and 5 continental populations in UKBB. All phenotypes shown 459 

here are quantitative anthropometric and blood panel traits, as described in 460 

Supplementary Table 6, which includes discovery cohort sample sizes. Prediction 461 

target individuals do not overlap with the discovery cohort and are unrelated, with 462 

sample sizes shown in Supplementary Table 7. Violin plots show distributions of 463 

relative prediction accuracies, points show mean values, and error bars show standard 464 

errors of the means. Prediction R2 for each trait and population are shown in 465 

Supplementary Figure 12. 466 
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 468 

Figure 4 – Polygenic risk prediction accuracy in Japanese, British, and African 469 

descent individuals using independent GWAS of equal sample sizes in the 470 

BioBank Japan (BBJ) and UK Biobank (UKBB).  a) Explanatory diagram showing the 471 

different discovery and target cohorts/populations, and disease endpoints versus 472 

quantitative traits. b-f) Genetic prediction accuracy computed from independent BBJ 473 

and UKBB summary statistics with identical sample sizes (Supplementary Tables 6 474 

and 8). Note that y-axes differ, reflecting differences in prediction accuracy. b-c) PRS 475 

accuracy for five diseases in: Japanese individuals in the BBJ (b) and British individuals 476 

in the UKBB. d-f) PRS accuracy for 17 anthropometric and blood panel traits in: 477 

Japanese individuals in the BBJ (d), British individuals in the UKBB (e), and African 478 

descent British individuals in the UKBB (f). Trait abbreviations are as in Supplementary 479 

Table 6. Each point shows the maximum R2 (i.e. best predictor) across five p-value 480 

thresholds, and lines correspond to 95% confidence intervals calculated via bootstrap. 481 
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R2 values for all p-value thresholds tested are shown in Supplementary Figures 2-6. 482 

Prediction accuracy tends to be higher in the UKBB for quantitative traits than in BBJ 483 

and vice versa for disease endpoints, likely because of concomitant phenotype 484 

precision and consequently observed heritability for these classes of traits 485 

(Supplementary Tables 2-4). Thalassemia and sickle cell disease are unlikely to 486 

explain a significant fraction of prediction accuracy differences for blood panels across 487 

populations, as few individuals have been diagnosed with these disorders via ICD-10 488 

codes (Supplementary Table 9).489 
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