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Abstract The purpose of this paper is to show that the so-
called Maxwell superalgebra in four dimensions, which nat-
urally involves the presence of a nilpotent fermionic gener-
ator, can be interpreted as a hidden superalgebra underlying
N = 1, D = 4 supergravity extended to include a 2-form
gauge potential associated to a 2-index antisymmetric ten-
sor. In this scenario, the theory is appropriately discussed in
the context of Free Differential Algebras (an extension of
the Maurer–Cartan equations to involve higher-degree dif-
ferential forms). The study is then extended to the Free Dif-
ferential Algebra describing D = 11 supergravity, showing
that, also in this case, there exists a super-Maxwell algebra
underlying the theory. The same extra spinors dual to the
nilpotent fermionic generators whose presence is crucial for
writing a supersymmetric extension of the Maxwell algebras,
both in the D = 4 and in the D = 11 case, turn out to be
fundamental ingredients also to reproduce the D = 4 and
D = 11 Free Differential Algebras on ordinary superspace,
whose basis is given by the supervielbein. The analysis of
the gauge structure of the supersymmetric Free Differential
Algebras is carried on taking into account the gauge trans-
formations from the hidden supergroup-manifold associated
with the Maxwell superalgebras.

1 Introduction

It is well known that supergravity theories in D ≥ 4 space-
time dimensions contain gauge potentials described by p-
forms, of various p > 1, associated to p-index antisym-
metric tensors. In this scenario, the Free Differential Alge-
bras framework, that is an extension of the Maurer–Cartan
equations to involve higher-degree differential forms, is par-
ticularly well suited for studying supergravity models. The
concept of Free Differential Algebra (FDA in the sequel)
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was introduced in [1] and subsequently applied to the study
of supergravity theories (see, for instance, Ref. [2]).

A review of the standard procedure for the construction
of a minimal FDA (namely a FDA where the differential of
any p-form does not contain forms of degree greater than p)
starting from an ordinary Lie algebra can be found in [3].

In [2], the authors considered the D = 11 supergravity
theory of [4], introducing and investigating the supersym-
metric FDA describing the theory (using the so-called super-
space geometric approach) in order to see whether the FDA
formulation could be interpreted in terms of an ordinary Lie
superalgebra (in its dual Maurer–Cartan formulation). This
was proven to be true, and the existence of a hidden super-
algebra underlying the D = 11 supergravity theory was pre-
sented for the first time. It includes the D = 11 Poincaré
superalgebra as a subalgebra, but it also contains two extra,
almost-central, bosonic generators, which were lately under-
stood as p-brane charges, sources of the dual potentials A(3)

and B(6) appearing in the (complete) FDA of [2] (see Refs.
[5,6]).

Furthermore, a nilpotent fermionic generator must be
included to close the superalgebra and in order for the same
superalgebra to reproduce the D = 11 FDA on ordinary
superspace, whose basis is given by the supervielbein. Rel-
evant contributions concerning the physical role played by
this extra fermionic generator were given first in [7] and
then in particular in [8,9], where the results presented in
[2] were further analyzed and generalized. Finally, its group-
theoretical and physical meaning was recently clarified in
[3] (and subsequently further discussed in [10]): in [3] it was
shown that the spinor 1-form dual to the nilpotent fermionic
charge is not a physical field in superspace, rather behaving
as a cohomological BRST ghost, since its supersymmetry
and gauge transformations exactly cancel the non-physical
contributions coming from the extra tensor fields, guarantee-
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ing that the extra bosonic 1-forms dual to the almost-central
charges are genuine abelian gauge fields.1

As shown in Ref. [3], where the authors analyzed also the
FDA of the minimal N = 2, D = 7 supergravity theory, this
interpretation is valid for any supergravity theory containing
antisymmetric tensor fields, and any supersymmetric FDA
can always be traded for a hidden Lie superalgebra containing
fermionic nilpotent generators (see also [11] for the study of
a particular D = 4 FDA case).

In the first part of this paper, we will consider the FDA of
N = 1, D = 4 supergravity containing a 2-form potential
under the same perspective of [3]. Let us mention, here, that
supergravity in D = 4 space-time dimensions is often formu-
lated as a theory of gravity coupled to scalar-vector multiplets
only, that is to say 1-form gauge fields. On the other hand,
when we think of the theory as obtained by Kaluza-Klein
compactification from eleven-dimensional supergravity, then
it naturally contains also 2-form fields (tensor multiplets). In
four dimensions, if these 2-form fields are massless, then
they can be dualized, through Hodge duality of their field
strengths, to scalars (this is the reason why they often do not
explicitly appear in the formulation). However, when they are
massive2 such dualization does not (at least directly) apply
and, in this case, the 2-form gauge fields must be made man-
ifest [12] (see also Refs. [13–15] for more details on the role
of 2-forms in four-dimensional supergravity theories).

The aim of the present paper is to show that the so-called
minimal Maxwell superalgebra (or minimal super-Maxwell
algebra) in four dimensions (a non-semisimple superalgebra
naturally endowed with a nilpotent fermionic generator), can
be interpreted as a hidden superalgebra underlying the FDA
of D = 4 supergravity that includes a 2-form potential A(2).
This will be done by studying the parametrization of A(2)

and the hidden gauge structure of the FDA on the same lines
of what was done in the D = 11 (and D = 7) case in [2,3].
Then, we will extend our discussion to the FDA introduced in
[2], which describes D = 11 supergravity, showing that, also
in this case, there exists a Maxwell superalgebra underlying
the theory.3 The extra spinors dual to the nilpotent fermionic
generators whose presence is crucial for writing a supersym-
metric extension of the Maxwell algebras, both in the D = 4
and in the D = 11 case, will turn out to be fundamental
also to reproduce the D = 4 and D = 11 FDAs on ordinary
superspace.

1 Actually, as it was lately pointed out in [10], the extra spinor 1-form
dual to the nilpotent fermionic generator can be parted into two different
spinors, whose integrability conditions close separately.
2 This happens, for instance, in the case in which the higher-
dimensional theory is reduced via a flux compactification.
3 Actually, we will consider the D = 11 FDA just containing a 3-form
potential A(3). We leave the study of the complete FDA containing also
a 6-form potential B(6) (see Refs. [2,3]) to future works.

This work is organized as follows: in Sect. 2, we first
recall the main features of the Maxwell superalgebra; then,
we move to the analysis of the hidden gauge structure of
the supersymmetric FDA of N = 1, D = 4 supergrav-
ity (containing a 2-form potential A(2)), showing that the
Maxwell superalgebra can be viewed as a hidden superal-
gebra underlying the theory. Subsequently, in Sect. 3, we
extend our study and results to the FDA describing D = 11
supergravity (which, in its minimal cohomology formulation,
contains just a 3-form potential A(3)), introducing a (hidden)
Maxwell superalgebra underlying the theory. Finally, Sect. 4
contains the conclusions and possible future developments.
In the Appendix we collect our conventions and some useful
formulas.

2 Minimal super-Maxwell algebra and hidden gauge
structure of the D = 4 supergravity FDA

After the discovery of the cosmic microwave background
and the mysterious dark energy, it appears interesting to con-
sider some field densities uniformly filling space-time. One
such modification of empty Minkowski space can be obtained
by adding a constant electromagnetic field background,
parametrized by additional degrees of freedom related to
tensorial almost-central charges. The presence of a constant
electromagnetic field modifies the Poincaré symmetries into
the so-called Maxwell symmetries. On the other hand, since
the advent of supersymmetry, there has been a great interest
in superalgebras going beyond the super-Poincaré one.

In particular, the (minimal) Maxwell superalgebras are
(minimal) super-extensions of the Maxwell algebra, which
in turn is a non-central extension of the Poincaré algebra
involving an extra, bosonic, abelian generator (along the lines
of non-commutative geometry).

Specifically, the D = 4 Maxwell algebra is obtained by
replacing the commutator [Pa, Pb] = 0(a = 0, 1, 2, 3) of
the Poincaré algebra with [Pa, Pb] = Zab, where Zab =
−Zba are abelian generators commuting with translations
and behaving like a tensor with respect to Lorentz trans-
formations (i.e. Zab are tensorial central charges). Setting
Zab = 0 one gets back to the Poincaré algebra.

The Maxwell algebra arises when one considers symme-
tries of systems evolving in flat Minkowski space filled in
by a constant electromagnetic background [16,17]. Indeed,
an action for a massive particle which is invariant under the
Maxwell symmetries satisfies the equations of motion of a
charged particle interacting with a constant electromagnetic
field via the Lorentz force. In particular, in order to interpret
the Maxwell algebra and the corresponding Maxwell group,
a Maxwell group-invariant particle model was studied on an
extended space-time with coordinates (xμ, φμν), where the
translations of φμν are generated by Zμν [18–21]. The inter-
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action term described by a Maxwell-invariant 1-form intro-
duces new tensor degrees of freedom, momenta conjugate
to φμν , and, in the equations of motion, they play the role
of a background electromagnetic field which is constant on-
shell and leads to a closed, Maxwell-invariant 2-form. The
Maxwell algebra describes, at same time, the particle and the
constant electromagnetic background in which it moves.

Furthermore, in [22], driven by the fact that it is often
thought that the cosmological constant problem may require
an alternative approach to gravity, the authors presented a
geometric framework based on the D = 4 gauged Maxwell
algebra, involving six new gauge fields associated with their
abelian generators, and described its application as source of
an additional contribution to the cosmological term in Ein-
stein gravity, namely as a generalization of the cosmological
term. Subsequently, in [23] the authors deformed the AdS
algebra by adding extra non-abelian Zab generators, form-
ing, in this way, the negative cosmological constant counter-
part of the Maxwell algebra. Then, they gauged this algebra
and constructed a dynamical model. In the resulting theory,
the gauge fields associated with the Maxwell-like generators
Zab appear only in topological terms that do not influence
the dynamical field equations.

The minimal supersymmetric extension of the D = 4
Maxwell algebra was obtained in [24] as a minimal enlarge-
ment of the N = 1 Poincaré superalgebra, by adding two
four-dimensional Majorana supercharges (Qα and Σα, α =
1, 2, 3, 4), and, mathematically optional, two scalar genera-
tors (B5 and B). Thus, in terms of dual Maurer–Cartan 1-
forms, this minimal supersymmetrization of the Maxwell
algebra naturally requires to introduce, besides the 1-form
spinor field ψα (dual to the supercharge Qα), also an
extra Majorana 1-form spinor field ξα (dual to the nilpo-
tent fermionic generator Σα). The minimal Maxwell super-
algebra introduced in [24] (and, subsequently, further dis-
cussed and deformed in [25]) seems to be specially appeal-

ing, since the coset super-Maxwell
Lorentz×B5

describes the supersymme-

tries of flat (Wess–Zumino) Minkowski superspace with arbi-
trary constant values of an abelian supersymmetric field-
strength background. In this set up, the superspace coor-
dinates (xμ, θα, φ) are supplemented in the framework of
Maxwell supergeometry by graded additional coordinates
related to the generators (Σα, Zμν, B).

At a later time, in [26] the authors wrote supersymmetriza-
tion schemes of the D = 4 Maxwell algebra, and further gen-
eralizations of Maxwell (super)algebras where then derived
and studied in the context of expansion of Lie (super)algebras
[27]. Subsequently, the Maxwell superalgebra of [25] and
its generalizations have been obtained through a particu-
lar expansion procedure that goes under the name of S-
expansion, starting from the AdS superalgebra [28]. This
family of superalgebras, containing the Maxwell algebras

type as bosonic subalgebras, can be viewed as a generaliza-
tion of the D’Auria-Fré superalgebra introduced in [2] and
of the Green algebra [29].4

Lately, in [33] it was shown that the first-order N =
1, D = 4 pure supergravity Lagrangian 4-form can be
obtained geometrically as a quadratic expression in the curva-
tures of the Maxwell superalgebra. Furthermore, in [34] the
authors presented the construction of the D = 4 pure super-
gravity action (plus boundary terms) starting from a minimal
Maxwell superalgebra (which can be derived from osp(4|1)

by applying the S-expansion procedure), showing, in partic-
ular, that the N = 1, D = 4 pure supergravity theory can
be alternatively obtained as the MacDowell–Mansouri like
action built from the curvatures of this minimal Maxwell
superalgebra. Remarkably, also in this context, the Maxwell-
like fields do not contribute to the dynamics of the theory,
appearing only in the boundary terms. Moreover, recently,
in [35] the authors introduced an alternative way of closing
Maxwell-like algebras.

For all the reasons listed above, the (super-)Maxwell alge-
bras result to be very attractive in the context of (super)gravity
theories. Let us now go deep in some technical details con-
cerning the minimal D = 4 Maxwell superalgebra of Ref.
[33].

As we have already mentioned, besides the Poincaré gen-
erators, the minimal D = 4 Maxwell algebra contains six
additional tensorial charges Zab that centrally extend the
abelian translation algebra and behave tensorially under the
Lorentz algebra.

Then, the minimal D = 4 super-Maxwell algebra is
generated by {Jab, Pa, Zab, Qα,Σα} (a = 0, 1, 2, 3, α =
1, 2, 3, 4), and its (anti)commutation relations read:

[Jab, Jcd ] = ηbc Jad − ηac Jbd − ηbd Jac + ηad Jbc,

[Jab, Zcd ] = ηbc Zad − ηac Zbd − ηbd Zac + ηad Zbc,

[Jab, Pc] = ηbc Pa − ηac Pb,

[Jab, Qα] = −1

2
(γabQ)α,

[Jab,Σα] = −1

2
(γabΣ)α,

[Pa, Pb] = Zab, [Pa, Zcd ] = 0,

[Pa, Qα] = −1

2
(γaΣ)α,

[Pa,Σα] = 0,

[Zab, Zcd ] = 0,

[Zab, Qα] = 0, [Zab,Σα] = 0,

{Qα, Qβ} = (γ aC)αβ Pa,

4 The Green algebra was used in [30] to produce a superstring action
with a manifestly supersymmetric Wess–Zumino term. The procedure
was further generalized in [31] to super p-branes by introducing larger
Green-type superalgebras (see also [32]).
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{Qα,Σβ} = −1

2
(γ abC)αβ Zab,

{Σα,Σβ} = 0, (1)

where C stands for the charge conjugation matrix, ηab is the
(mostly plus) Minkowski metric, γa and γab are Dirac gamma
matrices in four dimensions, Qα is the supersymmetry gen-
erator, and where we can see that the [Pa, Qα] commuta-
tor produces an extra, nilpotent, fermionic generator, Σα; in
particular, the latter naturally appears in the supersymmetric
extension of the Maxwell algebra.

Let us notice that the Lorentz-type algebra generated by
{Jab, Zab} is a subalgebra of the above superalgebra. This
Maxwell superalgebra can also be obtained by imposing
Z̃ab = 0 in the generalized minimal super-Maxwell algebra
of [28,34], which in turn can be derived from the osp(4|1)

superalgebra by applying the abelian semigroup expansion
procedure (S-expansion, for short).

We shall describe the superalgebra given in (1) through its
Maurer–Cartan equations satisfied by the set of 1-form fields
σ A = {ωab, V a, Bab, ψα, ξα} dual to the set of generators
TA = {Jab, Pa, Zab, Qα,Σα} (in the sequel, we will neglect
the spinor index α, for simplicity), that is to say

ωab(Jcd) = δabcd , V a(Pb) = δab , Bab(Zcd) = δabcd ,

ψ(Q) = 1, ξ(Σ) = 1. (2)

The aforementioned Maurer–Cartan equations read

dωab + ωac ∧ ω b
c = 0, (3)

DVa − 1

2
ψ̄ ∧ γ aψ = 0, (4)

Dψ = 0, (5)

DBab + ξ̄ ∧ γ abψ + V a ∧ V b = 0, (6)

Dξ − 1

2
γaψ ∧ V a = 0, (7)

where D = d + ω denotes the Lorentz covariant deriva-
tive in four dimensions and where ∧ is the wedge product
between differential forms. All spinors above are Majorana
spinors. The 1-form fields of (the dual Maurer–Cartan for-
mulation of) the super-Maxwell algebra have dimensions
[ωab] = L0, [V a] = L , [ψ] = L1/2, [Bab] = L2, and
[ξ ] = L3/2.

Let us now formulate the N = 1, D = 4 supergravity
theory in a geometric superspace approach,5 in which we
can write a supersymmetric FDA involving a 2-form poten-
tial A(2). Explicitly, the supersymmetric FDA defining the

5 In this context, the bosonic vielbein V a together with the gravitino
1-form ψ span a basis of the cotangent superspace K = {V a, ψ},
where also the superspace p-forms (whose pull-back on space-time
corresponds to p-index antisymmetric tensors) are defined.

ground state (i.e. the “vacuum”) of this model is given by the
vanishing of the following set of supercurvatures:

Rab ≡ dωab + ωac ∧ ω b
c = 0, (8)

Ra ≡ DVa − 1

2
ψ̄ ∧ γ aψ = 0, (9)

ρ ≡ Dψ = 0, (10)

F (3) ≡ d A(2) − 1

2
ψ̄ ∧ γaψ ∧ V a = 0. (11)

The d2-closure of the above FDA relies in the Fierz identity
(70) of Appendix A.

Let us mention that the interacting theory (that is to say,
out of the ground state) is obtained by introducing a non-
vanishing value for the supercurvatures (defined in the left-
hand side of the FDA). We will not further elaborate on the
theory out of the vacuum in the present paper. We will con-
centrate, instead, on the cohomological structure of the the-
ory, which is fully captured by the ground state FDA.

Now, one could wonder whether the FDA structure (8)–
(11) can be traded with an ordinary Lie superalgebra written
in terms of 1-form gauge fields valued in non-trivial tensor
representations of the Lorentz group (on the same lines of
the study that was carried on in [2] and recalled and further
analyzed in [3] in the case of D = 11 supergravity). Observe
that this cannot be done without introducing further 1-form
fields in the theory.

On the other hand, interestingly, in the present case this can
be done by considering the extra fields (naturally) appearing
in the Maxwell superalgebra, namely by introducing in the
FDA describing the theory also the Maurer–Cartan equations
(6) and (7).

Indeed, if we consider the following decomposition of the
2-form A(2) in terms of 1-forms (that, in this case, is also the
most general one we can write provided the FDA structure
above and satisfying the Bianchi identity in superspace of
the 2-form, d2A(2) = 0):

A(2)(σ ) = αψ̄ ∧ ξ, (12)

being α a free parameter, we have that (12) enjoys the ground
state FDA requirement d A(2) = 1

2 ψ̄ ∧ γaψ ∧ V a (see (11))
if

A(2)(σ ) = −ψ̄ ∧ ξ, (13)

that is to say α = −1, where, in particular, we have used the
Maurer–Cartan equation

Dξ = 1

2
γaψ ∧ V a . (14)
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Observe that the 1-form field Bab does not appear in the
parametrization of A(2), where the crucial role is played
just by the extra spinor 1-form field ξ appearing in the
super-Maxwell algebra. Indeed, one could have obtained the
same result by simply considering a (Lorentz-valued) central
spinor extension [given by (14)] of the super-Poincaré alge-
bra in D = 4. However, the peculiarity of our result lies in
the fact that the spinor ξ that allows to write the supersymme-
tryzation of the D = 4 Maxwell algebra (in its dual Maurer–
Cartan formulation) is also the same spinor that allows to
write the parametrization (13) in terms of 1-forms for the
2-form A(2) appearing in the FDA of the N = 1, D = 4
supergravity theory;6 then, in light of this fact, even if the
1-form field Bab is ruled out by the parametrization of A(2),
its contribution at the algebraic level cannot be discarded,
being Bab a 1-form field of (the dual Maurer–Cartan formu-
lation of) the Maxwell superalgebra. In particular, it could be
related to a possible enhancement of the (hidden gauge) sym-
metries underlying supergravity models, for example when
considering extensions or expansions of the super-Maxwell
algebra.

Let us mention, here, that we could also have added to the
FDA (8)–(11) the following equation:

DΞ(2) + ψ ∧ A(2) − 1

2
γabψ ∧ V a ∧ V b = 0, (15)

being Ξ(2) a spinor 2-form whose dimension is [Ξ(2)] =
L5/2 (see also Ref. [36]). However, in this case, in order to
write the 2-form Ξ(2) in terms of 1-forms, we would need
extra 1-form fields with respect to those appearing in the dual
Maurer–Cartan formulation of the Maxwell superalgebra (for
instance, 1-form fields coming from extensions or expansions
of the super-Maxwell algebra).7 In the present paper, we limit
ourselves to consider the supersymmetric FDA containing
the 2-form A(2) and leave the analysis of the FDA involving
(15) to future investigations.

From the above result, we can conclude that the super-
Maxwell algebra written in (1) can be interpreted as a hidden
superalgebra underlying the D = 4 supersymmetric FDA
describing N = 1, D = 4 supergravity extended to include
a 2-form A(2).

Let us recall that the inclusion of a new p-form (a gauge
potentials enjoying a gauge freedom) in the basis of the so-
called H-relative Chevalley-Eilenberg (CE) cohomology of
a FDA is physically meaningful only if the whole of the FDA
is gauge invariant, and this requires the non-physical degrees
of freedom to be projected out from the FDA (see Ref. [3]
for details).

6 As we will see in the sequel, this will also hold for the higher-
dimensional case of the D = 11 FDA describing D = 11 supergravity.
7 Or, directly, another hidden Lie superalgebra, different with respect
to the super-Maxwell algebra, trivializing (15) in terms of 1-forms.

Thus, we now move to the analysis of the hidden gauge
structure of the supersymmetric ground state FDA (8)–(11),
on the same lines of [3].

2.1 Analysis of the hidden gauge structure in D = 4

In the following, we analyze in detail the hidden gauge
structure of the FDA (8)–(11) when the 2-form A(2) is
parametrized in terms of 1-forms. In particular, we inves-
tigate the conditions under which the gauge invariance of the
FDA is realized once A(2) is expressed in terms of 1-forms.

In the geometrical approach adopted in this work, the
fields are naturally defined in an enlarged manifold corre-
sponding to the supergroup-manifold, where all the invari-
ances of the FDA are diffeomorphisms generated by Lie
derivatives. The physical request that the FDA should be
described in term of fields living in ordinary superspace cor-
responds to require the Lie superalgebra to have a fiber bundle
structure, whose base space is spanned by the supervielbein,
the rest of the fields spanning a fiber H. This in turn implies
that the gauge fields belonging to H must be excluded from
the construction of the so-called cochains (corresponding to
gauge invariance). In geometrical terms, this corresponds to
require the CE cohomology to be restricted to the H-relative
CE cohomology (see Ref. [3] for details).

Once the supersymmetric ground state FDA (8)–(11) is
parametrized in terms of 1-forms, the symmetry structure
is based on the hidden supergroup-manifold G having the
structure of a principal fiber bundle (G/H,H), where G/H
corresponds to superspace and where the fiber H includes, in
the present case, the Lorentz transformations and the hidden
super-Maxwell generators Zab and Σ .

Explicitly, we can write H = H0 + Hb + H f , where
{Jab} ∈ H0, {Zab} ∈ Hb, {Σ} ∈ H f , and {Pa, Q} ∈ K;
G = H + K is the hidden Maxwell superalgebra.8 Observe
that the subalgebra Hb + H f defines an abelian ideal of G.

Requiring the physical condition that the CE cohomology
is restricted to the H-relative CE cohomology corresponds,
now, to require the FDA to be described in terms of 1-form
fields living on G/H; this implies that the 1-forms in Hb and
H f do not appear in d A(2).

Now, taking into account this discussion, we consider in
detail the relation between the gauge transformations of the
FDA and those of the super-Maxwell bosonic and fermionic
1-forms Bab and ξ , respectively. The FDA (8)–(11) is invari-
ant under the following gauge transformation:

δA(2) = dΛ(1), (16)

8 With an abuse of notation, here and in the following we will use for the
cotangent space of the supergroup-manifold G, spanned by the 1-forms,
the same symbols defined above for the tangent space of G, spanned by
the vector fields (generators).

123



211 Page 6 of 12 Eur. Phys. J. C (2018) 78 :211

which is generated by the arbitrary 1-form Λ(1).
The gauge transformations of the bosonic 1-form Bab and

of the spinor 1-form ξ generated by the tangent vectors in Hb

and in H f are

{
δBab = dΛab − �̄γ abψ,

δξ = D�,
(17)

where Λab is an arbitrary Lorentz-valued scalar function (i.e.
a 0-form) and where we have introduced the infinitesimal
spinor parameter �. Observe that the parameter � appears in
both the gauge transformations, while δξ does not involve
Λab, in agreement with the fact that the covariant differen-
tial Dξ (see Eq. (14)) is parametrized only in terms of the
supervielbein and not in terms of Bab in Hb. This is different
from what happened in the case of the hidden superalgebra
underlying the FDA of D = 11 supergravity [2,3], where the
covariant differential of the spinor 1-form dual to the extra,
nilpotent, fermionic generator is parametrized also in terms
of the gauge fields in Hb.

In the present case, the corresponding 1-form gauge
parameter of A(2) turns out to be given by

Λ(1) = ψ̄�, (18)

where we have used the relation α = −1 which must be
fulfilled in order for (the differential of) the parametrization
of A(2) to be equivalent to (11).

We can now show that all the diffeomorphisms in the hid-
den supergroup G, generated by Lie derivatives, are invari-
ances of the FDA, and that, in particular, the ones in the
fiber H directions are associated with a particular form of
the gauge parameter of the FDA gauge transformation given
by (16). Indeed, defining the tangent vectors9

−→z ≡ ΛabZab ∈ Hb, (19)
−→q ≡ �̄Σ ∈ H f , (20)

we find that a gauge transformation leaving invariant the FDA
(8)–(11) is recovered, when A(2) is parametrized in terms of
1-forms, if

Λ(1) ≡ Λ
(1)
b + Λ

(1)
f = ı−→z (A(2)) + ı−→q (A(2)), (21)

where ı denotes the contraction operator and where we have
denoted by Λ

(1)
b the 1-form gauge parameter corresponding

to the transformation in Hb, while Λ
(1)
f is the 1-form gauge

parameter corresponding to the transformation in H f . Note

9 Since the Lorentz transformations, belonging to H0 ⊂ H, are not
effective on the FDA, the 2-form A(2) being Lorentz-invariant, our
analysis reduces to consider the transformations induced by the tan-
gent vectors Zab ∈ Hb ⊂ H and Σ ∈ H f ⊂ H.

that, since Λ
(1)
b = ı−→z (A(2)) = 0, we can write Λ(1) =

Λ
(1)
f = ı−→q (A(2)).
Now, introducing the Lie derivative �−→z ≡ dı−→z + ı−→z d

(and, analogously, �−→q ≡ dı−→q + ı−→q d), we find the corre-

sponding gauge transformations of A(2) to be

δ−→z A(2) = 0 = d
(
ı−→z (A(2))

)
= �−→z A(2), (22)

δ−→q A(2) = −ψ̄ ∧ D� = d
(
ı−→q (A(2))

)
= �−→q A(2). (23)

The last equality in both the above relations follows since
d A(2), as given in (11), is invariant under transformations
generated by −→z and −→q corresponding to the gauge invari-
ance of the supervielbein. In particular, this is in agreement
with the fact that the right hand side of d A(2) as given in (11)
is in the H-relative CE cohomology.

Thus, after integration by parts, we can finally write:

δA(2) = δ−→z A(2) +δ−→q A(2) = dΛ
(1)
b +dΛ

(1)
f = dΛ(1), (24)

which, due to the fact that δ−→z A(2) = dΛ
(1)
b = 0, reduces to

δA(2) = δ−→q A(2) = dΛ
(1)
f = dΛ(1). (25)

We have thus completed the analysis of the hidden gauge
structure of the D = 4 FDA (8)–(11). We now extend our
study to the D = 11 FDA describing the Cremmer-Julia-
Scherk D = 11 supergravity theory [4].

3 Maxwell superalgebra and hidden gauge structure of
the supergravity FDA in D = 11

In this section, we move to the analysis of the FDA describing
the D = 11 supergravity theory of [4]. In particular, we
will see that, also in this case, there exists a super-Maxwell
algebra which can be interpreted as a (hidden) superalgebra
underlying the theory.

The D = 11 supergravity theory, whose action was first
constructed in [4], has a bosonic field content given by
the metric gμν and a 3-index antisymmetric tensor Aμνρ

(μ, ν, ρ, . . . = 0, 1, . . . , D − 1); the theory is also endowed
with a single Majorana gravitino Ψμ in the fermionic sec-
tor.10 By dimensional reduction, the D = 11 theory yields
N = 8, D = 4 supergravity, which is considered as a possi-
ble unifying theory of all interactions.

In the FDAs framework, the bosonic sector of the the-
ory includes, besides the supervielbein {Va, Ψ } (where

10 We denote by Ψ the gravitino in D = 11 space-time dimensions, in
order to avoid confusion with the gravitino ψ of the four-dimensional
case.
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a = 0, 1, . . . , 10 and where Ψ is a 32-components Majo-
rana spinor), a 3-form potential A(3) (whose pull-back on
space-time is Aμνρ), with field-strength F (4) = d A(3) (mod-
ulo fermionic bilinears in terms of the gravitino 1-form),
together with its Hodge dual F (7) (whose space-time com-
ponents are related to the ones of the 4-form by Fμ1...μ7 =
1

84εμ1...μ7ν1...ν4 F
ν1...ν4 ) associated with a 6-form potential

B(6) in superspace (see Ref. [2] for details on the FDA formu-
lation of D = 11 supergravity in the superspace geometric
approach).

As we have already mentioned, in [2] the supersymmetric
FDA describing D = 11 supergravity was introduced and
then interpreted in terms of an ordinary Lie superalgebra. The
superalgebra found by the authors of [2] can also be viewed as
a spinor central extension of the so-called M-algebra [32,37–
40].

In particular, the authors of [2] presented a general decom-
position of the 3-form A(3) in terms of 1-forms, by requiring
the Bianchi identity in superspace of the 3-form, d2A(3) = 0,
to be satisfied also when A(3) is written in terms of 1-forms.
The result of [2] (the authors got a dichotomic solution, con-
sisting in two different supergroups, whose 1-form potentials
can be alternatively used to parametrize the 3-form) have
been further analyzed and generalized in [3,8,9], where some
misprints of [2] have been corrected and where, in particular
in [8,9], it was pointed out that a restriction imposed in [2] on
one coefficient in the parametrization of A(3) can be relaxed,
thus giving a one-parameter family of solutions.

In the following, we will see that there also exists another
hidden Lie superalgebra underlying the FDA describing D =
11 supergravity (we will not consider the complete D = 11
FDA involving a 6-form potential B(6) in the present work,
limiting ourselves to the FDA containing just a 3-form A(3)),
namely a minimal Maxwell superalgebra in eleven dimen-
sions. In particular, we will see that the general parametriza-
tion of A(3) in terms of the hidden super-Maxwell 1-forms,
together with V a and Ψ , can be recast into the form of that
written in Refs. [8,9].

The supersymmetric FDA defining the ground state of the
D = 11 theory11 is given by the vanishing of the following
supercurvatures:

Rab ≡ dωab − ωac ∧ ω b
c = 0, (26)

Ra ≡ DVa − i

2
Ψ̄ ∧ Γ aΨ = 0, (27)

ρ ≡ DΨ = 0, (28)

F (4) ≡ d A(3) − 1

2
Ψ̄ ∧ ΓabΨ ∧ V a ∧ V b = 0, (29)

11 We do not consider the D = 11 theory out of the vacuum in the
present paper. Some progress in this topic has been obtained in Ref. [9].

where D (D = d − ω, according with the convention of
[2,3]) denotes the Lorentz covariant derivative in eleven
dimensions and where Γa and Γab are gamma matrices in
D = 11. Again, the vielbein V a and the gravitino Ψ span
a basis of the cotangent superspace K ≡ {Va, Ψ } where
also the superspace 3-form A(3) is defined. The d2-closure
of the FDA (26)–(29) is a consequence of 3-gravitinos Fierz
identity ΓabΨ ∧ Ψ̄ ∧ Γ aΨ = 0 in D = 11.

Let us now consider the following minimal Maxwell
superalgebra (written in its dual Maurer–Cartan formulation)
in eleven dimensions:

dωab − ωac ∧ ω b
c = 0, (30)

DVa = i

2
Ψ̄ ∧ Γ aΨ, (31)

DΨ = 0, (32)

DB̃ab = 1

2
Ψ̄ ∧ Γ abΨ, (33)

DBab = −χ̄ ∧ Γ abΨ − V a ∧ V b − 1

5
B̃ac ∧ B̃ b

c , (34)

Dχ = i

2
γaΨ ∧ V a − 1

20
γabΨ ∧ B̃ab, (35)

where χ is a spinor 1-form (with dimension [χ ] = L3/2) dual
to a nilpotent fermionic generator (we have used the symbol
χ in order to avoid confusion with the spinor 1-form ξ of the
four-dimensional case discussed in Sect. 2). The d2-closure
of this superalgebra is a consequence of 3-gravitinos Fierz
identities in D = 11 (see Appendix A).

Observe that the generator dual to the 1-form field B̃ab,
let us call it Z̃ab, is a non-abelian one. In the absence of the
super-Maxwell fields, this bosonic generator would become
an almost-central bosonic generator; in eleven dimensions, it
was understood as a 2-brane charge, source of a 3-form gauge
potential (see, for example, Ref. [3] for details). The (dual
Maurer–Cartan formulation of the) superalgebra (30)–(35)
is a D = 11 extension including an extra bosonic 1-form
field B̃ab (whose dimension is [B̃ab] = L) of the D = 4
super-Maxwell algebra we have considered in Sect. 2. Note
that the superalgebra (30)–(35) have the same form of the
minimal super-Maxwell algebra in D = 4 discussed in [34]
(which was referred to as sM4 in that paper).12

Now, the most general ansatz for the 3-form A(3), written
in terms of the 1-forms σ A = {V a, B̃ab, Bab, Ψ, χ}, satisfy-
ing the Bianchi identity d2A(3) = 0 reads as follows:

A(3)(σ ) = T0 B̃
ab ∧ Va ∧ Vb + T1 B̃

ab ∧ B̃bc ∧ B̃c
a

+ iS1Ψ̄ ∧ Γaχ ∧ V a + S2Ψ̄ ∧ γabχ ∧ B̃ab

+ M1Ψ̄ ∧ ΓabΨ ∧ Bab. (36)

12 However, the 1-form fields of [34] have different dimensions with
respect to those appearing in (30)–(35).
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Then, the requirement that expression A(3)(σ ) in (36) satis-
fies the FDA equation (29) leads to the following system of
equations involving the coefficients T0, T1, S1, S2, and M1:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T0 − S1 − 2M1 − 1 = 0,

T0 + 1
10 S1 − S2 = 0,

3
2T1 + 1

5 S2 + 1
5 M1 = 0,

− 1
2 S1 − 5S2 + 10M1 = 0.

(37)

The solution to the system (37) depends on one free parameter
(we choose M1), and it is given by:

T0 = 1

6
+ 2M1, T1 = − 1

90
− 2

5
M1,

S1 = −5

6
, S2 = 1

12
+ 2M1. (38)

Some remarks are in order. First of all, one can easily prove
that in the absence of the super-Maxwell extra spinor χ the
expression (36) could not reproduce the FDA equation (29)
on ordinary superspace anymore. On the other hand, using
equation (33), the last term in (36) can be rewritten as

M1Ψ̄ ∧ ΓabΨ ∧ Bab = 2M1DB̃ab ∧ Bab. (39)

Then, we have

2M1DB̃ab ∧ Bab = 2M1d(B̃ab ∧ Bab) + 2M1 B̃ab ∧ DBab

(40)

and, extracting the total derivative (which is allowed since
the FDA is invariant under the 3-form gauge transformation
δA(3) = dΛ(2)) and using equation (34), we obtain the fol-
lowing expression for A(3) in terms of 1-forms:

A(3) = (T0 − 2M1) B̃
ab ∧ Va ∧ Vb

+
(
T1 + 2

5
M1

)
B̃ab ∧ B̃bc ∧ B̃c

a

+ iS1Ψ̄ ∧ Γaχ ∧ V a

+ (S2 − 2M1) Ψ̄ ∧ γabχ ∧ B̃ab. (41)

This final expression contains only the terms appearing in
the composite 3-form written in Refs. [8,9]. In particular, it
does not contain the bosonic 1-form field Bab. Accordingly,
redefining T0 − 2M1 ≡ T̂0, T1 + 2

5 M1 = T̂1, S1 ≡ Ŝ1, and

S2 − 2M1 ≡ Ŝ2 in (41) [that is equivalent to set M1 = 0 in
(36)] and imposing the requirement that the expression for
A(3) in (41) satisfies the FDA equation (29), one ends up with

T̂0 = 1

6
, T̂1 = − 1

90
, Ŝ1 = −5

6
, Ŝ2 = 1

12
, (42)

corresponding to the solution found in [8,9] with a particu-
lar choice for the normalization of the extra spinor 1-form
(see also [3] and, in particular, the expression for A(3)

(0) in
[10] where, however, the extra spinor 1-form named ξ was
normalized in a different way).13

Thus, we can conclude that the super-Maxwell alge-
bra (30)–(35) can be interpreted as a (hidden) superalgebra
underlying the supersymmetric FDA (26)–(29) describing
D = 11 supergravity. This superalgebra is larger than the
one discovered in [2] (excluding the 1-form Ba1...a5 ), since
in contains one more extra bosonic 1-form field Bab. On
the other hand, the contribution coming from Bab in the
parametrization of A(3) can be reabsorbed by a gauge trans-
formation of the 3-form. Again, in analogy with the result we
have obtained in Sect. 2 in D = 4 space-time dimensions,
the peculiarity of the above result in D = 11 lies in the fact
that the spinor χ that allows to write the supersymmetryza-
tion of the D = 11 Maxwell algebra is also the same spinor
that allows to write the parametrization of the 3-form A(3) in
terms of 1-forms in such a way to fulfill the FDA requirement
(29).

We now move to the analysis of the hidden gauge structure
of the supersymmetric FDA (26)–(29).

3.1 Analysis of the hidden gauge structure in D=11

Recalling the discussion presented in Sect. 2, once the
supersymmetric FDA (26)–(29) is parametrized in terms
of 1-forms, the symmetry structure is based on the hidden
supergroup-manifold G having the structure of a principal
fiber bundle (G/H,H) : G/H corresponds to superspace,
while the fiberH in the present D = 11 case includes, besides
the Lorentz transformations, also the hidden super-Maxwell
generators in D = 11 (we call them Z̃ab, Zab, and Σ , and
they are dual to the 1-form fields B̃ab, Bab, and χ , respec-
tively).

We can then write H = H0 + Hb + H f , so that {Jab} ∈
H0, {Z̃ab, Zab} ∈ Hb, {Σ} ∈ H f , and {Pa, Q} ∈ K, where
G = H + K is the hidden Maxwell superalgebra.

We now analyze the relation between the FDA gauge
transformations and those of its hidden Maxwell supergroup.
As we have already mentioned, the FDA (26)–(29) is invari-
ant under the gauge transformation

δA(3) = dΛ(2), (43)

which is generated by the arbitrary 2-form Λ(2).
The gauge transformations of the bosonic 1-forms B̃ab,

Bab and of the spinor 1-form χ generated by the tangent

13 In the case under analysis, we are not considering the presence of the
extra bosonic 1-form field Ba1...a5 (dual to a bosonic generator Za1...a5 ),
which would appear when considering the complete FDA including also
a 6-form potential B(6).
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vectors in Hb and in H f are respectively given by:

⎧⎨
⎩

δ B̃ab = dΛ̃ab,

δBab = dΛab − �̄γ abΨ − 2
5 Λ̃ac B̃ b

c ,

δχ = D� + 1
20ΓabΨ Λ̃ab,

(44)

where Λ̃ab and Λab are arbitrary Lorentz-valued scalar func-
tions and where we have introduced the infinitesimal spinor
parameter �. The corresponding 2-form gauge parameter of
A(3) turns out to be

Λ(2) = T0Λ̃
abVa ∧ Vb + 3T1Λ̃

ab B̃bc ∧ B̃c
a

− iS1Ψ̄ ∧ Γa�V
a − S2Ψ̄ ∧ Γab� B̃

ab

+ S2Ψ̄ ∧ ΓabχΛ̃ab + M1Ψ̄ ∧ ΓabΨ Λab. (45)

We can now show that all the diffeomorphisms in the hid-
den Maxwell supergroup, generated by Lie derivatives, are
invariances of the FDA, the ones in the fiber H directions
being associated with a particular form of the gauge param-
eter of the FDA gauge transformation (43). Indeed, defining
the following tangent vectors:14

−→z ≡ Λ̃ab Z̃ab + ΛabZab ∈ Hb, (46)
−→q ≡ �̄Σ ∈ H f , (47)

we find that a gauge transformation leaving invariant the FDA
(26)–(29) is recovered, A(3) being parametrized in terms of
1-forms, if

Λ(2) ≡ Λ
(2)
b + Λ

(2)
f = ı−→z (A(3)) + ı−→q (A(3)), (48)

where ı denotes the contraction operator and where we have
denoted by Λ

(2)
b the 2-form gauge parameter corresponding

to the transformations in Hb, while Λ
(2)
f is the 2-form gauge

parameter corresponding to the transformation in H f . The
result written above is true as a consequence of the relations
(37) obeyed by the coefficients of the parametrization (36)
of A(3) in terms of 1-forms.

Then, introducing the Lie derivative �−→z ≡ dı−→z + ı−→z d
(and, analogously, �−→q ≡ dı−→q + ı−→q d), we can write

δA(3) = δ−→z A(3) + δ−→q A(3) =
= T0 dΛ̃ab ∧ Va ∧ Vb + 3T1dΛ̃ab ∧ B̃bc ∧ B̃c

a

+ iS1Ψ̄ ∧ Γa

(
D� + 1

20
ΓbcΨ Λ̃bc

)
∧ Va

+ S2Ψ̄ ∧ γab

(
D� + 1

20
ΓcdΨ Λ̃cd

)
∧ B̃ab

14 Again, since the Lorentz transformations, belonging to H0 ⊂ H, are
not effective on the FDA, the 3-form A(3) being Lorentz-invariant, our
analysis reduces to consider the transformations induced by the tangent
vectors in Hb and in H f .

+ S2Ψ̄ ∧ Γabχ ∧ dΛ̃ab

+ M1Ψ̄ ∧ ΓabΨ ∧
(
dΛab−�̄Γ abΨ − 2

5
Λ̃ac B̃ b

c

)

= d
(
ı−→z (A(3))

)
+ d

(
ı−→q (A(3))

)

= �−→z A(3) + �−→q A(3), (49)

where the last equality follows since d A(3), as given in (29),
is invariant under transformations generated by −→z and −→q ,
corresponding to the gauge invariance of the supervielbein
(the right hand side of d A(3) is in the H-relative CE coho-
mology).

We can finally see that, after integration by parts, making
use of 3-gravitinos Fierz identities in D = 11 (see Appendix
A) and of the relations (37), the above result exactly repro-
duces the gauge transformation (43) leaving invariant the
supersymmetric FDA (26)–(29). Precisely, we have

δA(3) = δ−→z A(3) + δ−→q A(3) = dΛ(2), (50)

where Λ(2) is defined in equation (45). This result is hardly
surprising, since if one had reabsorbed (as shown above) the
term containing Bab in the parametrization (36) of A(3), the
analysis of the FDA gauge invariance would have been traced
back to the one done in [3].

We have thus completed the analysis of the hidden gauge
structure of the D = 11 supersymmetric FDA (26)–(29).

4 Conclusions

In this paper, driven by the fact that any supersymmetric
FDA can always be traded for a hidden Lie superalgebra
containing extra, nilpotent, fermionic generators [3], we have
first of all shown that the D = 4 super-Maxwell algebra
of Ref. [33] [given in (1)] can be interpreted as a hidden
superalgebra underlying the ground state FDA (8)–(11) of
D = 4 supergravity containing a 2-form potential A(2).

Subsequently, we have considered the FDA (introduced in
[2]) describing the D = 11 supergravity theory of [4], which
contains a 3-form potential A(3), and we have shown that
there exists a D = 11 super-Maxwell algebra underlying the
theory. In this work, we have limited ourselves to consider
the D = 11 FDA containing just the 3-form A(3), leaving the
study of the complete FDA involving also a 6-form potential
B(6) (and, correspondingly, the presence of an extra bosonic
1-form field Ba1...a5 , see Refs. [2,3], in the underlying Lie
superalgebra) to future investigations.15

15 In that case, the extra bosonic 1-form field Bab appearing in the
D = 11 super-Maxwell algebra could play a more prominent role in
participating to the parametrization of B(6) in terms of 1-forms.
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In the analyses we have performed, the presence of the
extra spinors ξ and χ naturally appearing in the supersym-
metric extension of the Maxwell algebras in the D = 4 and
D = 11 cases, respectively, is crucial in order to reproduce
the D = 4 and D = 11 FDAs on ordinary superspace, whose
basis is given by the supervielbein. Indeed, referring, for
instance, to the D = 4 case, the spinor 1-form field ξ allows
to write the parametrization A(2) = −ψ̄ ∧ ξ satisfying (11);
this would not be possible without adding extra fields to the
D = 4 supergravity theory, and it is particularly intriguing
that it is really a fundamental spinor to the construction of the
Maxwell superalgebra to make possible a parametrization in
terms of 1-forms of the 2-form A(2) appearing in the FDA
of the N = 1, D = 4 supergravity theory. The same consid-
eration holds true also in the D = 11 case, where the extra
spinor χ naturally appearing in the D = 11 super-Maxwell
algebra allows to trivialize the FDA containing the 3-form
potential A(3) when the latter is written in terms of 1-forms.
In this case, we have shown that, exploiting the gauge invari-
ance of the 3-form, the parametrization (36) of A(3) in terms
of 1-forms can be recast into the form given in [8,9] (see also
[3] and A(3)

(0) of [10]). Our result could shed some light on
the symmetries hidden in D = 11 supergravity and related
models (see, for instance, Refs. [31,32]).

Concerning the D = 4 FDA, in this work we have just
considered the FDA including the 2-form potential A(2).
We leave the analysis of the (complete) FDA involving also
a spinor 2-form Ξ(2) (see [36]) satisfying (15) to future
works. This would require extra 1-form fields with respect
to those appearing in the dual Maurer–Cartan formulation of
the Maxwell superalgebra or, directly, a different Lie super-
algebra underlying the theory.

The extra super-Maxwell fields could be important addi-
tions towards the construction of possible off-shell mod-
els underlying supergravity theories (mainly in higher-
dimensional cases, such as the eleven-dimensional one).

Furthermore, let us mention that our framework is natu-
rally related to the formulation of Double Field Theory and
Exceptional Field Theory (see also Refs. [3,10]). Indeed, the
presence of extra bosonic 1-forms in the dual formulation
of Lie superalgebras appears to be quite analogous to the
presence of extra coordinate directions in the formulation of
Double Field Theory and Exceptional Field Theory; in partic-
ular, referring to Exceptional Field Theory, the section con-
straints required in that theory to project the field equations
on ordinary superspace should be dynamically implemented
through the presence of the cohomological extra spinors.

It would be interesting to extend our discussion and inter-
pretation of the (hidden) Maxwell-superalgebras to higher-
dimensional and N > 1 theories worked out in a geometric
framework (also matter-coupled ones), investigating, in par-
ticular, possible supersymmetric extensions of the discussion
presented in [41].

Finally, one could also analyze gauged FDAs in this geo-
metric framework; in this context, we conjecture that the so-
called AdS-Maxwell superalgebra [42] could play an impor-
tant role within our approach. Some work is in progress on
this topic.
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A Notation, conventions, and useful formulas

In the following, we collect the conventions and some useful
formulas that we have used in this work, both in D = 4 and
in D = 11 space-time dimensions.

4.1 A.1 Conventions and useful formulas in D = 4

The Dirac gamma matrices in D = 4 are defined through the
relation

{γa, γb} = −2ηab, (51)

where ηab ≡ (−1, 1, 1, 1) is the Minkowski metric. These
gamma matrices satisfy the Clifford algebra:

[γa, γb] = 2γab, (52)

γ5 = −γ0γ1γ2γ3γ4, γ 2
5 = −1, (53)

{γ5, γa} = [γ5, γab] = 0, (54)

γabγ5 = −1

2
εabcdγ

cd , (55)

γaγb = γab − ηab, (56)

γ abγcd = εabcdγ5 − 4δ
[a
[cγ

b]
d] − 2δabcd , (57)

γ abγ c = 2γ [aδb]c − εabcdγ5γd , (58)

γ cγ ab = −2γ [aδb]c − εabcdγ5γd , (59)

and

γmγ abγm = 0, (60)

γabγmγ ab = 0, (61)

γabγcdγ
ab = 4γcd , (62)

γmγ aγm = −2γ a . (63)
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We are working with Majorana spinors, satisfying ψ̄ =
ψTC , where C is the charge conjugation matrix. Further-
more, the gamma matrices satisfy

(Cγa)
T = Cγa, (Cγab)

T = Cγab, (64)

while

CT = −C, (Cγ5)
T = −Cγ5, (Cγ5γa)

T = −Cγ5γa,

(65)

meaning that Cγa and Cγab are symmetric, while C,Cγ5,
and Cγ5γa are antisymmetric gamma matrices. This leads to
the following identities for the p-form ψ and q-form ξ :

ψ̄ ∧ ξ = (−1)pq ξ̄ ∧ ψ, (66)

ψ̄ ∧ Sξ = −(−1)pq ξ̄ ∧ Sψ, (67)

ψ̄ ∧ Aξ = (−1)pq ξ̄ ∧ Aψ, (68)

being S a symmetric matrix and A an antisymmetric one. We
can then write some useful Fierz identities forN = 1, D = 4
(for the 1-form spinor ψ):

ψ ∧ ψ̄ = 1

2
γaψ̄ ∧ γ aψ − 1

8
γabψ̄ ∧ γ abψ, (69)

γaψ ∧ ψ̄ ∧ γ aψ = 0, (70)

γabψ ∧ ψ̄ ∧ γ abψ = 0, (71)

γabψ ∧ ψ̄ ∧ γ aψ = ψ ∧ ψ̄ ∧ γbψ. (72)

4.2 Fierz identities and irreducible representations in D =
11

The gravitino Ψα (with α = 1, . . . , 32) in D = 11 space-
time dimensions is a spinor 1-form that belongs to the spinor
representation of SO(1, 10) � Spin(32).

The Fierz identities amount to decompose the representa-
tion (α, β, γ )16 into irreducible representations of Spin(32).

We get: 5984 → 32 + 320 + 1408 + 4224. Denoting
the corresponding irreducible spinor representations of the
Lorentz group SO(1, 10) as

Ξ(32) ∈ 32 , Ξ(320)
a ∈ 320 ,

Ξ(1408)
a1a2

∈ 1408 , Ξ(4224)
a1...a5

∈ 4224 , (73)

where the indexes a1 . . . an are antisymmetrized and where
Γ aΞab1···bn = 0, one can now compute the coefficients of the

16 That is the symmetric product (α, β, γ ) ≡ Ψ(α ∧ Ψβ ∧ Ψγ), of
dimension 5984, which belongs to the three-times symmetric reducible
representation of Spin(32).

explicit decomposition into the irreducible basis, obtaining
(see also Refs. [2,3]):

Ψ ∧ Ψ̄ ∧ ΓaΨ = Ξ(320)
a + 1

11
ΓaΞ

(32), (74)

Ψ ∧ Ψ̄ Γa1a2Ψ = Ξ(1408)
a1a2

− 2

9
Γ[a2Ξ

(320)
a2]

+ 1

11
Γa1a2Ξ

(32), (75)

Ψ ∧ Ψ̄ ∧ Γa1...a5Ψ = Ξ(4224)
a1...a5

+ 2Γ[a1a2a3Ξ
(1408)
a4a5]

+ 5

9
Γ[a1...a4Ξ

(320)
a5] − 1

77
Γa1...a5Ξ

(32). (76)
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