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The understanding of heart rate variability (HRV) has increased parallel with the  
development of modern physiology. Discovered probably first in 1847 by Ludwig, 
clinical applications evolved in the second part of the twentieth century. Today HRV 
is mostly used in cardiology and research settings. In general, HRV can be measured 
over shorter (e.g., 5–10 min) or longer (12 or 24 h) periods. Since 1996, most mea-
surements and calculations are made according to the standard of the Task Force of 
the European Society of Cardiology and the North American Society of Pacing and 
Electrophysiology. As the first step, the series of times between successive R-peaks in 
the ECG are in milliseconds. It is crucial, however, to identify and remove extrasystoles 
and artifacts according to standard protocols. The series of QRS distances between 
successive heartbeats can be analyzed with simple or more sophisticated algorithms, 
beginning with standard deviation (SDNN) or by the square root of the mean of the 
sum of squares of differences between adjacent normal RR (rMSSD). Short-term HRV 
is frequently analyzed with the help of a non-parametric fast Fourier transformation 
quantifying the different frequency bands during the measurement period. In the last 
decades, various non-linear algorithms have been presented, such as different entropy 
and fractal measures or wavelet analysis. Although most of them have a strong theo-
retical foundation, their clinical relevance is still debated.

Keywords: heart rate variability, Holter monitoring, time domain, frequency domain, systems science, complexity 
theory

iNTRODUCTiON

Heartbeat varies over time. This has been observed early in medicine. Variations and patterns of 
heart beat have been associated with pathological conditions already 2,000 years ago (1). However, 
first in the last 100 years, conceptual ideas evolved, and understanding of involved mechanisms 
increased, in particular since 1996 when a standard was established and parameters defined (2).

The increasing interest in heart rate variability (HRV) can partially be explained by the feasibil-
ity of the method. Data can in principle be obtained by a simple one-channel ECG or even a pulse 
watch; data are processed by user-friendly programs. In reality, the issue is more complicated {(3) 
#2021} {(4) #2317} {(5) #2320}. Whether pulse watch-generated HRV calculations can be used is 
still a matter of debate {(6) #2326} {(7, 8) #2022} {(9) #2319}. Automated recognition of R-peaks is 
prone to errors {(10) #2323} and manual editing is still the gold standard, which impairs clinical 
use. No overall accepted normal values exist. In the beginning, HRV was first usually calculated 
based on 24-h recordings. Eventually, new algorithms were introduced (explained below) and 
clinical studies supported the use of short-term measurements. HRV has thus changed to an appar-
ently simple point-of-care method obtained within 2–10 min with potential clinical value for the 
patients regarding risk stratification, individual therapeutic strategies, and even therapeutically in 
the form of HRV-biofeedback.
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This review intends to give an overview of the developments 
of HRV in the last decades. It is basically descriptive. In earlier 
work (11), an extensive literature search was conducted, based 
mainly on the simple keyword “Heart Rate Variability” in the 
US National Library of Science (PubMed) and consecutive 
search in the reference lists of the identified articles. This review 
extends and updates this work although only the most central 
publications, chosen by the author will be discussed, for the sake 
of clarity.

Therefore, in this review, only a brief history of HRV will be 
presented. In the second part, the methods of signal measure-
ment will be introduced. Most important algorithms for HRV 
analysis will be explained, but algorithms (still) not being used in 
clinical research or practice will not be mentioned. In addition, 
some possible confounding mechanisms of importance will be 
reported. Finally, a brief perspective of HRV for the future will 
be offered.

HiSTORY

Pulse diagnosis has been early a part of ancient medicine and 
descriptions include its variation over timeWestern medical 
historians usually quote Galen as one of the first analyzing pulse 
patterns in human patients. Pulse diagnosis was, however, an 
important part of ancient Chinese and Indian medicine, too. In 
China, pulse diagnosis was investigated as early as between 800 
and 200 BCE. For instance, in Chinese Medicine, Bian Que (扁鹊, 
about 500 BCE, also known as Qin Yueren, 秦 越人), living about 
one generation before Hippocrates described the “four diagnostic 
methods” of Traditional Chinese Medicine, in particular tongue 
and pulse diagnostics. All these forms of historical pulse analysis 
described patterns qualitatively. Quantitative measurements 
were first possible after the introduction of exact time measuring 
devices.

Variations of arterial blood pressure during the respiratory 
cycle was observed again in the eighteenth century, probably 
first of Stephen Hales. His observation of HRV was based on 
conducting measurements of blood pressure in some animal 
species (mostly dogs) by inserting fine cannulas into arteries and 
measuring the height to which the column of blood rose (12). 
Carl Ludwig (1816–1895) described a link between heartbeat 
fluctuations and respiration [respiratory sinus arrhythmia (RSA)] 
when investigating the frequency and pulse wave in dogs using a 
special instrument (“kymograph”) (13). One of the founders of 
experimental psychology, Wilhelm Wundt (1832–1920), made 
similar observations and introduced the notion of using physi-
ological measures to investigated psychological mechanisms.

The French physiologist, Claude Bernard (1813–1878), intro-
duced the term “milieu intérieur,” a basic principle to homeosta-
sis. This internal environment is “constituted, in particular, by 
the fluids circulating in the body.” The American physiologist, 
Walter Bradford Cannon (1871–1945), expanded Bernards 
concept of homeostasis, beyond others by the two claims that 
the regulating system determining the state of the homeostasis 
consists of several connected subsystems. According to Cannon 
homeostasis is a consequence of self-organizing systems (termed 
self-government by Cannon). An important paradigm in HRV 

is based on Bernard’s and Cannon’s notion. Stable homeostasis 
is according to this concept connected to increased variability 
of HRV (14).

The classical model of autonomic control describes a balance 
between parasympathetic and sympathetic activation. It was also 
proposed by Cannon (15) and later expanded by Langley (16) 
who divided the autonomic outflows between sympathetic and 
parasympathetic elements, a division used until today. Cannon 
associated also increased activity in the sympathetic system with 
the evolutionary notion of “fight and flight.” In his seminal book, 
Langley erroneously defined the ANS as a purely visceral motor 
system, mediating the consequences of central nervous states 
to the periphery [today we know that 80% of vagal fibers are in 
reality afferent, providing important information to the brain 
regarding the state of the visceral organs (17)]. Hering described 
the functional relation between the amplitude of RSA and the 
vagal tone in 1910 (18). His son provided experimental data 
describing the baroreceptor reflex more exactly in 1927 (19).

Some years later, Adrian et  al. published for the first time 
the behavior of the sympathetic nervous system in anesthetized 
rabbits and cats (20). At the same time, Maltzberg observed the 
association between cardiac disease and major depression, at this 
time termed “involution melancholia” (21), an association lead-
ing to important research in the last decades.

In 1965 investigations of the HRV of fetal ECGs revealed 
diminished variability after contractions when the fetus was 
distressed (22). This principle is still a cornerstone in monitor-
ing fetus under labor. In cardiology, the relationship between 
the nervous system status and HRV was described by Wolf (23), 
2 years after Valbona et al. described HRV changes in patients 
with serious brain damage (24).

Katona and Jih (25) introduced a non-invasive approach to 
measuring cardiac parasympathetic control in anesthetized dogs 
where they were able to control respiration rate. They introduced 
the notion that the magnitude of sinus arrhythmia is associated 
with changes in the vagal tone; assuming a linear association 
between vagal efferent activity and the change of heart period, 
and that during inspiration the cardiac vagal input is inhibited. 
Akselrod et  al. applied power spectrum analysis of short-term 
HRV in an animal model, showing the association between differ-
ent frequency ranges and the sympathetic and parasympathetic 
activity (26).

At this time, portable ECG-measurements became more 
frequent. Until then, HRV was mainly determined by measuring 
RR-distances with a ruler. Eventually, electrical circuits identify-
ing the peak of R-waves and the time of the intervals with an 
accuracy of milliseconds were developed. First investigations of 
HRV were based on 24-h recordings by Holter monitoring. This 
changed when Axelrod started to analyze the frequency domain 
of HRV also in humans by using short-term HRV of 10  min 
or less (27). Earlier, spectral analysis methods were utilized in 
some study, investigating driver fatigue {(28) #2332}, the effect 
of aging on HRV {(29) #2333}, or in hypertension {(30) #2334}. 
Of particular importance at this time was also the increasing 
interest in non-linear phenomena. In particular Goldberger, the 
founder of the prominent website “Physionet,” began to focus 
more on non-linear algorithms (31–33). Looking closer on his 
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articles shows relevant influences: he quotes May’s important 
article about evolutionary models (34) and Haken’s (35), and 
Shaw’s articles about chaos theory and strange attractors 
(36). Hermann Haken, physicist conducted research on self-
organizing systems and founded at the end of 1960s synergetics, 
an interdisciplinary science investigating the formation and 
self-organization of patterns and structures in open systems far 
from equilibrium—characteristic for most physiological systems 
{(37) #2327}. Robert May introduced the use of models to test 
stability and fragility of systems {(38) #2328}. Robert Shaw was 
one of the pioneers of chaos theory at this time.

The breakthrough of HRV in cardiology occurred when the 
association between SDNN (explanation, see below) and the 
mortality after acute myocardial infarction was discovered. 
Probably, the first observation was made public by Australian 
group 1978, describing an association between sinus arrhyth-
mia and survival after acute myocardial infarction {(39) 
#2329}. A landmark study of Kleiger et  al. {(40) #1561} and 
several important cardiologic HRV studies followed, e.g., Ref. 
(41–44), frequently combining traditional cardiological meas-
ures with HRV. Bigger’s introduction of short-term measures 
(45) and Kleiger’s study were significant reasons to form the 
joint Task Force of the European Society of Cardiology and 
the North American Society of Pacing and Electrophysiology 
(2). The Task Force proposed minimal technical requirements, 
definitions, standardized the areas of Power bands in frequency 
domain and offered recommendations for clinical research and 
patient examinations. This article is still the most frequently 
cited HRV paper. Nearly every study after 1996 is based on this 
standard, and no major revision appeared until recently—the 
presentation of currently accepted linear measures is com-
prehensive, and the clinical signification of the non-linear 
parameters is still unclear. A recent joint position statement of 
the European Society of Cardiology and the European Heart 
Rhythm Association stated a lack of communication between 
mathematicians and engineers developing new algorithms and 
clinicians. It recommends, however, the combined use of linear 
and non-linear measures (46). A recent study provided refer-
ence values obtained by healthy individuals (7, 8), with limited 
relevance because they were recorded with Holter monitoring 
24 h and are, therefore, not applicable for short-term measure-
ments. The study was also criticized because of inconsistencies 
and unrealistic values, beyond others (3).

Already more than one century ago scientists observed and 
proposed associations between imbalances of the ANS and 
(pathological) mental states. Notions included that dysfunc-
tional mental states might be associated with excessive vagal 
outflow (47), with imbalances between the sympathetic and 
parasympathetic system (48), or with excessive sympathetic 
outflow (49). Already Lacey and Lacey reported personality 
traits associated with greater HRV (50). Early work of Porges and 
Raskin showed mental state associations with HRV (51). This 
notion was later extended and elaborated by Porges (Polyvagal 
Theory) and Thayer (Neurovisceral Integration Model) (52–55).

Today, HRV has been used in more than 2,000 clinical trials 
and has been mentioned in more than 14,000 articles (46). It is 
used as an algorithm in sports watches and frequently appears 

in new Apps in electronic devices, mostly for health or training 
purposes (7, 8). The clinical use, however, is still invariant.

Probably the most relevant use of HRV in clinical practice is 
risk stratification. Several studies have shown clear associations 
between decreased HRV and the risk of sudden cardiac death 
(56–58) and the value of using HRV has been recognized 
(58–60). In some centers, HRV, together with other variables is 
used to identify patients at high risk for sudden cardiac death 
(61). This has consequences for treatment because the identified 
individuals received Automated Implantable Cardioverter-
Defibrillators, an expensive, but a highly effective method. HRV 
is also established in the identification of cardiac autonomic 
neuropathy caused by diabetes and part of standardized exami-
nation protocols (62, 63). An emerging field is the use of HRV 
to predict systemic infections in critical care medicine. However, 
HRV is only utilized in some hospitals, and more often still not 
implemented in clinical practice (64, 65).

Based on the mentioned models and concepts above, HRV 
is also increasingly used in psychological research. The gen-
eral hypothesis there is that higher levels of HRV parameters 
associated with activity in the parasympathetic system are also 
associated with better adaptivity to perturbations and better 
stress response. A recent meta-analysis confirmed this hypoth-
esis, showing significant associations, although the absolute 
differences were small. Interestingly not only parasympathetic 
but also higher general HRV parameters were related to greater 
adaptivity (66). As an example, HRV has been used as a method 
in anxiety research. According to the neurovisceral model, 
anxiety disorders can be characterized by a breakdown of the 
inhibitory processes of the central autonomic network (67). 
This disinhibition is permanently linked to the continual state 
of excessive worry and mirrored by the decreased activity of 
the parasympathetic system. Several studies have investigated 
individuals with different kinds of anxiety disorders and have 
supported this notion in general anxiety (68), various forms of 
panic disorder (69), social anxiety (70), stress-associated anxiety 
(71), and trait anxiety (72). A closer look at these studies also 
shows the problems—e.g., in an experimental study looking 
on correlations between electric skin conductance, startle 
blink reflex and resting HRV (rMSSD) during conditioned 
fear inhibition and extinction. Higher rMSSD was associated 
with pronounced fear inhibition and extinction (indexed with 
startle blink potentiation), but the effect is most pronounced at 
the group level, and the scatter plot shows rather a point cloud 
instead of a clear regression line (73).

The newer history of HRV research is closely associated with 
the history of complexity research. As already mentioned, Ary 
Goldberger was inspired by publications of beyond others von 
Haken. He is one of the European representatives of a research 
tradition trying to understand systems. A system is regarded as a 
set of different parts (or subsystems) connected through positive 
and negative feedback circles. The fundamental notion of com-
plexity science is that the whole system has more properties as 
the sum of properties of its parts. In other words, if you analyze 
the parts of the system separately, and add all results, there will 
be properties which cannot be explained out of this. Another 
term for this approach is non-linear science. Linear systems can 
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Table 1 | Measurement period and parameters.

Measurement period Possible parameters

6 s to 2 min SDNN [Dekker et al. (81) and Carnethon et al. (82)]
5 min In addition: rMSSD, HF, LF, LF/HF
10 min In addition: VLF, approximate entropy
hours In addition: fractal measures
24 h In addition: ULF
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be described by an addition of the equations describing its parts. 
If the subsystems interact, the system behaves non-linear and 
its behavior cannot be predicted by analyzing its parts. A set of 
equations characterizing a non-linear system can usually neither 
be solved with analytical mathematical methods {(74) #2335}.

Non-linear systems behave different compared to linear 
systems {(75) #2352}. Key notions are robustness and fragility. 
System robustness is often defined as the quality of a biologi-
cal system or network to maintain its components, structure, 
and function despite both external changes and endogenous 
fluctuations {(76) #2337} {(77) #2338}. Fragility is connected 
to robustness. A property of complex systems is a conservation 
of sensitivity. When robustness is improved in one area, it leads 
to increased fragility in another {(78) #2339}. Complex systems 
are, therefore, robust, yet fragile by cascading failures initiated 
by tiny perturbations which may lead to a complete breakdown, 
or to a fundamental system change, termed emergence {(79) 
#2340}. Essential tools to study complexity are mathematical 
models and time-series analysis. HRV is the most used time-
series analysis in medicine. The complexity paradigm has been 
explicitly used of Thayer and Lane in their neurovisceral model 
(55). The study of HRV has been influenced by dynamical sys-
tems theory, the study of fractal systems and chaos theory. It was 
also influenced by notions of self-organizing systems, network 
theories, and by modeling methods {(11) #1498}.

MeTHODS

Investigating HRV needs a three-step approach. First, a condition 
should be defined where the measuring of heart rate signals and 
its variability gives relevant information. For the second, it is 
important to detect the signal as adequate as possible, to identify 
potential artifacts and manage them and at the end to obtain a 
time-series in milliseconds between the heartbeats which can be 
analyzed. The third step consists of different forms of analysis 
which again return various parameters to be used to analyze the 
state of the system.

Preparing a measurement of HRV should involve answers 
to several questions. The length of measurement is relevant for 
the kind of parameters of interest. When the focus is on basic 
parameters, a measurement period of 5 min or even less might 
be enough. When long-term fluctuations are relevant, a longer 
measurement period is necessary. Several non-linear parameters 
do also need a longer measurement period than 5 min. Details 
are given in Table 1. Recently, ultra-short-term analysis has been 
proposed for some parameters (80). According to these reports, 
the time domain measure root Mean Sum of Squared Distances 
(rMSSD) and the frequency domain measure High Frequency 

Power (HF, both explained in the next sections) can be reliably 
measured in time-series of 10–30 s.

Most algorithms for the analysis of short-term HRV require 
stationarity of the heart rhythm. The heart rhythm should not 
increase or decrease during the measurement period. An exact 
rule of stationarity would demand that the distribution of a time-
series is invariant over time. A weaker rule demands only that 
mean and covariance are stable. When in time-series trends are 
occurring, they can probably distort the parameter calculation 
(45). Stationarity in measurement protocols is usually obtained 
by demanding a resting period for the individuals at least 5, but 
usually 10 min. In the case of measurements during tests (e.g., 
physical movement, stress tests) algorithms not needing station-
arity should be considered.

Another precondition is of course that the heart rhythm is 
feasible for HRV analysis. Although some research groups have 
used HRV analysis in atrial fibrillation (AF) {(83) #1868} {(84) 
#1719} {(85) #2341}, in most cases individuals with AF have to be 
excluded. The same applies for participants with a high number 
of ectopic beats, with exception when heart rate turbulence will 
be analyzed, where ectopic beats are needed. Individuals with 
more than 20–30% ectopic beats are usually not feasible for HRV 
analysis {(86) #2343}. Before HRV parameters can be calculated, 
preprocessing of the raw data is necessary. Artifacts have to be 
removed, and ectopic beats have to be identified and handled. 
Several computer-based algorithms provide automatic identifica-
tion and managing of ectopic beats, but most protocols include a 
manual review of the ECG signal {(86) #2343}. A typical way of 
management is to replace the distances between the QRS complex 
before and after the ectopic beat by the distance between these 
two QRS-complexes divided by two {(2) #1505}.

The sampling rate is an important issue. If the sampling rate of 
the signal is under a certain threshold, the calculated parameters 
might be distorted. Wittling showed that a sample rate below 
256 Hz can already cause significant distortion with the example 
of a patient investigated after myocardial infarction (87) p 151. 
The Task Force recommends a sampling rate between at least 250 
and 500 Hz. A lower sampling rate is only acceptable if appropri-
ate interpolation algorithms are used, but not lower than 100 Hz 
(2). A recent exploration described stable measures at sampling 
rates of 125 Hz or lower (88).

In the last years, heart rate has been increasingly measured 
by photoplethysmography (PPG), as implemented in newer 
smart watches {(9) #2319}. For instance, the pulse watch Polar 
RS800cx, using an electrode belt and PPG measured with a 
finger cuff, compared with ECG showed moderate to excel-
lent agreement levels. However, some values (LF and HF) had 
a lower correlation {(89) #2321}. Mobile phone technology 
showed excellent similarity between ECG signals and finger 
color changes taped with the camera lens, and the flash turned 
on {(90) #2324} {(91) #2322}. For instance, SDNN measured 
by ECG was 92.2 ± 5.3 and 92.3 ± 5.9 by the mobile phone in 
one study {(91) #2322}. These results seem promising, and this 
method has been used in some studies, e.g., {(92) #2325}. A 
recent review concluded that Pulse Rate Variability with PPG 
seems to work acceptable in healthy younger persons at rest, 
but not in movement or under stress conditions {(6) #2326}. 
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Table 3 | Effects of drugs on heart rate variability.

Drug effect Reference

Angiotensin II receptor antagonists Increase of all time and frequency domain parameters Petretta et al. (113)

ACE inhibitors Increased total power (TP), HF, LF, ULF, VLF, and SDNN Binkley et al. (114) and Bonaduce et al. (115)

Beta blockers TP, HF, LF, and VLF↑, rMSSD, pNN50, SDNN and HF↑, 
in another study no effect

Pousset et al. (116), van den Berg et al. (84), Lin et al. (117), 
and Ernst et al. (110)

Antidepressiva SDNN and frequency domain parameters decreased or 
unchanged

Rechlin (118), Rechlin et al. (111), Bar et al. (119), Straneva-
Meuse et al. (120), and Licht et al. (112)

Caffeine Increase of SDNN, rMSSD, frequency domain 
parameters, approximate entropy, detrended fluctuation 
analysis, or no change

Yeragani et al. (121), Rauh et al. (122), Richardson et al. (123), 
and Karapetian et al. (124)

Sedatives (midazolam, propofol, thiopental) Decreased HF and LF Galletly et al. (125), Michaloudis et al. (126), and Riznyk et al. 
(127)

Metformin Increased TP, and HF, decrease in LF and LF/HF ratio Manzella et al. (128)

Omega-3 fatty acids Increased SDNN, rMSSD, HF, VLF, or no change Mozaffarian et al. (129), Mozaffarian et al. (130), and Xin et al. 
(131)

Digoxin Increased HF, LF, and rMSSD Krum et al. (132)

Table 2 | Physiological factors on heart rate variability (HRV).

Factor effect Reference

Sex Most parameters are lower in women Stein et al. (93) and Bonnemeier et al. (94)

Age Most HRV parameters decrease with age, except ULF Bigger et al. (95) and Stein et al. (93)

Weight Anorexia nervosa: frequency domain↓. Increased BMI: total power (TP)↓. Weight loss 
>10%: HF↑

Rechlin et al. (96), Poirier et al. (97), and Kimura et al. (98)

Food intake Few studies. Eating a meal had no influence. Dietary restriction: HF↑, LF↓ Ambarish et al. (99) and Vogele et al. (100)

Ethnicity Problematic factor. One study showed lower HRV in Afro Americans compared to 
Caucasians but did not control social class

Choi et al. (101)

Circadian effects SDNN↑ at night in one study. Most parameters decreased at night Viola et al. (102) and Bonnemeier et al. (94)

Sleep REM sleep: TP, VLF, LF↑, LF ↓. Non-REM sleep: TP, VLF, LF ↓, LF↑. In light sleep, 
SDNN, LF and LF/HF values are similar to wakefulness. Sleep deprivation: LF↑, 
conflicting results

Busek et al. (103), Zhong et al. (104), Chung et al. (105), 
Kesek et al. (106), and Ernst (11)

Regular exercise SDNN, TP, HF, fractal dimension↑ Nakamura et al. (107), Levy et al. (108), and Pardo et al. (109)
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Application of pulse watches with breast belts or PPG can only 
be recommended, if the particular equipment is first validated 
with a traditional ECG approach.

Several factors influence the measurement results. HRV 
results are clearly sex and age dependent. Also sleep, physical 
exercise, fasting, and position might distort HRV parameters. 
An overview is given in Table 2. A comprehensive overview is 
given in Ref. (11), chapter 4. One major problem regards refer-
ence values. Some reference values have been provided by the 
Task Force {(2) #1505}. In a review, 44 studies with together 
21,438 participants were pooled and the results were consider-
ably different {(4) #932}. A recent study provided reference 
values for 24-h recordings {(7, 8) #2020}, but received massive 
critic for inconsistencies and the methodological approach 
{(3) #2021}. Beyond others heterogeneity of study populations, 
measurement conditions (e.g., stressed or relaxed participants), 
or time of the measurement can have profound effect. Studies 
have, therefore, usually control groups instead of relating to 
reference values. On the other hand, some parameter values, 
such as SDNN < 50 ms are generally accepted as pathological 
{(3) #2021}.

Different drugs might influence HRV parameters, but often 
the evidence is conflicting. Beta blockers are mentioned most 
frequently (2), but recently a negative study was published (110). 
In most studies, individuals taking beta blockers are excluded, 
analyzed separately or included into the statistical model. An 
overview of some drugs and its effects on HRV is given in 
Table 3. Different antidepressive drugs frequently showed effects 
on various HRV parameters. Amitryptilin and Doxepin, taken 
in a period of 2  weeks was associated with general decreased 
frequency domain parameters (111), the effect of tricyclic anti-
depressants, selective serotonin reuptake inhibitors and other 
antidepressants was confirmed in a larger study (112) Also here, 
a comprehensive overview can be found in Ref. (11), chapter 4.

alGORiTHMS

linear algorithms
Time Domain
Time domain analysis measures the variation of the intervals 
between consecutive normal cardiac cycles. The SD of NN 
intervals (SDNN) is the most frequently used HRV parameter, 
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Table 4 | Reference values for some heart rate variability values provided by the 
Task Force and Nunan {(4) #2317} {(2) #1505}.

Task force Nunan (4)

SDNN (ms) 141 ± 39 50 ± 16
rMSSD (ms) 27 ± 12 42 ± 15
LF (ms2) 1,170 ± 416 519 ± 291
HF (ms2) 975 ± 203 657 ± 777
LF/HF 1.5 ± 2.0 2.8 ± 2.6
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formally the SD of all normal (“NN”) QRS distances. It cor-
relates with total power (TP), often r > 0.9 (87) {(133) #2347}. 
Since TP is adjusted to the variance of the analyzed time-series 
within the particular time frame, this correlation is not sur-
prising. The SD of the average NN intervals (SDANN), usually 
calculated over 5-min periods, needs longer measuring periods 
and cannot be applied in short-term HRV measures. pNN50 
and rMSSD can be used both in short-term and long-term 
measurements. NN50 is the number of pairs of successive 
NNs that differ by more than 50  ms, pNN50, the proportion 
of NN50 divided by total number of NNs over (normally) a 
24h-recording {(2) #1505} and is often interpreted as a proxy for 
cardiac parasympathetic activity {(134) #2345}. rMSSD stands 
for the square root of the mean squared differences of successive 
NN intervals (2, 135). Some reference values for time domain 
parameters are presented in Table 4. Importantly, time domain 
parameters depend on the length of the recording time. Longer 
periods generate more variability. Studies can, therefore, only 
be compared when they use the same measurement period 
{(136) #2350}.

Geometric Methods
Geometric methods are obtained from sequences of NN inter-
vals. Several algorithms are described as geometric methods, 
such as the 24-h histogram, the HRV triangular index, the 
triangular interpolation of NN interval histograms, and the 
Poincaré-plot.

The triangular index (TI) constructs a triangle with the major 
peak of the histogram, its baseline width corresponding to the 
amount of RR interval variability, and its height corresponding 
to the total number of all RR intervals (137). It is based on the 
density distribution (the number of all NN intervals) divided by 
the maximum of the density distribution. TI uses time-series of 
NN intervals on a discrete scale, and the parameter is calculated 
by the total number of NN intervals divided through the number 
of NN intervals in the modal bin and dependent on the length of 
the bin, with other words on the precision of the discrete scale of 
measurement [Task Force 1996]. It has been used more frequently 
in the last years, e.g., in Ref. (138, 139).

The Poincaré-plot is constructed with pairs of following R–R 
intervals assumed implicitly that the current one significantly 
determines the next R–R interval. Under physiological condi-
tions, the difference between the first and following QRS-intervals 
increases, but less under pathological conditions (135). Poincaré 
plots can be approached qualitatively by describing their different 
shapes (140) but they can also be measured by the SD12 index 
which is based on the length of the axis of a circle having its center 

at the average RR interval and being related to the plot itself (141). 
Its additional value to other linear domain parameters is limited 
since SD1 correlates closely to rMSSD and SD2 to SDNN (142).

Frequency Domain
The frequency domain (power spectral density) analysis in humans 
was introduced by Axelrod et al. (27). It describes the periodic 
oscillations in different frequencies of the heart rate signal, and 
quantifies the amount of different frequency bands (137). During 
preprocessing, the RR intervals have to be resampled to transform 
it to a real time-series, usually at 4 Hz to capture oscillations up 
to 2 Hz according to the Nyquist theorem {(143) #2349}. Most 
frequently, frequency domain is calculated non-parametrically 
with the fast Fourier transformation (FFT). Parametric methods 
in the discrete Fourier transformation are more complex and 
dependent on the used model. The investigated time-series has 
to be stationary; therefore, it cannot be applicated in patients with 
fast changing heart rates under the measurement period. Under 
certain circumstances FFT fails to find structures which can be 
found with, e.g., wavelet analysis (144).

Usual parameters include TP, VLF (very low frequency, 
<0.003–0.04 Hz), LF (low-frequency power, 0.04–0.15 Hz), HF 
(high frequency power, 0.15–0.4 Hz). A frequently used ratio is 
LF/HF. Frequency domain parameters can be applicated both 
in short- and long-term measurements, but not ULF (ultra 
low frequency, <0.003  Hz), which only can be used in Holter 
monitoring.

HF is frequently interpreted as a marker of the PNS and is 
influenced by the respiratory rate (135). It is to a certain degree the 
same as the RSA (45) and correlates with it (145). Parasympathetic 
regulation of the heart has a fast response after about 0.5 s and 
returns to baseline within 1 s (67).

LF is modulated both by the activity of the sympathetic and 
parasympathetic system. A high LF power is often explained as 
result of high sympathetic activity (mental, physical stress, sym-
pathomimetic pharmacologic agents). Sympathetic input leads to 
changes in heart rate, however, more slowly as after parasympa-
thetic input, with a peak after about 4 s and return to baseline 
after about 20  s (146). The LF/HF ratio mirrors the general 
sympathetic/parasympathetic balance and returns usually in rest 
a value between 1 and 2. VLF is a general proxy for physical activ-
ity and might mirror also sympathetic activity, but the causality 
is debated (135). Increased inflammatory parameters like CRP, 
Il-6, and WBC are correlated with low VLF (147). Some reference 
values for frequency domain parameters are presented in Table 4.

Non-linear algorithms
The difference between “linear” and “non-linear” methods in 
HRV is not as straightforward as in the general definition men-
tioned above. Principally, frequency domain analysis is based 
on already established patterns. In Fourier transformations, the 
presumed frame is a sinusoidal wave and in wavelet analysis 
predefined wavelet function. Both patterns are in principle 
non-linear, but the methods remain linear because in Fourier 
transformations the sine waves are added, same as in wavelet 
analysis the different wavelets. By contrast, non-linear methods 
are not based on prespecified structures but analyze temporal 
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similarities in the signals. Entropy is frequently, but not entirely, 
described as a measure for regularity of the signals, whereas 
fractal methods investigate self-similarities within signals.

entropy
An influential algorithm in HRV at the beginning of the 1990s 
was approximate entropy (ApEN) (148). It was first introduced 
in 1991 (149) and evaluates data sets for repeating structures 
and for the probability that other time periods in the data set 
with the same length of runs (m), tolerance (r), and length of RR 
intervals (n) have the same structures. ApEN returns a number 
between 0 and around 1. In normal adults, ApEN is around 
1. Lower numbers of ApEn indicate higher regularity, higher 
values less patterns and low uniformity in the data set. ApEN 
can be used reliably down to 1,000 data points making it feasible 
for short-term-HRV of 20 min (148). ApEN has been used suc-
cessfully in such different fields in endocrinology (secretion of 
ACTH and cortisol in patients with major depressive disorders) 
(150), HRV behavior in patients with a combination of unstable 
angina pectoris and depression (151), respiration patterns 
in panic disorders (152), or HRV of adolescents treated with 
anti-depressant drugs (153). ApEN and other similar tools are 
superior to detect unknown relations between seemingly uncon-
nected systems. In one study investigating patients with cachexia 
due to COPD, they had in contrast to non-cachectic patients 
with similar disease and healthy controls an absent circadian 
rhythm of circulating leptin (154). A major problem of ApEN is 
probably a lack of internal consistency. Therefore, as alternative 
a different algorithm, termed “sample entropy” (SampEn) has 
been introduced (155). Similarly, it calculates the probability of 
identifying specific patterns in a short time-series and is defined 
as the negative natural logarithm of an estimate for predictability 
in finding specific matches in a short time-series {(155) #1566}. 
To set the exactness of pattern recognition, the length (m) of the 
subseries and the tolerance (r) for the patterns has to be prede-
fined. It returns results between 0 and around 2, 0 represents, 
e.g., a sinus curve and a result near 2 complete chaos. SampEn 
needs far fewer data points compared to ApEN, and it can be 
applicated in time-series between 200 to 250 data points (156, 
157). Several other entropy algorithms have been proposed, 
like Lempel Ziv entropy (158), Multiscale entropy (159), fuzzy 
entropy (160), or Renyi entropy (161). All have been used in 
clinical studies, but their significance is still unclear.

Fractal analysis
The notion of fractality has been originally introduced and 
applied by Benoit Mandelbrot on spatial self-similarities in 
graphical plots of non-linear deterministic iterations (162). Used 
for heart rate time-series, it refers not to spatial, but to temporal 
self-similarities over a range of scales {(163) #2351}. A normal 
series of RR intervals is fractal-like and shows a scale-free 1/f 
fluctuation typical for self-organizing systems behaving between 
uncorrelated randomness and highly predictable behavior {(164) 
#1569} {(165) #1747}.

Detrended fluctuation analysis (DFA) determines the statisti-
cal self-affinity of a signal. When used to analyze heart rates, it 
yields to separate scaling regions, a short-term scaling exponent 

and a long-term scaling exponent. Peng et  al. presented the 
short-term scaling exponent (also termed α1) calculated by DFA 
first in genetical data (166) and in the following year also in HRV 
(167). Its great advantage is that it can be used for non-stationary 
data from time-series and correlates with the randomness in the 
heart rate time-series, the lowest values (~0.5) ressembles an 
entirely random series; high values (1.5) signify a time-series 
being completely correlated (141). It has been used to predict 
cardiac mortality in different patient populations (165, 168). 
Unfortunately, it needs at least 1,000 beats and has, therefore, 
been used more frequently in Holter monitoring studies.

Other proposed algorithms include coarse grained spectral 
analysis (169), the Fano factor (170), dispersional analysis  
(170, 171), fractal dimension (172), correlation dimension (173), 
or the Largest Lyapunov Exponent (174). Their clinical value is 
still unclear.

Other algorithms
Heart Rate Turbulence is normally not considered as a HRV 
parameter, but it is based, however, on a similar physiological 
background and can be applicated in comparable ways. Patients 
need to have ventricular extrasystoles (VES) because HRT is 
based on the reaction of the system afterward. Healthy individu-
als without any arrhytmias can not be investigated with HRT. 
The heart rate directly following a VES increases normally, to 
decrease a moment later. This pattern is changed or non-existent 
in patients after myocardial infarction (175). The algorithm 
returns the parameters turbulence onset and turbulence slope 
(176).

OUTlOOK

Since the guidelines of the Task Force were published in 1996, 
the measurement and calculation of linear parameters have been 
highly standardized, making investigations comparable and 
meta-analysis possible. After the introduction of different non-
linear parameters, expectations were high, but the role of non-
linear algorithms is still unclear after more than two decades. As 
more than 70 different algorithms have been used (177). Today, 
HRV beyond its use in pulse watches is still not established in 
the clinical area although the methods are mature and have been 
tested extensively. The understanding, however, has increased 
substantially. Several models have extended its use into psycho-
logical and mental health research (55, 178, 179). Finally, 20 years 
after publishing the first globally used standard of measurement 
(2), a highly recommendable comprehensive methodological 
hands-on guideline summarizes state of the art and should be 
used a new standard (180). In addition, the role of non-linear 
methods has been recently evaluated and recapitulated (46). Also, 
a useful guideline to present HRV data has been published (181). 
HRV as a research and clinical tool is still underrecognized. It 
should be implemented in several clinical areas within a Bayesian 
paradigm to improve prediction, diagnosis, and therapy (182).
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