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Abstract—Hidden space support vector machines (HSSVMs)
are presented in this paper. The input patterns are mapped into a
high-dimensional hidden space by a set of hidden nonlinear func-
tions and then the structural risk is introduced into the hidden
space to construct HSSVMs. Moreover, the conditions for the
nonlinear kernel function in HSSVMs are more relaxed, and even
differentiability is not required. Compared with support vector
machines (SVMs), HSSVMs can adopt more kinds of kernel func-
tions because the positive definite property of the kernel function
is not a necessary condition. The performance of HSSVMs for
pattern recognition and regression estimation is also analyzed.
Experiments on artificial and real-world domains confirm the
feasibility and the validity of our algorithms.

Index Terms—Artificial neural networks (ANNs), pattern recog-
nition, regression estimation, structural risk, support vector ma-
chines.

I. INTRODUCTION

S
UPPORT VECTOR MACHINES (SVMs) based on the

statistical learning theory (STL) are general and efficient

learning machines [1]–[5]. In STL, the problem of consis-

tency of learning procedure in machine learning is the one

where the empirical risk converges uniformly to the actual

risk. To obtain a small actual risk, i.e., a good generalization

performance, the SLT shows that it is necessary to have a

right balance between the empirical risk and the capacity of

a learning machine. SVMs can do this, so they can obtain a

good generalization performance. SVMs have other attractive

properties, for example, SVMs have a unique global optimal

solution and avoid the curse of dimensionality. The introduction

of kernel methods has made SVMs have a nonlinear process

ability. Presently, there are many Mercer kernels available such

as Gaussian radial basis function kernel, sigmoidal kernel,

polynomial kernel, spline kernels, and others. These kernels

must satisfy Mercer’s condition or they must be symmetric

and positive semidefinite. Here we will extend the range of

usable kernels that are not required to satisfy the condition of

the positive definite property. As we know, the introduction of

kernel functions is based on the view of nonlinear mapping.

Before SVMs, the view of nonlinear mapping was embodied

in many other fields. The hidden function mapping in forward

neural networks (FNNs) and radial basis function networks

(RBFNs) is a typical example.

Artificial neural networks (ANNs) were developed rapidly in

the second half of the last century [9]–[11]. At present, ANNs
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have been successfully applied to signal processing, pattern

recognition, regression estimation, predication, function inter-

polation, intelligent controlling, and other fields for their good

nonlinear process ability [12], [13]. FNNs and RBFNs involved

in this paper were presented in the middle and late 1980s [14],

[15]. It has been shown that FNNs and RBFNs have a good

nonlinear mapping ability and approximation performance.

They can approximate arbitrary continuous function with any

accuracy [16], [17]. However, they also have some shortages:

1) the resulting network training consists of solving a hard

nonlinear optimization problem, with a possibility of getting

trapped in local minima; 2) there is often a risk of getting

overfitting; 3) ANNs are hard to interpret.

In 1999, Suykens et al. [18], [19] first introduced the struc-

tural risk into FNNs to obtain a good generalization. In [18],

Suykens et al. presented a method for training a multilayer per-

ceptron based on a modified SVMs (MLP-SVM), which in-

troduced the capacity control in SLT into the object function

of MLP directly. Thus, it can solve the overfitting problem in

MLP to a certain extent and obtain a better generalization per-

formance. This method directly uses the SVMs method to opti-

mize multilayer perceptron including the output weight vector,

the interconnection matrix for the hidden layer and the bias

vector, so the algorithm is very complex. It includes two cor-

relative quadratic programming with each programming sim-

ilar to that of the support vector machines and constrained by a

nonlinear equation simultaneously. Therefore, the computation

complexity of the MLP-SVM method is at least two times that

of the traditional SVMs. Moreover the optimization problem of

the method is not convex, so there exist local minima in this

method.

We use the idea of the nonlinear mapping in ANNs instead of

introducing the structural risk into ANNs directly. We first map

the data in the input space into a hidden space by a set of hidden

functions and then introduce the structural risk in the hidden

space to implement hidden space support vector machines

(HSSVMs) for pattern recognition and regression estimation.

Therefore, HSSVMs inherit not only the strong nonlinear

processing ability of ANNs but also the good generalization

performance of SVMs. On one hand, HSSVMs implement

structural risk minimization in a hidden space, which makes

HSSVMs have as good a generalization performance as SVMs

and avoid the overfitting problem. On the other hand, the BP al-

gorithm requires the derivativeness for the node functions, and

SVMs require that kernel functions satisfy the rigorous Mercers

condition. Here, we relax the constraints for nonlinear nodes or

kernel functions in HSSVMs. It does not require that the kernel

functions satisfy the rigorous Mercer’s condition or derivative-

ness but it requires symmetry. Namely, in HSSVMs for the

real-valued kernel the only condition is .
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The training procedure of HSSVMs amounts to solving a

constrained quadratic programming whose scale is the same

as that of SVMs. So HSSVMs have the same computation

complexity as SVMs. And the solution of HSSVMs is global

one. Moreover, for the large scale problem, HSSVMs can adopt

the decomposition methods used in the SVMs. The algorithm

analysis and the experimental results confirm the feasibility

and the validity of our algorithm.

II. HIDDEN SPACE SUPPORT VECTOR MACHINES (HSSVMS)

A. Hidden Space

Let denote the set of in-

dependently and identical distributed (i.i.d.) patterns. De-

fine a vector made up of a set of real-valued functions

, as shown by

(2.1)

where . The vector maps the points in the

-dimensional input space into a new space of dimension .

Namely

(2.2)

Since the set of functions plays a role similar to that

of a hidden unit in FNNs, we refer to

as hidden functions. Accordingly, the space

is called the hidden

space or feature space.

Now consider a special kind of hidden function: the

real symmetric kernel function . Let

and the kernel mapping be

(2.3)

The corresponding hidden space based on can be expressed

as

whose dimension is .

It is only the symmetry for kernel functions that is required,

which will extend the set of usable kernel functions in HSSVMs

while the rigorous Mercer’s condition is required in SVMs.

Some usual hidden functions are given as follows.

• Sigmoidal kernel

(2.4)

It is noticeable that usually the sigmoidal kernel is not

positive definite, which limits its application in SVMs. But

it is not a problem here. If parameter in the

sigmoidal kernel, we will obtain a sign function

Although the differential of the sign function does not

exist at some points, it also can be used in our algorithm.

• Gaussian radial basis kernel

(2.5)

which is a kernel in wide use and has been successfully ap-

plied to function approximation, density estimation, time-

frequency analysis, neural networks and support vector

machines.

• Polynomial kernel

(2.6)

which is a positive definite kernel used in SVMs fre-

quently.

• Generalized multiquadrics kernel

(2.7)

where denotes 2-norm. If , (2.7) is a Mercer

admissible kernel.

• Thin plate spline kernel

(2.8)

which is the solution of regularization functional if the

smoothness factors or stabilizers take the -order differ-

ential operator in regularization functional.

Other kernels [7], [20], [21] used in SVMs can be applied to

our algorithm. We will not discuss them here.

B. HSSVMs for Pattern Recognition

Let a pattern set be

and a kernel function

be . The mapped patterns in the hidden space

can be expressed as

. By analogy with the

linear SVMs for pattern recognition, we introduce a structural

risk for a set of linear functions

in the hidden space and adopt the Vapnik’s -insensitive loss

function [1], [3], [4]. Thus, we have

(2.9)

where is a penalty factor that adjusts the balance be-

tween the empirical risk and the capacity control of the learning
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machine. As it stands, the programming (2.9) is a convex pro-

gramming in a convex area. So its optimum solution is unique.

Its Wolfe dual problem becomes

(2.10)

where is a positive Lagrange multiplier. The training proce-

dure of HSSVMs for pattern recognition is to solve the Wolfe

dual programming (2.10). In the process of transforming the

primal programming to the dual one, we have

(2.11)

The threshold can be obtained by the KKT conditions [4],

which is similar to the situation for SVMs. The decision function

of HSSVMs takes the following form

(2.12)

C. HSSVMs for Regression Estimation

Let a set of i.i.d. patterns be

and a symmetric kernel function be . The

mapped patterns in the hidden space can be ex-

pressed as

. By analogy with the

linear SVMs for regression estimation, we introduce a structural

risk for a set of linear functions

in the hidden space.

(2.13)

where is a penalty factor and is a loss function which

can be chosen according to the distribution of patterns under the

mean of maximum likelihood estimation [5]. The Wolfe dual

programming of the primal programming (2.13) can be written

as

(2.14)

where is a shorthand implying both the variables with and

without asterisks, , , and are Lagrange multipliers

and denotes the one-order differential of with re-

spect to . The training procedure of HSSVMs for regression

estimation is to solve the Wolfe dual programming (2.14). In

the process of transforming the primal programming to the dual

one, we can have

(2.15)

The Lagrange multipliers and obtained by solving (2.14)

and the threshold computed by the KKT conditions can ex-

press the regression estimation function of HSSVMs as

(2.16)

If the loss function is the Vapnik’s -insensitive loss function

[1], [5], HSSVMs for regression estimation can be written as

(2.17)
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III. PERFORMANCE ANALYSIS OF HSSVMS

Let us review the decision function (2.12) of HSSVMs for

pattern recognition that can be rewritten as

(3.1)

where is a linear parameter. In

the same way, the regression estimation function (2.16) can be

rewritten as

(3.2)

where . Namely, the output

function of HSSVMs can be expressed as the summation of

the linear combination of parametrical hidden functions and a

threshold, which is completely identical to the output functions

of single-layer FNNs and RBFNs whose output nodes use linear

functions. In other words, the hypothesis space of HSSVMs

is completely identical to that of the single-layer FNNs and

RBFNs. The only difference is that the parameters in ANNs can

be optimized but the parameters in HSSVMs are prior chosen.

Because of the equivalence property of the hypothesis space be-

tween FNNs and HSSVMs, we will use available conclusions in

FNNs and RBFNs to analyze the performance of HSSVMs.

A. Analysis of HSSVMs for Pattern Recognition

Let us consider the separability of patterns in FNNs and

RBFNs to analyze the performance of HSSVMs for pattern

recognition. When an FNN or an RBFN is used to perform a

complex pattern recognition problem, the problem is basically

solved by transforming it into a high-dimensional feature space

in a nonlinear manner. In this space, the problem will become

linear. Cover’s theorem on the separability of patterns indicates

that higher the dimension of the feature space is, the more

linearly separable this problem is. For the detail description on

this theorem the reader is referred to [22].

Intuitively, it is possible to shatter two points by any linear

manner in the one-dimensional (1-D) space or real axis [1] and

three points in the two-dimensional (2-D) space. By analogy, it

is possible to shatter points in the -dimensional space

with probability 1. In what follows, we will discuss the general

case simply.

Consider a family of surfaces where each naturally divides an

input space into two regions. Let denote a set of i.i.d. pat-

terns or . Each of the patterns

is assigned to one of two classes or . This dichotomy (bi-

nary partition) of the points is said to be separable with respect

to the family of surfaces if a surface exists in the family that sep-

arates the points in the class from those in the class . As

mentioned above, the input patterns can be mapped into a hidden

space by hidden functions [see (2.2)]. The hidden space

has a dimension of . If there exits a -dimensional vector

such that the following inequalities

(3.3)

hold true, a dichotomy of is said to be -separable.

The hyperplane defined by the equation

which describes the separating hyper-plane in the hidden space.

The equation

(3.4)

defines the separating surface in the input space. In fact, be-

cause of the linear dependence among the mapped patterns in

the hidden space and the intercept errors of computation, the

rank of the matrix should be less than .

In view of a probabilistic experiment, the separability of a

set of patterns becomes a random event that depends on the

dichotomy chosen and the distribution of the patterns in the

input space. Assume that the activation patterns

are chosen independently in the input space. Suppose also that

all the possible dichotomies of are

equiprobable. Let be the probability that a particular

dichotomy picked at random is -separable, where the class of

separating surfaces chosen has a degree of freedom. Fol-

lowing [20], we have

(3.5)

where are the binomial coefficients. Equation (3.5) em-

bodies the essence of Cover’s separability theorem for random

patterns, and it is a statement of the fact that the cumulative bi-

nomial distribution corresponds to the probability that

flips of a fair coin will result in or fewer heads.

Although the hidden-unit surfaces envisioned in the deriva-

tion of (3.5) are of a polynomial form and therefore different

from those commonly used in FNNs and RBFNs, the essential

content of (3.5) has general applicability. Specially, the higher

the dimension of the hidden space, the closer will

be to unity. In other words, the complex pattern recognition

problem in a high-dimensional space is more likely to be lin-

early separable than in a lower dimensional space. However, in

some cases the use of nonlinear mapping may be sufficient to

produce linear separability without having to increase the di-

mensionality of the hidden space.

Equation (3.5) makes it possible to compute the expected

number of patterns that are linearly separable in a high-dimen-

sional space. To explore this issue, let be a se-

quence of random patterns as previously described. Let be a

random variable defined as the largest integer such that this
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Fig. 1. The graph of the rank of the mapped pattern matrix versus the parameter (a) p in k ;y = tanh(p � x y+ p ) where p = 0 and (b) p in k(x;y) =
exp(�kx� yk =2p ). 100 i.i.d. 2-D patterns are normal distributions with zero mean and unity variance. The curves are the average over 50 runs.

Fig. 2. The overfitting case for the two noised spirals classification problem. (a) was obtained by single-layer FNNs and (b) was obtained by RBFNs, where the

real lines are the decision surfaces. Let X = f(x; y)j and X = f(x; y)j Each class has 63

patterns. The number of hidden nodes in both networks is 126.

sequence is -separable, where has a degree of freedom.

Then from (3.5), the probability that is given by

(3.6)

The expectation and the median of the random variable can

be expressed as

(3.7)
and

(3.8)

respectively, which means that the expected maximum number

of randomly assigned patterns that are linearly separable in a

-dimensional space is equal to .

Now consider two nonlinear mappings generated by corre-

sponding kernel functions. Let . From

(2.3), we know that the dimension of the hidden space is . But

the rank of a pattern matrix may be less than

because of the linear dependence among the mapped pat-

terns and the intercept errors of computation. Fig. 1 shows the

order of a pattern matrix obtained by sigmoidal and Gaussian

kernel mappings versus the parameters in the sigmoidal kernel

and the Gaussian radial basis kernel, respectively. Note that the

sigmoidal kernel is not positive definite in most cases, so it is

rarely used in SVMs.

In conclusion, the dimension of a hidden space is equal to the

number of patterns. Although there may exist the loss of rank,

it is sufficient or even more than sufficient for the dimension

of a hidden space to perform the linear classification on the pat-

terns. It is the redundancy or too large a hidden space that makes

ANNs result in overfitting and hence a bad generalization per-

formance if the hidden space in ANNs is generated by the kernel

function mapping. The overfitting case for the two noised spi-

rals classification problem is shown in Fig. 2, where (a) was ob-

tained by FNNs in which kernel mapping (2.4) was used, and (b)

by RBFNs in which kernel mapping (2.5) was used. Obviously,

the overfitting both in Fig. 2(a) and in Fig. 2(b) occurs, and that

in Fig. 2(b) is worse. To avoid the overfitting problem, we intro-

duce not only the hidden space generated by kernel mapping, but

also the structural risk to control the set of hypothesis functions

or the hidden space. In other words, a better generalization per-

formance will be achieved if the right balance is struck between

the empirical risk and the capacity control of a set of hypothesis

functions, which HSSVMs can implement.

B. Analysis of HSSVMs for Regression Estimation

To analyze the performance of HSSVMs for regression esti-

mation, let us first consider the approximation ability of FNNs

and RBFNs. As early as the 1990s, researchers studied the ap-

proximation ability of ANNs especially for FNNs and RBFNs

[16], [17], [23]–[28]. They obtained a general approximation

theorem: FNNs and RBFNs whose scales are unlimited or
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TABLE I
RECOGNITION RESULTS OBTAINED BY FIVE ALGORITHMS OF THE TWO-SPIRAL CLASSIFICATION PROBLEM

whose numbers of the hidden nodes can be increased arbitrarily

can approximate any continuous function with any accuracy

[16], [17]. In the following, we cite a theorem to explain the

approximation ability of FNNs and RBFNs.

Theorem 3.1 [28]: Let , , ,

and , , , , where is the dimension of the input

patterns and is the dimension of the hidden function. Let also

be continuously differentiable an infinite number

of times in some open sphere in . Suppose that there exists

in this open sphere such that

(3.9)

where ,

, and

. Then there exist matrices

with the following property. For any -order and -dimensional

function in the Sobolev space, there exist coefficients

such that

(3.10)

where

and denotes the -norm.

In what follows, we give some typical hidden functions that

satisfies (3.9) in Theorem 3.1.

• Sigmoidal function , for ;

• Generalized multiquadrics function

, for , ;

• Thin plate spline function

• Gaussian radial basis function

, , .

Theorem 3.1 implies that if only the scale of single-layer FNNs

is sufficiently large, these ANNs whose node function satisfies

(3.9) can approximate any differentiable function in the Sobolev

space with any accuracy. Moreover the lower bound on the ap-

proximation error is less than , where is a constant, is

the order of the Sobolev space and is the dimension of input

data.

In regression estimation there exists not only the approxi-

mation error generated by the improper hypothesis space but

also the estimation error resulting from a finite number of pat-

terns, noised patterns, and others. Generally the larger the hy-

pothesis space is, the smaller the approximation error and the

larger the estimation error and vice versa. From the above the-

orem, when the number of patterns is proper, it is sufficient

or more than sufficient for the hypothesis space generated by

hidden functions whose number is equal to that of patterns to

approximate a differential function in the Sobolev space. There-

fore, if the common algorithms of ANNs are adopted an overfit-

ting problem will result. By analogy with SVMs, we introduce

the structural risk in the hidden space and can obtain a better

generalization performance by implementing the right balance

between the empirical risk and the capacity control of a set of

hypothesis functions, which can be implemented by HSSVMs

for regression estimation. It is worth noticing that the hypothesis

space of HSSVMs for regression estimation is slightly different
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Fig. 3. Decision surfaces obtained by (a) HSSVMs with the sigmoidal kernel and (b) HSSVMs with the Gaussian kernel for two-spiral classification problem.
Symbol � denotes the positive sample and + the negative one. The support vectors are circled. The real lines denote the decision surfaces and the dotted lines
f(x) = �1.

from that of FNNs. The hypothesis space of HSSVMs is iden-

tical to that of FNNs if the weight matrixes between the input

layer and the hidden layer are all the unit matrixes and the pa-

rameters in hidden functions are fixed in FNNs. It is still an open

problem to give an exact conclusion on how the constraints de-

scribed above affect the approximation error in principle. The

effect of fixing the parameter in sigmoidal hidden function on

the approximation error was studied in [24] and an asymptotical

bound of the approximation error with respect to the number of

hidden nodes and the dimension of the input pattern was given.

The asymptotical bound shows that even if the parameter of the

sigmoidal hidden function is fixed, FNNs still have a better ap-

proximation performance. The experiments in this paper also

validate this.

C. Comparison of HSSVMs and SVMs

From Section II, we know that the feature spaces of the tra-

ditional SVMs and HSSVMs are different. The traditional non-

linear SVMs are constructed in the feature space mapped by

the Mercer kernel function. If the kernel function does not sat-

isfy the Mercer condition, the feature space that SVMs lives in

does not exist. So the traditional nonlinear SVMs are impossible

without the Mercer kernel function. Here we will show that the

unique condition for the kernel function in HSSVMs is sym-

metry. No other conditions are required.

Let . Compare the output

functions of HSSVMs (2.12) and (2.16) with those of SVMs

[4], [5], we define the following symmetric kernel function de-

pending on the input patterns

(3.11)

The defined kernel function can be expressed as the product of

two kernel functions, so it is called the square kernel.

Theorem 3.2: Let a set of i.i.d. patterns be

and the square kernel depending

on patterns be

. Then the square kernel is an

admissible Mercer kernel whatever the kernel function

is.

The proof of Theorem 3.2 is shown in the Appendix.

We can simply conclude that the SVMs that use the square

kernel are completely identical to HSSVMs that use

the hidden function . Thus, HSSVMs implement the

structural risk minimization in a hidden space, which makes

that HSSVMs have as good a generalization performance as

SVMs and avoid the overfitting problem. In other aspects, the

BP algorithm requires derivativeness for the node functions,

and SVMs requires that kernel functions satisfy the rigorous

Mercer’s condition. Here we relax the constraints for nonlinear

nodes or kernel functions in HSSVMs. According to Theorem

3, we know that the square kernel is certainly positive

definite, whatever is. It only requires that the kernel

functions satisfy symmetry that is the essential condition for a

kernel function. Hence the range of nonlinear mapping (kernel)

functions used in HSSVMs becomes larger than that for the

traditional SVMs. The training procedure of HSSVMs amounts

to solving a constrained quadratic programming whose scale is

the same as that for SVMs. So HSSVMs have the same com-

putation complexity as SVMs. And the solution of HSSVMs

is a global optimum. Moreover for the large-scale problem,

HSSVMs can adopt the decomposition methods used in SVMs.

IV. SIMULATIONS

To evaluate the performance of HSSVMs for pattern recogni-

tion and regression estimation, we performed four kinds of ex-

periments: two-spiral classification problem, handwritten digit

recognition problem, UCI data sets recognition, and function

estimation problem. For the sake of comparison, different al-

gorithms used the same input sequence. These algorithms in-

clude FNNs with the sigmoidal function, RBFNs, SVMs with

the Gaussian kernel, HSSVMs with the sigmoidal kernel (2.4),

and the Gaussian radial basis kernel (2.5).

A. Two-Spiral Classification problem

The two-spiral classification problem is referred to as the

“touchstone” to test the ability of the classification learning al-

gorithm [29]. Two classes of samples are defined by

and
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TABLE II
RECOGNITION RESULTS OBTAINED BY FIVE ALGORITHMS FOR THE HANDWRITTEN DIGIT RECOGNITION PROBLEM

TABLE III
RESULTS OF SVMS AND HSSVMS FOR THREE UCI DATA SETS

Each class has 63 training samples. Table I shows the average

results obtained by these five algorithms over 30 runs. The

decision surfaces obtained by HSSVMs with the sigmoidal

kernel and the Gaussian kernel are shown in Fig. 3. For the

results obtained by ANNs the reader is referred to Fig. 2. The

introduction of structural risk is to avoid overfitting problem.

ComparedwithFig.2,thedecisionsurfacesobtainedbyHSSVMs

are a smoother or have a smaller oscillation frequency. In

terms of the regularization theory, it has a small smoothness

degree.

B. Handwritten Digit Recognition Problem

The experimental data is the MNIST database of 60 000

training and 10 000 testing handwritten digits from the AT&T

Research Labs,1 which have been taken as the experimental

data in [30]. Since the database is so large, we only have

obtained two-class examples belonging to classes “7” and

1URL: http://www.research.att.com/~yann/ocr/mnist

“9,” respectively, and normalized these examples. The results

obtained by five algorithms are shown in Table II.

C. UCI Data Sets Recognition

To evaluate the performance of HSSVMs, we make a com-

parison between the traditional classical SVMs and HSSVMs

on the three real world datasets from the UCI Machine Learning

Repository (available at the UCI Machine Learning Repository

[31]). All involve only 2-way classification. These sets are

Wisconsin Breast Cancer data set including 458 examples of

“benign” and 241 examples of “malignant,” nine attributes for

each example; Ionosphere data set including 225 examples of

“good” and 126 examples of “bad,” nine attributes for each

example; PIMA Indians Diabetes data set including 500 plus

examples and 268 minus examples, eight attributes for each

example. In our experiment, 10-block cross validation is em-

ployed for each dataset. Each original dataset is divided into

10 blocks. Each block is used for test, while the other ones are

used to train the algorithms. The 10 test blocks form the entire
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TABLE IV
ESTIMATION RESULTS OBTAINED BY FIVE ALGORITHMS FOR THE FUNCTION REGRESSION PROBLEM

original dataset. Table III shows the cross validation error and

the average number of the support vectors for each of the four

data sets. The RBF kernel is adopted and the near-optimum

parameters are selected for every training data block.

D. Function Regression Estimation Problem

Let the training samples

be defined by the nonlinear noised sinc function

, where (or has

a uniformly distribution in the interval [ 1, 1]), ,

(or noise has a normal distribution with zero

mean and unity variance) and random variable is indepen-

dent of . This regression problem was often used to test the

validity of learning algorithms [1]. The experimental results are

shown in Table IV and Fig. 4.

V. CONCLUSION

Hidden space support vector machines for pattern recogni-

tion and regression estimation are presented based on the con-

cepts of hidden function mapping and hidden space in FNNs

and RBFNs. The input patterns are mapped into a high-dimen-

sional hidden space by a nonlinear hidden function and then a

structural risk is introduced into the hidden space to construct

HSSVMs. Moreover, it is not important for the differentiability

of the nonlinear function in HSSVMs. Compared to SVMs,

HSSVMs can adopt more kinds of kernel functions because the

positive definite property of the kernel function is not a neces-

sary condition. The research on the classification and the ap-

proximation ability of FNNs and RBFNs in the 1990s has indi-

cated that they can magnificently classify complex patterns and

approximate functions in the Sobolev space. According to the

statistical learning theory, SVMs introduce a structural risk so

as to have s good generalization. An analysis of our algorithms

implies that HSSVMs inherit the merits of ANNs and SVMs.

Experiments on artificial and real-world domains confirm the

feasibility and the validity of HSSVMs.

APPENDIX

THE PROOF OF THEOREM 3.2

Proof: Given a set of i.i.d. patterns

and a symmetric kernel function
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Fig. 4. Approximation results obtained by HSSVMs with the sigmoidal kernel (a) and (c) and the Gaussian kernel (b) and (d), where (a) and (b) are obtained
under noise level � = 0 and (c) and (d) are obtained under noise level � = 0:1. In these figures, � denotes training samples, the real line denotes the original
function and the dotted line the estimated function.

depending on patterns

, it is sufficient for us to prove that this

symmetric kernel satisfies the Mercer’s condition [6]. Namely

which indicates that is positive definite and therefore it

is an admissible Mercer kernel.

This completes the proof of Theorem 3.2.
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