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Chapter 1

Introduction

1.1 Knots

1.1.1 How to distinguish knots

Knot theory is an area of low-dimensional topology. Topology studies properties
of geometric objects preserved under continuous deformations.

Definition 1.1.1. ([1]) A knot is an embedding of the circle into the three-
dimensional Euclidean space K : S1 →֒ E3.

In other words, a knot is a closed curve without self-intersections in the 3-
space, see Figure 1.1 for particular examples of knots. Usually, one takes R3 for

Figure 1.1: Examples of knots

the ambient 3-space. We do not distinguish between a knot and any continuous
deformations of this knot which can be performed without self-intersections. All
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these deformed curves are considered to be one and the same knot. We can
think about a knot as if it is made from easily deformable rubber, which we
cannot cut and glue. Such deformation are called ambient isotopies, which are a
special type of homotopy. A homotopy of a space X ⊂ E3 is a continuous map
h : X × [0, 1]→ E3. If ht is one-to-one for all t ∈ [0, 1], then h is called an isotopy.

Definition 1.1.2. ([2]) Two knots K1 and K2 are ambient isotopic if there is an
isotopy h : E3 × [0, 1]→ E3 such that h(K1, 0) = K1 and h(K1, 1) = K2.

Thus, we consider ambient isotopy as an equivalence relation on knots, that
is, two knots are equivalent if they can be deformed into one another. We refer
to each equivalence class of knots as a knot type, and equivalent knots have the
same type. However to avoid the abuse of terminology it is very common to apply
the word ”knot” to mean the whole equivalence class i.e. to a knot type, or a
particular representative member which we are interested in. For example, when
we say that two knots are different, we actually mean that they are inequivalent,
i.e. have different types.

The simplest knot of all is the unknotted circle, which we call the trivial knot
or the unknot, see Figure 1.2. If a knot has the same type as the trivial knot, we
say it is unknotted.

Figure 1.2: Examples of unknots

If you look carefully at Figure 1.2 and use physical intuition of deformable
rubber, you will understand that these knots are equivalent. This simple exer-
cise naturally leads us to the first significant scientific question in the knot theory:

How to distinguish knots?

Indeed, let us have two knots K1 and K2, for example, as in Figure 1.3. How do
we know they are actually different or the same? Also we have not yet proved
that there exist any other knots besides the unknot. Maybe every projection of a
knot at the any figure above could simply be a messy projection of the unknot.
To answer this question we shall find such properties of a knot, which depend
only on the equivalence class of the knot. This idea gives rise to a theory of knot
invariants, a major part of the knot theory.

Graphically we represent knots by means of knot diagrams. A knot diagram is
a plane closed curve, which can have only double points (crossings) as singularities,
together with the chosen overcrossing string and undercrossing string at each
crossing. Thus, knot diagram can be considered as a projection of a knot along
some ”vertical” direction, overcrossings and undercrossings indicate which string is
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Figure 1.3: Two arbitrary knots

”higher” and which one is ”lower”. We refer to a deformation of a knot projection
as a planar isotopy or an isotopy in the plane if it deforms the projection plane
as if it were made of rubber with the projection drawn upon it Figure 1.4 [3]. We
deform the knot only within the projection plane.

Figure 1.4: Planar isotopies

Proposition 1.1.3. (Reidemeister, [1]) Two knots K1 and K2, are equivalent if
and only if diagram of K1 can be transformed into a diagram of K2 by a sequence
of ambient isotopies of the plane and local moves of the following three types:

Figure 1.5: Reidemeister moves

Notice that although each of these moves changes the projection of the knot,
it does not change the knot represented by the projection. Each such move is an
ambient isotopy. For example, two projections in Figure 1.6 (taken from [3]), the
left-most one and the right-most one, correspond to the same knot. Therefore,
according to the Reidemeister theorem, there is a series of Reidemeister moves
and planar isotopies that takes us from the first projection to the second. In
Figure 1.6 we see one example of such series of moves, which demonstrates this
equivalence.
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Figure 1.6: Example of Reidemeister moves

The problem of determining whether two projections represent the same knot
is not such an easy one as one might have hoped. We just check whether or not
there is a series of Reidemeister moves to take us from the one projection to the
other, but there is no limit on the number of Reidemeister moves. If the two
given projections have 10 crossings each, it might happen that in the process of
performing the Reidemeister moves the number of crossings necessarily increases
to 57, before the projection is simplified back down to 10 crossings.

1.1.2 The problem of classification

We begin with a discussion of some types of knots, which can be useful for the
present thesis.

Alternating knots. We refer to a knot with a projection that has crossings,
which alternate between over and under on travelling along the knot as an alter-
nating knot. Otherwise a knot is called non-alternating. The trefoil knot and the
figure-eight knot are alternating.

Connected sum. If we have two knots, we can define a new knot obtained
by removing a small arc from each knot and then connecting the four loose ends
by two new arcs. It must be done with some caution: for projections we assume
they do not overlap and we avoid removing or adding any crossings as in Figure
1.7 ([3]). We refer to the resulting knot as the composition of the two knots or the
connected sum of the two knots, denoted by K1#K2.

Figure 1.7: The composition K1#K2 of two knots K1 and K2.

We refer to a knot as composite knot if it can be represented as a composition
of two knots, neither of which is the trivial knot. We refer to a knot as prime knot,
if it is not a composition of any two nontrivial knots. Note that the composition
of knot K with the unknot is again K. From this point of view the knots are
analogous to the positive integers, where we call an integer composite if it is a
product of positive integers, neither of which is equal to 1 and we call it prime
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otherwise. If we multiply an integer by 1, we get the same integer back again. The
knots which make up the composite knot are called factor knots. In the Figure
both the trefoil knot and the figure-eight knot are prime knots.

The unknot is not a composite knot, because it is not possible to take the
composition of two nontrivial knots and obtain the unknot. We can use integers
analogy here again: this result is analogous to the fact that the integer 1 is not
the product of two positive integers, each greater than 1. Moreover, just as an
integer factors into unique set of prime numbers, a composite knot factors into
unique set of prime knots. Tables of knots, e.g. the Rolfsen table [80], list only
the prime knots and do not include any composite knots. They are similar to
tables of prime numbers.

Mirror knots. A mirror knot is a knot obtained by changing every cross-
ing in the given knot to the opposite crossing. A knot which is equivalent to
its mirror image is called amphicheiral or achiral, otherwise non-amphicheiral or
chiral. Despite a knot and its mirror image are distinct knots unless the knot is
amphicheiral, knot tables do not list both a knot and its mirror image, only one
from this pair. The simplest example of amphicheiral knot is figure-eight knot.
One can prove it with the help of Reidemeister moves.

Links. Up to now we have considered embeddings of a single circle, i.e. re-
stricted our attention to single knotted loops. However, there is a natural gener-
alisation of this idea so that we consider embeddings of collections of circles and,
hence, we obtain a set of knotted loops.

Definition 1.1.4. ([2]) A link is a finite disjoint union of knots: L = K1

⋃
. . .
⋃Kn.

Each knot Ki is called a component of the link. The number of components of a
link L is called the multiplicity of the link, and is denoted by µ(L). A subset of
the components embedded in the same way is called a sublink.

We refer to a set of l disjoint circles embedded in a plane as the trivial link of
multiplicity l.

Some simple examples of links are shown in Figure 1.8. Each of the five 2-
component links has two trivial knots as components, but these five links are
different. Thus, the notation K1

⋃
. . .
⋃Kn lists the component parts and does

not indicate how they are put together, hence it is not enough to completely
describe a link.

The Thistlethwaite link table [80] is the analog to the Rolfsen knot table.
There the following notation is used: a label of the form Liaj or Linj indicates
the jth link with i crossings of its minimal plane projection; the label a (n)
indicates alternating (non-alternating) link. Also some other catalogues use labels
of the form Nµ

m, which indicate the mth link with µ components with N crossings.
Obviously, the set of links contains the set of knots.

Torus knots. Some of the simplest knots are torus knots, the ones which
can be embedded into the surface of a standard torus in R3. They can be easily
described parametrically.

7



Figure 1.8: Examples of links

The T [m,n] torus knot is a knot obtained by winding a loop over one cycle of
the torus m times and over the other n times. If integers m and n are coprime,
than it is a knot, otherwise it is a link. A torus knot is trivial if and only if either
m or n is equal to 1 or −1. The simplest nontrivial example is the T [2, 3]-torus
knot, also known as the trefoil knot. The simplest nontrivial example of a link is
the T [2, 2]-torus link, also known as the Hopf link. Each nontrivial torus knot is
prime and chiral. The T [m,n]-torus knot is equivalent to the T [n,m]-torus knot.
The T [m,−n]-torus knot is the mirror image of the T [m,n]-torus knot. We have
already had some pictures of torus knots: the first and the last knots on Figure
1.1 are torus knots, on Figure 1.8 we can see the Hopf link.

Classification. The classification of objects of study is a basic problem in
any branch of mathematics. Usually a classification is a list of objects, which
contains all possibilities without repetition. We can use different criteria to create
such a list and the usefulness of the list depends on the criteria. Usually we
can produce an algorithm that will list all possible objects, but this list will
contain duplicates. For a creature of the knot catalogue it lists knot diagrams with
increasing numbers of crossings. There naturally arises the problem to identify
which diagrams represented the same knot. Till 1980’s it was a big trouble,
because there were no appropriate invariants to distinguish knot diagrams. The
Reidemeister moves can be successfully used only in the case of positive solution,
because there is a finite number of steps while in the case of negative solution
the process will never terminate. As a special case one can consider the question
about the knot triviality problem: find an algorithm which applies Reidemeister
moves, simplifying the diagram at each step, and continue until it has no crossings;
if there is no more possible simplification then the diagram cannot be trivial.
However, Figure 1.9 (taken from [2]) shows diagrams of the trivial knot, which
break this approach: any Reidemeister moves increases the number of crossings.
Nevertheless there was invented an algorithm to solve the knot triviality problem
by Wolfgang Haken, but it is based on the structure of the knot exterior – a
compact 3-manifold. However the problem of detecting triviality with the help of
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Reidemeister moves is still open.

Figure 1.9: Awkward diagrams of the trivial knot: any Reidemeister moves in-
crease the number of crossings.

Anyway an algorithm for detecting knot equivalence gives us only a mere clas-
sification list with no underlying structure. In some sense we need a construction
of the ”moduli space” of knots, and for this reason we have to create the complete
set of knot invariants.

1.1.3 Knot invariants

Knot invariants are central objects of the study in knot theory. Here we briefly
discuss some invariants.

Link, unknotting and crossing numbers.

Definition 1.1.5. ([2]) A link invariant is a function from the set of links to
some other set whose value depends only on the equivalence class of the link. Any
representative from the class can be chosen to calculate the invariant. There is no
restriction on the kind of objects in the target space. For example, they could be
integers, polynomials, matrices or groups.

One of the the simplest link invariants is the multiplicity of a link denoted by
µ(L), which is the number of components of L.

Many invariants are related to geometric and topological properties of links
and measure their complexity in various ways. Some of them are easy to define
and very hard to calculate. One of the oldest link invariants is the unknotting
number.

Definition 1.1.6. ([2]) The unknotting number is the minimal number of times
that a link must pass through itself to be transformed into a trivial link. This
number is denoted by u(L).

Although this invariant is one of the most obvious measures of knot complexity,
it is very difficult to calculate it. A non-trivial knot K which can be unknotted
with only one pass has u(K) = 1 (see Figure 1.10 for an example of such knot).

Any knot can be represented by a plane diagram in infinitely many ways; for
this reason the following invariant was introduced.
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Figure 1.10: The knot 72 becomes the unknot.

Definition 1.1.7. We refer to the minimal number of crossings in a plane diagram
of K as the crossing number c(K) of a knot K.

If c(K) ≤ 2, then knot K is trivial. Therefore, to draw a diagram of a nontrivial
knot the minimal number of crossings is required at least 3.

Braid index. A braid is a set of n strings, all of which are attached to a
horizontal bar at the top and at the bottom as in Figure 1.11 [3]. Each string
intersects any horizontal plane between the two bars exactly once, i.e. each string
always goes in a downward direction while we are moving along it from the top
bar to the bottom bar.

Figure 1.11: A braid.

We can always pull the bottom bar around and glue it to the top bar, so that
the resulting strings form a knot or link. It is called the closure of the braid (see
Figure 1.12 [3]). Thus, every braid corresponds to a particular knot and we have
a closed braid representation of the knot.

Figure 1.12: The closure of a braid.

Every knot or link is a closed braid as was proven by Alexander. As in the
case of plane diagrams, we are interested in representing the link by the braid
with as few strings as possible.

10



Definition 1.1.8. The braid index of a link is the minimal number of strings in
a braid corresponding to a closed braid representation of the link.

For example, the braid index of the unknot is 1 and of the trefoil is 2. The
braid index is an invariant for knots and links.

Polynomial invarants. The most important knot invariants, from my point
of view, are polynomial invariants taking values in the rings of polynomials in
one or several variables with integer coefficients. The first discovered polynomial
invariant was the Alexander polynomial Λ(K) introduced in 1928. Then in 1970
Conway found a simple recursive construction of the Alexander polynomial. Then
in 1985 Jones invented the Jones polynomial, which generalises Alexander poly-
nomial. Very soon the HOMFLY polynomial (sometimes called HOMFLY-PT)
was discovered which generalises the Jones polynomial. There is much speculation
that the HOMFLY polynomial is the cenral object in knot theory of the present
days. My point of view is the same, hence, we have devoted our efforts to studies
of the HOMFLY polynomials and actually this thesis is devoted to them.

Definition 1.1.9. The HOMFLY polynomial is the Laurent polynomial in two
variables A and q with integer coefficients satisfying the following skein relation
and the initial condition:

The first initial condition corresponds to the so-called normalized HOMFLY
polynomial, while the second one corresponds to the non-normalized HOMFLY.
For normalized HOMFLY polynomial we use notationHK, while for non-normalized
we use HK. The HOMFLY polynomial unifies the quantum slN polynomial in-
varants ofK which are denoted byHK

N(q) orHK
N(q) and are equal toHK(A = qN , q)

or HK(A = qN , q). To abuse the terminology we below use only notation ”HOM-
FLY polynomial” considering A = qN correspondingly.

The HOMFLY polynomial is not a complete invariant for knots, because it
cannot distinguish all knots. In particular, a pair of mutant knots always have
the same HOMFLY polynomial (Figure 1.13 from [3]).

Figure 1.13: Two mutant knots have the same polynomial.
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After the HOMFLY polynomials were introduced, it soon became clear that
they are the first members of a whole family of knot polynomial invariants called
quantum invariants. The original idea of quantum invariants was proposed by
A. Schwarz [4] and E. Witten in the paper [5] in 1989. This approach came
from physics, namely from quantum field theory, and was not completely justified
from the mathematical point of view. However Reshetikhin and Turaev soon gave
mathematically impeccable definition of quantum invariants of knots [74, 75, 76].
They used quantum groups, which were introduced shortly before by Drinfeld in
[73, 72]. Actually, a quantum group is a family of Hopf algebras, depending on a
complex parameter q and satisfying certain axioms. The quantum group Uqg of
a semisimple Lie algebra g is a deformation of the universal enveloping algebra
of g (corresponding the value q = 1) in the class of Hopf algebras [1]. HOMFLY
(Jones) polynomial coincides, up to normalization, with the quantum invariant
corresponding to the Lie algebra g = slN(sl2) in its standard two-dimensional
representation. However this approach allows to consider any irreducible repre-
sentations and construct corresponding polynomial invariants. For the Lie algebra
suN they are called colored HOMFLY polynomials.

1.1.4 Relation with Quantum Field Theory

It is believed that the path-integral representation for knot invariants arising from
topological quantum field theory (TQFT) gives the most profound and general de-
scription of knot invariants. Ideologically, it means that all possible descriptions of
knot invariants can be derived from this representation by utilizing different meth-
ods of path-integral calculus. For example, the usage of certain non-perturbative
methods leads to the well known description of polynomial knot invariants through
the ”skein relations” [5]. The perturbative computations naturally lead to the nu-
merical Vassiliev Invariants [60]. In the last case we obtain the formulae for Vas-
siliev invariants in the form of ”Feynman integrals”. For a recent comprehensive
treatise on Vassiliev invariants see [1].

Despite beauty and simplicity of this picture many problems in the theory
of knot invariants remain unsolved. Currently more mathematical descriptions
of knot invariants are known than can be derived from path-integral. One such
problem is the derivation of quantum group invariants from the path-integral
representation. The main ingredient in the theory of these invariants is the uni-
versal quantum R-matrix defined for integrable quantum deformation of a Lie
group. The appearance of quantum groups in the path-integral representation
looks mysterious and we lack the derivation of the corresponding R-matrix (ob-
ject with noncommutative matrix elements should appear from classical integral)
from path-integral. These problems were discussed in details in [61, 62].

The second interesting problem (which as we believe is closely connected to the
first one) concerns the combinatorial description of the numerical Vassiliev invari-
ants of knots. At the moment, there exist three different descriptions of Vassiliev
invariants: through the generalized Gauss integrals [63], through Kontsevich in-
tegral [64], and finally there are combinatorial formulae for Vassiliev invariants of
orders 2, 3 and 4, [65]-[68]. The first two descriptions can be easily derived from
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the path-integral but (surprisingly) we lack such a derivation for combinatorial
formulae. The Gauss integral representation for Vassiliev invariants comes from
the perturbative computations of path-integral in the covariant Lorentz gauge.
Similarly, the usage of non-covariant holomorphic gauge (which is sometimes re-
ferred to as light-cone gauge) computation of path-integral leads to Kontsevich
integral [70].

The main difference between the non-covariant gauges (temporal or holomor-
phic gauge) and the covariant Lorentz gauge is that the Feynman integrals in the
former case can be naturally ”localized”, in the sense that only a finite number of
special points on the knots contribute to the integrals. In the Lorentz gauge the
Feynman integrals have a form of multiple 3-d integrals (see (3.36),(3.37) as an
example) and all points of the knot enter the integral equally. On the contrary, in
the holomorphic gauge only special points contribute to the Feynman integrals.
Summed in all orders of perturbation theory these contributions lead to definition
of polynomial knot invariants through simple crossing operator and Drinfeld as-
sociator with rational zeta-function coefficients [71]. We discuss this localization
process in detail in section 3.1.1.

The temporal gauge is distinguished among all gauges. The Feynman integrals
here have ultra-local form – only crossing points of two-dimensional projection of
the knot contribute to the answer. This is exactly what happens in the quantum
group description of knot invariants where the crossing points contribute as a
universal quantum R-matrix. On the other hand, the combinatorial formulae for
Vassiliev invariants also are based on the information from these crossing points
only. All these observations make it natural to argue that the Feynman integrals
arising from the general path-integral representation in the temporal gauge should
give the universal combinatorial formulae for Vassiliev invariants, and summed in
all orders of perturbation theory they should give the perturbative expansion of
the universal quantum R-matrix for ~-deformed gauge group of the path integral.
These questions and structures arising from the path-integral representation of
knot invariants in the temporal gauge are discussed in section 3.5.

Recently new polynomial invariants of knots appeared, the so-called ”super-
polynomials” [24], which are generalizations of HOMFLY polynomials. However,
there is still no related QFT-like formulation. Probably this interpritation should
involve something like ”Chern-Simons theory with a quantum group for its gauge
group” which is still not constructed.
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1.2 Main results

In this section we overview our main results presented in the thesis without going
into details. The theorem number corresponds to the section number, where this
theorem is introduced and considered; same for conjectures.

Theorem 2.3.5. Colored HOMFLY polynomial of a knot K belongs to the
algebra of shifted symmetric functions Λ∗.

Theorem 2.4.7. Ooguri-Vafa partition function of a HOMFLY polynomial is
a Hurwitz partition function.

Theorem 3.4.1. (Conditional) Higher special polynomials are related with
Vassiliev invarants as follows:

σK
∆(g) =

∑

k≥0

αk

Nu+k∑

m=1

cu+k,m,k(∆)Vc
u+k,m.

The theorem is proven under assumption on the explicit form of genus expan-
sion for HOMFLY polynomial (conjecture 2.4.3 below).

Theorem 3.4.2. Vassiliev invariants of a knot K with r strands satisfy the
following relation

detMj1...jr+1 = 0,

where M is a matrix of Vassiliev invarants and any positive integers jk.

Beyond these points there are some numerical results in the thesis. We have
calculated Vassiliev invariants up to order 6 (inclusive) for knots with crossing
numbers ≤ 14. There are around 60 000 such knots, complete results are available
on the website [80]. One can download packages with these Vassiliev invarants
from this website or refer to the section ”Vassiliev invariants” for particular knots
from the Rolfsen table. In section 3.4.2 for illustrative purpose we list Vassiliev
invariants for knots with crossing numbers≤ 7. Futhermore, with the help of these
results we check that there are no universal relations on the Vassiliev invariants
with order ≤ 6.

Also we have some conjectures based on explicit calculations done for a lot of
particular knots.

Conjecture 2.4.3. Large N expansion (or genus expansion) for HOMFLY

14



polynomials is given by

HK
R (q, A) = exp

(
∑

∆

~|∆|+l(∆)−2 SK
∆

(
A2, ~2

)
ϕR(∆)

)

,

SK
∆(A2, ~2) =

∑

g

σK
∆(g) ~2g,

where the sum goes over all Young diagrams ∆ and q = exp(~/2).

Conjecture 4.3.1. DAHA-superpolynomials belong to the Λ∗
β algebra of func-

tions symmetric in variables µi = Ri − βi.

Conjecture 4.3.2. As for multiplicative basis T β
k (R) of the algebra Λ∗

β we
consider

T β
k (R) =

∑

i,j

(

(j − 1)− β(i− 1)
)k−1

.

Conjecture 4.3.3. Large N expansion for DAHA-superpolynomials is given
by the following expression:

PK
R (q, t, A) = exp

{∑

∆

~|∆|+l(∆)−2 · SK
∆(~2, β, A) · T β

∆(R)
}

,

SK
∆(~2, β, A) =

∞∑

n=0

~2nsK∆(n).

For loop expansion of superpolynomials we consider thin knots and thick knots
separately.

Conjecture 4.3.5. In the case of thin knots the loop expansion of superpoly-
nomials has the form

PK
R (A, q, t) =

∞∑

i=0

~i
Nβ

i∑

j=1

D
(R)
i,j VK

i,j,

where D
(R)
i,j are beta-deformations of trivalent diagrams, VK

i,j are exactly the same
Vassiliev invariants as for the loop expansion of HOMFLY polynomials.

Conjecture 4.3.6. In the case of thick knots the loop expansion of superpoly-
nomials has the form

PK
R (A, q, t) =

∞∑

i=0

~i
Nβ

i∑

j=1

D
(R)
i,j VK

i,j + (β − 1) ·
∞∑

i=0

~i
Mβ

i∑

j=1

Ξ
(R)
i,j ρ

K
i,j,
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where the first sum is the same as for the thin knots, while the second sum is
different: Ξ

(R)
i,j are some other group factors and ρKi,j are some other numbers

different from the Vassiliev invariants of the first sum.

These results are mostly based on the following papers by the author of the
thesis:
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2. A.Mironov, A.Morozov, A.Sleptsov, On genus expansion of knot polynomi-
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erators, Journal of High Energy Physics 03 (2013) 021, arXiv:1106.4305
[hep-th]
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Chapter 2

Relation between HOMFLY
polynomials and Hurwitz
numbers

In the begining of this chapter we recall some basic facts about Hurwitz theory
and theory of symmetric functions. Then we define colored HOMFLY polynomials
via Chern-Simons theory and prove that they belong to the algebra of shifted
symmetric functions. With the help of this result we, first, make a conjecture
about explicit form of the large N expansion of HOMFLY polynomials. Second,
we prove that the generating function for HOMFLY polynomial of a given knot
in all representations is equal to generating function of Hurwitz numbers. Then
in the rest of the chapter we discuss the large N expansion in the context of KP
integrability.

2.1 Hurwitz theory

The Hurwitz theory for a curve X studies the enumeration of covers of X with
particular ramifications, which are determined by the profile of the cover over the
branching points. We consider covers

π : C → X, (2.1)

where C is a complex curve of genus g(C) and X is a complex curve of genus
g(X). Denote the degree of π by d. We refer to the partition ∆ ⊢ d obtained from
multiplicities π−1(x) as the profile of π over a point x ∈ X.

A partition ∆ of d is defined as a sequence of integers

∆ = {∆1 ≥ ∆2 ≥ · · · ≥ ∆l} (2.2)

where |∆| =
∑

i ∆i = d, l(∆) is the length of the partition and mi(∆) denotes
the multiplicity of the part i. The profile of π over x is the partition {1d} if and
only if π is unramified over x.

Let us consider two covers π : C → X, π
′

: C
′ → X. We call them isomorphic

if there exists an isomorphism of curves h : C → C
′
, which satisfies π

′ ◦ h = π.
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In Hurwitz theory we consider covers up to isomorphism, because then there are
finitely many Hurwitz covers of X of genus g, degree d and monodromy ∆i at xi.

Hurwitz numbers Covd(∆
1, . . . ,∆k) count the number of Hurwitz covers π with

prescribed data. To calculate Hurwitz numbers one can use the Frobenius formula
[43], but, first, we need to introduce more definitions.

Let Sd be the symmetric group, R be an irreducible representation of Sd of

dimension dimR. Also let us introduce dimensional factor dR :=
dimR

d!
.

For each k ≥ 1 the kth power sum is

pk =
∑

i

yki , (2.3)

p∆ =
∏

i

p∆i
. (2.4)

In accordance with the Frobenius theorem, the linear group character χR is
an antisymmetric polynomial of the monomials p∆:

χR =
∑

|∆|=|R|

|Aut(∆)|−1Φ∆
R p∆, (2.5)

where |Aut(∆)| counts the order of the automorphism group of the Young diagram
∆ and the transition matrix Φ∆

R is the character of the symmetric group [41, 42].
We use, however, differently normalized characters ϕR(∆) so that

χR(p) =
∑

|∆|=|R|

dRϕR(∆)p∆. (2.6)

Then the characters ϕR(∆) are related by the Frobenius formula with the
Hurwitz numbers [43] as follows:

Covd(∆1, . . . ,∆k) =
∑

R

d2RϕR(∆1) . . . ϕR(∆k)δ|R|,d. (2.7)

Now we extend the definition of Hurwitz numbers valid in the degree 0 case
and in case the ramification conditions ∆ satisfy |∆| 6= d.

Definition 2.1.1. ([48]) The Hurwitz numbers Covd are defined for all degrees
d ≥ 0 and all partitions ∆i by the following rules:

1. Cov0(∅, . . . , ∅) = 1, where ∅ denotes the empty partition;

2. if |∆i| > d for some i, then the Hurwitz number vanishes;

3. if |∆i| ≤ d for all i, then

Covd(∆1, . . . ,∆k) =
k∏

i=1

(
m1(λ

i)

m1(∆i)

)

Covd(λ
1, . . . , λk) (2.8)

where λi be the partition of size d obtained from ∆i by adding d− |∆i| parts
of size 1.
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Thus, we extend the definition of the symmetric group characters ϕR(∆) to
bigger diagrams R with |R| > |∆| in the following way:

ϕR([∆, 1, ..., 1
︸ ︷︷ ︸

k

]) ≡







0 for |∆|+ k > |R|
ϕR([∆, 1, . . . , 1

︸ ︷︷ ︸

|R|−|∆|

])
(

k
|R|−|∆|

)
for |∆|+ k ≤ |R| (2.9)

Here ∆ is a Young diagram that does not contain units, 1 /∈ ∆. With this
extension one can lift the requirement that all |∆i| = d in (2.7).

2.1.1 Hurwitz partition function

Let us consider the following Hurwitz numbers

Covd(λ
1, λ2|∆1...∆1

︸ ︷︷ ︸

n1

,∆2...∆2
︸ ︷︷ ︸

n2

, . . . ,∆k...∆k
︸ ︷︷ ︸

nk

), (2.10)

where λ1, λ2 are two distinguished diagrams, ∆i 6= ∆j if i 6= j and k is the highest
possible number (it is finite, because |∆| is not bigger then d due to the definition
of extended Hurwitz numbers).

Definition 2.1.2. Hurwitz partition function for Hurwitz numbers (2.10) is de-
fined as follows:

Z(p, p̄|w∆) =
∑

d

∑

λ1,λ2

∑

{ni}

Covd(λ
1, λ2|∆1...∆1

︸ ︷︷ ︸

n1

, . . . ,∆k...∆k
︸ ︷︷ ︸

nk

)pλ1 p̄λ2

wn1

∆1

n1!
. . .

wnk

∆k

nk!

(2.11)

Then using formulas (2.6) and (2.7) we immediately get the following propo-
sition.

Proposition 2.1.3. Hurwitz partition function is equal to

Z(p, p̄|w∆) =
∑

R

χR(p)χR(p̄) exp

{
∑

∆

w∆ϕR(∆)

}

. (2.12)

Of course, it is not the only way to define generating function of Hurwitz
numbers, see [44] for other generating functions related to partitions.

There is a well-known fact about one particular example of functions Z(p, p̄|w∆).

Proposition 2.1.4. Hurwitz partition function with w∆ = 0, ∀∆, is a solution
(tau-function) of the Kadomtsev-Petviashvili hierarchy. This particular solution,
denoted by τ0(p, p̄), is called the trivial tau-function and equals

τ0(p, p̄) =
∑

R

χR(p)χR(p̄) = exp

(
∑

k

pkp̄k
k

)

. (2.13)

Usually more involved functions are given as an action of some operator on the
trivial τ -function, especially to study integrable properties. In the next paragraph
we represent the Hurwitz partition function in a such way.
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2.1.2 Cut-and-join operators

Definition 2.1.5. Cut-and-join operators Ŵ∆ are defined as differential operators
acting on the arbitrary time-variables {pk} and have characters χR(p) as their
eigenfunctions and ϕR(∆) as the corresponding eigenvalues:

Ŵ∆χR = ϕ
R

(∆)χR. (2.14)

In the simplest case of ∆ = [2] we get the standard cut-and-join operator [45]

Ŵ[2] =
1

2

∞∑

a,b=1

(

(a+ b)papb
∂

∂pa+b

+ abpa+b
∂2

∂pa∂pb

)

. (2.15)

Detailed construction of cut-and-join operators can be found in [93].

Proposition 2.1.6. As an immediate corollary of (2.14) and (2.12) we have
that the Hurwitz partition function can be obtained as an action of cut-and-join
operators on the trivial KP τ -function:

Z(p, p̄|w∆) = exp

(
∑

∆

w∆Ŵ (∆)

)

τ0(p, p̄). (2.16)

2.2 Shifted symmetric functions

Definition 2.2.1. A polynomial in N variables R1, . . . , RN is said to be a shifted
symmetric, if it becomes symmetric in the new variables ri = Ri− i, i = 1, . . . , N .

Let Λ∗(N) denote the algebra of shifted symmetric polynomials in N variables.
Define the projection Λ∗(N)→ Λ∗(N − 1) as the restriction of the polynomials in
R1, . . . , Rn to the hyperplane RN = 0.

Definition 2.2.2. The projective limit of the sequence of filtered algebras Λ∗(1)←
Λ∗(2) . . . is called the algebra of shifted symmetric functions and is denoted by
Λ∗.

The algebra Λ∗ is similar to the algebra Λ of symmetric functions. In partic-
ular, the graded algebra grΛ∗ is naturally isomorphic to Λ.

Definition 2.2.3. For any positive integer k, the corresponding shifted symmetric
power sum C(k) is defined as

CR(k) =

l(R)
∑

i=1

(

Ri − i+
1

2

)k

−
(

−i+
1

2

)k

. (2.17)

The shifted symmetric power sum C(k) will play a central role in our study.
The shift 1/2 can be replaced with any other constant, this induces a linear trans-
formation of the set of C(k), the particular choice of 1/2 being more convenient
for many purposes, including application to the large N expansion.
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Now to clarify group-theoretic sense of CR(k) let U(gl(N)) be the universal
enveloping algebra of the Lie algebra gl(N) and let Z(gl(N)) be the center of
U(gl(N)). The Harish-Chandra homomorphism establishes an isomorphism of
filtered algebras Z(gl(N)) → Λ∗(N) such that the eigenvalue of an element C ∈
Z(gl(N)) in the irreducible representation R equals the value of the corresponding
polynomial at the point R1, . . . , RN . In other words, CR(k) are eigenvalues of
Casimir operators Ĉ(k):

Ĉ(k) = CR(k)Î . (2.18)

It follows from the Schur lemma that for the Casimir operator a prime character
χR of the linear group is its eigenfunction:

Ĉ(k)χR = CR(k)χR. (2.19)

So, due to C(k) are power sums, then they form multiplicative basis of the
algebra Λ∗.

Another example of shifted symmetric function is the function ϕR(∆), arising
in the character formulas for Hurwitz numbers (2.7):

ϕ(∆) ∈ Λ∗. (2.20)

Finally, we have very important proposition.

Proposition 2.2.4. ([46]). The vector space spanned by the functions ϕ(∆) co-
incides with the algebra generated by the functions C(1), C(2), . . . .

Thus, the set {C(k)} is multiplicative basis and {ϕ(∆)} is additive basis of Λ∗.
Also it is convenient to introduce multiplicative combinations of Casimir operators
Ĉ(∆) labeled by partitions (Young diagrams) ∆ = {∆1 ≥ ∆2 ≥ · · · ≥ ∆l}:

Ĉ(∆) =

l(∆)
∏

j=1

Ĉ(δi), (2.21)

Ĉ(∆)χR = CR(∆)χR. (2.22)

Then the identification of the highest degree term of ϕ(∆) ([47, 46]) gives:

ϕ(∆) =
1

∏
∆i

C(∆) + . . . . (2.23)

where the dots stand for terms of degree lower than |∆|. The combinatorial inter-
relation between the two linear bases {C(∆)} and {ϕ(∆)} of Λ∗ is a fundamental
aspect of the algebra Λ∗. These two bases define the Gromov-Witten/Hurwitz
correspondence [48].
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2.2.1 From Hurwitz to KP partition functions and renor-
malization group

Let us comment more on the two bases, multiplicative Ck and additive ϕR(∆).
Note that the generic Hurwitz exponential spanned by the additive basis

FR = exp
{∑

∆

C∆ϕR(∆)
}

(2.24)

gives rise to the generating function which is not a KP τ -function [116]. However,
if the exponential is spanned by the linear basis (2.17),

FR = exp
{∑

k

tkCR(k)
}

(2.25)

it induces the Toda lattice τ -function [116, 50] with respect to times p
(1,2)
k .

Below we would like to informally discuss the physics side the interplay between
multiplicative and additive bases.

When dealing with these Hurwitz exponentials, one may keep in mind the
following analogy with the renormalization group (RG) and completeness of basis
[15]. Let us consider a quantum field theory partition function

Z(G;ϕ0; t) =

∫

A;ϕ0

Dφ exp

(
1

2
φGφ+ A(t;φ)

)

(2.26)

which depends on: (a) the background fields ϕ0; (b) the coupling constants t and
(c) the metric G.

The coupling constants parameterize the shape of the action

A(t;φ) =
∑

n∈B

t(n)On(φ), (2.27)

where the sum goes over some complete set B of functions On(φ), not obligatory
finite or even discrete. The space M ⊂ Fun(A) of actions parameterized by the
coupling constants t(n), is referred to as the moduli space of theories. The actions
usually take values in numbers or, more generally, in certain rings, perhaps, non-
commutative. The space Fun(A) of all functions of φ is always a ring, but this
needs not be true about the moduli space M, which could be as small a subset
as one likes. However, the interesting notion of partition function arises only if
the completeness requirement is imposed on M. There are two different degrees
of completeness, relevant for discussions of partition functions. In the first case
(strong completeness), the functions On(φ) form a linear basis in Fun(A), thenM
is essentially the same as Fun(A) itself. In the second case (weak completeness),
the functions On generate Fun(A) as a ring, i.e. an arbitrary function of φ can
be decomposed into a sum of multiplicative combinations of On’s. In the case of
strong completeness, the notion of RG is absolutely straightforward, but there is
no clear idea how RG can be formulated in the case of weak completeness (which
is more relevant for most modern considerations).
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In the strongly complete case, the non-linear (in coupling derivatives) equation,
even if occurs, can be always rewritten as a linear equation. In fact, one can
easily make a weakly complete model strongly complete, by adding all the newly
emerging operators to the action A(t;φ), then, if the product OmOn is added with
the coefficient t(m,n), one has an identity ∂2Z/∂(m)∂t(n) = ∂Z/∂t(m,n).

The core of the analogy is that ϕR(∆) (linear basis) corresponds to a strongly
complete set and CR(k) (multiplicative basis) corresponds to a weakly complete
set of operators. Moreover, as we saw one can lift the multiplicative basis to the
linear basis as the weak completeness lift to the strong completeness, i.e. via
introducing new operators (2.21).

2.3 HOMFLY polynomials

In the previous sections we defined algebra Λ∗ of shifted symmetric functions and
constructed two linear bases of Λ∗, namely {C(∆)} and {ϕ(∆)}. Here we define
HOMFLY polynomials and explain why they are shifted symmetric functions.

2.3.1 Chern-Simons approach

This approach is also reviewed in the next chapter, now we need only general
definitons. Let A be a connection on R3 taking values in some representation R
of a Lie algebra su(N), i.e., in components:

A = Aa
i (x)T a dxi, (2.28)

where T a are the generators of su(N). Let curve C in R3 gives a particular
realization of knot K. Consider the holonomy of A along C, it can be represented
as the path-ordered exponential:

Γ(C,A) = P exp

∮

C

A =

= 1 +

∮

C

Aa
i (x)T adxi +

∮

C

Aa1
i1

(x1)dx
i
1

x1∫

0

Aa2
i2

(x2)T
a1T a2dxi2 + ...(2.29)

Definition 2.3.1. The Wilson loop along a contour C is defined as the trace of
holonomy of the gauge connection A along this contour:

WR(C,A) = tr RΓ(C,A). (2.30)

Definition 2.3.2. HOMFLY polynomial for a knot K is the vacuum expectation
value of the Wilson loop in 3d Chern-Simons theory with the gauge group SU(N):

HK
R = 〈WR(K,A)〉

CS
, (2.31)

where brackets 〈. . . 〉
CS

denote averaging over all connections Aa
i (x) with Chern-

Simons weight.
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So far, expilicit form of this weight is not important as well as details of the
averaging. Their specifications we discuss in the section (3.1.1), while here it is
important only the point that the averaging is going over Ai(x).

Since holonomy Γ(C,A) is a group element of SU(N), then WR(K,A) =
tr R(U), U ∈ SU(N). Thus, we have

HK
R = 〈 tr R(U) 〉

CS
= 〈χR(U) 〉

CS
. (2.32)

HOMFLY polynomial HK
R defined in a such way for any knot K actually is

not a polynomial but a rational function, so-called non-normalized HOMFLY. To
get a polynomial one needs to normalize HR on the HOMFLY of unknot, which
is equal to the Schur function χR(p), calculated at the special point (topological
locus)

p∗k =
Ak − A−k

qk − q−k
. (2.33)

Thus, for the normalized HOMFLY polynomial we have the following definition.

Definition 2.3.3. The normalized HOMFLY polynomial is defined as follows:

HK
R =

〈χR(U) 〉
CS

χR(p∗)
. (2.34)

Below we will usually omit ”normalized” and use only ”HOMFLY polynomial”
for the normalized case.

Let us apply formula (2.6) χR(p) =
∑

|∆|=|R|

dR ϕR(∆) p∆ in this case and use

the fact CS averaging is over U only:

HK
R =

〈
∑

|∆|=|R|

dR ϕR(∆) p∆(U)
〉

CS

∑

|∆|=|R|

dR ϕR(∆) p∗∆
=

∑

|∆|=|R|

ϕR(∆)
〈

p∆(U)
〉

CS

∑

|∆|=|R|

ϕR(∆) p∗∆
(2.35)

Since ϕR(∆) ∈ Λ∗, it is clear from (2.35) that HK
R is a symmetric function in {ri}.

Moreover, the numerator is a shifted symmetric polynomial and the denominator
is a shifted symmetric polynomial. Let us rewrite the denominator as follows:

∑

|∆|=|R|

ϕR(∆) p∗∆ =
χR(p∗)

dR
(2.36)

and proof the following lemma.

Lemma 2.3.4.

χR(p∗)

dR
6= 0, while ri = 0, ∀i (2.37)
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The dimensional factor dR is given by the following formula:

dR =

|R|
∏

i<j=1

(ri − rj)

|R|
∏

i=1

(ri + |R|)!
(2.38)

Characters can be expressed through the eigenvalues of matrix X, pk = trXk by
the second Weyl determinant formula

χR[X] =
deti,j x

rj
i

deti,j x
−j
i

. (2.39)

From this formula it is obviously that χR[X] have zeros while ri = rj, ∀i 6= j,
furthermore multiplicities of zeros equal to 1 (take corresponding derivative). Ex-
panding the function det

i,j
x
mj

i as series in {ri} it is easy to prove by induction

that the lowest term has exactly such degree as Vandermonde, hence, it is pro-

portional to
|R|∏

i<j=1

(ri − rj). Therefore, (2.37) is not equal to zero at the point

(r1 = 0, r2 = 0, . . . ).
Thus, the denominator of (2.35) does not have a pole at the same point.

Therefore, HOMFLY (2.35) is a power series in {ri} (without negative degrees).
So, we get the following theorem.

Theorem 2.3.5. The normalized HOMFLY polynomial HK
R for an arbitrary knot

K and for an irreducible representation R is a shifted symmetric function.

Remark. Note that now we proved this theorem only for positive integers
values of N . To complete the proof for any real N we have to extend the LHS and
the RHS of equation (2.35) to any real N . It will be done after explicit definition
of the Chern-Simons averaging 〈. . . 〉CS in section 3.1, see remark after proposition
3.1.4.

Corollary 2.3.6. The normalized HOMFLY polynomial HK
R as a function of {ri}

can be expanded in basis {ϕ(∆)} or {C(∆)}.

In the next section we consider the case when the expansion in {ϕ(∆)} for
HOMFLY appears in a natural way.

2.4 Large N expansion

There are several important perturbative expansions of the HOMFLY polynomi-
als: the ”volume” expansion, large N expansion, loop expansion, all of them are
giving rise to very interesting invariants. We do not consider the ”volume” ex-
pansion here, because it deals with the limit |R| → ∞, and we are going to study
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the R-dependence. In this section we consider the large N expansion and discuss
its properties. In the next chapter we consider Vassiliev expansion.

In fact, the variable A is defined as an (exponentiated) ’t Hooft’s coupling
constant A = exp

(
N~

2

)
, while q = exp

(
~

2

)
, and so one can consider a limit

~→ 0, N →∞. This limit is well-defined for normalized polynomials.

Definition 2.4.1. The special polynomial σK
R(A) is defined as the limit q → 1 of

the normalized HOMFLY polynomial HK ∈MR(A, q):

σK
R(A) = lim

q→1
HK

R (A, q). (2.40)

We refer to this limit as the ’t Hooft’s planar limit or the large N limit.

In this limit HOMFLY polynomial for a link (a multi-trace operator) decom-
poses into a product of averages over its particular components. If the cabling
technique (see [102, 103] for a review and modern applications) is used to repre-
sent the colored knot as a link made from |R| copies the same knot in the fun-
damental representation, this implies the factorization of the special polynomials
[94, 104, 105, 106]. In other words we have the following proposition.

Proposition 2.4.2. The colored special polynomial depends on the irreducible
representation R as follows:

σK
R(A) =

(

σK
[1]

(A)
)|R|

. (2.41)

This is the starting point, zero order, of the large N expansion (also known as
the AMM/CEO topological recursion [107]). Note that equation (2.41) imply

σK
R(A) = exp

(

log σK
[1]

(A) · |R|
)

= exp
(

log σK
[1]

(A) · ϕR([1])
)

, (2.42)

i.e. we see that zero order of expansion is given by the exponential, which degree
is divided into two terms. First term describes dependence on the knot K, while
second term describes dependence on the representation R and is given by the
character of symmetric group. From the other hand we know from Theorem 2.3.5
and Corollary 2.3.6 that HOMFLY polynomial can be written as follows:

HK
R (q, A) = exp

(
∑

∆

wK
∆ ϕR(∆)

)

. (2.43)

Thus, based on (2.42) and (2.43) we formulate the following conjecture.

Conjecture 2.4.3. Large N expansion for HOMFLY polynomials is given by

HK
R (q, A) = exp

(
∑

∆

~|∆|+l(∆)−2 SK
∆

(
A2, ~2

)
ϕR(∆)

)

, (2.44)

SK
∆(A2, ~2) =

∑

g

σK
∆(g) ~2g,
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where the sum goes over all Young diagrams ∆, as usual, |∆| and l(∆) denote
respectively the numbers of boxes and lines in ∆,

~ = log q, (2.45)

σK
∆(n) are polynomials in A, and ϕR(∆) are the symmetric group characters.

At the moment it is important only that [93, 108]

ϕR(∆) = 0 for |∆| > |R| (2.46)

The coefficients of the ~2-series S∆(A2, ~2) are polynomials in A (the ~0 term in
S[1] would be logarithmic). They depend on a knot K and in the next chapter we
give an explicit formulas for them in terms of Vassiliev invariants.

Remark. Note that all explicitly known HOMFLY polynomials satisfy the
statement of Conjecture 2.4.3.

Remark. We should make an immediate important comment about the
expansion (2.44). Note that the first and the second orders of the expansion are
completely defined only by (anti)symmetric representations, i.e. the knowledge of
the HOMFLY polynomials in these representations fixes the first two corrections
to the special polynomial in any representation. Same thing happens for the third
order in spite of the term ϕ

R
([2, 1]). Namely, this term can be determined by

symmetric representation [3] because ϕ
[3]

([2, 1]) 6= 0.
However in the fourth order it is no longer true. The point is that ϕ

R
([3])

and ϕ
R

([1, 1, 1]) are not linearly independent for (anti)symmetric representations,
while both are present in the fourth order. Appearance of non-symmetric rep-
resentation is related with the well known fact that HOMFLY polynomials in
(anti)symmetric representations can not distinguish mutant knots, however they
do so in non-symmetric representations. For instance, the (mirrored) Conway knot
K11n34 and the (mirrored) Kinoshita-Terasaka knot K11n42 are a mutant pair
of knots with 11 intersections, so they are notoriously difficult to tell apart and
are distinguished only by the HOMFLY polynomials starting from representation
[21] (or by the framed Vassiliev invariant of type 11).

2.4.1 HOMFLY polynomial as a W -transform of the char-
acter

The most spectacular feature of the large N expansion (2.44) is that the depen-
dence on the representation R is fully encoded in the extended symmetric group
characters ϕR(∆). As we discussed above they are the eigenvalues of the general-
ized cut-and-join operators

Ŵ (∆)χR = ϕR(∆)χR (2.47)

Proposition 2.4.4. (see [112, 93, 108]) These operators form a commutative
algebra:

Ŵ (∆1)Ŵ (∆2) =
∑

∆

C∆
∆1∆2

Ŵ (∆) (2.48)
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Here we list some explicit examples of the structure constants in (2.48): a
multiplication table restricted to the case when |∆| ≤ 4.

Ŵ[1]Ŵ[1] = Ŵ[1] + 2Ŵ[1,1],

Ŵ[1]Ŵ[2] = 2Ŵ[2] + Ŵ[2,1],

Ŵ[1]Ŵ[1,1] = 2Ŵ[1,1] + 3Ŵ[1,1,1],

Ŵ[1]Ŵ[3] = 3Ŵ[3] + Ŵ[3,1],

Ŵ[1]Ŵ[2,1] = 3Ŵ[2,1] + 2Ŵ[2,1,1],

Ŵ[1]Ŵ[1,1,1] = 3Ŵ[1,1,1] + 4Ŵ[1,1,1,1],

Ŵ[1]Ŵ[4] = 4Ŵ[4] + Ŵ[4,1],

Ŵ[1]Ŵ[3,1] = 4Ŵ[3,1] + 2Ŵ[3,1,1],

Ŵ[1]Ŵ[2,2] = 4Ŵ[2,2] + Ŵ[2,2,1],

Ŵ[1]Ŵ[2,1,1] = 4Ŵ[2,1,1] + 3Ŵ[2,1,1,1],

Ŵ[1]Ŵ[1,1,1,1] = 4Ŵ[1,1,1,1] + 5Ŵ[1,1,1,1,1],

Ŵ[1,1]Ŵ[2] = Ŵ[2] + 2Ŵ[2,1] + Ŵ[2,1,1],

Ŵ[1,1]Ŵ[1,1] = Ŵ[1,1] + 6Ŵ[1,1,1] + 6Ŵ[1,1,1,1],

Ŵ[2]Ŵ[2] = Ŵ[1,1] + 3Ŵ[3] + 2Ŵ[2,2],

Ŵ[1,1]Ŵ[3] = 3Ŵ[3] + 3Ŵ[3,1] + Ŵ[3,1,1],

Ŵ[1,1]Ŵ[2,1] = 3Ŵ[2,1] + 6Ŵ[2,1,1] + Ŵ[2,1,1,1],

Ŵ[1,1]Ŵ[1,1,1] = 3Ŵ[1,1,1] + 12Ŵ[1,1,1,1] + 10Ŵ[1,1,1,1,1],

Ŵ[2]Ŵ[3] = Ŵ[3,2] + 4Ŵ[4] + 2Ŵ[2,1]

Ŵ[2]Ŵ[2,1] = 2Ŵ[2,2,1] + 3Ŵ[3,1] + 4Ŵ[2,2] + 3Ŵ[3] + 3Ŵ[1,1,1]

Ŵ[2]Ŵ[1,1,1] = Ŵ[2,1] + 2Ŵ[2,1,1] + Ŵ[2,1,1,1],

. . .

Furthermore, in accordance with (2.47) the eigenvalues ϕR(∆) satisfy the same
algebra (2.48):

ϕR(∆1)ϕR(∆2) =
∑

∆

C∆
∆1∆2

ϕR(∆) (2.49)

The structure constants in this relation do not depend on R, which is not so
obvious if one extracts ϕR(∆) from the character expansion (2.6).

Making use of the fact (2.47) and (2.44) we get the following proposition.
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Proposition 2.4.5. HOMFLY polynomial is given by the action of a W -evolution
operator on the character χR

HK
R (q, A)χR =

(

σ
�
(A)
)|R|

exp

(
∑

∆

wK
∆ Ŵ (∆)

)

χR (2.50)

where the coefficients wK
∆, yet another set of time-variables, depend on the knot

and on the ~-variable:

wK
∆ = ~|∆|+l(∆)−2 SK

∆

(
A2, ~2

)
(2.51)

2.4.2 Ooguri-Vafa partition function as a Hurwitz tau-
function

Now one can naturally consider the generating function of the non-normalized
HOMFLY polynomials and study its properties.

Definition 2.4.6. The generating function for the non-normalized HOMFLY
polynomials for a given knot in all representations is defined as follows:

ZOV (p̄|K) =
∑

R

χR(p̄)HK
R =

∑

R

χR(p̄)χR(p∗)HK
R (2.52)

This is exactly the Ooguri-Vafa partition function which was considered in [92]
in the context of duality of the Chern-Simons theory and topological string on the
resolved conifold.

With the help of formula (2.43) we immediately get the following form of the
Ooguri-Vafa partition function:

ZOV ( p̄ | K ) =
∑

R

χR(p̄)χR(p∗) exp

(
∑

∆

wK
∆ ϕR(∆)

)

. (2.53)

Recalling Proposition (2.1.3)

Z(p, p̄|w∆) =
∑

R

χR(p)χR(p̄) exp

{
∑

∆

w∆ϕR(∆)

}

, (2.54)

we see that the Ooguri-Vafa partition function of given knot K is equal to the
Hurwitz partition function with the corresponding parameters wK

∆ and pk = p∗k.
Thus, for different knots Hurwitz covers are same, while parameters wK

∆ of parti-
tion function are different. They are labeled by Young diagrams ∆ and depend
on variables q and A.

Theorem 2.4.7. Ooguri-Vafa partition function is the Hurwitz partition function
(2.12) where pk = p∗k:

ZOV ( p̄ | K ) =
∑

R

χR(p̄)χR(p∗) exp

(
∑

∆

wK
∆ ϕR(∆)

)

. (2.55)
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Note that, conversely, ZOV ( p̄ | K ) can be naturally extended to ZOV (p, p̄|K)
by replacing p∗k with arbitrary variables pk.

Corollary 2.4.8. Ooguri-Vafa partition function can be obtained as an action of
cut-and-join operators on the trivial KP τ -function:

Z(p̄|K)OV = exp

(
∑

∆

wK
∆ Ŵ (∆)

)

τK0 {p̄}, (2.56)

where

τK0 {p̄} = exp

(
∑

k

σK
�(A)

k
p∗kp̄k

)

(2.57)

We used here the celebrated Cauchy formula

∑

R

µ|R|χR{p}χR{p̄} = exp

(
∑

k

µkpkp̄k
k

)

. (2.58)

The main implication of (2.56) is that the Ooguri-Vafa partition function is
actually a Hurwitz tau-function (2.16)

τH{w|p̄} = exp

(
∑

∆

w∆Ŵ (∆)

)

τ0{p̄}, τ0{p̄} = exp

(
∑

k

ckp̄k

)

(2.59)

taken at a particular knot-dependent value of the Hurwitz time-variables w∆. In
accordance with Conjecture 2.4.3 they are equal to

wK
∆(q, A) = ~|∆|+l(∆)−2 SK

∆(A2, ~2). (2.60)

Plücker relations

Let us consider generating function of the form

τ(p̄) =
∑

R

ξRχR(p̄), (2.61)

where {p̄k} is a set of time-variables in Schur polynomial, ξR are arbitrary vari-
ables independent on {p̄}. Then τ(p̄) solves the KP hierarchy if and only if the
coefficients ξR are subject to the relation [53]:

ξ




i1...̌iµ...̌iν ...ir

j1...ǰµ...ǰν ...jr



 ξ




i1...ir

j1...jr



− ξ




i1...̌iµ...ir

j1...ǰµ...jr



 ξ




i1...̌iν ...ir

j1...ǰν ...jr



+

+ξ




i1...̌iµ...ir

j1...ǰν ...jr



 ξ




i1...̌iν ...ir

j1...ǰµ...jr



 = 0 (2.62)
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where we have put ξ




i1 . . . ir

j1 . . . jr



 = ξR for a Young diagram R, column (i, j) is

a hook diagram with row i and column j + 1, the diagram is represented by a set
of hooks. For illustrative purpose we list here some examples of Plücker relations:

ξ[22]ξ[0] − ξ[21]ξ[1] + ξ[2]ξ[11] = 0

ξ[32]ξ[0] − ξ[31]ξ[1] + ξ[3]ξ[11] = 0

ξ[221]ξ[0] − ξ[211]ξ[1] + ξ[2]ξ[111] = 0

ξ[42]ξ[0] − ξ[41]ξ[1] + ξ[4]ξ[11] = 0 (2.63)

ξ[33]ξ[0] − ξ[31]ξ[2] + ξ[3]ξ[21] = 0

ξ[321]ξ[0] − ξ[311]ξ[1] + ξ[3]ξ[111] = 0

ξ[222]ξ[0] − ξ[211]ξ[11] + ξ[21]ξ[111] = 0

ξ[2211]ξ[0] − ξ[2111]ξ[1] + ξ[2]ξ[1111] = 0

. . .

Example 2.4.9. As a particular example let us consider trivial tau-function
(2.13):

τ0(p, p̄) =
∑

R

χR(p)χR(p̄). (2.64)

Since Schur polynomials satisfy Plücker relations themselves, then in this case
ξR = χR(p) or ξR = χR(p̄). Therefore, τ0(p, p̄) is a tau-function KP in variables
{pk} and {p̄k}. Thus, considering (2.52) for the unknot we get

Zunknot

OV =
∑

R

χR(p̄)χR(p∗) = τ0(p̄). (2.65)

Example 2.4.10. Now let us consider Ooguri-Vafa partition function for arbi-
trary knot, but for large N limit. Then from formulas (2.50) and (2.52) we get
the following

ZK
OV =

∑

R

χR(p̄)χR(p∗)σK
R(A). (2.66)

Since in the large N limit σK
R(A) =

(
σK
�(A)

)|R|
, then

ZK
OV =

∑

R

χR(p̄) ξKR , (2.67)

ξKR = χR(p∗)
(
σK
�(A)

)|R|
. (2.68)

It is clear from (2.62) that Plücker relations are homogeneous in R. Therefore,

terms
(
σK
�(A)

)|R|
can be factored out from each relation, terms χR(p∗) satisfy

relations, hence, Ooguri-Vafa partition function (2.67) is a KP tau-function again,
moreover, for each knot separately.
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2.4.3 Linear vs non-linear evolution

Any system of commuting operators, like {Ŵ (∆)} can be considered as a system
of Hamiltonians of an integrable system, and matrix elements of the evolution
operator

Û{β} = exp

(
∑

∆

β∆Ŵ (∆)

)

(2.69)

generate an object deserving the name of tau-function.
However, there is a question of whether the Hamiltonians are independent. As

well known in the theory of renormalization group [113], it is important to distin-
guish between linearly and algebraically independent generators: the best possible
example is provided by the multi- and single-trace operators in matrix models. In
ordinary integrable systems evolutions are always generated by algebraically inde-
pendent (single-trace) operators, while their non-linear combinations (multi-trace
operators) are not included into the definition of the tau-function.

However, an exact relation of the evolution generated by linearly independent
operators and that generated by the algebraically independent operators, remains
an important open question in the theory of integrable hierarchies, closely related
(but not equivalent) to the problem of equivalent hierarchies [114].

In our case, the Ŵ (∆)-operators are all linearly independent, while they all
being algebraic functions of a smaller set of the Casimir operators. According to
general principles [115, 116], the Casimir evolution possesses ordinary (KP/Toda)
integrability properties, however, the way the generic (non-KP) W -evolution is
expressed through it, is unknown. Still, it is this, more general W -evolution,
which the knot polynomials are related to. At the same time, there is an important
hierarchical parameter ~l(∆) in (2.50), which measures the algebraic complexity
of Ŵ (∆), and this provides an interesting hierarchy of deviations from the KP
integrability. It is subject of the remaining paragraphs of this section.

2.4.4 Hurwitz tau-function via Casimir operators

For arbitrary values of w∆ the Hurwitz tau-function is not an ordinary KP/Toda
tau-function in variables p̄k. These latter are generated by the Casimir operators
Ĉ(k):

τKP{t|p̄} = exp

(
∑

k

tkĈ(k)

)

τ0{p̄} (2.70)

Like Ŵ (∆), the Casimir operators have the Schur functions χR{p̄} as their com-
mon eigenfunctions,

Ĉ(k)χR = CR(k)χR (2.71)

with the eigenvalues (2.17)

CR(k) =

l(R)
∑

i=1

(

(Ri − i+ 1/2)k − (−i+ 1/2)k
)

(2.72)
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The cut-and-join operators are non-linear combinations of the Casimir opera-
tors:

Ŵ (∆) =
∑

Q

u∆Q Ĉ(Q) (2.73)

where for the Young diagram Q = {q1 ≥ q2 ≥ . . . ≥ 0}

Ĉ(Q) =

l(Q)
∏

j=1

Ĉ(qi),
∂

∂tQ
=

l(Q)
∏

j=1

∂

∂tqi
(2.74)

This means that

τH{w|p̄} = exp

(
∑

∆,Q

w∆u
∆
Q

∂

∂tQ

)

τKP{t|p̄}
∣
∣
∣
∣
∣
t=0

(2.75)

The action of this operator, namely, the terms with l(Q) > 1, break the KP/Toda
integrability. Hopefully, the generic Hurwitz tau-function belongs to the class of
generalized tau-functions of [117], but this is yet an open question.

2.4.5 Large N expansion via Casimir operators

Instead of (2.56) one can express the large N expansion through the Casimir
operators:

ZK
OV {p̄} = exp

(
∑

∆

~|∆|+l(∆)−2 S̃K
∆(A|~2) Ĉ(∆)

)

τK0 {p̄} (2.76)

Here S̃∆ are new combinations of the higher special polynomials S∆, and if the
shift in (2.17) is chosen to be 1/2, they are also series in even powers of ~.

2.4.6 Large-R behavior

Since for representations of large sizes |R| the eigenvalues of the Casimir operators
grow as

CR(k) ∼ γk|R|k (2.77)

it is clear that the growth of the symmetric group characters is bounded by

ϕR(∆) . |R||∆| (2.78)

This means that in the large R limit eq.(2.76) implies for the HOMFLY polynomial
at the generic value of A:

logHR = |R|
∑

∆: l(∆)=1

(~|R|)|∆|
(

γ|∆|σ∆(A|0) +O(~)
)

(2.79)
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which means that in the double scaling limit (used, for example, in the context of
the volume conjecture [95])

z −→ 0, |R| −→ ∞, u = ~|R| fixed (2.80)

the dominant contribution to logHR proportional to |R| is provided by the sum
over the symmetric representations ∆ with single row Young diagrams, l(∆) = 1.

Ironically, this does not have direct implications for the volume conjecture
per se: the thing is that it is formulated in the case when N is fixed rather
than A, so that also A = qN −→ 1, and σ∆(A = 1|0) = 0 for the symmetric
representations (this property is implied, for example, by the reduction property
[94] ΛR(q) = Λ�(q|R|) of the Alexander polynomials for the single hook Young
diagrams R, see [91]). Therefore, the situation with the volume conjecture in the
context of the genus expansion is more tricky [91, 101]. This story has a lot to
do with the Mellin-Morton-Rozansky expansion [118] into the inverse Alexander
polynomials.

Another obvious observation is that at the same limit (2.80) dominant in (2.76)
are the terms with l(∆) = 1, i.e. linear in the Casimir operators. If all other terms
were simply thrown away, the Hurwitz tau-function would reduce to a KP one,
i.e. we would have a naive KP/Toda integrability for the Ooguri-Vafa partition
function. Unfortunately, things are again not so simple: ZOV is defined as a sum
over representations R, so that R is not a free parameter, which one can adjust
in a desired way.

One can put it differently, formulating the claim in terms of the Plücker rela-
tions: as we discussed above in order to a linear combination of the Schur functions
χR to be a KP tau-function, the coefficients of this combinations have to satisfy
the Plücker relations [119]. In the case under consideration this property (the
Plücker relations) is satisfied only asymptotically at large |R|.

2.4.7 Large N expansion for knot polynomials vs Takasaki-
Takebe expansion

Despite an exact reduction to the KP integrability fails, the appearance of the
~-variable in (2.76) remains very suggestive. In particular, it resembles the fa-
mous Takasaki-Takebe description [120] of quasiclassical expansion for the KP
tau-functions around their dispersionless approximations. That is, they demon-
strate that the quasiclassical limit is described by a nearly-diagonal matrices in
the universal Grassmannian, while contributions from every next sub-diagonal is
damped by an extra power of ~. In the free fermion representation of the KP
tau-functions this is expressed as follows:

τKP{uL(z)|tk} =

〈

exp

(
∑

k

tkHk

)

exp

(

1

~

∑

L

∮

dzuL(z) ψ̄(z)(~∂z)
Lψ(z)

)〉

(2.81)

where u1(z) parameterizes the quasiclassical (dispersionless) tau-functions, and
further terms of the loop ~-expansion are associated with uL(z), which, in their
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turn, are associated with the W (L+1) algebra. More exactly, the terms
∮
dzzn+L ψ̄(z)(~∂z)

Lψ(z) correspond to the action of W
(L+1)
n -generators on the

tau-function.
In (2.81) Hk =

∑
ψlψ

∗
l+k are the Hamiltonians in the free fermion represen-

tation giving rise to the KP flows, and the average is defined w.r.t. fermionic
vacuum, see [120, 121] for notation and details. Thus, the integral in (2.81) gives
a specific parameterization of the group element

g =: exp

(∮ ∮

U(z, z′)ψ̄(z′)ψ(z)

)

: (2.82)

parameterizing the generic KP or Toda-lattice tau-function,

τToda{t̄, t|g} =

〈

exp

(
∑

k

t̄kH̄k

)

g exp

(
∑

k

tkHk

)〉

(2.83)

and consistent with the quasiclassical expansion and formula (2.81) describes how
the KP tau-function is formed from the quasiclassical one, as a series in ~.

Actually, eq.(2.76) describes in a very similar way how the Hurwitz tau-
function is formed from the KP one as a series in ~. Instead of the sub-diagonal
terms in the universal Grassmannian, the higher corrections in ~ are associated
with the higher powers of Casimir operators. This analogy made possible by in-
troduction of the auxiliary parameter ~ in the generic Hurwitz tau-function in the
way inspired by the natural problem of the genus expansion of knot polynomials,
can shed some light on what is a substitute of the universal Grassmannian [122] as
a universal moduli space [123] of the Hurwitz tau-functions. This can also help to
develop a substitute of the free fermion representation and embed Hurwitz func-
tions into the general (so far badly studied) world of generalized tau-functions of
[117], associated with arbitrary Lie algebras.

35



Chapter 3

Kontsevich integral

In section 2.3 we introduced HOMFLY polynomials as averaging of the linear
group character, but without any specifications and explanation. In this chap-
ter we give details of HOMFLY polynomials and discuss their relations to the
Kontsevich integral. We explain relation of HOMFLY polynomials to finite type
invariants also known as Vassiliev invariants and discuss their properties.

3.1 Knot invariants from Chern-Simons theory

Recall from Section 2.3 that for a connection A on a principal SU(N)-bundle over
R3, where

A = Aa
i (x)T a dxi, (3.1)

its holonomy along contour C can be written as:

Γ(C,A) = P exp

∮

C

A =

= 1 +

∮

C

Aa
i (x)T adxi +

∮

C

Aa1
i1

(x1)dx
i
1

x1∫

0

Aa2
i2

(x2)T
a1T a2dxi2 + ... (3.2)

and the Wilson loop is defined as the trace of the holonomy:

WR(C,A) = tr RΓ(C,A). (3.3)

Also recall from Definition (2.3.2) that the HOMFLY polynomial is defined as
the average of the Wilson loop with Chern-Simons weight:

HK
R = 〈WR(K,A)〉

CS
. (3.4)

Expanding ordered exponent in a series and taking into account that averaging
is going over Aa

i (x) we get the following proposition.
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Proposition 3.1.1. The average 〈W (K) 〉 is equal to

〈WR(K) 〉 =
∞∑

n=0

∫

o(x1)<...<o(xn)

n∏

k=1

dxµk

k 〈Aa1
µ1

(x1)...A
an
µn

(xn) 〉tr R

(

T a1T a2 ...T an
)

(3.5)

Definition 3.1.2. (Wick theorem) All correlators with an even number of terms
are equal to

〈Aa1
µ1

(x1) . . . A
a2n
µ2n

(x2n) 〉 =
∑

(

(i1,j1)(i2,j2)...(in,jn)

)

∈P2n

n∏

k=1

〈Aaik
µik

(xik)A
ajk
µjk

(xik) 〉 (3.6)

where the sum runs over the set of all pairings P2n of 2n numbers; and all corre-
lators with an odd number of terms are equal to zero.

Thus, the only thing to define is the pair correlator. It is convenient (see [69])
to make the transformation to Euclidean space R×C as t = x0, z = x1 + ix2, z̄ =
x1 − ix2, introducing Aa

z = Aa
1 − iAa

2, A
a
z̄ = Aa

1 + iAa
2.

Definition 3.1.3. We define pair correlator as follows:

〈Aa
z̄(t1, z1, z̄1)A

b
n(t2, z2, z̄2) 〉 = 0, (3.7)

〈Aa
m(t1, z1, z̄1)A

b
n(t2, z2, z̄2) 〉 = ǫmn δ

ab ~

2πi

δ(t1 − t2)
z1 − z2

(3.8)

Then this definition together with the Wick theorem and Proposition 3.1.1
leads to the following proposition.

Proposition 3.1.4. ([70]) The vacuum expectation value of the Wilson loop
〈WR(K,A)〉

CS
is equal to the Kontsevich integral (3.18).

Thus, Definition 2.3.2 does lead to knot invariants.
Remark. Note that the definition (3.8) together with Wick theorem imply

that in series (3.5) at the every order 2n group factor is given by

tr R

(

T aσp(1)T aσp(2) ...T aσp(2n)

)

, where for a pairing p =
(

(i1, j1)(i2, j2)...(in, jn)
)

we

define a function σp on a set {1, 2, ..., 2n} as σp(ik) = ik, σp(jk) = ik. Then

tr R

(

T aσp(1)T aσp(2) ...T aσp(2n)

)

for any irreducible representation R is a polynomial

in N , after that we can continue it for any real N . This extends the LHS and the
RHS of the equation (2.35) to any real N . Thus, this remark completes the proof
of theorem 2.3.5 for any real N .

Remark. This definition is based on physical considerations via gauge quan-
tum field theory. By this reason we would like to give informal physical explana-
tion of the appearance knot invariants.
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3.1.1 Physical interpretation

According to [5] there exists a functional SCS(A) such that the integral aver-

aging of the Wilson loop with the weight exp
(

− 2πi
~
SCS(A)

)

has the following

remarkable property:

〈WR(K) 〉 =
1

Z

∫

DA exp
(

− 2πi

~
SCS(A)

)

WR(C,A) (3.9)

where

Z =

∫

DA exp
(

− 2πi

~
SCS(A)

)

i.e. the averaging of WR(C,A) with the weight exp
(

− 2πi
~
S(A)

)

does not depend

on the realization C of the knot in R3, but only on the topological class of equiv-
alence of the knot K (in what follows we will denote the averaging of quantity Q
with this weight by 〈Q〉) and therefore, 〈W (K) 〉 defines a knot invariant.

The distinguished Chern-Simons action giving the invariant average (3.9) has
the following form:

SCS(A) =

∫

R3

tr (A ∧ dA+
2

3
A ∧ A ∧ A) (3.10)

If we normalize the algebra generators T a as tr (T aT b) = δab and define the struc-
ture constants f of algebra g as [T a, T b] = fabc T

c then the action takes the form:

SCS(A) = ǫijk
∫

R3

dx3Aa
i ∂jA

a
k +

1

6
fabcA

a
iA

b
jA

c
k

Formula (3.9) is precisely the path integral representation of knot invariants.

Holomorphic gauge

It was explained in [70] the Kontsevich integral appears as average value 〈W (K) 〉
computed in the so called holomorphic gauge. To show it, let us start with decom-
position of three-dimensional space R3 = R×C, i.e. we pass from the coordinates
(x0, x1, x2) to (t, z, z̄) defined as:

t = x0, z = x1 + ix2, z̄ = x1 − ix2
then the for differentials and dual bases we have:

dz = dx1 + idx2, ∂z =
1

2
(∂x1 − i∂x2)

dz̄ = dx1 − idx2, ∂z̄ =
1

2
(∂x1 + i∂x2)

The gauge field takes the form:

Aa
i dx

i = Aa
0dx

0 +
1

2
Aa

zdz +
1

2
Aa

z̄dz̄
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where:
Aa

z = Aa
1 − iAa

2, Aa
z̄ = Aa

1 + iAa
2

As usual, the path integral (3.9) is not well defined due to gauge symmetry, to
make it convergent we need to fix an appropriate gauge condition. The holomor-
phic gauge is defined by the following non-covariant condition

Az̄ = 0 (3.11)

The main feature of this gauge is that the initially complex, cubical Chern-Simons
action becomes pure quadratic and the resulting path integral becomes Gaussian.
This allows one to compute it perturbatively utilizing the Wick theorem. Indeed,
in the gauge (3.11) the cubical part of the action (3.10) vanishes:

A ∧ A ∧ A|Az̄=0 = 0

and we end up with the following quadratic action1:

S(A)|Az̄=0 = i

∫

R3

dtdz̄dz ǫmnAa
m∂z̄A

a
n (3.12)

where ǫmn is antisymmetric, m,n ∈ {t, z} and ǫtz = 1. The main ingredient
of perturbation theory with action (3.12) is the gauge propagator defined as the
inverse of quadratic operator of the action:

〈Aa
m(t1, z1, z̄1)A

b
n(t2, z2, z̄2) 〉 =

(δab

~
ǫnm∂z̄

)−1

= ǫmn δ
ab ~

2πi

δ(t1 − t2)
z1 − z2

(3.13)

To find it we need the following simple fact about the operator ∂z̄:

∂−1
z̄ =

1

2πi

1

z

To prove it, we note that the inverse of Laplace operator ∆ = ∂z∂z̄ (its Green
function) on the complex plane is given by the logarithm function2

(∂z∂z̄)
−1 =

1

2πi
log(zz̄), therefore ∂−1

z̄ =
1

2πi
∂z log(zz̄) =

1

2πi

1

z

Let us show that average value 〈W (K)〉 in the holomorphic gauge coincides
with the Kontsevich integral for the knot. To proceed we introduce an orientation

1Of course, the careful gauge fixing involves the Faddeev-Popov procedure which leads to
an additional ghost term in the action. Fortunately, in the holomorphic gauge the ghost fields
are not coupled to the gauge ones and therefore can be simply integrated away from the path
integral. In this way we again arrive to the quadratic action (3.12).

2Note that ∂−1
z̄ is defined up to any holomorphic function, as they are in the kernel of ∂z̄:

∂−1
z̄ =

1

2πi

1

z
+ f(z)

The trick with the Laplacian consists of the following: we restrict the operators to the space of
functions with absolute values sufficiently fast decreasing at the infinity. The only holomorpfic
function with this property is f(z) = 0.
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on a knot in R3. Obviously, if we pick some point p on the knot then K \ p is
topologically a segment Ip = (0, 1). Orientation on Ip naturally defines orientation
on K \ p. We will denote this orientation using symbol o, for example we can
compare two points x1 and x2 as o(x1) < o(x2). The Wilson loop is given by
ordered exponent which has the following form:

W (K) = trP exp
(∮

Aa
µ(x)T adxµ

)

=

=
∞∑

n=0

∫

o(x1)<o(x2)<...<o(xn)

n∏

k=1

dxµk

k Aa1
µ1

(x1)A
a2
µ2

(x2)...A
an
µn

(xn)tr
(

T a1T a2 ...T an
)

(3.14)

For the average 〈W (K) 〉 we get:

〈W (K) 〉 =
∞∑

n=0

∫

o(x1)<...<o(xn)

n∏

k=1

dxµk

k 〈Aa1
µ1

(x1)...A
an
µn

(xn) 〉tr
(

T a1T a2 ...T an
)

As the action of the theory is quadratic, the average of n fields is not equal to
zero only for even n, moreover the Wick theorem gives:

〈Aa1
µ1

(x1) . . . A
a2n
µ2n

(x2n) 〉 =
∑

(

(i1,j1)(i2,j2)...(in,jn)

)

∈P2n

n∏

k=1

〈Aaik
µik

(xik)A
ajk
µjk

(xik) 〉(3.15)

Here the sum runs over the set of all pairings P2n of 2n numbers. An element of

this set has the form p =
(

(i1, j1)(i2, j2)...(in, jn)
)

where ik < jk and the numbers

ik, jk are all different numbers from the set {1, 2, ..., 2n}. If p ∈ P2n is a pairing
then we define a function σp on a set {1, 2, ..., 2n} as follows:

σp(ik) = ik, σp(jk) = ik

i.e. it returns a minimum number from the pair (ik, jk). The Wick theorem (3.15)
gives:

〈W (K) 〉=
∞∑

n=0

∫

o(x1)<...<o(xn)

∑

p∈P2n

n∏

k=1

dx
µik
ik

dx
µjk
jk
〈Aaik

µik
(xik)A

ajk
µjk

(xik) 〉 ×

×tr
(

T aσp(1) ...T aσp(2n)

)

From the propagator (3.13) we have:

dx
µik
ik

dx
µjk
jk
〈Aaik

µik
(xik)A

ajk
µjk

(xik) 〉 =
~

2πi
δaikajk (dzikdtjk − dzjkdtik)

δ(tik − tjk)

zik − zjk
therefore,

〈W (K) 〉 =
∞∑

n=0

~n

(2πi)n

∫

o(z1)<...<o(zn)

∑

p∈P2n

n∏

k=1

(

(dzikdtjk − dzjkdtik)
δ(tik − tjk)

zik − zjk

)

Gp
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where the pairing p =
(

(i1, j1)(i2, j2)...(in, jn)
)

and the group element

Gp = tr
(

T aσp(1)T aσp(2) ...T aσp(2n)

)

. To obtain the Kontsevich integral we need

to make the last step: integrate out the delta functions δ(tik − tjk) from the
integral. To do it, it is convenient to parametrize the knot by the ”height” t.
Such parametrization of a knot is regular at non-critical points with respect to
t direction. In the interval between the critical points we have a well defined
function z(t) which parametrizes the knot in R × C. Using this parametrization
we rewrite the integral in the form:

〈W (K) 〉 =
∞∑

n=0

~n

(2πi)n

∫

o(z1)<o(z2)<...<o(zn)

∑

p∈P2n

(−1)p↓
n∏

k=1

dtikdtjk ×

×
∑

p∈P2n

(
dzik(tik)

dtik
− dzjk(tjk)

dtjk

)
δ(tik − tjk)

zik − zjk
Gp (3.16)

Here we should be careful not to forget the sign factor (−1)p↓ where p↓ is the
number of down-oriented segments between critical points on the knot entering
the integral. On these segments the ”height” parameter and the orientation of
the knot are opposite, and therefore we should change dti → −dti which finally
results in factor (−1)p↓ . Integrating the tjk variables we obtain:

〈W (K) 〉 =
∞∑

n=0

~n

(2πi)n

∫

o(z1)<...<o(zn)

∑

p∈P2n

(−1)p↓ ×

×
n∏

k=1

dtik

(
dzik(tik)

dtik
− dzjk(tik)

dtjk

)
1

zik − zjk
Gp (3.17)

and finally, taking into account that dzjk(tik)/dtjk = dzjk(tik)/dtik we arrive to
the following expression:

〈W (K) 〉 =
∞∑

n=0

~n

(2πi)n

∫

o(z1)<...<o(zn)

∑

p∈P2n

(−1)p↓
n∧

k=1

dzik − dzjk
zik − zjk

Gp (3.18)

The last expression (3.18) is the celebrated Kontsevich integral for knot K.

3.2 Localization of Kontsevich Integral

3.2.1 Multiplicativity and braid representation

The coefficients of Kontsevich integral (3.18) are given in terms of rather sophisti-
cated meromorphic integrals. In this section we describe the localization technique
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for computing the Kontsevich integral (KI) which gives a simpler combinatorial
description of (3.18) [71]. The idea behind the localization is in fact very simple
and based on miltiplicativity and factorization of KI and uses braid representation
of knots. Let us discuss these properties separately.

Figure 3.1: Slices

Multiplicative properties

The multiplicativity of KI means that we can cut the knot in the finite number of
parts and compute KI for these parts separately, then KI for the whole knot can
be computed as an appropriate product of these separate integrals. To illustrate
the idea, let us consider knot 31 (see [80] for knot naming conventions) cut in
three parts as in Figure 3.1. The Kontsevich integral computed for separate parts
is not a number anymore but an operator of the form V ⊗Nin → V ⊗Nout where Nin

and Nout are the numbers of incoming and outgoing lines correspondingly. For
example let us cut the knot in three slices (t4, t3), (t3, t2) and (t2, t1). Then the
corresponding Kontsevich integrals are given by operators Ai1i2

j1j2
, Bj1j2k1k2

i1i2m1m2
and

Cm1m2
k1k2

where we write their indices explicitly to emphasize that they are finite-
dimensional tensors. Lower indices correspond to incoming lines and the upper
to the outgoing ones. The value of KI for the whole knot is the product of these
tensors:

〈W (K) 〉 =
∑

i1i2j1j2
k1k2m1m2

Ai1i2
j1j2

Bj1j2k1k2
i1i2m1m2

Cm1m2
k1k2

For the entire knot KI is a number and not a tensor because the knot is closed
and does not have any incoming or outgoing lines. Integral naturally brings us to
the main idea of localization: if we are able to represent the knots as a union of
finite number of some special ”fundamental” parts, then we have to compute KI
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for these parts only. In order to compute the KI, one needs to choose these special
parts in a way such that the KI for them would have the most simple form. Let
us consider the middle slice (t2, t3) in Figure 3.1. Kontsevich integral B for this
part is obviously equal to identity, this is because this piece consists of four lines
parallel to t axis and the form (dzi − dzj)/(zi − zj) in (3.18) vanishes as dz = 0
on each vertical line:

B = 1⊗4 or Bn1n2m1m2
k1k2p1p2

= δn1
k1
δn2
k2
δm1
p1
δm2
p2

Therefore, it is quite natural to use representations of knots ”maximally extended”
along the t direction, such that the KI takes the simplest possible form. Such a
representation is the well known braid representation of knots:

Proposition 3.2.1. For any knot K there is a number n (not unique) such that
it can be represented as a closure of some element (not unique) from braid group
Bn.

The meaning of this theorem is clear from the examples in Figure 3.2.

Figure 3.2: Braid representation for knots

Here the knots 41 and 52 are represented as closures of braids g2g
−1
1 g2g

−1
1 ∈ B3

and g32g1g
−1
2 g1 ∈ B3 correspondingly. The closure is the operation that connects

the top of the braid with its bottom stringwise. There exists a simple combina-
torial algorithm to construct braid representation b for any knot [80].

Figure 3.3: Factorization
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Factorization

The last thing we need is the factorization of Kontsevich integral.
Let us introduce the distance between the strings in the braid. Then the

following holds: if one can arrange the strings in the braid in a way that the
distance between two groups of them is of order of different powers of some small
parameter ǫ, then these two groups give separate contributions to the KI.

More precisely: Consider a braiding bn = bk ⊗ bn−k ∈ Bn. Let us assume that
the sizes of bk and bn−k are much less (O(ǫ)) than the distance between them.
Then

KI(bn) = KI(bk)⊗KI(bn−k) +O(ǫ)

If bn = bk ⊗ bn−k then the first k strings of the braid do not cross the rest n − k
strings. For example in Figure 3.3 the first three strings and the last two form
two separate braids. If widths of these braids are ( ∼ ǫ) much less the distance
between them (∼ 1), then the factorization theorem implies that the KI is the
tensor product of two KI’s for each separate braid.

3.2.2 Choice of associators placement

Now, with the help of these properties we are ready to describe the representation
of a given knot for which KI takes the simplest form. Let knot K be represented
by closure of some braid b ∈ Bn, then we arrange the strings of the braid such
that the distance between k-th and k+1-th strings is given by ǫ−k where ǫ is some
small formal parameter, Figure 3.4:

Figure 3.4: R-matrix with associators

i.e. the distance between adjacent strings increases with the number of string.
Suppose, that at some slice (t4, t1) the braid b has the crossing of k-th and k+1-th
strings (Figure 3.4). This crossing can be represented as a result of taking three
consecutive steps:
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Figure 3.5: R-matrix

1. In slice (t4, t3) the k-th string goes closer to the string k+ 1, at the distance
ǫ−k+1.

2. In slice (t3, t2) two strings are crossed.

3. In slice (t2, t1) the k-th string goes to its initial position at the distance ǫ−k

from k + 1 string.

If we arrange the strings in this way, then the distance between k-th and k+ 1-th
strings at the interval (t3, t2) is much less then the distance to any other string.
Therefore, the factorization for KI gives the following contribution for slice (t3, t2):

KI(t3,t2) = R±1
k,k+1 = 11 ⊗ ...1k−1 ⊗R±1 ⊗ 1k+2...⊗ 1n

Figure 3.6: Associator

where R±1 is the so-called R-Matrix, i.e. KI computed for the neighborhood
of the crossing point which corresponds to the configuration of strings in Figure
3.5; the sign depends on the orientation of the crossing. Similarly, at slices (t4, t3)
and (t2, t1) the distance between first and k-th string is much less the the distance
to the other n− k strings. Therefore, the factorization for the slice (t4, t3) gives:

KI(t4,t3) = Ψ1,2,...,k+1 = Φk+1 ⊗ 1⊗n−k−1, KI(t2,t1) = Ψ−1
1,2,...,k+1 = Φ−1

k ⊗ 1⊗n−k−1

where Φ±1
k+1 is the so-called associator, given by KI for the configuration of strings

represented in Figure 3.6. In summary, we see that the crossing of k-th and k+ 1-
th strings in braid representation of the knot gives the contribution to the KI of
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the form of operator R±
k,k+1 conjugated by operator Ψ1,2,...,k+1:

KI(t4,t1) = Ψ1,2,...,k+1Rk,k+1 Ψ−1
1,2,...,k+1

Denote this tensor by Xk:

Xk = Ψ1,2,...,k+1Rk,k+1 Ψ−1
1,2,...,k+1. (3.19)

3.2.3 Formulas for R-Matrices and associators

Explicit expressions for operators R and Ψ can be easily derived from computa-
tions of KI for the corresponding pieces of the braid representation of a knot. The
KI for neighborhood of a crossing point gives:

R = exp
( ~

2πi
Ω
)

, Ω = T a ⊗ T a (3.20)

The calculation of Φ3 is explained in details in [81], to describe it let us define:

Ω12 = Ω⊗ 1, Ω23 = 1⊗ Ω

then we have:

Φ3 = 1⊗3 +
∞∑

k=2

( ~

2πi

)k∑

m≥0

∑

p>0q>0
|p|+|q|=k

l(p)=l(q)=m

(−1)|q| τ(p1, q1, ...pm, qm)×

∑

l(r)=l(s)=m

0≤r≤p, 0≤s≦q

(−1)|r|

(
m∏

i=1

(pi
ri

)(qi
si

)
)

Ω
|s|
23 Ωp1−r1

12 Ωq1−s1
23 ...Ωpm−rm

12 Ωqm−sm
23 Ω

|r|
12 (3.21)

Where p = (p1, p2, ..., pm) is a vector with positive integer components. The length
of the vector l(p) = m and |p| =

∑
pi. When we write p > q, it is understood

as pi > qi for all i, and p > 0 means that pi > 0 for all i. The coefficients
τ(p1, q1, ...pm, qm) are expressed through multiple zeta functions as follows:

τ(p1, q1, ...pm, qm) = ζ(1, ..., 1
︸ ︷︷ ︸

p1−1

, q1 + 1, 1, ..., 1
︸ ︷︷ ︸

p2−1

, q2 + 1, ..., qn + 1)

such that for example τ(1, 2) = ζ(3) and τ(2, 1) = ζ(1, 2). The multiple zeta
functions are defined as:

ζ(m1,m2, ...,mn) =
∑

0<k1<k2<...<kn

k−m1
1 k−m2

2 ...k−mn
n
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Note, that τ(p1, q1, ...pm, qm) = τ(qm, pm, ...q1, p1) so that, e.g. ζ(1, 2) = ζ(2) and
ζ(1, 3) = ζ(4). To define the associators Φn for n > 3 we need the coproduct oper-
ator ∆ : U(g)→ U⊗2(g). Its action on the generators of the universal enveloping
algebra U(g) is defined as follows:

∆(T a) = 1⊗ T a + T a ⊗ 1

∆(T aT b) = 1⊗ T aT b + T a ⊗ T b + T b ⊗ T a + T aT b ⊗ 1

....

(3.22)

With the help of this operator the higher associators are expressed through Φ3

with the help of the following recursive formula:

Φn+1 = ∆⊗ 1⊗(n−1) Φn (3.23)

Formula (3.23) basically means that, e.g. to obtain Φ4 from Φ3 one needs to make
the following substitutions in the formula for Φ3:

1⊗ T a ⊗ T a −→ 1⊗ 1⊗ T a ⊗ T a, (3.24)

T a ⊗ 1⊗ T a −→ 1⊗ T a ⊗ T a ⊗ T a + T a ⊗ 1⊗ T a ⊗ T a, (3.25)

T aT b ⊗ T a ⊗ T b −→ 1⊗ T aT b ⊗ T a ⊗ T b + T a ⊗ T b ⊗ T a ⊗ T b + (3.26)

+ T b ⊗ T a ⊗ T a ⊗ T b + T aT b ⊗ 1⊗ T a ⊗ T b (3.27)

. . .

and so on. That is, one has to symmetrize the first tensor component of each term
of Φ3 over the first and the second tensor components of Φ4.

One can derive (3.23) directly from Kontsevich integral consequentially for
n = 3, 4, ..., but it is simpler to note that in Figure 3.4 the first k − 1 strings
should give equivalent contribution to associator Φk+1 because the distance be-
tween first and k − 1-th strings is much less then the ”width of associator” (the
distance between the first and the k+1-th string). Therefore, operator ∆ and the
recursive procedure (3.23) have a clear physical meaning of ”symmetrization” of
contribution of the first k − 1 strings to associator Φk+1.

3.2.4 Caps

To complete our consideration we should also find contributions to KI coming from
the bottom and the top of the braid’s closure. Fortunately, we do not need new
operators as these contributions can be represented through already introduced
operators Ψk.

Indeed, to make a closure of braid b ∈ Bn we have to add to the braid n straight
strings, such that the total number of strings is 2n and then connect (n − k)-th
string with the n + k-th one for all k at the top and the bottom, for example as
in Figure 3.7. In what follows we again imply that the distance between our 2n
strings increases with the number of string, such that the distance between k-th
and k+ 1-th ones is of order ǫ−k. Consider the following procedure, first the n-th
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Figure 3.7: Cap

string goes closer to n+ 1 up to the distance ǫ−n (slice (t1, t2) in Figure 3.7 ) then
we connect them by a ”hat” of width ǫ−n. The factorization theorem gives the
contribution Ψ−1

1,2...,n+1 for this slice (due to the hat contribution being trivial). In
the slice (t2, t3) we have 2n− 2 strings and we can iterate the procedure one more
time which will give the contribution of the form Ψ−1

1,2,...n−1,n+2. Finally, the whole
top closure gives:

Tn = Ψ−1
1,2,2n−1Ψ

−1
1,2,...n−1,n+2...Ψ

−1
1,2,...n+1. (3.28)

It is assumed here that the indices corresponding to strings which terminate in a
cap are contracted.

Analogously for the bottom of the closure:

Bn = Ψ1,2,2n−1Ψ1,2,...,n−1,n+2...Ψ1,2,...,n+1 (3.29)

Again, one should contract all the indices corresponding to caps.

3.2.5 General combinatorial formula for Kontsevich inte-
gral

Now we know the contributions of all parts of the braid closure. In order to
write down the answer, let us introduce the symbol

∏→ representing the ordered
product.

The answer is then as follows.
Let knot K be represented as the closure of a braid b ∈ Bn:

b =
→∏

k

gk
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then the KI for the knot is given by the following expression3:

KI
( →∏

k

bik

)

= tr
(

Tn
→∏

k

XikBn

)

(3.30)

where the tensors Tn, Xi and Bn are given by formulas (3.28), (3.19) and (3.29)
correspondingly.

3.2.6 Technique of computation

In order to finally compute the coefficients of Kontsevich integral, one needs to
take the following steps.

First of all, note that basic elements of formula (3.30) are contractions T aT a

where one T a stands in some tensor component and the other in another one. Note
that one can represent it as chord drawn on the knot from the place on the knot
corresponding to the first T a to the place corresponding to the second T a. Then,
in order to compute the given order of (3.30), one has to consider all of the terms
in (3.30) of that order, then for every such term draw a chord corresponding to
every contracted pair of generators and untie the knot obtaining a chord diagram.

More precisely, let n be a given order in ~ which we want to compute. In
this order, Kontsevich integral is a linear combination of group factors Gp =

tr
(

T σp(1)T σp(2)...T σp(2n)
)

corresponding to pairings p =
(

(i1, j1)(i2, j2)...(in, jn)
)

.

One may associate with every such group factor a chord diagram, which cor-
responds to the particular pairing in a straightforward way. For example, there is
the following correspondance:

tr
(
T aT bT cT aT cT b

)
↔

Thus, Kontsevich integral in order n is a linear combination of chord diagrams
with n chords.

In these terms, formal formula (3.30) may be expressed as the following col-
lection of steps.

Let there be associators Ψ1, . . . ,Ψk and R-matrices R1, . . . , Rl assigned to a
given knot K. Then, to obtain Kontsevich integral in order n one has to take the
sum over all ordered partitions of n into k + l parts:

n = φ1 + · · ·+ φk + r1 + · · ·+ rl, (3.31)

where all φi and ri are nonnegative integers.
The R-matrix part is easier, for every R-matrix Ri we just insert ri consequen-

tial chords (propagators) in the corresponding place on the knot, and take the
coefficient 1/ri!.

3One should understand that the symbol ”tr ” in (3.30) stands for the contraction of the
tensors Xi, Bn and Tn corresponding to their position in the braid.
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The associator part is trickier, there we have several summands due to the
form of formula (3.21) for the associator, and to the fact that we should include
also braids to the left, as it is done in formula (3.23). For every Ψi therefore
there is a whole sum of ways to insert φi chords in the knot, with corresponding
coefficients. That means that in a given order there are several terms of this order
in expression (3.21). This number then multiplies even further when one takes
into account (3.23).

Then, for given partition n = φ1 + · · ·+φk + r1 + · · ·+ rl, we take the product
of all described above parts corresponding to R-matrices and associators. After
expanding the brackets, we obtain a sum of several ways to insert n chords in the
knot with corresponding coefficients.

The only thing left is to untie the knot into a circle thus obtaining a linear
combination of chord diagrams with n chords. Algorithmically, it can be done in
a very straightforward way just by assigning an ordinal number to each part of
the knot which belongs to an associator or to an R-matrix.

Then we sum over all partitions of n and obtain the coefficients of order n in
Kontsevich integral.

3.2.7 KI combinatorially for figure-eight knot

In this paragraph we discuss the combinatorial technique of computing KI coeffi-
cients in more detail for the case of the figure-eight knot.

Let K be the figure-eight knot, i.e. knot 41. Braid representation for K with
associators in correct positions is given in Figure 3.8a. There are 8 associators
Ψ1, . . . ,Ψ8 and 4 R-matrices R1, . . . , R4. Corresponding sections of the knot are
enclosed in thin dotted and dashed boxes.

Let us describe the computation of KI coefficients of order 2.
Recall that first of all one has to choose an integer partition of n = 2 into 12

parts (corresponding to R-matrices and associators). Note that there is no linear
in T aT a term in (3.21), so all partitions n = φ1 + · · ·+ φ8 + r1 + · · ·+ r4 with any
of φi equal to 1 give vanishing contributions.

Then we will have 4 partitions where both chords are taken from one of the
R-matrices. One of the cases is drawn in Figure 3.9d, where the propagators, i.e.
chords, are represented by red dashed lines (the thicker ones). Further on, we will
have 6 partitions where the chords are taken from two different R-matrices (Figure
3.10e) and 8 partitions where both chords are taken from one of the associators.
This latter case is more complicated than the former ones, where we had only one
term of a given order, according to (3.20). In the case of associators, however, we
will have two complications: first, formula (3.21) has already several terms of a
given order and, second, the number of terms is further multiplied in accordance
with (3.23) if we have lines to the left, as in the cases of Ψ2 and Ψ7. Actually, for
the order 2 we have just two relevant terms in (3.21), the one drawn in Figure 3.8b
and the one which differs from it by interchanging their endpoints on the central
string. Formula (3.23) implies that one should also include the same terms but
with the leftmost endpoint shifted to the leftmost string, like in Figure 3.9c.
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Figure 3.8: Propagators
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Figure 3.9: Propagators
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Figure 3.10: Propagators
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The terms in KI corresponding to the choice of chords as in Figures 3.8-3.10
are as follows:

1. Figure 3.8b:
1

24

(
T aT aT bT b

)
,

2. Figure 3.9c:
1

24

(
T aT aT bT b

)
,

3. Figure 3.9d:
1

2

(
T aT bT aT b

)
,

4. Figure 3.10e:
(
T aT bT aT b

)
,

5. Figure 3.10f: i
ζ(3)

192π3
(T a1T a2T a3T a4T a5T a6T a6T a7T a2T a5T a1T a7T a3T a4),

The final answer in order 2 for knot K is

KI2 (K41) =
11

12
tr
(
T aT aT bT b

)
− 11

12
tr
(
T aT bT aT b

)
(3.32)

In orders higher than 2 the mixed terms where some chords are taken from
associators and some from R-matrices start to appear. An example of such a
chord configuration for order 7 is given in Figure 3.10f.

3.3 From Kontsevich integral to Vassiliev invari-

ants

First of all let us sketchy outline the appearance of Vassiliev invariants in our
scheme. Obviously, the mean value 〈W (K) 〉 has the following structure:

〈WR(C,A) 〉 = 〈
∞∑

n=0

∮

dx1

∫

dx2...

∫

dxnA
a1(x1)...A

an(xn) tr (T a1 ...T an) 〉 =

=
∞∑

n=0

∮

dx1

∫

dx2...

∫

dxn〈Aa1(x1)...A
an(xn) 〉 tr (T a1 ...T an)=

=
∞∑

n=0

Nn∑

m=1

Vn,mGn,m (3.33)

From this expansion we see that the information about the knot and the gauge
group enter 〈W (K) 〉 separately. The information about the embedding of knot
into R3 is encoded in the integrals of the form:

Vn,m ∼
∮

dx1

∫

dx2...

∫

dxn〈Aa1(x1)A
a2(x2)...A

an(xn) 〉

and the information about the gauge group and representation enter the answer
as the ”group factors”:

Gn,m ∼ tr (T a1T a2 ...T an)
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Gn,m are the group factors called chord diagrams with n chords. Chord diagrams
with n chords form a vector space of dimension Nn. Despite 〈W (K)〉 being a
knot invariant, the numbers Vn,m are not invariants. This is because the group
elements Gn,m are not independent, and the coefficients Vn,m are invariants only
up to relations among Gn,m. In order to pass to the the knot invariants we need to
choose in the space of group elements some basis of independent group elements
and expand the sum (3.33) in this basis. Finally as it was proven in [79] we arrive
to the following infinite product formula:

〈WR(K) 〉 =
∞∏

n=1

Nn∏

m=1

exp(~nVn,mGn,m) (3.34)

where Nn is the number of independent group elements of degree n and Vn,m
are the coefficients of independent group factors Gn,m which are nothing but the
Vassiliev invariants of degree n. Note that the number of independent Vassiliev
invariants of degree n is given by the number of independent group elements Nn.
We list the first several values of Nn :

n 1 2 3 4 5 6

Nn 1 1 1 2 3 5
(3.35)

Formula (3.34) along with table (3.35) means that the expansion of 〈W (K) 〉 up
to order 3 is the following one:

〈W (K)〉 = 1 + ~V1,1G1,1 + ~2
( 1

2!
V2
1,1G21,1 + V2,1G2,1

)

+

+~3
( 1

3!
V3
1,1G31,1 + V1,1V2,1G1,1G2,1 + V3,1G3,1

)

+ ...

Note, that here the relations between group factors are taken into account. QFT
provides several techniques for computing coefficients of ~-expansion for 〈W (K) 〉,
each technique leads to some formulae for Vassiliev invariants. The straightfor-
ward way is to use the perturbation theory for covariant Lorentz gauge ∂iAi = 0.
Standard quantization technique for Lorentz gauge considered in [63] leads to the
following Feynman integral formulae for the first two Vassiliev invariants (integrals
are taken along the curve representing the knot):

V1,1 =

∮

C

dxi1

∫ x1

0

dxj2ǫijk
(x1 − x2)k
|x1 − x2|3

(3.36)

V2,1 =
1

2

∮

C

dxi1

x1∫

0

dxj2

x2∫

0

dxk3

x3∫

0

dxm4 ǫpjqǫkis
(x4 − x2)q
|x4 − x2|3

(x3 − x1)s
|x3 − x1|3

+

−1

8

∮

C

dxi1

x1∫

0

dxj2

x2∫

0

dxk3

x3∫

0

dxm4 ǫ
prsǫipmǫjrnǫkst

(x4 − x1)m
|x4 − x1|3

(x4 − x2)n
|x4 − x2|3

(x4 − x3)t
|x4 − x3|3

(3.37)
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The first integral here is the so called Gauss integral for self linking number. In
general, perturbation theory in Lorentz gauge provides the theory of Vassiliev
invariants in terms of rather sophisticated 3d ”generalized Gauss integrals”.

3.3.1 Chern-Simons definition of Vassiliev invariants

Let us represent the Kontsevich integral (3.18) in the following way:

HK
R =

∞∑

n=0

~n
dim(Hn)∑

m=1

Vn,mGn,m. (3.38)

Here, Vk,m are some rational coefficients depending on the knot and Gk,m are
the group factors called the chord diagrams with n chords. The chord diagrams
with n chords form the vector space Hn. The coefficients Vn,m are not knot
invariants because the chord diagrams are not independent, and to express this
sum through invariants we have to choose some basis in Hn. The dimensions of
Hn are summarized in the table:

n 1 2 3 4 5 6

dim(Hn) 1 1 1 3 4 9
(3.39)

In order to pass to Vassiliev invariants we have to choose some basis in the space
of chord diagrams. We do it following [68], refer to that paper for details. The
so-called trivalent diagrams are introduced in a way represented for orders two
and three in Figure 3.11. Group-theoretical rules for graphical representation
of chords and trivalent diagrams are presented in Figure 3.12. For the general
definition of trivalent diagrams refer to [68], see also [70].

Figure 3.11: Relation between trivalent diagrams and chord diagrams up to order
3
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Figure 3.12: Group-theoretical rules

Let us explain the definition of trivalent diagrams on the first relation from
Figure 3.11:

T aT bT cT dδacδbd = T aT bT aT b =

T aT bT cT dδadδbc = T aT bT bT a = = T aT bT aT b − T aT bT aT b + T aT bT bT a =

T aT bT aT b − T aT b
(
T aT b − T bT a

)
= T aT bT aT b − T aT b

[
T aT b

]
= T aT bT aT b −

fabcT aT bT c = −

Figure 3.13: Trivalent diagrams

In Figure 3.13 one can find a collection of trivalent diagrams that form the
so-called canonical basis {Gij} of Hn up to order six. In the fundamental repre-
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sentation their explicit expressions are given in the following table:

G2,1 = −1
4
N2 + 1

4
G6,1 = − 1

64
N6 + 3

64
N4 − 3

64
N2 + 1

64

G3,1 = −1
8
N3 + 1

8
N G6,2 = 1

64
N6 − 1

32
N4 + 1

64
N2

G4,1 = 1
16
N4 − 1

8
N2 + 1

16
G6,3 = 1

64
N6 − 1

32
N4 + 1

64
N2

G4,2 = − 1
16
N4 + 1

16
N2 G6,4 = − 1

64
N6 + 3

64
N2 − 1

32

G4,3 = 1
16
N4 + 1

16
N2 − 1

8
G6,5 = − 1

64
N6 + 1

64
N4

G5,1 = 1
32
N5 − 1

16
N3 + 1

32
N G6,6 = 1

64
N6 + 1

64
N4 − 1

32
N2

G5,2 = − 1
32
N5 + 1

32
N3 G6,7 = 1

64
N6 − 1

64
N2

G5,3 = 1
32
N5 + 1

32
N3 − 1

16
N G6,8 = 1

64
N6 + 1

64
N2 − 1

32

G5,4 = 1
32
N5 − 1

32
N G6,9 = 3

64
N4 − 5

64
N2 + 1

32

(3.40)

Using this basis we rewrite (3.38) through invariants:

HK
R =

∞∑

n=0

~n
dim(Hn)∑

m=1

Vn,m Gn,m (3.41)

Here Vij are the so called finite-type or Vassiliev invariants of knots. They depend
only on the knot under consideration but not on the group and its representation.

Now let us introduce the primitive Vassiliev invariants. It is a well known
fact that the expansion of logarithm of any correlator in any QFT contains only
connected Feynman diagrams (for more details about this situation in the Chern-
Simons perturbation theory see [79]). This fact immediately leads to the following
summation of

HK
R =

∞∏

n=0

Nn∏

m=1

exp
(
~nVc

n,m Gcn,m
)
, (3.42)

where Gc are connected diagrams, Vc are primitive Vassiliev invariants. Here Nn

is dimension of the space of connected chord diagrams (or equivalently the space
of primitive Vassiliev invariants). The dimensions of these spaces up to order 6
are given in the following table:

n 1 2 3 4 5 6

Nn 1 1 1 2 3 5
(3.43)

The meaning of the expression (3.42) is that Vi,j in (3.41) are not independent.
In fact only those coefficients Vij are independent, for which the corresponding
diagram Gij is connected. Comparing ~ expansion of (3.42) with (3.41) we, for
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example, find:

V4,1 = 1
2
V2
2,1

V5,1 = V2,1V3,1,
V6,1 = 1

6
V3
2,1,

V6,2 = 1
2
V2
3,1, (3.44)

V6,3 = V2,1V4,2,
V6,4 = V2,1V4,3.

And finally: The Vassiliev invariants form a graded ring freely generated by prim-
itive invariants.

3.4 Loop expansion of knot polynomials

Now we study relation between large N expansion

HK
R (q, A) = exp

(
∑

∆

~|∆|+l(∆)−2 SK
∆

(
A2, ~2

)
ϕR(∆)

)

, (3.45)

SK
∆(A2, ~2) =

∑

g

σK
∆(g;A) ~2g,

and loop expansion

HK
R =

∞∏

n=0

Nn∏

m=1

exp
(
~nVc

n,m Gcn,m
)
. (3.46)

Also we get explicit expression for higher special polynomials σK
∆(g;A) through

Vassiliev invariants.
Let us reduce the latter series to the form of the former series. For this purpose

one needs to introduce variable α = N~ and separate it in the expansion (3.46).
Variable ~ is given explicitly there, while variable N is included in Gcn,m implicitly.
Actually, Gcn,m is a polynomial in N of order not higher than n, i.e. we have

Gcn,m =
n∑

k=0

c
(R)
n,m,kN

k,

c
(R)
n,m,k =

∑

|∆|+l(∆)−2≤n−k

cn,m,k(∆)ϕ
R

(∆), (3.47)

where cn,m,k(∆) ∈ Q. Indeed, let us consider coefficient of the expansion (3.46)

in front of ~n:
Nn∑

m=1

Vc
n,m Gcn,m. Factors Gcn,m do not depend on a knot K and Vc

n,m

are linearly independent. Let us take Nn different knots such that the following
matrix is not degenerate4:

(

VKj

n,i

)

i,j=1, ...,Nn

. (3.48)

4Index c in Vc we omit below in this paragraph for brevity.
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Then
∑

j

VKi
n,j Gcn,j is equal to the corresponding coefficient of the expansion (3.45)

in front of ~n, which is a linear combination of ϕR(∆), denoted by fR(n)K:

∑

j

VKi
n,j Gcn,j = fR(n)Ki . (3.49)

Since the matrix
(

VKi
n,j

)

is not degenerate, then we can inverse it and obtain

expression for Gcn,j in terms of ϕR(∆) what is given in formula (3.47). Particular
Young diagrams using in the summation (3.47) are determined by formula (3.45)
(Conjecture 2.4.3) of the explicit form of large N expansion.

Therefore, HOMFLY polynomial takes the form

HK
R = exp

(
∞∑

n=0

Nn∑

m=1

~nVc
n,m Gcn,m

)

=

= exp






∑

∆

ϕR(∆)
∞∑

n=0

~u
∑

k≥2−u
k≥0

αk

Nu+k∑

m=1

cu+k,m,k(∆)Vc
u+k,m




 (3.50)

u := 2n+ |∆|+ l(∆)− 2 (3.51)

Remark. Note that 2 − u > 0 only for u = 0 ⇔ n = 0,∆ = [1] and u =
1 ⇔ n = 0,∆ = [2]. For all other n and ∆ value 2 − u ≤ 0, hence, we can omit
condition k ≥ 2− u keeping in mind the above note.

So, we have

HK
R = exp

(
∑

∆

ϕR(∆)
∞∑

g=0

~uσK
∆(g;A)

)

= (3.52)

= exp

(
∑

∆

ϕR(∆)
∞∑

n=0

~u
∑

k≥0

αk

Nu+k∑

m=1

cu+k,m,k(∆)Vc
u+k,m

)

(3.53)

Comparison of two last formulas (large N expansion and Vassiliev expansion)
leads to the folowing theorem modulo conjecture 2.4.3.

Theorem 3.4.1. (Conditional theorem) Higher special polynomials are related to
Vassiliev invarants as follows:

σK
∆(g;A) =

∑

k≥0

αk

Nu+k∑

m=1

cu+k,m,k(∆)Vc
u+k,m (3.54)

Note that the above remark from this point of view just means that σK
[1](0) ∼

α2 +O(α3) and σK
[2](0) ∼ α +O(α2).
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3.4.1 Polynomial relations for Vassiliev invariants

Let us carefully investigate formula (3.54). First, in the left hand side there is a
polynomial in variable A = exp(α), and in the right hand side there is a power
series in α. In order to satisfy this equality (”polynomial” = ”power series”), there
should be relations on the coefficients of the power series, i.e. on the Vassiliev
invariants. Here we consider only the case ∆ = �, n = 0. It corresponds to
HOMFLY polynomial for q = 1.

HK
� (q = 1, A) = exp

(
σK
�(0;A)

)
(3.55)

Then taking into account that for this case u = 2n + |∆| + l(∆) − 2 = 0 from
equation (3.54) we have the following:

HK
� (q = 1, A) = exp

(
σK
�(0;A)

)
= exp

(
∑

k≥0

αk

Nk∑

m=1

ck,m,k(�)Vc
k,m

)

= exp

(
∑

k≥0

αkvk

)

=
∞∑

k=0

αk

k!
Vk, (3.56)

where vk and Vk are defined by this formula. It is clear that Vk are some linear
combinations of non-primitive Vassiliev invariants of order k.

Second, we arrange all knots by the number of strands r in the braid BK
corresponding to the minimum braid representation. Then with the help of MFW
inequality bounding the braid index by the A-breadth of the HOMFLY polynomial
[2] we have the following:

HKr
� (q, A) =

r−1∑

i=0

xKi (q)Ay(K)+2i = Ay(K)

r−1∑

i=0

xKi (q)A2i, (3.57)

where xKi (q) are polynomials in q depending on the knot K, y(K) is a numerical
function depending on the knot, which is nothing but the writhe. In other words,
HOMFLY has r terms (not more) as a polynomial in A. It is clear that the same
is true for special polynomial σK

�(A), when q = 1. Considering this we can write
condition (3.56) as follows:

x1A
y1 + x2A

y2 + · · ·+ xrA
yr = V0 + V1α + V2

α2

2!
+ V3

α3

3!
+ . . . (3.58)

Let us substitute A = exp(α), expand the LHS in α and introduce the following
vectors

~ek =
(
1, yk, y

2
k, y

3
k, . . .

)
(3.59)

~V = (V0, V1, V2, V3, . . . ) (3.60)

Then condition (3.58) means that vector ~V lies in the linear span of the vectors
~e1, . . . , ~er:

~V ∈< ~e1, . . . , ~er > (3.61)
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Let us introduce shifted vector ~V <i> as

~V <i> = (Vi, Vi+1, Vi+2, Vi+3, . . . ) (3.62)

Any shifted vector ~V <i> also lies in the linear span of the vectors ~e1, . . . , ~er.
Let us consider r + 1 shifted vectors {~V <i1>, ~V <i2>, . . . , ~V <ir>, ~V <ir+1>}

and write them in the matrix form:

M =














Vi1 Vi1+1 Vi1+2 Vi1+3 . . .

Vi2 Vi2+1 Vi2+2 Vi2+3 . . .

. . .

Vir Vir+1 Vir+2 Vir+3 . . .

Vir+1 Vir+1+1 Vir+1+2 Vir+1+3 . . .














(3.63)

Since ~V <i1>, ~V <i2>, . . . , ~V <ir>, ~V <ir+1> ∈< ~e1, . . . , ~er >, then any new ma-
trix, consisted from any r+1 columns of the matrix (3.63), is a degenerate. Thus,
we have proved the following theorem.

Theorem 3.4.2. Vassiliev invariants of the knot K with r strands in the minimum
braid representation satisfy the following relation

detMj1...jr+1 = 0, (3.64)

where M is defined by (3.63) and a set of numbers {j1, . . . , jr+1} denotes column
numbers, every number jk takes value from 1 to ∞.

Let us give example of such particular matrix. Let {i1 = 0, i2 = 1, i3 =
2, . . . , ir+1 = r} and {j1 = 1, j2 = 2, j3 = 3, . . . , jr+1 = r + 1}, then from (3.63)
and (3.64) we get the following relation

det
1≤i,j≤r+1

Vr+j−i = 0 (3.65)

3.4.2 Numerical results for invariants up to order 6 and
families of knots

Now one can use computational technique from the previous section 3.1.1 and
results from subsection 3.3.1 to calculate the Kontsevich integral. In this way
we calculate Vassiliev invariants up to level 6 inclusive for knots with number of
self-intersections up to 14 inclusive. These results are available in [80]. Here we
list just a few examples:
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V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4
31 4 −8 8 62

3
10
3 −32 −176

3 −32
3 −8

41 −4 0 8 34
3

14
3 0 0 0 0

51 12 −40 72 174 26 −480 −2512
3 −448

3 −104
52 8 −24 32 268

3
44
3 −192 −368 −64 −56

61 −8 8 32 116
3

52
3 −64 −304

3 −64
3 −24

62 −4 8 8 34
3

38
3 −32 −208

3 −64
3 −24

63 4 0 8 14
3 −14

3 0 0 0 0

71 24 −112 288 684 100 −2688 −13888
3 −2464

3 −560
72 12 −48 72 222 34 −576 −1152 −192 −176
73 20 88 200 1510

3
242
3 1760 9520

3
1696
3 440

74 16 64 128 1016
3

184
3 1024 5824

3
1024
3 320

75 16 −64 128 968
3

136
3 −1024 −5440

3 −928
3 −224

76 4 −16 8 158
3

34
3 −64 −544

3 −64
3 −48

77 −4 −8 8 −14
3 −10

3 32 112
3

64
3 −8

(3.66)

V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
31

32
3 32 248

3
40
3

5071
30

58
15

3062
45

17
18

271
30

41 −32
3 0 −136

3 −56
3 −1231

30
142
15 −1742

45
79
18 −271

30

51 288 800 2088 312 41151
10

2494
15

7634
5

43
2

1951
10

52
256
3 288 2144

3
352
3

22951
15 −28

5
29764
45

137
9

1351
15

61 −256
3 32 −928

3 −416
3 −2791

15
884
15 −10084

45
343
9 −871

15

62 −32
3 32 −136

3 −152
3

2129
30

662
15 −1862

45
463
18 −751

30

63
32
3 0 56

3 −56
3

511
30

418
15 −1858

45
65
18 −449

30

71 2304 6272 16416 2400 160231
5

21548
15

58148
5 163 7351

5

72 288 1152 2664 408 60431
10 −826

15
38942
15

497
6

3471
10

73
4000
3 3872 30200

3
4840
3

121855
6 382 73862

9
2437
18

6559
6

74
2048
3 2048 16256

3
2944
3

168062
15 −1176

5
233288

45
898
9

11102
15

75
2048
3 2048 15488

3
2176
3

156422
15

5912
15

170888
45

730
9

7142
15

76
32
3 128 632

3
136
3

19471
30 −474

5
17342
45

401
18

1711
30

77 −32
3 32 56

3
40
3

2849
30 −218

15
3418
45 −161

18
449
30

(3.67)
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There is also one more technique to compute these invariants. It was suggested
by Alvarez and Labastida in [82]. We use their technique to check our results.

Willerton’s fish and families of knots

On 18 Vassiliev invariant up to order six

V2,1,V3,1,V4,1,V4,2,V4,3,V5,1,V5,2,V5,3,V5,4,V6,1,V6,2,V6,3,V6,4,V6,5,
V6,6,V6,7,V6,8,V6,9

there are 6 relations

V4,1 =1/2V2
2,1, (3.68)

V5,1 =V2,1V3,1, (3.69)

V6,1 =
1

6
V3
2,1, (3.70)

V6,2 =1/2V2
3,1, (3.71)

V6,3 =V2,1V4,2, (3.72)

V6,4 =V2,1V4,3. (3.73)

Remaining 12 Vassiliev invariants are generally thought to be independent.
However, if one plots V3,1 against V2,1 for all knots of given number of cross-

ings, one obtains filled region with form resembling fish, which was discovered
by Willerton in [83] and is hence called Willerton’s fish, see Figure 3.14. Note,
that for prime knots, which are actually plotted in Figure 3.14 coordinates are
”quantized” – they are integer multiples of V ′s for the trefoil. For higher Vas-
siliev invariants in our chosen basis it is not the case. See Appendix 5.1 where
we present some new even more peculiar figures representing relations between
Vassiliev invariants.

The boundaries of the fish can be fitted with cubic polynomial. This suggests,
that there are some additional relations on Vassiliev invarants.

Conjecture 3.4.3. (Willerton’s conjecture [83]) There is a condition for any knot
K on Vassiliev invariants of the following form:
cubic in V2,1(K) ≤ (V3,1(K))2 ≤ another cubic in V2,1(K)

We suggest that inequalities appear, because Willerton did not consider Vas-
siliev invariants of order 6, they were unknown at that time. Thus, now it is
natural to search for relations on Vassiliev invariants up to 6 order, i.e. to search
for vanishing polynomials in V of order up to 6. If such polynomials can be found
it would mean that Vassiliev invariants are not independent. However, it turned
out, that there are no such vanishing expressions.

Nevertheless, the following expression vanishes for all knots up to 6 crossings
and for quite big number of knots with more crossings, for example, for 92 out of
165 knots with 10 crossings:

F1 =
16V2,1

15
+ 2V2

2,1 + V3
2,1 − 6V3,1 − 6V2,1V3,1 − 3V2

3,1 − 4V4,2 − 6V2,1V4,2+
+ 4V4,3 + 6V2,1V4,3 + 6V5,2 − 6V5,3 − 6V5,4 + 6V6,5 − 6V6,6 − 6V6,7 − 6V6,8. (3.74)
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Figure 3.14: Willerton’s fish, i.e. V3,1 plotted against V2,1 for knots with up to 14
crossings

This is very untrivial, because the general polynomial of order 6 has 17 free coeffi-
cients, while polynomial (3.74) vanishes on 92 knots among solely the knots with
10 crossings!

Another numerical experimental fact is that the value of (3.74) is generally
close to the value of writhe number (see section 3.5 for the definition), and tends
to coincide with it, but not for all knots.

3.5 Temporal gauge

In section 3.1 we declare that from Chern-Simons theory in Lorentz gauge one can
get integral representations for Vassiliev invariants (3.36, 3.37). Despite beautiful
the integral representation for Vassiliev invariants is too complicated to compute
and it is difficult to use them for investigations. From the other side, the knots are
simple combinatorial objects and it is not surprisingly that simpler combinatorial
formulas for the invariants should exist. In this section we are going to define
combinatorial objects related to the knots called writhe numbers. It will be shown
that writhe numbers can be derived from the Wilson loop operator in temporal
gauge. However it turns out that it is impossible to express Vassiliev invariants
through such writhe numbers. Because of this reason we define colored writhe
numbers in a combinatorial way by analogy with the combinatorial definition of
writhe numbers, because temporal gauge consideration does not lead us to them.
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Then it is possible to express Vassiliev invariants through colored writhe number
up to order 4 at least (this fact was found in [65, 66]).

3.5.1 Writhe numbers from temporal gauge

Consider Chern-Simons action in the temporal gauge A0 = 0. Then the propaga-
tor takes the following form:

〈Aa
0(x), Ab

µ(y)〉 = 0, µ = 0, 1, 2, (3.75)

〈Aa
µ(x), Ab

ν(y)〉 =
1

2
εµνδabδ(x1 − y1)δ(x2 − y2)sign(x0 − y0), µ = 0, 1, 2. (3.76)

Now let us consider the vacuum expectation value of the Wilson loop operator
(3.33):

〈W (K)〉 =
∞∑

n=0

∮

dx1

∫

dx2...

∫

dxn〈Aa1(x1)A
a2(x2)...A

a3(xn)〉tr (T a1T a2 ...T an).

(3.77)
Taking into account the propagators (3.75), (3.76) consider term of vev with n = 2
in details:
∫

dxµ

∫

dyν〈A(xµ)A(xν))〉 =
1

2

∫ ∫

dxµdyνε
µνδabδ(x1−y1)δ(x2−y2)sign(x0−y0).

(3.78)
Let us parametrize the knot by a parameter t running from 0 to 1, then we can
rewrite the last integral in the following form:

∫ 1

0

∫ 1

0

dt1dt2

(
dx1
dt1

dy2
dt2
− dx2
dt1

dy1
dt2

)

δ (x1(t1)− y1(t2)) δ (x2(t1)− y2(t2)) · (3.79)

·sign (x0(t1)− y0(t2)) (3.80)

To perform the integration we need to solve the following equations:







x1(t1)− y1(t2) = 0

x2(t1)− y2(t2) = 0

(3.81)

The solutions of these equations are the self-intersection points of two-dimensional
curve (x1(t), x2(t)) which is the projection of the knot c on the plane (x1, x2). Let
us denote by tk1 < tk2 the values of the parameter t in the intersection points,
then the two-dimensional delta-function in the integral can be represented in the
following form:

δ(x1(t1)−y1(t2)) δ(x2(t1)−y2(t2)) =
∑

k

(
δ(t1 − tk1)δ(t2 − tk2) + δ(t1 − tk2)δ(t2 − tk1)

)

|dx1
dt1

dy2
dt2
− dx2
dt1

dy1
dt2
|
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Substituting this expression into (3.81) and integrating over t1 and t2 we arrive
to the following simple expression:

∫

dxµ

∫

dyν〈A(xµ)A(xν))〉 =
∑

k

ǫk, (3.82)

where the quantities ǫk are the ”sings” of the intersection points. They can take
values ±1 and are defined in the following way:

ǫk =

dx1
dt1

(tk1)
dy2
dt2

(tk2)− dx2
dt1

(tk1)
dy1
dt2

(tk2)

|dx1
dt1

(tk1)
dy2
dt2

(tk2)− dx2
dt1

(tk1)
dy1
dt2

(tk2)|
sign(x0(t

k
1)− y0(tk2)) (3.83)

Thus, Chern-Simons theory in temporal gauge naturally leads us to the following
notion.

Definition 3.5.1. Writhe number for oriented knot w(K) is defined as the sum
of the signs of all the crossings:

w1(K) :=
∑

p

ε(p), (3.84)

where the crossing signs are +1 or −1 as indicated in Figure 3.15.

Figure 3.15: Crossing signs

Writhe numbers can be represented graphically, if one gives another equivalent
definition. Let us choose the origin on the knot and the orientation. When we
are going along the knot, we meet every crossing point twice. We enumerate
all crossing points by increasing sequence of the natural numbers. Then every
crossing point is defined by the pair of numbers (i1, i2), i1 6= i2 (see, for example,
Figure 3.16). So, we get the following different definition of the writhe number.

Figure 3.16: Trefoil
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Definition 3.5.2. Writhe number for oriented knot w(K) is defined as the sum
of the crossing signs:

w1(K) :=
∑

i1<i2

εi1i2 . (3.85)

Now we can depict the writhe number by a chord diagram, which is called the
Gauss diagram:

w1(K) =
∑

i1<i2

εi1i2 ≡ (3.86)

Diagram language is more comfortable and illustrative for higher writhe numbers,
definitions of which we give below.

It turns out that the second Vassiliev invariant cannot be expressed through
the just defined writhe number. Hence, we modify the definition of the writhe
number. First, we introduce two types of the crossing signs ε.

Definition 3.5.3.

εoui1i2 =







εi1i2 , if the strand which led to the point (i1i2) is over another strand

0, otherwise

(3.87)

εuoi1i2 =







εi1i2 , if the strand which led to the point (i1i2) is under another strand

0, otherwise

(3.88)

Thus based on the last definition we can define two types of colored writhe
numbers.

Definition 3.5.4. Colored writhe numbers for oriented knot are defined as the
following sums

wou
1 :=

∑

i1<i2

εoui1i2 (3.89)

wuo
1 :=

∑

i1<i2

εuoi1i2 (3.90)

Colored writhe numbers can be denoted by the following diagrams:

wou
1 ≡ , wuo

1 ≡ (3.91)

Remark 3.5.5. We always read chord diagrams clockwise from the top. It is
equivalent to introducing an origin point O slightly to the right from the top.

68



3.5.2 Higher writhe numbers

Any definition from previous subsection can be generalized in a straightforward
way. However because the colored writhe numbers are more general objects than
the ordinary ones, we generalize only the last definition (3.5.4).

Definition 3.5.6. Higher colored writhe number of n-th order for oriented knot
w(K) is the sum

wσ1..σn
n (K) :=

∑

i1<···<i2n

εσ1
im1 im2

. . . εσn
im2n−1 im2n

, (3.92)

where σ1, . . . , σn take values ou or uo.

In graphical approach indices m1, ...,m2n correspond to the points on the circle,
εimk

iml
corresponds to a line between pointsmk andml (see the following example).

Example 3.5.7. For order 2 we have only two diagrams:

∑

i1<i2<i3<i4

εi1i2εi3i4 = (3.93)

∑

i1<i2<i3<i4

εi1i3εi2i4 = (3.94)

3.5.3 Relations between higher writhe numbers

Higher colored writhe numbers are not independent. There are linear relations
between them. These relations complicate the study of Vassiliev invariants be-
cause often it is difficult to reduce answers and understand their combinatorial
context. For illustrative purpose we list here relations for orders 2, 3 and 4.

Order 2

There is the only relation:

= (3.95)

Order 3

There are already 22 relations:
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− + = 0 (3.96)

− + = 0 (3.97)

− + = 0 (3.98)

− + = 0 (3.99)

− − + = 0 (3.100)

− − + = 0 (3.101)

− − + = 0 (3.102)

− + + − = 0 (3.103)

− − + = 0 (3.104)

− − + = 0 (3.105)

− − + = 0 (3.106)

− + + − = 0 (3.107)

− + + − = 0 (3.108)

− + − + = 0 (3.109)

− + − = 0 (3.110)

− + + − − + = 0 (3.111)

− − + − + = 0 (3.112)

− − + − + = 0 (3.113)

− − + + − = 0 (3.114)

− − + + − = 0 (3.115)

− 2 + + − −

−2 + 2 − + = 0 (3.116)

+ − 2 + − −

−2 + 2 − + = 0 (3.117)
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Let us note that all of the relations do not mix diagrams with different topology.

Order 4

There are 195 relations and we do not list all of them. We just note that in order
4 relations do not mix connected and disconnected diagrams and diagrams with
different topology.

3.5.4 Vassiliev invariants via higher writhe numbers

With the help of higher colored writhe numbers one can give very easy and elegant
combinatorial formulas for Vassiliev invariants.

Numerical experimental data

From our numerical results (mentioned in section 3.4.2) we find some useful prop-
erties of Vassiliev invariants. All of the results in this subsection are purely ex-
perimental ones.

• Vassiliev invariants are can always be represented by sums of colored writhes
with symmetric chord diagrams with respect to change of all over-crossings
to under-crossings and under-crossings to over-crossings. It follows from the
fact that Vassiliev invariants do not change under reflection. We call such
combinations reflective. Therefore it is convenient to introduce reflective
combinations of writhes as follows:

= +

= +

• Vassiliev invariants can always be represented by sums of writhes with con-
nected chord diagrams. For example, the first diagram in the figure below
is connected while the second is not:

,
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• Vassiliev invariants are always equal to the sum of writhes whose chord
diagrams are irreducible, which means that we can not stick together any
two chords in the diagram. Here we implicitly assume that to the left of the
top point of the diagram we have the basepoint. Chords separated by the
basepoint cannot be stuck together. For example, the first diagram in the
figure below is reducible and the second one is irreducible:

,

This property actually means that Vassiliev invariants of order k do not mix
with invariants of order less than k.

Order 2

One confusing fact related to writhes is their dependence on the choice of the
base point on the knot projection. To construct invariants we should use only
invariant combination of writhes that do not depend on such a choice. Invariant
combination of writhes with two chords are the following ones:

C1 = C2 =

C3 = + C4 = +

The second Vassiliev invariant should be some linear combination of these four
expressions. We find:

V2,1 = (3.118)

Note that due to the presence of the basepoint this diagram is irreducible.
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Order 3

Invariant combinations of irreducible and connected writhes are the following ones:

C1 = + +

C2 = + +

C3 = + +

C4 = + +

C5 = + +

C6 =

We found the following interesting property of the first five combinations:

C1 = C2 = C3 = C4 = C5 (3.119)

For the third Vassiliev invariant we get:

V3,1 =
1

2
C1 + C6 (3.120)

73



Chapter 4

Structures of superpolynomials

4.1 General idea

It was discovered that different knot homology theories related to polynomial in-
variants. The basic idea is to define a doubly graded homology theory Homi,j(K)
and construct the polynomial invariant of a knot K as its graded Euler character-
istic with respect to one of the gradings. Such theory is called a categorification
of the knot polynomial invariant.

In a such approach the Jones polynomial J is the graded Euler characteristic
of the doubly graded Khovanov homology HomKh

i,j (K);

J(q) =
∑

i,j

(−1)jqi dimHomKh

i,j (K), (4.1)

where the grading i is called the Jones grading, and j is called the homological
grading. Originally HKh

i,j were constructed combinatorially in terms of skein theory
[32].

There is a generalization of Khovanov’s theory [33] to categorified sl(N) poly-
nomial invariant HN(q), which is given by graded Euler characteristic of their
homology HKRN

i,j(K):

HN(q) =
∑

i,j

(−1)jqi dim HKRN
i,j(K). (4.2)

This theory is known as Khovanov-Rozansky homology. For N = 2 this theory is
equivalent to the Khovanov homology.

Also there is a categorification of the Alexander polynomial. It is the knot
Floer homology HFKj(K; i), introduced in [34, 35]:

∆(q) =
∑

i,j

(−1)jqi dim HFKj(K; i). (4.3)

All polynomials above are related, because they can be derived from a single
polynomial invariant known as the HOMFLY polynomial. Although all knot
homology theories above categorify polynomial invariants of knots in the same
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class, their constructions are very different. However in [24] there was formulated
the goal to unify all doubly graded homology theories (the Khovanov-Rozansky
sl(N) homology, knot Floer homology and their various deformations) into a single
theory.

Unfortunately, such unified theory is not constructed yet. Instead, there is
explicit the description of its properties, which is very detailed, powerful and
instructive and give many non-trivial predictions, which can be verified.

4.2 DAHA-superpolynomials

As we discussed above at the present moment there is no definition of superpoly-
nomials for arbitrary knots and representations. However there are well-defined
polynomials for torus knots, which regards as superpolynomials. There are some
different approaches to construct them: via homology and differentials [24], via
q, t-Catalan numbers [28], via refined Chern-Simons theory [78], via generalized
Rosso-Jones formula [77] and via double affine Hecke algebra (DAHA) of type AN

[26, 27]. All of them give same answers. However for definitions we use approach
via DAHA following [27]. Actually therein superpolynomials are defined by the
whole non-trivial procedure and in the rest of this section we briefly introduce it.

First, we have to recall the definition of DAHA and its polynomial represen-
tation. Second, with the help of SL2(Z) action and evaluation map we define
superpolynomials.

4.2.1 DAHA

Let us consider formal parameters q and t, and define field of fractions

K = C(q, t) (4.4)

of the ring of constants C[q±1, t±1]. Also we consider the algebra of polynomials

VN = K[x1, . . . , xN ]. (4.5)

Denoting ni(R) the multiplicity of the part i, let us define the following scalar
product for power sums pk =

∑

i x
k
i

〈pR|pR′〉 = δRR′

∏

k

nk!knk

∏

i

1− qRi

1− tRi
, (4.6)

which can be explicitly realized by

〈f(pk)|g(pk)〉 = f

(

k
1− qk
1− tk

∂

∂pk

)

g(pk)

∣
∣
∣
∣
pk=0

(4.7)

Introduce the monomial symmetric functions mR = Sym(xR1
1 , xR2

2 , . . .). Then
the Macdonald polynomials are the polynomials given by the following expansion:

MR = mR +
∑

R′<R

cRR′mR′ (4.8)
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with coefficients cRR defined by the orthogonality condition

〈MR|MR′〉 = 0 if R 6= R′ (4.9)

Now we define DAHA of type AN , introduced in [84], following [27].

Definition 4.2.1. The algebra HN is defined over K by generators T±1
i for i ∈

{1, ..., N − 1}, and Xj
±1, Yj

±1 for j ∈ {1, ..., N}, under the following relations:

(Ti + t)(Ti − t−1) = 0,

TiTi+1Ti = Ti+1TiTi+1,

[Ti, Tk] = 0 for |i− k| > 1,

TiXiTi = Xi+1,

Ti
−1YiTi

−1 = Yi+1,

[Ti, Xk] = 0, (4.10)

[Ti, Yk] = 0 for |i− k| > 1,

[Xj, Xk] = 0,

[Yj, Yk] = 0,

Y1X1 . . . XN = qX1 . . . XNY1,

X1
−1Y2 = Y2X1

−1T1
−2.

4.2.2 Polynomial representation

Now we consider the polynomial representation for HN :

HN −→ End(VN). (4.11)

Then Ti are given by the Demazure-Lusztig operators:

Ti = t−1si + (t−1 − t) si − 1

xi/xi+1 − 1
(4.12)

where si = (i, i+1) are the simple reflections, and elementsXi act as multiplication
by xi.

Let us introduce the operators ∂i and γ on VN as follows:

∂i(f) = f(x1, . . . , xi−1, q
2xi, xi+1, . . . xN) (4.13)

γ = sN−1 · · · s1∂1. (4.14)

Then setting

Yi = Ti · · ·TN−1γT
−1
1 · · ·T−1

i , (4.15)

we have that the operators Ti, Xj, Yj on VN satisfy the relations of the DAHA.
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4.2.3 DAHA-superpolynomials

Let w = si1 · · · sil is a reduced decomposition of w ∈ SN and Tw = Ti1 · · ·Til . If
we define

e =
1

[N ]−t !

∑

w∈SN

t−l(w) · Tw, (4.16)

where [N ]−t ! = [1]−t · · · [N ]−t , [N ]−t =
1− t−2N

1− t−2
, then we get e2 = e. Thus, we

constructed the complete idempotent e ∈ HN ([86]). With its help we define
spherical DAHA SHN as the subalgebra of HN :

SHN = e ·HN · e. (4.17)

Let

τ+ =




1 1

0 1



 , τ− =




1 0

1 1



 (4.18)

denote the generators of SL2(Z). These operators acts on DAHA generators as
follows1 (see [85, 86]):

τ+(Xi) = Xi,

τ+(Ti) = Ti,

τ+(Yi) = YiXi(T
−1
i−1 · · ·T−1

i )(T−1
i · · ·T−1

i−1) (4.19)

τ−(Yi) = Yi,

τ−(Ti) = Ti,

τ−(Xi) = XiYi(Ti−1 · · ·Ti)(Ti · · ·Ti−1)

They extend to automorphisms of HN and preserve SHN .
For any pair of coprime integers (n,m), let us choose a matrix:

γn,m =




x n

y m



 ∈ SL2(Z) (4.20)

such that γn,m(0, 1) = (n,m).
Let us introduce the elements

Mn,m
R,N := γn,m

(

e ·MR(Y1, ..., YN) · e
)

. (4.21)

Then we have the following proposition.

Proposition 4.2.2. (see [85, 86]) The elementsMn,m
R,N do not depend on the choice

of x and y in γn,m (4.20).

1Under notation Ti · · ·Ti−1 we imply cyclic order Ti · · ·TN−1 · T1 · · ·Ti−1.
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The last ingridient we needed is the evaluation map εN : VN −→ K, defined
as follows:

εN(f) = f(tN−1, tN−2, . . . , 1). (4.22)

Now, following [26], we define the DAHA-superpolynomials :

Pn,m
R,N(q, t) = εN(Mn,m

R,N · 1) ∈ K. (4.23)

Here we apply the element Mn,m
R,N to 1 ∈ VN in the polynomial representation.

The following two propositions were conjectured in [26] and proved in [27].

Proposition 4.2.3. (Stabilization). There exists a polynomial PT [n,m]
R (A, q, t),

which we refer to as non-normalized superpolynomial, such that:

Pn,m
R,N(q, t) = PT [n,m]

R (A = tN , q, t) (4.24)

Definition 4.2.4. Normalized DAHA-superpolynomials for torus knots T [n,m]
are defined as follows:

P
T [n,m]
R (A, q, t) :=

PT [n,m]
R (A, q, t)

PT [1,0]
R (A, q, t)

(4.25)

Then the following proposition takes place.

Proposition 4.2.5. (Duality). The normalized superpolynomials P for trans-
posed diagrams are related by the equation

P
T [n,m]
Rt (A, q, t) = (−q)(1−n)|R|P

T [n,m]
R (A, t−1, q−1). (4.26)

4.3 Superpolynomials and their symmetric prop-

erties

In section (2.3) we considered symmetric properties of HOMFLY polynomials and
proved that they belong to the algebra of shifted symmetric functions  L. In this
section we address same question to the superpolynomials.

4.3.1 Symmetric properties

Recall that in order to prove that the HOMFLY polynomials are shifted symmetric
functions we used three facts among other things (see section 2.3.1):

1. the HOMFLY polynomials are averages of the characters GL(N) (Schur
polynomials):

HK
R = 〈χR

(

p(U)
)

〉; (4.27)
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2. expansion of Schur polynomials in terms of symmetric group characters

〈χR

(

p(U)
)

〉 = 〈
∑

|∆|=|R|

dR ϕR(∆) p∆(U) 〉; (4.28)

3. and the averaging is over U

〈
∑

|∆|=|R|

dR ϕR(∆) p∆ 〉 =
∑

|∆|=|R|

dR ϕR(∆)〈 p∆ 〉. (4.29)

Thus, from the fact that Schur polynomial is antisymmetric function in variables
ri = Ri− i it follows that HK

R is antisymmetric too. Therefore, normalized HOM-
FLY polynomial, which is the ratio of HK

R and χR(p∗), is the symmetric function
in ri.

In the case of superpolynomials we deal with the Macdonald polynomials in-
stead of the Schur polynomials as we discussed in the previous section. Actually,
the matrix γn,m in (4.21) acts only on power sums:

pNk := Y k
1 + ...+ Y k

N . (4.30)

Since the Macdonald polynomial MR,N is polynomial in the power sums pNk , then
the Mn,m

R,N are polynomials in γn,m(pNk ).
Futhermore, to compute εN(f) for any symmetric function f one can expand

it in terms of the pk and apply the next formula from [42]:

εN(pk) =
1− tkN
1− tk =

1− Ak

1− tk , (4.31)

where we capture the large N -dependence in the new variable A = tN .
According to (4.21) and (4.23) the non-normalized superpolynomial

PT [n,m]
R (A, q, t) is defined as

PT [n,m]
R (A, q, t) = εN (γn,m (e ·MR (Y1, ..., YN) · e) · 1) , (4.32)

and we can rewrite it as

PT [n,m]
R (A, q, t) = 〈MR · 1 〉n,m (4.33)

Then introducing MR =
∑

∆

KR(∆) p∆, KR(∆) ∈ K we get

PT [n,m]
R (A, q, t) =

∑

∆

KR(∆)〈 p∆ · 1 〉n,m. (4.34)

Thus, symmetric properties of superpolynomials are determined by symmetric
properties of Macdonald polynomials, namely by KR(∆).

Let us note that PT [1,0]
R (A, q, t) is equal to the Macdonald polynomial at the

special points p∗k = Ak−A−k

tk−t−k , which explicitly given as follows [78]:

M∗
R =

β−1
∏

k=0

∏

1≤j<i≤N

qRj−Riti−jqk − qRi−Rj tj−iq−k

ti−jqk − tj−iq−k
(4.35)
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If we substitute t = qβ, where β is a new independent variable, then from this
formula it obviously follows that they are antisymmetric in {µi = Ri− βi} rather
than {ri = Ri−i}. However at the present moment we do not manage to prove that
the Macdonald polynomial at the general points p̄k are antisymmetric functions in
µi. If we had formulas for Macdonald polynomials similar to determinant formulas
for Schur polynomials, which explicitly demonstrate antisymmetric property in ri,
then we could determine Macdonald’s symmetry properties. However we do not
have such formulas, the closest analogy is given in [87, 88]. Anyway, we hope

that points p∗k = Ak−A−k

tk−t−k are general enough and that Macdonald polynomials
in general points p̄k are antisymmetric functions in µi. Then it would imply a
normalized superpolynomial is symmetric function in µi that in turn would be
meaningful argument that normalized superpolynomial belongs to the algebra of
β-shifted symmetric functions, i.e. algebra of polynomials symmetric in variables
µi = Ri − βi. Let us give the second evidence to support this conjecture.

The Macdonald polynomials are uniquely defined as the common system of
eigenfunctions of the commuting set of operators generalizing the Casimir opera-
tors, which are nothing but the Ruijsenaars Hamiltonians [57]:

Ĥk =
∑

i1<...<ik

1

∆(x)
P̂i1 ...P̂ik∆(x) Q̂i1 ...Q̂ik , [Ĥk, Ĥm] = 0 (4.36)

where the Vandermonde determinant ∆(x) = detij x
N−j
i =

∏N
i<j(xi − xj) and the

shift operators are defined as:

P̂k = qβxk∂xk , Q̂k = q(1−β)xk∂xk (4.37)

The spectrum of (4.36) can be defined from the eigenvalues of spectral operator:

(
n∑

k=0

zkĤk

)

MR(x1, ..., xn) =
∞∏

i=1

(1 + z qRi+β(n−i))MR(x1, ..., xn) (4.38)

Thus, the eigenvalues are symmetric in µi = Ri− βi. This appeals to construct a
full set of symmetric polynomials in {µi = Ri − βi}. Unfortunately, in this case
there is no a counterpart of the Schur-Weyl duality known, and the Macdonald
polynomials are not simple characters. Hence, there is no a distinguished set of
symmetric functions of µi = Ri − βi, and we construct the full sets of symmetric
polynomials in {µi} in two ways in order to present the superpolynomial as a
deformed Hurwitz exponential.

Thus, based on the above arguments we formulate the following conjecture.

Conjecture 4.3.1. Normalized DAHA-superpolynomials belong to the algebra of
functions symmetric in variables µi = Ri − βi.

This conjecture is also supported by explicit calculations, when we consider
genus expansion and loop expansion below. However, first, we give two multi-
plicative bases for that algebra.
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4.3.2 Beta-deformation of Casimir operators

As the first basis one can consider corresponding power sums, which can be treated
as a naive β-deformation of the Casimirs eigenvalues:

Cβ
R(k) =

∑

i

(

Ri − βi+
1

2

)k

−
(

−βi+
1

2

)k

. (4.39)

It is clear that for β = 1 they are equal to (2.17). They are also clearly sym-
metric in Ri − βi. Hence, one can use them to construct a full set of symmetric
polynomials in analogy with formula (2.21):

Ĉβ(∆) =

l(∆)
∏

j=1

Ĉβ(δi). (4.40)

4.3.3 Operators T̂k

Since we are interested in a basis symmetric in µi = Ri − βi, it is allowed not to
depend on q at all. Indeed, there are ”intermediate” symmetric functions, which
generalize the Schur functions but still solve the (trigonometric) Calogero-Moser
system. These are the Jack polynomials JR [42]. They are obtained from the
Macdonald polynomials just in the limit of q → 1. Since the Jack polynomials
are defined to be eigenvalues of the trigonometric Calogero-Moser Hamiltonians
Ĥi, one can consider their generating function:

(

u|R|
∞∑

i=0

u−i Ĥi

)

JR = T (u)JR (4.41)

the generating function for the eigenvalues being

T (u) =
∏

(i,j)∈λ

(

u− (i− 1)β + (j − 1)
)

(4.42)

Then, it is natural to define the operators T̂ β
k such that

T̂ β
k JR = T β

k (R)JR,

T β
k (R) =

∑

i,j

(

(j − 1)− β(i− 1)
)k−1

, (4.43)

These operators play an important role in the theory of Jack polynomials, the
latter being somewhat mysteriously connected [58] with the AGT relations [59].
It is possible to express Cβ

R(k) through linear combinations of T β
k (R).

The full set of functions is then given in complete analogy with (2.21):

T β
∆(R) :=

l(∆)
∏

i=1

T β
∆i

(R). (4.44)

For explicit calculations we used exactly this basis. Thus, one can write the most
general form of the β-deformation of the Hurwitz exponential for the superpoly-
nomial.
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Conjecture 4.3.2. The dependence on the irreducible representation R of the
DAHA-superpolynomials is given as follows:

PK
R = exp

{∑

∆

ωK
∆ · T β

∆(R)
}

(4.45)

Particular values of constants ω∆ can be dealt with by particular perturbative
expansions, similarly to the HOMFLY case. We again consider the two particular
examples: the genus expansion (4.46) and the loop expansion (4.50,4.61).

4.3.4 Large N expansion for superpolynomials

The large N expansion of the superpolynomial is given by ~ → 0 , N → ∞,
~N = const (i.e. A = eN~/2 is an arbitrary variable), β is arbitrary and it is
a straightforward generalization of the Hurwitz exponential at β = 1, that is,
ϕR(∆)→ T β

R(∆) and S(~2, A)→ S(~2, β, A).

Conjecture 4.3.3. Large N expansion for DAHA-superpolynomials is equal to
the following

PK
R (q, t, A) = exp

{∑

∆

~|∆|+l(∆)−2 · SK
∆(~2, β, A) · T β

∆(R)
}

, (4.46)

where

SK
∆(~2, β, A) =

∞∑

n=0

~2nsK∆(n) (4.47)

This conjecture is supported by the following three reasons. First, making
computational experiments with particular superpolynomials (see Appendix 5.3),
we see that their expansions are very similar to the expansions of HOMFLY poly-
nomials (2.44). By this reason we suggest that the definition of superpolynomial
expansion has same structure. Second, we think that the dependence from repre-
sentation R should be described by some nice understandable functions. Actually,
they should be β-deformed counterparts of symmetric group characters, but at the
present moment we do not know such deformation. In the previous subsections,
based on symmetric properties of Macdonald polynomials, we gave our arguments
why we consider exactly T β

∆(R) as a full basis. Third, we think that in the order
n of the expansion contributes only diagrams satisfing condition

|∆|+ l(∆) ≤ n+ 2.

At zero and first orders our definition is agreed with the expansion from [29]:

PR(A, q, t)q=e~/2, t=eβ~/2 = P
|R|
� + ~

(
ν
Rt − βνR

)
σ
|R|−2
� σ2 + . . . , (4.48)

where σ� is a special polynomial, σ2 is a higher special polynomial of the first
order (see [6] for details), ν

R
=
∑

i

Ri(i− 1).
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4.3.5 Loop expansion for superpolynomials

Considering particular examples of knots we have discovered that there are two
essentially different cases: thin knots and thick knots [24].

Definition 4.3.4. A knot K is thin if all terms of the superpolynomial have the
same degree. Otherwise, the knot is thick.

Remark. In this definition it is implied that a superpolynomial is considered
in variables (a,q, t), which are related with ours as follows:

q = t, t = −q/t, A = a
√
−t.

For thin knots the t-grading is determined by the a- and q-gradings. Thus,
the superpolynomial is determined by the HOMFLY polynomial completely. For
thick knots the situation is different. At the present moment it is unclear how to
determine their terms in a general way. First example of thick knot is the torus
knot 819 = T [3, 4], second example is non-torus 942.

Thin knots

The loop expansion for the superpolynomial PK
R (A|q|t) is provided with ~ → 0,

N and β are fixed in the variables:

q = e~/2, A = eN~/2, t = eβ~/2. (4.49)

Since when t = q the superpolynomial reduces to the HOMFLY polynomial, we
have (3.41) for β = 1.

Based on computational experiments with particular superpolynomials, we
guess the conjecture about general form of loop expansion.

Conjecture 4.3.5. In the case of thin knots the loop expansion of superpolyno-
mials has the form

PK
R (A, q, t) =

∞∑

i=0

~i
Nβ

i∑

j=1

D
(R)
i,j VK

i,j, (4.50)

where D
(R)
i,j are beta-deformations of trivalent diagrams, VK

i,j are the same Vas-
siliev invariants as in (3.41).

Let us emphasize that VK
i,j are exactly same Vassiliev invariants as in HOM-

FLY case. Therefore, the superpolynomials of the thin knot do not contain any
new information about the knot as compared with the HOMFLY case. However,
the structure of group factors is different: Gi,j → Di,j. We have calculated few
examples explicitly.

Remark. Let us emphasize that we also checked this conjecture for non-torus
superpolynomials, which we found in [24].
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Group factors in HOMFLY case (trivalent diagrams, Figure 3.13)

G(R)
2,1 =

1

4

(
−|R|·N2 − 2ϕ

R
([2])·N + |R|2

)
(4.51)

G(R)
3,1 =

1

8
N
(
|R|·N2 + 2ϕ

R
([2])·N − |R|2

)
(4.52)

G(R)
4,1 =

(

G(R)
2,1

)2

(4.53)

G(R)
4,2 =

1

16
N2
(
−|R|·N2 − 2ϕ

R
([2])·N + |R|2

)
(4.54)

G(R)
4,3 =

1

16

(

|R|·N4 + 6ϕ
R

([2])·N3 +

+ 16

(
3

4
ϕ

R
([3]) +

7

8
ϕ

R
([1, 1]) +

1

16
ϕ

R
([1])

)

·N2 −

− 16

(
1

2
ϕ

R
([4]) + ϕ

R
([2, 1]) +

1

2
ϕ

R
([2])

)

·N − (4.55)

−
(

2ϕR([1])+28ϕR([1, 1])+72ϕR([1, 1, 1])+24ϕR([3, 1])−48ϕR([2, 2])
))

Beta-deformed group factors are2

D
(R)
2,1 =

1

4

(

−|R|·N2 − 2

(

T β
2 −

1

2
(β − 1)T1

)

·N + β|R|2
)

(4.56)

D
(R)
3,1 =

1

4
(−2N + 1− β)D

(R)
2,1 (4.57)

D
(R)
4,1 =

(

D
(R)
2,1

)2

(4.58)

D
(R)
4,2 =

(1

4
(−2N + 1− β)

)2

D
(R)
2,1 (4.59)

D
(R)
4,3 =

1

16

(

|R|·N4 + 6

(

T β
2 −

1

2
(β − 1)T1

)

·N3 +

+ 16

(
3

4
T β
3 −

5

8
(β − 1)T β

2 +
7

64
(β − 1)2T1 +

1

16
βT 2

1

)

·N2 −

− 16
(1

2
T β
4 −

15

16
(β − 1)T β

3 +
7

32
(β − 1)2T β

2 +
1

16
(β − 1)

(

T β
2

)2

−

− 1

64
(β − 1)(3β2 − 2β + 3)T1

)

·N + f
)

(4.60)

Thick knots

For the thick knots, the loop expansion in ~ is different than for thin knots. Also
based on computational experiments with particular superpolynomials for thick
knots, we guess the conjecture about general form of loop expansion.

Conjecture 4.3.6. In the case of thick knots the loop expansion of superpolyno-

2The last term f of D
(R)
4,3 is still unknown.
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mials has the form

PK
R (A, q, t) =

∞∑

i=0

~i
Nβ

i∑

j=1

D
(R)
i,j VK

i,j + (β − 1) ·
∞∑

i=0

~i
Mβ

i∑

j=1

Ξ
(R)
i,j ρ

K
i,j, (4.61)

where the first sum is the same as for the thin knots, while the second sum is
different: Ξ

(R)
i,j are new group structure factors and ρKi,j are some numbers different

from the Vassiliev invariants of the first sum.

We think that the second sum is crucially new. One can ask if ρKi,j could be
also related with the Vassiliev invariants, maybe, they are some linear combina-
tions of VK

i,j. In order to answer this question, we recall a definition of invariants
of the finite type (we follow the text-book [1]).

Definition 4.3.7. Any knot invariant can be extended to knots with double points
by means of the Vassiliev skein relation, depicted on the Figure 4.1.

Figure 4.1: Vassiliev skein relation

Using the Vassiliev skein relation recursively, one can extend any knot invariant
to knots with an arbitrary number of double points. There are many ways to do
this, since one can choose to resolve double points in an arbitrary order. However,
the result is independent of the choice.

Definition 4.3.8. A knot invariant is said to be a Vassiliev invariant (or a finite
type invariant) of order ≤ n if its extension vanishes on all singular knots with
more than n double points. A Vassiliev invariant is said to be of order n if it is
of order ≤ n but not of order ≤ n− 1.

Proposition 4.3.9. ρi,j are not Vassiliev invariants of order ≤ i.

Applying the skein relation recursively to the simplest thick knot T [3, 4] = 819

with 4 double points, we have explicitly checked that ρ2,1 and ρ3,1 are not the
Vassiliev invariants of order 3 at least. It is possible that they are invariants of
higher order, e.g. of 26 or 42. However, this would look quite unusual, since ρi,j
have natural graduation by powers of ~ as well as the Vassiliev invariants vi,j.
This question clearly deserves a further detailed analysis.
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Examples of ρKi,j for thick torus knots

K v3,1 ρ3,1

T [3, 3k + 1] 4k(3k + 1)(3k + 2) −k
2(k + 1)

4

T [3, 3k + 2] 4(k + 1)(3k + 1)(3k + 2) −k(k + 1)2

4

T [4, 4k + 1]
80k(2k + 1)(4k + 1)

3
−k

2(4k + 3)

2

T [4, 4k + 3]
80(k + 1)(2k + 1)(4k + 3)

3
−(k + 1)2(4k + 1)

2

T [5, 5k + 1]
100k(5k + 1)(5k + 2)

3
−7k2(5k + 3)

4

T [5, 5k + 2]
20(5k + 1)(5k + 2)(5k + 3)

3
−k(35k2 + 42k + 11)

4

T [5, 5k + 3]
20(5k + 2)(5k + 3)(5k + 4)

3
−(k + 1)(35k2 + 28k + 4)

4

T [5, 5k + 4]
100(k + 1)(5k + 3)(5k + 4)

3
−7(k + 1)2(5k + 2)

4

We computed this table for chosen superpolynomials of torus knots for k from 1
to 5.
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Chapter 5

Appendix

5.1 Appendix A. More pictures on Vassiliev in-

variants

Here we list several more pictures of the type of Figure 3.14, representing ”rela-
tions” beween Vassiliev invariants. Very interesting is the form of the plot of V6,5
against V5,2, which is depicted in Figure 5.1a.

The following expression characterizes with good accuracy the long ”horns”
part of the figure by vanishing on most of the corresponding knots:

F3 = −10752+
48616V2,1

15
−178V2

2,1+V3
2,1−1254V3,1+66V2,1V3,1+356V4,2−6V2,1V4,2

−356V4,3−3V2
3,1+6V2,1V4,3−66V5,2+66V5,3+66V5,4+6V6,5−6V6,6−6V6,7−6V6,8,

(5.1)

see Figure 5.1b, where only points on which the expression vanishes are left.
The plot of V5,2 against V4,2 has vaguely the same form, and moreover the same

expression (5.1) vanishes on most of the points in the ”horns” part, see Figures
5.2a, 5.2b.

Plots of 5V4,2 − 31V4,3 against V3,1 and V5,3 are also rather interesting, see
Figures 5.3a, 5.3b.
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Figure 5.1: a: horns, i.e. V6,5 plotted against V5,2 for knots with up to 14 crossings;
b: same with constraint (5.1)

Figure 5.2: a: horns, i.e. V5,2 plotted against V4,2 for knots with up to 14 crossings;
b: same with constraint (5.1)
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Figure 5.3: Birds, i.e. 5V4,2 − 31V4,3 plotted against V3,1 (Figure a) and 5V4,2 −
31V4,3 plotted against V5,3 (Figure b), for knots with up to 14 crossings

5.2 Appendix B. Special polynomials

In this section we list examples of higher special polynomials σK
∆(g) for some

knots. Recall that they appear in large N expansion of HOMFLY polynomials in
the following way (2.44):

HK
R (q, A) = exp

(
∑

∆

~̂|∆|+l(∆)−2 SK
∆

(
A2, ~̂2

)
ϕR(∆)

)

, (5.2)

SK
∆(A2, ~2) =

∑

g

σK
∆(g) ~̂2g,

where for our convenience we use ~̂ = ~

σ2
�

and σ� = HK
� (q=1, A).
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5.2.1 Trefoil

σ
[1]

(0) = log
2− A2

A

σ
[2]

(0) =
(A− 1)(A+ 1)(3A2 − 5)

A2

σ
[1,1]

(0) =
1

2

(2− A2)2(−22A2 + 17 + 9A4)

A4

σ
[3]

(0) =
(A2 − 2)(27A2 − 44)(A− 1)2(A+ 1)2

2A4

σ
[2,1]

(0) =
4

3

(A2 − 2)3(A− 1)(A+ 1)(27A4 − 65A2 + 43)

A6

σ
[1,1,1]

(0) =
(A2 − 2)5(243A6 − 781A4 + 905A2 − 376)

3A8

σ
[4]

(0) =
(A2 − 2)2(A− 1)(A+ 1)(432A6 − 1568A4 + 1829A2 − 683)

6A6

σ
[3,1]

(0) =
(A2 − 2)4(−11390A2 + 15643A4 − 9540A6 + 2187A8 + 3060)

8A8

σ
[2,2]

(0) =
(A2 − 2)4(6089− 21872A2 + 30112A4 − 18412A6 + 4203A8)

12A8

σ
[5]

(0) =
(A2 − 2)3(10125A6 − 36872A4 + 42814A2 − 15576)(A− 1)2(A+ 1)2

24A8

σ
[1]

(1) =
(2− A2)3

A4

σ
[2]

(1) =
5

8

(A2 − 2)4(A− 1)(A+ 1)(7A2 − 17)

A6

σ
[1,1]

(1) =
1

2

(2− A2)2(−22A2 + 17 + 9A4)

A4

σ
[3]

(1) =
(A2 − 2)(27A2 − 44)(A− 1)2(A+ 1)2

2A4

σ
[1]

(2) = 0
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5.2.2 Knot T [2, 5]

σ
[1]
(0) = log

3− 2A2

A

σ
[2]
(0) =

(A− 1)(A+ 1)(17A2 − 23)

A2

σ
[1,1]

(0) =
(2A2 − 3)2(83A4 − 194A2 + 123)

2A4

σ
[3]
(0) =

(2A2 − 3)(440A2 − 587)(A− 1)2(A+ 1)2

2A4

σ
[2,1]

(0) =
2(2A2 − 3)3(A− 1)(A+ 1)(1427A4 − 3257A2 + 1926)

3A6

σ
[1,1,1]

(0) =
(−3 + 2A2)5(−14191 + 37290A2 − 33663A4 + 10429A6)

3A8

σ
[4]
(0) =

(2A2 − 3)2(A− 1)(A+ 1)(20303A6 − 67601A4 + 74088A2 − 26712)

6A6

σ
[3,1]

(0) =
(−3 + 2A2)4(206277− 781148A2 + 1106241A4 − 696058A6 + 164376A8)

8A8

σ
[2,2]

(0) =
(−3 + 2A2)4(−1532420A2+2165076A4−1360752A6+320633A8+408399)

12A8

σ
[5]
(0) =

(−3 + 2A2)3(1373736A6 − 4574446A4 + 4997116A2 − 1785093)(A2 − 1)2

24A8

σ
[1]
(1) =

(2A2 − 3)3(A− 2)(A+ 2)

A4

σ
[2]
(1) =

235(2A2 − 3)4(A− 1)(A+ 1)(3A2 − 5)

8A6

σ
[1,1]

(1) =
(−3 + 2A2)6(263− 379A2 + 133A4)

A8

σ
[3]
(1) =

2(−3 + 2A2)5(6320A2 − 8063)(A− 1)2(A+ 1)2

3A8

σ
[1]
(2) = −(−3 + 2A2)7

A8
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5.2.3 Knot T [3, 4]

σ
[1]
(0) = log

A4 − 5A2 + 5

A2

σ
[2]
(0) =

(A− 1)(A+ 1)(8A6 − 59A4 + 139A2 − 98)

A4

σ
[1,1]

(0) =
(A4 − 5A2 + 5)2(−477A6 + 1312A4 − 1529A2 + 650 + 64A8)

2A8

σ
[3]
(0) =

(A4 − 5A2 + 5)(192A8 − 1907A6 + 6989A4 − 11049A2 + 6160)(A− 1)2(A+ 1)2

2A8

σ
[2,1]

(0) =
(A4 − 5A2 + 5)3(A− 1)(A+ 1)

3A12

(

2048A10 − 20610A8 + 81573A6 −

− 157361A4 + 145965A2 − 52195
)

σ
[1,1,1]

(0) =
(A4 − 5A2 + 5)5

6A16

(

− 252572A10 + 1073187A8 − 2398926A6 +

+ 2954196A4 − 1899956A2 + 500665 + 24576A12
)

σ
[4]
(0) =

(A4 − 5A2 + 5)2(A− 1)(A+ 1)

6A12

(

8192A14 − 118975A12 + 723388A10 −

− 2374550A8 + 4517500A6 − 4952762A4 + 2889917A2 − 692540
)

σ
[3,1]

(0) =
(A4 − 5A2 + 5)4

8A16

(

7056904 + 82299068A4 − 36938869A2 − 101809662A6 +

+ 76452748A8 + 10172398A12 − 35724884A10 + 110592A16 − 1618975A14
)

σ
[2,2]

(0) =
(A4 − 5A2 + 5)4

12A16

(

13937464 + 161289145A4 − 72632094A2 − 198933448A6 +

+ 148949118A8 + 19703861A12 − 69398084A10 + 212928A16 − 3126850A14
)

σ
[5]
(0) =

(A4 − 5A2 + 5)3(A− 1)2(A+ 1)2

24A16

(

512000A16 − 8768755A14 +

+ 64624025A12 − 266794450A10 + 672123335A8 − 1053157134A6 +

+ 997632397A4 − 520542457A2 + 114331124
)

σ
[1]
(1) =

−5(A4 − 5A2 + 5)3(A2 − 2)

A8

σ
[2]
(1) =

(A4 − 5A2 + 5)4(A− 1)(A+ 1)(680A6 − 4579A4 + 11027A2 − 8498)

8A12

σ
[1,1]

(1) =
(A4 − 5A2 + 5)6(−2719A6 + 8334A4 − 10751A2 + 4950 + 336A8)

2A16

σ
[3]
(1) =

(A4 − 5A2 + 5)5(A− 1)2(A+ 1)2

6A16

(

27600A8 − 236483A6 + 772316A4 −

− 1129785A2 + 601045
)

σ
[1]
(2) = −−(A

4 − 5A2 + 5)7(A2 − 6)

A16
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5.2.4 Eight-figure knot

σ
[1]

(0) = log
A4 − A2 + 1

A2

σ
[2]

(0) =
(A− 1)(A+ 1)(A2 + 1)(2A4 − 3A2 + 2)

A4

σ
[1,1]

(0) =
(A4 − A2 + 1)2(−9A6 + 6A4 − 9A2 + 4A8 + 4)

2A8

σ
[3]

(0) =
(A4 − A2 + 1)(12A8 − A6 − 3A4 − A2 + 12)(A− 1)2(A+ 1)2

2A8

σ
[2,1]

(0) =
(A4 − A2 + 1)3(A4 − 1)(32A8 − 83A6 + 94A4 − 83A2 + 32)

3A12

σ
[1,1,1]

(0) =
(A4−A2+1)5(−283A10+308A8−260A6+96A12+308A4−283A2+96)

6A16

σ
[1]

(1) =
−(A4 − A2 + 1)3

A6

σ
[2]

(1) =
(A4 − A2 + 1)4(A4 − 1)(10A4 − 43A2 + 10)

8A12

σ
[1,1]

(1) =
(A4 − A2 + 1)6(−7A6 + 10A4 − 7A2 + A8 + 1)

2A16

σ
[3]

(1) =
(A4 − A2 + 1)5(105A8−109A6−123A4−109A2+105)(A2 − 1)2

6A16

σ
[1]

(2) = 0

(5.3)

5.3 Examples of genus expansion for superpoly-

nomials

5.3.1 Trefoil

Let us write explicitly few terms of genus expansion for the torus knot T [2, 3]:

PR(q = e~/2, t = eβ~/2, A) = s̃R(1) · exp
{

~ · s̃R(2) + ~2 · s̃R(3) + . . .
}

(5.4)

s̃R(1) = (2− A2)
|R|

(5.5)

s̃R(2) = (A2−1)(3A2−5)
(−2+A2)2

T β
2 (R)− (A2−1)(β−1)

−2+A2 T β
1 (R) (5.6)

s̃R(3) = −1
2
(8A2−13)(A2−1)2

(−2+A2)4
T β
3 (R) + (A2−1)(2A4−8A2+7)(β−1)

(−2+A2)4
T β
2 (R)−

−1
2

(A2−1)((1−β+β2)A4+(−4β2−4+6β)A2+4β2−7β+4)
(−2+A2)4

T β
1 (R)− (5.7)

−1
2
(−9A4+21A2+A6−15)β

(−2+A2)4

(

T β
1 (R)

)2
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Summary

Knot theory is an area of low-dimensional topology, which studies topological
properties of knots. A knot is a closed curve without self-intersections in the 3-
space. We do not distinguish between a knot and any continuous deformations
of this knot which can be performed without self-intersections. In other words,
we think about a knot as if it is made from easily deformable rubber, which we
cannot cut and glue. One of the main questions in the knot theory is how to
distinguish knots. To answer this question we want to find such properties of a
knot which depend only on the equivalence class of the knot. This idea gives rise
to the theory of knot invariants, a major part of the knot theory. A knot (or link)
invariant is a function from the set of knots to some other with values depending
only on equivalence classes of knots. Any representative from the class can be
chosen to calculate the invariant. There is no restriction on the kind of objects in
the target space. For example, they could be integers, polynomials, matrices or
groups. In 1980’s the HOMFLY polynomial was invented, defined through skein
relations. Then it was generalized to a whole family of quatum invariants labeled
by Young diagrams R. Such colored HOMFLY polynomials, defined via Chern-
Simons theory or quantum groups, are central objects of the present theory of knot
invarants. The point is that they involve a lot of structures, very often hidden and
implicit, which reveal connections of knots with many subjects of mathematics
and mathematical physics.

So, in particular, we discuss a connection of HOMFLY polynomials with Hur-
witz covers and represent a generating function for the HOMFLY polynomial of
a given knot in all representations as Hurwitz partition function, i.e. the depen-
dence of the HOMFLY polynomials on representation R is naturally captured by
symmetric group characters (cut-and-join eigenvalues). The genus expansion and
the loop expansion through Vassiliev invariants explicitly demonstrate this phe-
nomenon. We study the genus expansion (also known as the large N expansion)
and discuss its properties. Then we also consider the loop expansion in details.
In particular, we give an algorithm to calculate Vassiliev invariants, give some
examples and discuss relations among Vassiliev invariants.

In the last chapter we consider superpolynomials for torus knots defined via
double affine Hecke algebra. We claim that the superpolynomials are not func-
tions of Hurwitz type: symmetric group characters do not provide an adequate
linear basis for their expansions. Deformation to superpolynomials is, however,
straightforward in the multiplicative basis: the Casimir operators are β-deformed
to Hamiltonians of the Calogero-Moser-Sutherland system. Applying this trick
to the genus and Vassiliev expansions, we observe that the deformation is fully
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straightforward only for the thin knots. Beyond the family of thin knots addi-
tional algebraically independent terms appear in the Vassiliev expansions. This
can suggest that the superpolynomials do in fact contain more information about
knots than the colored HOMFLY and Kauffman polynomials.
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Samenvatting

Knopentheorie is een deelgebied van de laag-dimensionale topologie, die topolo-
gische eigenschappen van knopen bestudeert. Een knoop is een gesloten kromme
in de drie-dimensionale ruimte, die geen snijpunten met zichzelf heeft. We maken
geen verschil tussen een knoop en een willekeurige continue vervorming van de
knoop, die gemaakt kan worden zo dat de knoop zichzelf niet snijdt.

Een van de belangrijkste vragen van de knopentheorie is hoe we het verschil
tussen twee knopen kunnen zien. Om deze vraag te kunnen beantwoorden, willen
we de eigenschappen ven knopen vinden die alleen afhankelijk zijn van de equiv-
alentieklasse van de knoop. Vanuit dit idee is de theorie van knopeninvarianten
ontwikkeld, die tegenwoordig het grootste deel van knopentheorie is.

Een knopeninvariant is een functie gedefinieerd op de verzameling van knopen
met waarden die uitsluitend afhankelijk zijn van de equivalentieklasse van de
knoop. Om de waarde van de invariant op een equivalentieklasse te berekenen
kunnen we in dit geval een willekeurig knoop van deze klasse gebruiken. Er is
geen beperking op de mogelijke ruimte van de waarden van een knoopinvariant.
Dat kunnen gehele getallen, of polynomen, of matrices, of elementen van een
bepaalde groep zijn.

Een van de belangrijkste knopeninvarianten is het zogenoemde HOMFLY-
polynoom. Het is ontdekt in de jaren 1980 met een definitie die gebruik maakt
van de zogenoemde skein-relaties. Vervolgens werd het gegeneraliseerd tot een
volledige verzameling van kwantum invarianten die afhankelijk zijn van een keuze
van een Young-diagram. Deze gekleurde HOMFLY-polynomen kunnen door mid-
del van Chern-Simons theorie of kwantumgroepen gedefinieerd worden. Ze staan
in de belangstelling van de moderne theorie van knopeninvarianten, want ze be-
vatten veel structuren, die heel vaak verborgen en niet-expliciet zijn, en deze
structuren verbinden de knopentheorie met veel andere gebieden in wiskunde en
mathematische fysica.

In het proefschrift bespreken we een verbinding tussen de knopentheorie en
Hurwitztheorie. We geven een formule voor de HOMFLY-polynoom in alle repre-
sentaties als een partitiefunctie van Hurwitz. Dat betekent dat de afhankelijkheid
van de HOMFLY-polynomen van de representatie uitgedrukt kan worden in ter-
men van de karakters van de symmetrische groep. Verschillende ontwikkelingen
van de HOMFLY-polynomen geven daarmee meer inzicht, in bijzonder de on-
twikkeling in termen van de Vassiliev-invarianten. Het proefschrift bevat veel
nieuwe resultaten over de Vassiliev-invarianten. In het bijzonder, geven we een
algoritme voor de berekening van deze invarianten, en bespreken hun onderlinge
relaties.
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In het laatste deel van het proefschrift bespreken we de zogenoemde super-
polynomen van de knopen gedefinieerd door de double affine Hecke algebras. De
superpolynomen zijn niet de functies van het Hurwitz-type, en de karakters van
de symmetrische groep geven geen goede basis voor de ontwikkeling van deze
invarianten. Toch kunnen we veel structuur achter deze invarianten opmerken,
en, gebaseerd op onze berekeningen stellen we een aantal vermoedens over de
superpolynomen voor.
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