
HIDDEN SURFACE REMOVAL USING POLYGON AREA SORTING

by

Kevin Weiler and Peter Atherton

Program of Computer Graphics

Cornell University

Ithaca, New York 14853

ABSTRACT

A polygon hidden surface and hidden line removal algorithm is presented. The algorithm recursively
subdivides the image into polygon shaped windows until the depth order within the window is found. Accur-
acy of the input data is preserved.

The approach is based on a two-dimensional polygon clipper which is sufficiently general to clip a
concave polygon with holes to the borders of a concave polygon with holes.

A major advantage of the algorithm is that the polygon form of the output is the same as the polygon
form of the input. This allows entering previously calculated images to the system for further processing.
Shadow casting may then be performed by first producing a hidden surface removed view from the vantage
point of the light source and then resubmitting these tagged polygons for hidden surface removal from the
position of the observer. Planar surface detail also becomes easy to represent without increasing the
complexity of the hidden surface problem. Translucency is also possible.

Calculation times are primarily related to the visible complexity of the final image, but can range
from a linear to an exponential relationship with the number of input polygons depending on the particular
environment portrayed. To avoid excessive computation time, the implementation uses a screen area sub-
division preprocessor to create several windows, each containing a specified number of polygons. The
hidden surface algorithm is applied to each of these windows separately. This technique avoids the diffi-
culties of subdividing by screen area down to the screen resolution level while maintaining the advantages
of the polygon area sort method.

COMPUTING REVIEWS CLASSIFICATION: 3.2, 4.9, 4.40, 4.41

KEYWORDS: Hidden Surface Removal, Hidden Line Removal, Polygon Clipping, Polygon Area Sorting,

Shadowing, Graphics

INTRODUCTION

A new method for the computation of visible

surfaces for environments composed of polygons

is presented. The output of the method is in

the form of polygons, making it useful in a var-

iety of situations including the usual display

applications. The primary components of the

method consist of a generalized algorithm for

polygon clipping and a hidden surface removal

algorithm. The polygon clipper is sufficiently

general to clip a concave polygon with holes to

the area of a concave polygon with holes. The

hidden surface algorithm operates on polygon

input which has already been transformed and

clipped to the final viewing space. The X and

Y axis of this viewing space are thus parallel

to the display surface and the Z axis is parallel

to the line of sight.

Many visible surface algorithms have been

developed, each with unique characteristics and

capabilities. A survey presented by Sutherland

et al [11] provides a method of categorization

as well as a statistical comparison of many of

the polygon based algorithms.

Their classification divides the algorithms

into three types: object space, image space and

list-priority algorithms. The "object space"

methods perform the hidden surface computations

for potentially visible polygons within the

environment to an arbitrary precision usually

limited only by machine precision. The "image

space" methods are performed to less resolution

and determine what is visible within a prescribed

area on the output display, usually a raster dot.

The "list-priority" algorithms work partially in

each of these two domains.

214

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

Siggraph ’77, July 20-22 San Jose, California

The performance of "object space" methods

(Roberts [8], Appel [1], Galimberti [4]) and "list-

priority" methods (Newell, Newell and Sancha [7],

Schumacher [9]) is dependent on the complexity of

the environment. Since all of these algorithms

make comparisons between items (objects, polygons,

edges), the number of sorting steps required can

rise exponentially with the number of input items.

However, the computational time is independent

of the resolution or size of the image.

In contrast, the "image-space" algorithms

make polygon to screen area comparisons (Warnock

[12], Watkins [13], Bouknight [3], and depth map

or Z-buffer algorithms). Therefore, the number

of sorting steps is possibly linear with the num-

ber of input polygons, but can vary exponentially

with the resolution required.

The algorithm presented qualifies as an ob-

ject space algorithm since all of its calculations

are performed to arbitrary precision. The sorting

methods used include a preliminary partial depth

sort, an x-y polygon sort, and a conclusive depth

sort which may involve recursive subdivision of

the original area.

The algorithm probably most closely resembles

the Warnock (image space) algorithm in its method

of operation. The major difference between them

is that the Warnock algorithm performs the x-y

sort by screen area, while the new algorithm

does the x-y sort by polygon area. Polygon area

coherence across the surface of the polygon is

preserved as much as possible thereby reducing

the number of lateral sorts required. Both

algorithms use the techniques of recursive sub-

division when necessary. The Warnock algorithm

will subdivide until a solution or a preset

resolution level has been reached. The new

algorithm continues to subdivide only until the

proper depth order has been established.

Computation times of the new algorithm vary

with both environmental complexity and the visible

complexity of the image, and partially depend on

the validity of the initial depth sort. For an

environment consisting of a number of polygons

entirely obscured by a single forward polygon,

with a correct initial depth sort, the number of

lateral comparisons required is linearly related

to the number of input polygons. For environ-

ments where every polygon may be partially ob-

scured, but is visible as one piece, the number

of lateral comparisons is related to one half

the square of the number of input polygons. If

few polygons are entirely obscured and many are

split into several visible pieces, the relation-

ship to the number of input polygons can be

worse than n2. In practice, the relationship is

usually better. Additions to the algorithm as

described later may be used to limit the effects

of exponential growth rates.

The characteristics of the algorithm allow

several options not always available in existing

approaches. Of particular importance is the

capability for generating perspective images

with shadows. Translucency and surface detailing

are also possible.

Because the output of the algorithm is in

the form of polygons as opposed to a raster for-

mat, and because the output data does not overlay

itself on the image plane, the algorithm effec-

tively solves for hidden lines as well as hidden

surfaces. Additional line visibility information

can also be stored to enhance CRT displays by

eliminating double brightness lines.

HIDDEN SURFACE ALGORITHM

In general, the algorithm selects a polygon

shaped area in the x-y plane from the vantage

point of the observer and solves the hidden sur-

face problem in that area completely before going

on to any other area. This area may itself be

subdivided recursively if there is an error in

the initial depth sort. Output from the algorithm

never overlaps on the x-y plane since each visible

area has had all polygons behind it removed. The

algorithm proceeds from front to back across the

transformed object space, producing portions of

the final image along the way and temporarily

reversing direction only when an initial depth

sort error is detected.

The hidden surface algorithm involves four

steps:

a) a preliminary rough depth sort,

b) an x-y polygon area sort to the area of

the currently most forward polygon,

c) a depth sort by removal of polygons

behind the current forward polygon, and

d) a conclusive depth sort by recursive

subdivision when necessary.

The initial sorting step attempts to place

the list of input polygons into a rough depth

priority order, from those closest to the ob-

server to those furthest away. Any reasonable

criterion for a sorting key, such as ordering

on the nearest Z value of each polygon, is

acceptable. This step is not mandatory but

greatly increases the efficiency of the algorithm

in later stages. The initial depth sorting

operation is only performed once at the beginning

of processing and is not repeated.

215

The first polygon on the sorted input list

is then used to clip the remainder of the list

into new lists of polygons inside and outside of

the clip polygon (Figure 2). In essence, this

x-y clipping subdivision is equivalent to lateral

area sorting.

The process now examines the inside list and

removes any polygons located behind the current

clip polygon since they are hidden from view.

Next, if any remaining polygons on the

inside list are located in front of the clip

polygon, an error in the initial depth sort

has been discovered and the algorithm recur-

sively subdivides the region of interest by

repeating the clipping process with the

offending polygon as the clip polygon and the

current inside list as the input list (Figure 3).

Finally, when the recursive subdivision has been

completed, the inside list is displayed and the

algorithm repeats the entire process using the

outside list as input. The process is continued

until the outside list is exhausted.

It is important to note that the clip poly-

gon actually used as the clipping template is a

copy of the original polygon rather than several

pieces of its remainder. While keeping a copy

of the original increases the storage require-

ments, the number of clipping edges and the num-

ber of clips to perform can be minimized. In

this way computation time can be substantially

reduced.

After obscured polygons have been removed

and before recursive subdivision, a check must

be made for the case of cyclic overlap where a

single polygon lies both in front of and behind

a polygon (Figure 4a). A stack is kept of poly-

gon names which have been used as clipping poly-

gons for this screen area, but have not finished

processing because of recursive subdivision. If

the algorithm is ready to make a recursive sub-

division because a polygon is in front of the

current clip polygon, a check is made to see if

the name of that polygon is on the stack. If it

is, a case of cyclic overlap exists and no addi-

tional recursion is necessary since all material

behind that polygon has already been removed.

This cyclic overlap condition occurs as a result

of clipping to the original copy of polygons

instead of their remainders. The reduction in

the number of clips required outweighs the dis-

advantage of the simple check required for cyclic

overlap. Note that another case of cyclic over-

lap involving several polygons is implicitly

handled by the algorithm (Figure 4b).

216

POLYGON CLIPPING ALGORITHM

Two dimensional polygon clipping is central

to the hidden surface removal approach presented.

If only convex polygons were allowed in a

scene, clipping a scene by the convex areas of

the polygons could quickly yield non-convex areas

and holes (Figure 2). Thus even for a restricted

environment, a polygon clipper capable of hand-

ling concave polygons with holes is necessary.

A clipping algorithm capable of clipping

concave polygons with holes to the inside portion

of a convex area has been described by Sutherland

and Hodgman [10]. The algorithm has the merit of

simplicity and is particularly useful for screen

subdivision and viewbox clipping. A modified

version of this algorithm would clip polygons to

a plane and create output polygons on each side

of the clipping plane. This version could be

used to clip to the borders of a convex polygon

yielding intact inside and outside polygons if

the planar clip was applied against each edge of

the convex clipping polygon. The entire exterior

space would then be clipped by infinite planes;

however, the effects of each border clip would not

be localized and many new exterior polygons would

be created. Since this is undesirable in a situ-

ation where computational complexity may increase

greatly with the number of polygons, another

method of clipping has been developed which mini-

mizes the number of polygons created during the

clipping process (Figure 5) [14].

The polygon clipper presented is a general-

ized x-y polygon clipper which is capable of

clipping a concave polygon with holes to the

borders of concave polygons with holes. Clipping

is performed to the borders of the clip polygon.

The polygon which is clipped is the subject

polygon.

Any new borders created by the clipping of

the subject polygon to the area of the clip poly-
gon need only be identical to portions of the

borders of the clip polygon. Using this concept,

no new edges not already present in either the

clip or subject polygon need be introduced and

the number of output polygons from the process

can be minimized. While the clip is a two-

dimensional clip, depth information can be pre-

served in all output for use by hidden surface

calculations.

The creation of new polygons due to inter-

sections of the boundaries of the clip and sub-

ject polygons is performed by partial transver-

sals of both boundaries. If the outside borders

of the subject polygon are followed in a clock-

wise direction, the borders of the newly clipped

output polygons can be found by making a right

turn at each place the two polygons intersect.

The process continues until the starting point

is arrived at again (Figure 6). The inner or

hole borders of the subject polygon must be

followed in a counter-clockwise manner in order

to use this right turn rule. Note that the

borders of the clip polygon used to complete

the new polygons must be traversed twice, once

in each direction.

Additional techniques are necessary to deal

with cases where the borders of the clip polygon

do not intersect with borders of the subject poly-

gon but lie completely inside the area of the

subject polygon.

217

2. Contours which have no intersections

are now processed. Each contour of the subject

polygon which has no intersections is placed on

one of two holding lists. One holding list is

for contours inside of the clip polygon; the

other is for contours outside of it. Clip poly-

gon contours outside of the subject polygon are

ignored. Clip polygon contours inside of the

subject polygon in effect cut a hole in the sub-

ject polygon, producing two new contours. In

this case two copies of the clip polygon contour

are made (one in reverse order); one copy is

placed on each of the holding lists.

3. Two lists of intersection vertices

found on all of the subject polygon contours

are formed. The first list contains only those

intersections where the clip polygon border

passes to the outside of the subject polygon

(from the point of view of the subject polygon

this occurs whenever the clip polygon passes to

the left) (Figure 7). The second list contains

those intersections where the clip polygon bor-

der passes to the inside (to the right). These

two types of intersections will be found to

alternate along any given contour and the number

of intersections will always be even. This means

only one determination of intersection type is

necessary per contour.

4. The actual clipping is now performed

(Figure 8):

a) An intersection vertex is removed from the

first intersection list to be used as a

starting point. If the list is exhausted,

the clipping is complete; Go to step 5.

b) Follow along the subject polygon vertex chain

until the next intersection is reached.

c) Jump to the clip polygon.

d) Copy the chain of polygon vertices until the

next intersection vertex is reached.

e) Jump back to the subject polygon.

f) Repeat steps "b" to "e" until the starting

point has been reached. At this point the

contour of a new inside polygon has just

been closed.

The outside polygons can be created by a second

pass if the contour vertex chain is double-

linked (bi-directional). This is accomplished

by starting at intersection vertices from the

second intersection vertex list and following

the reverse links during traversal of the clip

polygon. Otherwise the contours of the outside

polygons must be closed during the first pass.

This can be done by making a second copy of the

vertex chain during the clip polygon traversal

(step 4d) in reverse order and attaching its

"loose" ends to the unused intersection points

at its begin and end locations. A second pass

is still needed to find out where these outside

contours are. All polygons created are placed

on the proper holding lists.

A more detailed description of the clipper

follows:

A polygon is defined as an area enclosed by a

series of edges consisting of straight lines.

These edges may touch upon one another at single

non-contiguous points. There are no intrinsic

limits as to the number of edges or holes a poly-

gon may have. Contours are the edges or bound-

aries of a polygon. The term main contour refers

to the exterior boundaries of a polygon, while

hole contour refers to the interior boundaries

of a polygon.

The algorithm represents a polygon as a

circular list of vertices, one list for the

main contour and one list for each of the holes.

The vertices of the main contour are linked in

clockwise order and the holes in counter-clockwise

order. Using this order, as one follows along

the chain of vertices of a polygon, the outside

is always to the left while the interior of the

polygon is always to the right (Figure 7).

The clip polygon remains the same after the

clipping process as before. The subject polygon

may be fragmented by the clipping process. The

results of the clipping process are two lists of

polygons, one of polygons inside the clip polygon

area and one of polygons outside the clip polygon

(Figure 2). The clipping process is as follows:

1. The borders of the two polygons are

compared for intersections. At each intersection

a new false vertex is added into the contour

chain of each of the two polygons. The new ver-

tices are tagged to indicate they are intersec-

tion vertices. A link is established between

each pair of new vertices, permitting travel

between two polygons wherever they intersect on

the x-y plane. If care is taken in placement of

intersections where the subject and clip polygon

contours are identical in the x-y plane, no

degenerate polygons will be produced by the

clipping process.

218

Shadowing

The polygon area sort approach lends itself

to the generation of shadows because the output

of the algorithm is in the form of polygons which

are suitable for further processing.

Shadow creation is then reduced to the prob-

lem of producing a hidden surface removed view of

a scene from the position of the light source.

Visible polygons from this point of view are

transformed back to the original space and are

treated as surface detail of a lighter shade on

their source polygons. After this initial

shadowing, a normal hidden surface removed view

can be taken from any viewpoint to create a

correctly shadowed scene. Multiple light

sources may be represented using the same

process.

Since full machine precision of the output

is possible, this particular technique shows

promise of being useful not only for display

purposes, but also for engineering applications

such as energy analyses related to solar heat

gain [2].

Translucent Polygons

Translucent polygons can be represented with

a slight modification of the depth culling por-

tion of the algorithm. When a translucent poly-

gon becomes the clip polygon, polygons which are

behind it should not be removed, but instead

tagged and identified as being obscured by

that particular translucent polygon. When a

polygon is obscured by several translucent poly-

gons, the effect can be accumulated. Since dis-

play output is not made for a given area until

after the hidden surface removal process for

that area is complete, images can be correctly

rendered. Partial shadows and shades cast by

translucent planes would be handled by the

shadowing process in the same manner as normal

shadows.

Screen Subdivision

Reducing the exponential rate of the number

of sorting steps required for visible surface

computation is'highly desirable. Some mechanism

for dealing with large numbers of polygons or

polygons with large numbers of edges which exceed

the capacity of main storage should also be pro-

vided. The benefits of the polygon area sort

approach should be maintained.

By taking the approach of a Warnock style

screen area subdivision, the image can be divided

into areas each containing a specified maximum

number of polygons. Each of these areas can

then be processed by the hidden surface removal

system separately. This method keeps the number

of polygons within storage capacities, while

effectively reducing the number of lateral sort-

ing steps to an almost linear relationship with

the number of polygons. This is accomplished by

reducing the range of the exponential growth

factors of the hidden surface removal to the

maximum number of polygons allowed within each

screen subdivision. The overall number of

219

5. All holes on the holding lists are

attached to the proper main contours. There are

several methods of determining which polygons

are hole contours. The conceptually simplest

method is to test directionality of the contours

since main contours will always be clockwise and

hole contours will always be counterclockwise.

A more efficient method is based on using the

highest of a precedence of types of intersections

located on a contour. The types used in this

precedence are related to the cause of the inter-

section, such as a main contour intersecting a

hole contour, a hole contour intersecting a hole

contour, etc. The clipping process is now

complete.

EXTENSIONS

Several extensions to the hidden surface

algorithm allow greater versatility and effi-

ciency. Of those described below, surface detail,

shadowing, and screen subdivision have been

implemented.

Surface Detail

Polygons that describe information such as

color differences or designs within the bound-

aries of a planar polygon are referred to here

as surface detail. Since they do not affect the

boundaries of the polygon to which they belong,

they cannot affect hidden surface calculation

and should not be included in it. Instead,

whenever a polygon is output from the hidden

surface computations, the surface detail be-

longing to the original source of that polygon

is clipped to the area of the output polygon.

Any of the surface detail within the bounds of

the output polygon is then output at this time.

This technique can greatly simplify the hidden

surface problem for those situations in which

surface detail might have otherwise been speci-

fied as regular polygons involved in the hidden

surface removal process.

lateral sorting steps for hidden surface re-

moval is then almost linear to the number of

polygons. The screen subdivision process itself

follows an n log n growth rate.

Note that it is possible that the polygons

can also be subdivided along the Z axis if their

depth exceeds the specified limit. An example

would be a large number of screen-sized polygons

parallel to the display. Two methods can be used

to deal with this case.

The first solution, valuable only for hidden

surface removal, uses a technique similar to the

frame buffer overlay technique of Newell, et al

[7]. The image is subdivided along the Z axis

into several "boxes" of space containing a

specific number of polygons. The boxes are

ordered from back to front and each box is separ-

ately solved. The results are output to a frame

buffer in order, with the results from each

succeeding box overlaying previous results. This

technique, while sufficient for most display pur-

poses and quicker than the one presented in the

next paragraph, loses some of the advantages of

the polygon area sort algorithm and cannot pro-

duce fully shadowed images or hidden line

removed images.

A more general solution is to divide the

scene by Z subdivisions into boxes as before.

The farthest box is then solved, and the solution

of this last box is treated as surface detail on

the plane of a distant polygon parallel to the

screen and with the same x-y limits as the box

(such surface detail, while associated with the

"backdrop" plane for hidden surface removal,

can still maintain all depth information for

three dimensional output)(Figure 9). This

newly created polygon is then added to the next

to last box and that box is solved. The process

repeats until all of the boxes have been solved.

The techniques of surface detail and of consoli-

dation (described later) are used here to reduce

the numbers of polygons involved in the hidden

surface problem. This solution has the same

effect as the first method visually, but is

different in that no external overlay techniques

are used in order that the solution be entirely

expressed in terms of polygons. This difference

in the two solutions illustrates one of the pri-

mary differences between the Newell, et al,

approach and the hidden surface algorithm pre-

sented here.

Consolidation

While the hidden surface algorithm takes

advantage of polygon area coherence, even greater

gains can be achieved by taking advantage of

object coherence where several related polygons

obscure objects behind them [11]. An eiample is

the case where solid objects are represented as

a series of polygons.

Consolidation can be accomplished by creat-

ing a new silhouette polygon exactly encompassing

all the polygons of the group. Individual com-

ponent polygons can then be represented as sur-

face detail of the new polygon (Figure 10). This

technique is particularly valuable for convex

polyhedra, where it is known that the component

polygons do not overlap each other after removal

of the backward facing polygons.

The advantage of consolidation is that one

polygon replaces several polygons in the hidden

surface computations, thus reducing the number

of polygon clips and depth tests required.

Furthermore, since the number of sorting steps

required is related to the number of polygons,

any method of reducing the number of polygons

220

offers the greatest potential in reducing overal

computation time.

IMPLEMENTATION

The hidden surface and hidden line removal

system described has been implemented at Cornell's

Laboratory for Computer Graphics [5]. The pro-

gram was written in FORTRAN IV and runs on a

PDP 11/50 with a floating point processor under

the RSX-11M operating system. The available dis-

play equipment includes both static and dynamic

vector displays, as well as a video frame buffer

and color monitor. Some sample photographs of

several environments are shown in Figures 1

and 11.

The system was designed as a flexible sub-

routine package for use in a variety of applica-

tions programs. Complete matrix transformation,

viewbox clipping, and backplane removal facili-

ties are provided. Once the input data has been

defined in an input data file it may be repeatedly

transformed for an unlimited number of views as

specified by a matrix file. A filming capability

for the generation of long sequences of images

is also provided.

The system is organized as four separate

tasks including the user's task, a data prepara-

tion task, the hidden surface removal task, and

a monitor task. This system reduces the com-

plexities of user interface requirements and

increases the flexibility of the runtime con-

figuration in terms of sequential or concurrent

execution and of core usage. All communication

between tasks is limited to file access and

system messages. System dependent functions

are contained only in top level control routines

in each task.

The user task is not required to be aware

of the details of the configuration or that any

file system exists; all interaction takes place

through interface routines provided by the

hidden surface removal system. Sufficient

information is provided in all output files so

that any file may be displayed on any vector or

raster output device without prior knowledge of

the contents of the output file.

CONCLUSION

A hidden surface and hidden line removal

algorithm using polygon area sorting has been

presented. A generalized polygon clipper,

capable of clipping concave polygons with holes

to concave polygons with holes, is incorporated

allowing polygon format to be maintained for

both the input and output. Calculation times

are primarily related to the visible complexity

of the final image.

Inherent characteristics of the polygon

area sorting algorithm give rise to both posi-

tive and negative features. Disadvantages are

the relative complexity of the clipping and

the need to render polygons separately as con-

trasted to generating the output on a scan line

basis. Advantages include flexible polygon

representations which can provide for the

creation of complex environments and arbitrary

output precision. Perhaps the primary advan-

tage is the similarity between the output and

input forms, enabling shadow generation and

surface details to be treated in a manner

consistent with the entire hidden surface

removal process.

Figure 11. (above) Hidden line image of cubes.

(below) Hidden surface image of cubes.

(left) House with shadows.

221

ACKNOWLEDGEMENTS

The research is part of a project sponsored

by the National Science Foundation under a grant

number DCR74-14694 entitled "Development of Compu-

ter Graphics Techniques and Applications" (Dr.

Donald P. Greenberg, Principle Investigator).

The authors wish to particularly thank Ted Crane

and David Bessel for their work in the implemen-

tation of the color display system.

REFERENCES

1. Appel, A., "The Notion of Quantitative

invisibility and the Machine Rendering of

Solids", Proceedings ACM National Conference

(1967), pp. 387-393.

2. Atherton, Peter R., "Polygon Shadow Generation",

M.S. Thesis, Cornell University, Ithaca, N.Y.

(1977), (forthcoming).

3. Bouknight, W.J., "A Procedure for Generation

of Three Dimensional Half-toned Computer

Graphics Representations", Comm. ACM, 13, 9

(Sept. 1970) pp. 527-536.

4. Galimberti, R., and Montanari, U., "An

Algorithm for Hidden-Line Elimination",

Comm. ACM, 12, 4, (April 1969), pp. 206-211.

5. Greenberg, Donald P., "An Interdisciplinary

Laboratory for Graphics Research and Appli-

cations", Proceedings of the Fourth Annual

Conference on Computer Graphics, Interactive

Techniques and Image Processing - SIGGRAPH,

1977.

6. Myers, A.J., "An Efficient Visible Surface

Program", CGRG, Ohio State U., (July 1975).

7. Newell, M.E., Newell, R.G. and Sancha, T.L.,

"A Solution to the Hidden Surface Problem",

Proceedings ACM National Conference, (1972),

pp. 443-450.

8. Roberts, L.G., "Machine Perception of Three-

Dimensional Solids", MIT Lincoln Laboratory,

TR 315, (May 1963).

9. Schumacher, R.A., Brand, B., Gilliand, M. and

Sharp, W., "Study for Applying Computer Gen-

erated Images to Visual Simulation", AFHRL-

TR-69-14, U.S. Air Force Human Resources

Laboratory, (Sept. 1969).

10. Sutherland, I.E., and Hodgman, G.W., "Re-

entrant Polygon Clipping", Communications of

the ACM, Vol. 17, No. 1, (Jan. 1974), pp. 32-

42.

11. Sutherland, I.E., Sproull, R.F., and Schumacker,

R.A., "A Characterization of Ten Hidden Sur-

face Algorithms", ACM Computing Surveys, Vol.

6, No. 1, (Mar. 1974), pp. 1-55.

12. Warnock, J.E., "A Hidden Surface Algorithm

for Computer Generated Halftone Pictures",

Dept. Comp. Sci., U. of Utah, (1969).

13. Watkins, G.S., "A Real-Time Visible Surface

Algorithm", Comp. Sci, Dept., U. of Utah,

UTECH-CSC-70-101, (June 1975).

14. Weiler, Kevin J., "Hidden Surface Removal

Using Polygon Area Sorting", M.S. Thesis,

Cornell University, Ithaca, N.Y. (1977),

(forthcoming).

222

