
Hidden-Unit Conditional Random Fields

Laurens van der Maaten Max Welling Lawrence K. Saul

Delft University of Technology

lvdmaaten@gmail.com

University of California, Irvine

welling@ics.uci.edu

University of California, San Diego

saul@cs.ucsd.edu

Abstract

The paper explores a generalization of con-
ditional random fields (CRFs) in which bi-
nary stochastic hidden units appear between
the data and the labels. Hidden-unit CRFs
are potentially more powerful than standard
CRFs because they can represent nonlinear
dependencies at each frame. The hidden
units in these models also learn to discover
latent distributed structure in the data that
improves classification. We derive efficient al-
gorithms for inference and learning in these
models by observing that the hidden units
are conditionally independent given the data
and the labels. Finally, we show that hidden-
unit CRFs perform well in experiments on
a range of tasks, including optical character
recognition, text classification, protein struc-
ture prediction, and part-of-speech tagging.

1 INTRODUCTION

Since their inception approximately a decade ago,
Conditional Random Fields (CRFs; Lafferty et al.
(2001); Sutton and McCallum (2007)) have become a
popular technique for the classification and segmenta-
tion of time series. Among others, CRFs have been
successfully applied to various problems in natural
language processing (Collins, 2003; Sha and Pereira,
2003), speech recognition (Cheng et al., 2009), bio-
informatics (Liu et al., 2005), and computer vision (He
et al., 2004; Kumar and Hebert, 2003). There are three
key advantages of CRFs over the traditional Hidden
Markov Models (HMMs) that explain their success:
(1) unlike HMMs, CRFs do not assume that the obser-
vations are conditional independent given the hidden
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states; (2) unlike HMMs, CRFs do not suffer from the
label bias problems of models that do local probability
normalization; (3) for certain choices of factors, the
negative conditional log-likelihood that is minimized
when training CRFs is a convex objective function.

The most popular CRFs are those with linear state
transition factors and linear data-dependent factors.
While the convexity of such linear CRFs is appealing,
the use of linear factors strongly restricts the map-
pings that the CRFs can represent, as they can only
represent linear decision boundaries. More recently,
some work has been performed on non-linear data-
dependent factors, such as (mixtures of) quadratic fac-
tors (Cheng et al., 2009; Sha and Saul, 2009), kernel-
based factors (Lafferty et al., 2004), and factors based
on multilayer perceptrons (LeCun et al., 1998; Peng
et al., 2010). Quadratic factors have the disadvantage
that they cannot be employed in domains with large
numbers of features (such as natural language process-
ing), whereas kernel-based factors do not scale well in
the number of training instances. Factors based on
multilayer perceptrons lead to non-linearities in the en-
ergy function, which makes optimization tedious. As
an alternative, some studies have trained CRFs on fea-
ture representations learned by unsupervised learners
(Do and Artieres, 2010; Mohamed et al., 2009); how-
ever, features discovered by unsupervised learning are
not necessarily optimized for classification.

In parallel with work on non-linear data-dependent
factors in CRFs, there has been some success in the
discriminative training of Restricted Boltzmann Ma-
chines (RBMs; Larochelle and Bengio (2008); Gelfand
et al. (2010)). Discriminative RBMs are logistic regres-
sors that have binary stochastic hidden units, which
are conditionally independent given the data and the
labels. The binary hidden units model latent features
of the data that improve classification. Although max-
imum conditional likelihood learning in discriminative
RBMs is non-convex, these models performed well in
several benchmarks (Larochelle and Bengio, 2008) and
real-world applications (Schmah et al., 2009).
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In this paper, we introduce a new model, called
hidden-unit CRF, that – similar to discriminative
RBMs – has binary stochastic hidden units that are
conditionally independent given the data and the la-
bel sequence1. By exploiting properties of conditional
independence, we can efficiently compute (1) the ex-
act gradient of the conditional log-likelihood, (2) the
most likely label sequence for a given time series, and
(3) marginal distributions over label sequences. At
the same time, the binary hidden units drastically ex-
pand the decision boundaries that can be learned by
the CRFs. In fact, it can be shown that the individ-
ual predictors (i.e., predictors that ignore the tempo-
ral correlations) are universal approximators for dis-
crete data. We develop various training algorithms
for hidden-unit CRFs, and we show that hidden-unit
CRFs perform well in experiments on optical charac-
ter recognition, sentence labeling, protein secondary
structure prediction, and part-of-speech tagging.

2 HIDDEN-UNIT CRFS

In the paper, we assume we are given a time series
x1,...,T of length T with observations xt of dimensional-
ity D, and a corresponding label sequence y1,...,T with
label vectors yt that use a so-called 1-of-K encoding
(i.e., ytk ∈ {0, 1} and

∑
k ytk = 1). Linear CRFs (Laf-

ferty et al., 2001) model the conditional distribution
over the label sequence given the data as

p(y1,...,T |x1,...,T ) =
exp {E(x1,...,T ,y1,...,T )}

Z(x1,...,T )
,

where Z(x1,...,T ) is the partition function

Z(x1,...,T ) =
∑

y′1,...,T

exp
{
E(x1,...,T ,y

′
1,...,T )

}
,

and the energy function E(x1,...,T ,y1,...,T ) is given by

E(x1,...,T ,y1,...,T ) =

T∑
t=2

[
yTt−1Ayt

]
+

T∑
t=1

[
xTt Wyt

]
.

In the above, A represents the state transition param-
eters and W represents the parameters of the data-
dependent term. We left out an initial-state factor
yT1 π, a final-state factor yTT τ , and T label bias terms
cTyt. The factor graph of linear CRFs is depicted in
Figure 1(a). One of the main disadvantages of the lin-
ear CRF is the linear nature of the data-dependent
term: if the state transition factors provide a uniform
input, the model reduces to a collection of simple lin-
ear logistic regressors.

1The reader should not confuse hidden-unit CRFs with
the “hidden CRF” (Quattoni et al., 2010). Hidden CRFs
only assign a single label to a complete time series.
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(b) Hidden-unit CRF.

Figure 1: Factor graphs of the linear CRF and the
hidden-unit CRF. Shaded circles represent variables
that are conditioned on.

To address the linear nature of the data-dependent fac-
tors of linear CRFs, we propose the hidden-unit CRF.
At every time step t, the hidden-unit CRF employs H
binary stochastic hidden units zt. The hidden units
are conditionally independent given the data x1,...,T

and the labels y1,...,T . The factor graph of the hidden-
unit CRF is depicted in Figure 1(b). The hidden-unit
CRF models the conditional distribution over the label
sequence y1,...,T given the data x1,...,T as follows

p(y1,...,T |x1,...,T ) =
1

Z(x1,...,T )∑
z1,...,T

exp {E(x1,...,T , z1,...,T ,y1,...,T )} ,

where the partition function is now given by

Z(x1,...,T ) =
∑

y′1,...,T

∑
z′1,...,T

exp
{
E(x1,...,T , z

′
1,...,T ,y

′
1,...,T )

}
.

In the hidden-unit CRF, the initial-state, final-state,
and state transition factors are still standard linear
factors, but the data-dependent factor now consists of
two main parts, which are both defined to be linear
functions. The energy function is given by

E(x1,...,T , z1,...,T ,y1,...,T ) = yT1 π + yTT τ+

T∑
t=2

[
yTt−1Ayt

]
+

T∑
t=1

[
xTt Wzt + zTt Vyt + bT zt + cTyt

]
.

The aim of the hidden units is to construct a dis-
tributed representation of the data that captures the
underlying structure of that data, similarly to multi-
layer perceptrons or (discriminative) RBMs.
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An important property of the hidden-unit CRF is
that the evaluation of the predictive distribution
p(y1,...,T |x1,...,T ) is tractable. To infer the predictive
distribution, we need to marginalize out the hidden
units z1,...,T . Because the hidden units are condi-
tionally independent given the data and the labels,
the hidden units can be marginalized out one-by-one
(Larochelle and Bengio, 2008; Salakhutdinov et al.,
2007). Marginalizing out the hidden units gives

p(y1...T |x1...T ) =
exp

{
yT1 π + yTT τ

}
Z(x1,...,T )

T∏
t=1

[
exp

{
cTyt+

yTt−1Ayt
} H∏
h=1

∑
zh∈{0,1}

exp
{
zhbh + zhw

T
hxt + zhv

T
hyt

} ]

=
exp

{
yT1 π + yTT τ

}
Z(x1,...,T )

T∏
t=1

[
exp

{
cTyt + yTt−1Ayt

}
H∏
h=1

(
1 + exp

{
bh + wT

hxt + vThyt
}) ]

,

where wh denotes the h-th row of W, and vh denotes
the h-th row of V. We observe that the predictive
distribution for a single label yt comprises a product of
a number of terms. The terms outside the product over
hidden units also appear in the predictive distribution
of linear CRFs; they measure the prior probability of
a label given the preceding label. The term inside the
product over hidden units is always larger than one.
As a result, none of the hidden units can “veto” a
decision: if a hidden unit does not like a decision, its
value in the product over hidden units is roughly one,
and it will thus be ignored in the product over hidden
units. At the same time, a single hidden unit can
strongly suggest a particular decision if all three terms
inside the exponent are large. The first of these three
terms, bh, measures the “importance” of hidden unit
h. The second term, wT

hxt, measures to what extent
hidden unit h “likes” the observed data vector. The
third term, vThyt, determines to what extent hidden
unit h “likes” each of the possible labels. Hence, if
the hidden unit is important, and it models the data
well, and it likes a particular label, the contribution of
that hidden unit to the overall product explodes. As a
result, the hidden-unit CRF can assign a label based
on a small number of hidden units with high output.

This makes the hidden-unit CRF much more power-
ful than the linear CRF2. In fact, the predictors for
the individual labels (i.e., ignoring the temporal cor-
relations) are universal approximators when the data

2We note that when the number of hidden units H is
chosen very small compared to the dimensionality D and
the number of classes K, the hidden-unit CRF may be sim-
pler than the linear CRF in terms of number of parameters.

is discrete (the proof of this universal approximation
theorem is similar to that presented by Roux and Ben-
gio (2008)).

In addition to the marginalization over the hidden
units, the evaluation of p(y1...T |x1...T ) requires eval-
uation of the partition function Z(x1,...,T ), i.e., it re-
quires summing over all possible label sequences. Be-
cause of the chain structure of the model, the partition
function factorizes into a sum that is linear (and not
exponential) in T . Defining3 potentials

Ψt(xt, zt,yt−1,yt) = exp
{
yTt−1Ayt + xTt Wzt + zTt Vyt

}
,

the sum over all possible label sequences factorizes as

Z(x1,...,T ) =
∑
y1...T

T∏
t=1

∑
zt

Ψt(xt, zt,yt−1,yt)

=
∑
yT

∑
yT−1

∑
zT

ΨT (xT , zT ,yT−1,yT )

∑
yT−2

∑
zT−1

ΨT−1(xT−1, zT−1,yT−2,yT−1)
∑
yT−3

∑
zT−2

. . .

The two main inferential problems that need to be
solved during learning are the computation of the
marginal distribution of a label, γtk = p(ytk =
1|x1,...,T ), and the distribution over a label edge,
ξtkl = p(yt,k = 1, yt+1,l = 1|x1,...,T ). Because of the
model’s chain structure, these inferential can be solved
efficiently using the sum-product algorithm (Bishop,
2006, p. 402). In particular, the forward messages
αt ∝

∑
y1,...,t−1

p(y1,...,T |x1,...,T ) and the backward

messages βt ∝
∑

yt+1,...,T
p(y1,...,T |x1,...,T ) of the sum-

product algorithm are given by

αtk =

K∑
i=1

∑
zt

Ψt(xt, zt, yt−1,i = 1, ytk = 1)αt−1,i

βtk =

K∑
i=1

∑
zt+1

Ψt+1(xt+1, zt+1, yt+1,k = 1, yt+2,i = 1)βt+1,i

where α1(k) = πk and βT (k) = τk. Using these mes-
sages, the marginal distributions can be expressed as

γt ∝ αt ◦ βt

ξt ∝

αt ◦∑
zt+1

Ψt+1(xt+1, zt+1,yt,yt+1)

βTt+1,

where ◦ denotes an element-wise product. Note that
the forward (or backward) messages can also be used
to compute the partition function, as by definition,
Z(x1,...,T ) =

∑K
k=1 αTk =

∑K
k=1 β1k.

3To prevent the notation from becoming too cluttered,
we ignore initial-state, final-state, and bias terms.
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The main inferential problem that needs to be
solved at test time is the computation of the
most likely label sequence given the data y∗1...T =
argmaxy′1...T

p(y′1...T |x1...T ). Using similar messages,
this inferential problem can be solved efficiently using
the max-sum algorithm (Bishop, 2006, p. 411).

3 TRAINING

In the previous section, we introduced hidden-unit
CRFs and showed how to efficiently solve inferential
problems in these models. In this section, we present
three approaches to train hidden-unit CRFs: (1) max-
imum conditional likelihood training, (2) perceptron
training, and (3) large-margin perceptron training.

3.1 Maximum Conditional Likelihood

In training hidden-unit CRFs, our aim is to maximize4

the conditional log-likelihood L, which is given by

L = log p(y1,...,T |x1,...,T )

=

T∑
t=1

log

(∑
zt

Ψt(xt, zt,yt−1,yt)

)
− log (Z(x1,...,T )) .

The gradients of the conditional log-likelihood L with
respect to the model parameters can be computed an-
alytically. In particular, defining Υ = {W,V,b, c},
the gradient with respect to the data-dependent pa-
rameters υ ∈ Υ is given by

∂L
∂υ

=

T∑
t=1

[
K∑
k=1

(
(ytk − γtk)

H∑
h=1

σ(ohk(xt))
∂ohk(xt)

∂υ

)]
,

where ohk(xt) = bh+ck+Vhk+wT
hxt, and where σ(x)

represents the sigmoid function σ(x) = 1
1+exp(−x) . The

gradient with respect to the state transition parame-
ters A, the initial-state parameters π, and the final-
state parameters τ are similar to those in linear CRFs,
and are omitted here because of space limitations.

Unlike linear CRFs, the negative conditional log-
likelihood of the hidden-unit CRF model is a non-
convex function. This implies that we are only guar-
anteed to converge to a local maximum of the condi-
tional log-likelihood (depending on the selected opti-
mization technique). In our experiments, we perform
maximum-likelihood training using (1) an L-BFGS op-
timizer and (2) a stochastic gradient descent (SGD)
optimizer. In preliminary experiments, we also exper-
imented with a conjugate gradient optimizer, but that
optimizer did not work as well.

4In practice, we often train on multiple time series. All
derivations in this section readily extend to such a learning
setting.

3.2 Perceptron Training

Perceptron-based training approaches often learn
models that are comparable in performance with mod-
els learned using maximum likelihood, but at a much
lower computational cost (Collins, 2002; Gelfand et al.,
2010). Perceptron training is typically computation-
ally more efficient because: (1) it learns good mod-
els in few iterations, (2) it uses the Viterbi algorithm
instead of the forward-backward algorithm, and (3)
parameters only need to be updated for frames that
are erroneously classified. Perceptron training ap-
proaches aim to minimize the number of misclassified
frames by updating the model parameters only when
a frame is misclassified. This is achieved by directly
performing a type of stochastic gradient descent on
the energy gap between the observed label sequence
and the predicted label sequence. In the case of the
hidden-unit CRF, the update rule for a parameter
θ ∈ Θ = {π, τ ,A,W,V,b, c} takes the form

θ ← θ + ηθ
∂

∂θ

(
E(x1,...,T , z

∗
1,...,T ,y1,...,T )−

E(x1,...,T , z
∗∗
1,...,T ,y

∗∗
1,...,T )

)
,

where ηθ is a parameter-specific step size, and where
z∗1,...,T represents the most likely state of the hidden
units given the data x1,...,T and the labels y1,...,T . In
the above, y∗∗1,...,T and z∗∗1,...,T represent the most likely
label sequence and the corresponding most likely state
of the hidden units given the data. Note that the
model parameters are not updated when the true la-
bels y1,...,T match the predicted labels y∗∗1,...,T .

The hidden unit states z∗1,...,T can be computed in
closed form (Gelfand et al., 2010), viz. ∀t : z∗t =
S(xTt W + Vyt + bT ) with S(·) the Heaviside step
function. The most likely state sequence y∗∗1,...,T can
be computed using a slightly adapted version of the
Viterbi algorithm that (1) for each label ytk finds the
most likely states of the hidden units zt in closed-form,
and (2) uses the Viterbi algorithm to find the optimal
label sequence given the states of the hidden units.
The corresponding states of the hidden units can then
be found as ∀t : z∗∗t = S(xTt W + Vy∗∗t + bT ). This
procedure performs an exact energy maximization as-
suming we constrain yt to have a 1-of-K encoding;
the maximization is partial if the the label vectors yt
are allowed to be binary K-vectors. The reader should
note that the maximization procedure described above
is not the same as the Viterbi algorithm described in
Section 2: the above procedure jointly maximizes over
(z1,...,T ,y1,...,T ), whereas the standard Viterbi algo-
rithm for hidden-unit CRFs marginalizes over z1,...,T
and maximizes over y1,...,T . The two procedures may
identify different “optimal” label sequences.

In perceptron training, the update rule described
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above is applied repeatedly. In general, this process
does not converge, but convergence can be obtained
by averaging the model parameters obtained after each
parameter update. We employ such parameter aver-
aging because it generally leads to better models.

3.3 Large-Margin Perceptron Training

Perceptron training can be improved by incorporating
a large-margin term in the conditional log-likelihood
(Cheng et al., 2009; Sha and Saul, 2009). Such a large-
margin term serves as a surrogate for the maximum-
margin objective that can be used to learn the param-
eters of linear CRFs (Taskar et al., 2004). It often
improves performance because it reduces overfitting.

Large-margin perceptron training for hidden-
unit CRFs can be implemented by adapting
the way in which the most likely state se-
quence y∗∗1...T is computed. Instead of computing
y∗∗1...T = argmaxy′1...T

maxz′1...T
p(y′1...T , z

′
1...T |x1...T ),

large-margin perceptron training computes
y∗∗1...T = argmaxy′1...T

maxz′1...T
[p(y′1...T , z

′
1...T |x1...T ) +

ρH(y′1...T ,y1...T )]. Herein, ρ is a parameter
that determines the margin, H(y′1...T ,y1...T ) =∑T
t=1 1− δ(

∑K
k=1 |y′tk− ytk|) is the Hamming distance

between the predicted label sequence and the true
label sequence, and δ(·) is the Dirac delta function.

The maximization can be performed using a variant of
the Viterbi algorithm described in the previous sub-
section; the variant adds ρ to log-potentials that cor-
respond to erroneous labels. The resulting algorithm
penalizes sequences that are far away in terms of Ham-
ming distance (but that may be close in terms of con-
ditional log-likelihood). As a result, the model param-
eters are updated when the prediction is incorrect, and
when the prediction is correct but lies within the mar-
gin ρ. The large-margin variant of the Viterbi algo-
rithm is used at training time, but not at test time.

4 EXPERIMENTS

We performed experiments in which we compare the
performance of hidden-unit CRFs with that of stan-
dard linear CRFs. We performed experiments on four
tasks: (1) optical character recognition, (2) labeling
questions and answers, (3) protein secondary structure
prediction, and (4) part-of-speech tagging. Code that
reproduces the results of our experiments is available
from http://cseweb.ucsd.edu/~lvdmaaten/hucrf.

4.1 Experimental Setup

In our experiments, both the linear and the hidden-
unit CRFs were initialized by sampling weights W

(and V where appropriate) from a Gaussian distri-
bution with variance 10−4, and setting all biases to
0. The state transition parameters A, the initial-state
parameters π and the final-state parameters τ were
also initialized to 0. Unless otherwise indicated, we
measure the average generalization error of the CRFs
in 10-fold cross-validation experiments. Below, we de-
scribe the four data sets that were used in our exper-
iments, as well as the parameter settings of the opti-
mizers presented in Section 3.

Optical character recognition. The OCR data set
(Taskar et al., 2004) that we used in our optical char-
acter recognition experiments contains data for 6, 877
handwritten words (i.e., time series), in which each
word is represented as a series of handwritten char-
acters. The data comprises 55 unique words, and it
consists of a total of 52, 152 characters (i.e., frames).
Each character is a binary image of size 16 × 8 pix-
els, leading to a 128-dimensional binary feature vector.
The data set comprises a total of 26 unique characters
(i.e., classes).

Recognizing questions and answers. The FAQ
data set (McCallum et al., 2000) contains data of
48 files (i.e., time series) with questions and answers
gathered from 7 UseNet multi-part FAQs. The col-
lection of FAQs contains a total of 55, 480 sentences
(i.e., frames). Each sentence is described using a 24-
dimensional binary vector that measures lexical char-
acteristics of the sentence (McCallum et al. (2000) pro-
vide a description of the features). We extended the
feature set with all pairwise products of the original
24 features, leading to a 24 + 242 = 600-dimensional
feature representation. Each sentence in the FAQ data
set is labeled by one of four labels: (1) question, (2)
answer, (3) header, or (4) footer. The task at hand is
to predict to which class each of the sentences belongs.

Protein secondary structure prediction. The
aim of protein secondary structure prediction (PSSP)
is to predict a protein’s secondary structure, given only
its amino acid structure. Predicting the structure of
a protein is fundamental to the determination of its
function. In our protein secondary structure predic-
tion experiments, we used the CB513 data set, which
contains amino acid structures of 513 proteins (Cuff
and Barton, 1999). The true secondary structure of
these proteins was computed from atomic-resolution
coordinates using DSSP (Kabsch and Sander, 1983).
As is common in protein secondary structure predic-
tion, we convert the eight-class DSSP labeling into a
three-class labeling by labeling H and G as H (for he-
lix), B and E as E (for sheet), and all other states as
C (for coil). For each of the proteins, we obtain 20-
dimensional position-specific score matrix (PSSM) fea-
tures by querying iteratively against a non-redundant
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protein sequences (nr) database for 5 iterations using
PSI-BLAST (Altschul et al., 1997). We transform the
PSSM features using the scheme described by Kim and
Park (2003) and concatenate the features from the sur-
rounding 13 frames. The resulting data set has 260
dimensions, 74, 874 frames, and 3 classes.

Part-of-speech tagging. The Penn Treebank corpus
(Marcus et al., 2004) contains 74, 029 sentences with
a total of 1, 637, 267 words. It contains 49, 115 unique
words, and each word in the corpus is labeled accord-
ing to its part of speech; there are a total of 43 dif-
ferent part-of-speech labels. We use four types of fea-
tures: (1) first-order word-presence features, (2) four-
character prefix presence features, (3) four-character
suffix presence features, and (4) four binary lexical
features that indicate the presence of, respectively, a
hyphen, a capital letter, a number, and an ‘-ing’ suffix
in a word. All features are measured in a window with
width 3 around the current word, which leads to a to-
tal of 212, 610 features. We use a random 90% training
/ 10% test division for our experiments on the Penn
Treebank corpus (due to the large size of the data set,
we cannot perform cross-validation experiments).

We performed experiments with four optimizers, viz.
(1) L-BFGS, (2) SGD, (3) perceptron training, and (4)
large-margin perceptron training. The details of these
four optimizers are discussed below.

L-BFGS. In the experiments with maximum con-
ditional likelihood using L-BFGS, we used L2-
regularization. We tuned the regularization parameter
based on the error on a small held-out validation set.
The L-BFGS optimizer was run until the line search
returned a preset minimum step size of 10−5, or until
the maximum number of 500 iterations was reached.
Due the high dimensionality of the data, L-BFGS can-
not be used on the Penn Treebank corpus (even storing
parts of the Hessian is infeasible).

Stochastic gradient descent. In the experiments
with maximum conditional likelihood using SGD, we
did not need to use regularization. We tuned the op-
timal step size based on the error on a small held-out
validation set. Because the time series in the Penn
Treebank corpus are generally very short, we used gra-
dients computed for mini-batches of 100 sentences in
the experiments on that data set. On the other data
sets, we updated the parameters using the gradient
induced by a single time series. On all data sets, we
ran the SGD optimizer for 100 full sweeps through
the data, and we performed online averaging of the
model parameters after each full sweep through the
data, starting after a burn-in period of 50 iterations.

Perceptron training. In the experiments with per-
ceptron training, we also did not need to use regu-

Linear CRF! Hidden-unit CRF (100 hidden units)! Hidden-unit CRF (250 hidden units)!
Hidden-unit CRF (500 hidden units)! Hidden-unit CRF (1000 hidden units)!
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(b) Sentence labeling (FAQ).
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(c) Protein secondary structure prediction (CB513).
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(d) Part-of-speech tagging (Penn Treebank).

Figure 2: Generalization errors (in %) of first-order
CRFs on four tasks using two different optimizers.

larization. We performed 100 full sweeps through the
data on all data sets, and we used a burn-in time of 10
iterations before starting the averaging of the model
parameters. We tuned the base step size based on the
error on a small held-out validation set. From the base
step size, we computed parameter-specific step sizes
ηθ as suggested by Gelfand et al. (2010). Test predic-
tions are made using the adapted Viterbi algorithm
described in Section 3.2.

Large-margin training. The parameter settings for
the large-margin perceptron training are identical to
those of the “normal” perceptron training, except we
use a margin parameter of ρ = 0.05. At test time, we
use the adapted Viterbi algorithm from Section 3.2.
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4.2 Results

The results of our experiments on the four data sets
with CRFs with first-order label chains are presented
in Figure 2. The figure presents results obtained using
L-BFGS, SGD, perceptron training, and large-margin
training. The results in Figure 2 reveal the merits of
the use of hidden units in CRFs. Hidden-unit CRFs
outperform linear CRFs on all four data sets. In par-
ticular, on the OCR data set, hidden-unit CRFs obtain
a decrease in generalization error of 6% − 10% com-
pared to traditional linear CRFs, depending on which
optimizer is employed. On the FAQ data set, the low-
est generalization error of hidden-unit CRFs is 4.43%,
compared to 6.54% for linear CRFs. On the protein
secondary structure prediction task, hidden-unit CRFs
achieve an performance improvement of approximately
4%. On the part-of-speech (POS) tagging task, hidden
units decrease the tagging error from 3.04% to 2.83%.

From the results presented in Figure 2, we also note
that perceptron-based learning algorithms outperform
L-BFGS and SGD on all but the FAQ data set (on
which SGD performs better). L-BFGS performs worst
in almost all experiments, presumably, because its per-
formance is very sensitive to the value of the regular-
ization parameter. Moreover, SGD and (large-margin)
perceptron training have significant computational ad-
vantages over L-BFGS, because they converge to good
solutions much faster.

The results presented in Figure 2 also reveal the mer-
its of using large-margin training: large-margin train-
ing leads to the best performance on three out of four
data sets. Hidden-unit CRFs tend to benefit more
from large-margin training than linear CRFs; the large
margin prevents hidden-unit CRFs from overfitting.

Next to our experiments with first-order CRFs, we
also performed experiments using CRFs with second-
order label chains. The results of these experiments
are presented in Figure 3 for perceptron and large-
margin training (results obtained using L-BFGS and
SGD are omitted because of space limitations). The
results presented in the figure show that the use of
higher-order CRFs may improve the performance of
hidden-unit CRFs. In particular, hidden-unit CRFs
with second-order label chains achieve a generaliza-
tion error of 1.99% on the OCR data set, compared
to 4.05% error using first-order CRFs. On the Penn
Treebank data set, the use of second-order label chains
reduces the tagging error from 2.83% to 2.68%.

In Table 1, we compare the performance of hidden-
unit CRFs with the performance of competing mod-
els on three of the four tasks. The table reveals that
hidden-unit CRFs outperform a range of state-of-the-
art models and systems on all three tasks.

Linear CRF (1st order)! Linear CRF (2nd order)! Hidden-unit CRF (100 hidden units)!
Hidden-unit CRF (250 hidden units)! Hidden-unit CRF (500 hidden units)! Hidden-unit CRF (1000 hidden units)!
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3.45	


3.04	

3.28	


2.76	


3.19	


2.76	


3.22	


2.68	


3.35	


2.72	


3.40	


2.85	


2.00	


3.00	


4.00	


Perceptron	
 Large-margin	


(d) POS tagging.

Figure 3: Generalization errors (in %) of second-order
CRFs on four tasks using two different optimizers.

5 DISCUSSION

Below, we discuss the computational complexity of
hidden-unit CRFs, and we discuss the similarities and
differences of hidden-unit CRFs and related models.

Computational complexity. The additional repre-
sentative power of hidden-unit CRFs comes at a com-
putational cost. When performing inference, the main
computational difference between linear CRFs and
hidden-unit CRFs lies in the computation of the po-
tentials

∑
zt

Ψt(xt, zt,yt−1,yt). For linear CRFs, the

potentials can be computed in O(DK +K2), whereas
it requires O((D + K)H + K2) to compute these po-
tentials hidden-unit CRFs (where D is the data di-
mensionality, K is the number of classes, and H is
the number of hidden units). Having said that, par-
allelization of the computations in hidden-unit CRFs
is straightforward, and the overall computational cost
still scales linearly in the number of training instances.

Related models. Hidden-unit CRFs may be con-
sidered as a natural extension of discriminative RBMs
(Larochelle and Bengio, 2008) to time series data. This
relation suggests that the data-dependent parameters
of hidden-unit CRFs can be pre-trained using discrim-
inative RBMs. As a computationally less expensive
alternative, pre-training of the data-dependent param-
eters may also be performed by training an RBM on
p(x,y) using contrastive divergence (Hinton, 2002).

Hidden-unit CRFs can also be considered as the
probabilistic counterpart of conditional neural fields
(CNFs; LeCun et al. (1998); Peng et al. (2010)), which
are CRFs equipped with deterministic hidden units.
There are two main differences between hidden-unit
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Table 1: Performance of various techniques on three
data sets compared to that of hidden-unit CRFs. The
best performance on each data set is boldfaced.

Optical character recognition

Linear-chain CRF (Do and Artieres, 2010) 14.20%

Max-margin Markov net (Do and Artieres, 2010) 13.46%

Searn (Daumé III et al., 2009) 9.09%

SVM + CRF (Hoefel and Elkan, 2008) 5.76%

Deep learning (Do and Artieres, 2010) 4.44%

Cond. graphical models (Pérez-Cruz et al., 2007) 2.70%

Hidden-unit CRF 1.99%

Protein secondary structure prediction

PSIRED (Jones, 1999) 24.0%

SVM (Kim and Park, 2003) 23.4%

SPINE (Dor and Zhou, 2007) 23.2%

YASSP (Karypis, 2006) 22.2%

Conditional neural field (Peng et al., 2010) 19.5%

Hidden-unit CRF 20.2%

Part-of-speech tagging

Linear-chain CRF (Lafferty et al., 2001) 4.27%

Second-order HMM (Brants, 2000) 3.30%

Maximum-entropy (Ratnaparkhi, 1996) 3.14%

Second-order discr. HMM (Collins, 2002) 2.93%

Hidden-unit CRF 2.68%

CRFs and CNFs. First, hidden-unit CRFs are fully
probabilistic models that allow for natural extensions
to, e.g., semi-supervised learning settings. Second, for
discrete data, the individual predictors in hidden-unit
CRFs are universal approximators, whereas CNFs’
individual predictors cannot represent discontinuous
functions (Cybenko, 1989).

Hidden-unit CRFs also bear some resemblance to ap-
proaches that train a deep network (often in an unsu-
pervised manner), and train a linear CRF or Viterbi
decoder on the output of the resulting network (Do
and Artieres, 2010; Lee et al., 2010; Mohamed et al.,
2009; Prabhavalkar and Fosler-Lussier, 2010). Such
approaches differ from hidden-unit CRFs in that (1)
they often do not use label information to train the
weights between the data and the hidden units and/or
(2) they do not train all state-transition and data-
dependent parameters jointly. As a result, the hidden
units in these models may discover latent distributed
representations that are suboptimal for classification.

Other CRF models that are related to hidden-unit
CRFs are models that use latent variables, which are
assignment variables of a Gaussian mixture (Cheng
et al., 2009; Sha and Saul, 2009). Such approaches
were developed specifically for speech recognition, and
are generally not applicable to high-dimensional data
because, unlike the hidden-unit CRF, their memory

complexity is quadratic in the data dimensionality.

Perceptron training of hidden-unit CRFs can be
viewed as conditional herding (Gelfand et al., 2010)
for time series. The only difference between the two is
that perceptron training averages over parameters dur-
ing training, whereas conditional herding averages over
test predictions. We performed preliminary experi-
ments with conditional herding in hidden-unit CRFs,
and found that it performs roughly on par with per-
ceptron training. However, in models where the maxi-
mization over (z1,...,T ,y1,...,T ) cannot be performed ex-
actly (e.g., when the label field has a loopy structure),
the sequence of model parameters that results from
the perceptron updates becomes much more chaotic,
as a result of which parameter averaging may result in
poor models. Hence, conditional herding is likely to
work much better when the label graph is loopy.

6 CONCLUSIONS

In the paper, we introduced hidden-unit CRFs; a pow-
erful new model for the classification and segmentation
of time series that learns a latent distributed represen-
tation of the data that improves classification. We
showed that the conditional independence properties
of hidden-unit CRF can be exploited to perform infer-
ence efficiently. We developed and investigated various
training approaches for hidden-unit CRFs, and showed
that training of hidden-unit CRFs is still practical for
very large models (our largest model has over 200
million parameters). Finally, our experimental eval-
uations revealed that the performance of hidden-unit
CRFs is very competitive on a wide range of tasks.

In future work, we aim to investigate more complex
variants of hidden-unit CRFs such as models with
three-way interactions (Memisevic et al., 2011). We
also aim to investigate hidden-unit CRFs in which the
label units form a more complex network (e.g., a pla-
nar graph), and we aim to investigate segmental vari-
ants of hidden-unit CRFs (Sarawagi and Cohen, 2005).
Other directions for future work entail developing pre-
training approaches, and extending the model to semi-
supervised learning settings by combining its learning
signal with that of its generative counterpart.
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