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Abstract. Predicate encryption schemes are encryption schemes in which
each ciphertext Ct is associated with a binary attribute vector x =
(x1, . . . , xn) and keys K are associated with predicates. A key K can
decrypt a ciphertext Ct if and only if the attribute vector of the cipher-
text satisfies the predicate of the key. Predicate encryption schemes can
be used to implement fine-grained access control on encrypted data and
to perform search on encrypted data.

Hidden vector encryption schemes [Boneh and Waters – TCC 2007] are
encryption schemes in which each ciphertext Ct is associated with a bi-
nary vector x = (x1, . . . , xn) and each key K is associated with binary
vector y = (y1, · · · , yn) with “don’t care” entries (denoted with ?). Key
K can decrypt ciphertext Ct if and only if x and y agree for all i for
which yi 6= ?.

Hidden vector encryption schemes are an important type of predicate
encryption schemes as they can be used to construct more sophisticated
predicate encryption schemes (supporting for example range and subset
queries).

We give a construction for hidden-vector encryption from standard com-
plexity assumptions on bilinear groups of prime order. Previous con-
structions were in bilinear groups of composite order and thus resulted
in less efficient schemes. Our construction is both payload-hiding and
attribute-hiding meaning that also the privacy of the attribute vector,
besides privacy of the cleartext, is guaranteed.

1 Introduction

Traditional public key encryption schemes are well tailored for point-to-point
security in which a sender wishes to send private messages to the owner of the
public key. Recently, there has been a trend for private user data to be stored over
the Internet by a third party server. It is then expected that user will encrypt
the data so to preserve the privacy of the data itself. If a traditional encryption
scheme is employed then user will not be able to search its data. Indeed, the user
has to download and the decrypt its data and then perform the search; which
can be very inconvenient.

This problem has been first studied by Boneh et al. [BDOP04] that intro-
duced the concept of an encryption scheme supporting test equality. Roughly
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speaking, in such an encryption scheme, the owner of the public key can com-
pute, for any message M , a trapdoor information KM that allows the server that
physically holds the data to check whether a given ciphertext encrypts message
M without obtaining any additional information. Boneh et al. [BDOP04] sug-
gested to use this system for storing encrypted e-mail messages on a server so
that the user could decide to download only the e-mail messages with a given
subject without having to compromise his privacy (and without having to down-
load and decrypt all the messages).

Recently along this line of research, Goyal et al. [GPSW06] have introduced
the concept of an attribute-based encryption scheme (ABE scheme). In an ABE
scheme, a cyphertext is labeled with a set of attributes and private keys are
associated with a predicate. A private key can decrypt a ciphertext iff the at-
tributes of the ciphertext satisfy the predicate associated with the key. An ABE
schem can thus been seen as a special encryption scheme for which, given the
key associated with a predicate P , one can test whether a given ciphertext Ct
carries a message M that satisfies predicates P without having to decrypt and
without getting any additiocal information. The construction of [GPSW06] is
very general as it supports any predicate that can be expressed as a circuit with
threshold gates. On the other hand the construction only achieved what is called
payload security which consists in guaranteeing the security of the cleartext. In-
deed, in the construction of [GPSW06], the attribute vector associated with a
ciphertext appears in clear in the ciphertext.

In several applications instead one would like to be able to encrypt a cleart-
ext and label the ciphertext with attributes so that both the cleartext and the
attributes are secure. This extra property is called attribute hiding. Indeed, it is
an important research problem to design encryption schemes for large predicate
classes that enjoy both the payload and the attribute hiding property. In [BW07],
Boneh and Waters give construction for encryption schemes for several families
of predicates including conjuctions, and subset and range predicates. This has
been recently extended to disjunctions, polynomial equations and inner prod-
ucts [KSW08]. Both constructions are based on hardness assumptions regarding
bilinear groups on composite order. More efficient schemes for range queries over
encrypted data have been presented in [SBC+07].

Our results. In this paper we give a construction for hidden vector encryp-
tion schemes (HVE, in short). Roughly speaking, in a hidden vector encryption
scheme ciphertexts are associated with binary vectors and private keys are as-
sociated with with binary vectors with “don’t care” entries (denoted by ?). A
private key can decipher a ciphertext if all entries of the key vector that are not ?
agree with the corresponding entries of the ciphertext vector (see Definition 1).
The first construction for HVE has been given by [BW07] which also showed
that HVE gives efficient encryption schemes supporting conjunctions of equality
queries, range queries and subset queries. By applying the reductions of [BW07]
to our construction we obtain encryption schemes supporting the same classe of
predicates as [BW07].
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Both the payload and the attribute security of our construction rely on stan-
dard computational assumptions on bilinear groups of prime order; namely, the
Bilinear Decision Diffie-Hellman assumption and the Decision Linear assump-
tion (used also in [BW06,GPSW06]). As already noted above, the security of
the construction of [BW07] instead relies on the Composite Bilinear Decision
Diffie-Hellman assumption and the Composite 3-Party Diffie-Hellman assump-
tion. Both assumptions imply that the order of the group is difficult to factor
and this results in larger group elements and thus more expensive operations.

2 The Symmetric Bilinear Setting

We have multiplicative groups G and GT of prime order p and a non-degenerate
bilinear pairing function e : G×G→ GT . That is, for all g ∈ G, g 6= 1, we have
e(g, g) 6= 1 and e(ga, gb) = e(g, g)ab. We denote by g and e(g, g) the generators
of G and GT . We call a symmetric bilinear instance a tuple I = [p, G, GT , g, e]
and assume that there exists an efficient generation procedure that, on input
security parameter 1k, outputs an instance with |p| = Θ(k).

In our constructions we make the following hardness assumptions.

Decision BDH. Given a tuple [g, gz1 , gz2 , gz3 , Z] for random exponents z1, z2, z3 ∈
Zp it is hard to distinguish between Z = e(g, g)z1z2z3 and a random Z from GT .
More specifically, for an algorithm A we define experiment DBDHExpA as fol-
lows.

DBDHExpA(1k)
Choose instance I = [p, G, GT , g, e] with security parameter 1k;
Choose a, b, c ∈ Zp at random;
Choose η ∈ {0, 1} at random;
if η = 1 then choose z ∈ Zp at random

else set z = abc;
set A = ga, B = gb, C = gc and Z = e(g, g)z;
let η′ = A(I, A, B,C,Z);
if η = η′ then return 0 else return 1;

Assumption 1 (Decision Bilinear Diffie-Hellman) For all probabilistic
polynomial-time algorithms A,∣∣∣Prob[DBDHExpA(1k) = 1]− 1/2

∣∣∣ = ν(k)

for some negligible function ν.

Decision Linear. Given a tuple [g, gz1 , gz2 , gz1z3 , gu, Z] for random exponents
z1, z2, z3, u ∈ Zp it is hard to distinguish between Z = gz2(u−z3) and a random
Z from G. More specifically, for an algorithm A we define experiment DLExpA
as follows.
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DLExpA(1k)
Choose instance I = [p, G, GT , g, e] with security parameter 1k;
Choose z1, z2, z3, u ∈ Zp at random;
Choose η ∈ {0, 1} at random;
if η = 1 then choose z ∈ Zp at random

else set z = z2(u− z3);
set Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , U = gu, and Z = gz;
let η′ = A(I, Z1, Z2, Z13, U, Z);
if η = η′ then return 0 else return 1;

Assumption 2 (Decision Linear) For all probabilistic polynomial-time algo-
rithms A, ∣∣∣Prob[DLExpA(1k) = 1]− 1/2

∣∣∣ = ν(k)

for some negligible function ν.

Note that Decision Linear implies Decision Bilinear Diffie-Hellman and the
Decision Linear assumption has been introduced in [BBS04] and used also in [BW06].

3 HVE schemes

Let x be a string over the alphabet {0, 1} and y be a string over the alphabet
{0, 1, ?}. Assume x and y have the same length n and define predicate Px(y)
to be true if and only if for each 1 ≤ i ≤ n we have xi = yi or yi = ?. In other
words, for Px(y) to be true, the two strings must match in positions i where
yi 6= ? and, intuitively, ? is the “don’t care” symbol.

Definition 1 (HVE). A Hidden Vector Encryption Scheme (a HVE scheme) is a
quadruple of probabilistic polynomial-time algorithms (Setup,Enc,KeyGeneration,Dec)
such that:

1. Setup takes as input the security parameter 1k and the attribute length n =
poly(k) and outputs the master public key Pk and the master secret key Msk.

2. KeyGeneration takes as input the master secret key Msk and string y ∈
{0, 1, ?}n and outputs the decryption key Ky associated with y.

3. Enc takes as input the public key Pk, attribute string x ∈ {0, 1}n and message
M from the associated message space and returns ciphertext Ctx.

4. Dec takes as input a secret key Ky and a ciphertext Ctx and outputs a
message M .

We require that for all k and n = poly(k), and for all strings x ∈ {0, 1}n and
y ∈ {0, 1, ?}n such that Px(y) = 1, it holds that:

Prob[(Pk,Msk)← Setup(1k, n); Ky ← KeyGeneration(Msk,y);
Ctx ← Enc(Pk,x,M) : Dec(Ky,Ct) = M ] = 1.
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We define two notions of security for our HVE scheme: semantic security
that captures the payload-hiding property and the attribute hiding property
that guarantees security of the attribute string. Both notions are in the selective
models in which the adversary committs to the attribute vector at the beginning
of the game. We note that this is same notion of security used in [BW07,KSW08].

Definition 2 (Semantic Security). An HVE scheme (Setup,Enc,KeyGeneration,Dec)
is semantically secure if for all PPT adversaries A,∣∣Prob[SemanticExpA(1k) = 1]− 1/2

∣∣ = ν(k)

for some negligible function ν, where SemanticExpA(1k) is the following experi-
ment.

Init. The adversary A announces the vector x it wishes be challenged upon.
Setup. The public and the secret key (Msk,Pk) are generated using the Setup

procedure and A receives Pk.
Query Phase I. A requests and gets private keys Ky relative to vectors y such

that Px(y) = 0. Key Ky is computed using the KeyGeneration procedure.
Challenge. A returns two different messages M0,M1 of the same length in the

message space. η is chosen at random from {0, 1}. A is given ciphertext
Ctx ← Enc(Pk,x,Mη).

Query Phase II. Identical to Query Phase I.
Output. A returns η′. If η = η′ then return 1 else return 0.

We are now ready to define the notion of attribute hiding.

Definition 3. An HVE scheme (Setup,Enc,KeyGeneration,Dec) is attribute hid-
ing if for all PPT adversaries A,∣∣Prob[AttributeHidingExpA(1k) = 1]− 1/2

∣∣ = ν(k)

for some negligible function ν, where AttributeHidingExpA(1k) is the following
experiment.

Init. The adversary A announces two attribute strings x0 6= x1 it wishes be
challenged upon.

Setup. The public and the secret key (Msk,Pk) are generated using the Setup
procedure and A receives Pk.

Query Phase I. A requests and gets private keys Ky relative to vectors y such
that Px1(y) = Px2(y) = 0. Key Ky is computed using the KeyGeneration
procedure.

Challenge. A returns two different messages M0,M1 of the same length. η is
chosen at random from {0, 1}. A is given ciphertext Ctx ← Enc(Pk,xη,Mη).

Query Phase II. Identical to Query Phase I.
Output. A returns η′. If η = η′ then return 1 else return 0.

If in the previous experiment we let x0 = x1 we have the definition of Se-
mantic Security.
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4 Our construction

In this section we describe our construction for an HVE scheme.
Setup. Procedure Setup, on input security parameter 1k and attribute length
n = poly(k), computes the public key Pk and the master secret key Msk in the
following way.

Choose a random instance I = [p, G, GT , g, e].
Choose y at random in Zp and set Y = e(g, g)y.
For 1 ≤ i ≤ n, choose ti, vi, ri,mi at random in Zp and set Ti = gti , Vi = gvi

and Ri = gri ,Mi = gmi .
Then, Setup(1k, n) returns [Pk,Msk] where

Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1] and Msk = [y, (ti, vi, ri,mi)n

i=1].

Encryption. Procedure Enc takes as input cleartext M ∈ GT , attribute string
x and public key Pk and computes ciphertext as follows.

Choose s at random in Zp, and, for 1 ≤ i ≤ n, choose si at random in Zp

and compute ciphertext

Enc(Pk,x,M) = [Ω,C0, (Xi,Wi)n
i=1],

where Ω = M · Y −s, C0 = gs and

Xi =

{
T s−si

i , if xi = 1;
Rs−si

i , if xi = 0.
and Wi =

{
V si

i , if xi = 1;
Msi

i , if xi = 0.

Key Generation. Procedure KeyGeneration on input Msk and y ∈ {0, 1, ?}n
derives private key Ky relative to attribute string y in the following way.

If y = (?, ?, . . . , ?) then Ky = gy. Else, denote by S1
y and S0

y the set of
indices i for which yi = 1 and yi = 0, respectively and let Sy = S1

y ∪ S0
y be the

set of indices for yi 6= ?. Then, for i ∈ Sy, choose ai at random in Zp under the
constraint that

∑
i∈Sy

ai = y and let Ky = (Yi, Li)n
i=1, where

Yi =


g

ai
ti , if yi = 1;

g
ai
ri , if yi = 0;
∅, if yi = ?.

and Li =


g

ai
vi , if yi = 1;

g
ai
mi , if yi = 0;
∅, if yi = ?.

Decryption. Procedure Dec decrypts cyphertext Ctx using secret key Ky such
that Px(y) = 1.

Dec(Pk,Ctx,Ky) = Ω ·
∏

i∈Sy

e(Xi, Yi)e(Wi, Li)

where Sy is the set of indices i such that yi 6= ?. If Sy = ∅ then Ky = gy and

Dec(Pk,Ctx,Ky) = Ω · e(C0,Ky).
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This ends the description of our construction. We remark that our construc-
tion can be extended to attribute vectors taken from a larger alphabet Σ (and
not simply {0, 1}) without increasing the length of the ciphertexts and of the
secret keys but only the length of the public key Pk. We omit further details.

We next prove that the quadruple is indeed an HVE.

Theorem 1. The quadruple of algorithms (Setup,Enc,KeyGeneration,Dec) spec-
ified above is an HVE.

Proof. It is sufficient to verify that this procedure computes M correctly when
Px(y) = 1. The case in which y = (?, ?, · · · , ?) is obvious.

We remind the reader that S1
y (respectively, S0

y) denotes the (possibly empty)
set of indices i such that yi = 1 (respectively, yi = 0) and that Sy = S1

y ∪ S0
y.

Then we have

Dec(Pk,Ctx,Ky) = Ω
∏

i∈Sy

e(Xi, Yi)e(Wi, Li)

= Me(g, g)−ys ·
∏

i∈S1
y

e(gti(s−si), g
ai
ti )e(gwisi , g

ai
wi )

·
∏

i∈S0
y

e(gri(s−si), g
ai
ri )e(gmisi , g

ai
mi )

= Me(g, g)−ys
∏

i∈S1
y

e(g, g)(s−si)aie(g, g)siai

∏
i∈S0

y

e(g, g)(s−si)aie(g, g)siai

= Me(g, g)−ys
∏

i∈Sy

e(g, g)(s−si)aie(g, g)siai

= Me(g, g)−ys
∏

i∈Sy

e(g, g)sai

= Me(g, g)−yse(g, g)ys = M.

Efficiency. In our construction we have that, for an attribute string of length n,
the ciphertext contains 1 element from GT and O(n) elements from G. The secret
key corresponding to vector y instead contains O(weight(y)) elements from G,
where weight(y) is the number of entries of y that are either 0 or 1. Thus our
scheme has the same ciphertext and key-length as the constructions presented
in [KSW08,BW07].

5 Proofs

In this section we prove that our construction is semantically secure and attribute
hiding.

Theorem 2 (Semantic Security). Assume BDDH holds. Then HVE scheme
(Setup,Enc,KeyGeneration,Dec) described above is semantically secure.
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Proof. Suppose that there exists PPT adversary A which has success in ex-
periment SemanticExp with probability non-negligibly larger than 1/2. We then
construct an adversary B for the experiment DBDHExp that uses A as subrou-
tine.
Input. B receives in input [I, A = ga, B = gb, C = gc, Z], where Z is e(g, g)abc

or a random element of GT .
Init. B runs A and receives the attribute string x it wishes to be challenged
upon.
Setup. Set Y = e(A,B). For every 1 ≤ i ≤ n, B chooses t′i, v

′
i, r

′
i,m

′
i ∈ Zp at

random and set

Ti =

{
gt′i , if xi = 1;
Bt′i , if xi = 0;

and Vi =

{
gv′

i , if xi = 1;
Bv′

i , if xi = 0;

Ri =

{
Br′

i , if xi = 1;
gr′

i , if xi = 0;
and Mi =

{
Bm′

i , if xi = 1;
gm′

i , if xi = 0;

B runs A on input Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1].

Notice that Pk has the same distribution of a public key received by A in the
Setup phase of SemanticExp with y = a · b, and with ti = t′i, vi = v′i, ri = br′i,
and mi = bm′

i for i with xi = 1, and ti = bt′i, vi = bv′i, ri = r′i, and mi = m′
i for

i with xi = 0.
Query Phase I. B answers A’s queries for y such that Px(y) = 0 as follows. Let
j be an index where xj 6= yj and yj 6= ? (such an index always exists). For every
i 6= j such that yi 6= ?, choose a′i uniformly at random in Zp and let a′ =

∑
a′i.

Set Yj and Lj as

Yj =

{
A1/t′j g−a′/t′j , if yj = 1;
A1/r′

j g−a′/r′
j , if yj = 0.

and Lj =

{
A1/v′

j g−a′/v′
j , if yj = 1;

A1/m′
j g−a′/m′

j , if yj = 0.

and, for i 6= j, set Yi, Li as follows

Yi =



Ba′
i/t′i ; if xi = yi = 1;

Ba′
i/r′

i ; if xi = yi = 0;
ga′

i/r′
i ; if xi = 1 and yi = 0;

ga′
i/t′i ; if xi = 0 and yi = 1;
∅; if yi = ?.

and Li =



Ba′
i/v′

i ; if xi = yi = 1;
Ba′

i/m′
i ; if xi = yi = 0;

ga′
i/m′

i ; if xi = 1 and yi = 0;
ga′

i/v′
i ; if xi = 0 and yi = 1;

∅; if yi = ?.

Notice that Ky has the same distribution of the key returned by the KeyGener-
ation procedure. In fact, for i 6= j, set ai = ba′i and set aj = b(a− a′). Then we
have that

∑
i∈Sy

ai = y. Moreover, if yi = 1 then Yi = g
ai
ti and Li = g

ai
vi and, if

yi = 0 then Yi = g
ai
ri and Li = g

ai
mi .

Challenge. A returns two messages M0,M1 ∈ GT .
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B chooses uniformly at random η ∈ {0, 1} and si ∈ Zp, for i = 1, · · · , n. Then
B constructs Ctx = (Ω,C, (Xi,Wi)n

i=1), where Ω = MηZ−1, C0 = C and

Xi =

{
Ct′ig−t′isi ; if xi = 1;
Cr′

ig−r′
isi ; if xi = 0.

and Wi =

{
g−v′

isi ; if xi = 1;
g−m′

isi ; if xi = 0.

Observe that if Z = e(g, g)abc then Ctx is an encryption of Mη with s = c. If
instead Z is random in GT then Ctx is independent from η.
Query Phase II. Identical to Query Phase I.
Output. A outputs η′. B returns 0 iff η′ = η.

To conclude the proof observe that, if Z = e(g, g)abc then, since A is a
successful adversary for semantic security, the probability that B returns 0 is at
least 1/2 + 1/poly(k). On the other hand if Z is random in GT the probability
that B returns 0 is at most 1/2. This contradicts the BDDH assumption.

We now turn our attention at the attribute hiding property. We stress that
a crucial tool in achieving this property is the “linear splitting” technique first
used to construct anonymous hierarchical identity-based encryption in [BW06].
As an effect of employing this technique our ciphertexts and keys roughly double
in sizes. If one does not require attribute hiding then our scheme can be modified
so that, for attribute vectors of length n, the ciphertext has n + 2 elements and
keys at most n elements.

To prove that the HVE scheme presented is attribute hiding we show that for
any attribute string x and for any message M , an encryption of M with respect
to attribute string x is computationally indistinguishable from the uniform dis-
tribution on GT ×G2n+1 to an adversary that has access to the key generation
procedure for y such that Px(y) = 0.

Specifically, for j = 0, 1, . . . , n, we denote by Distj(x,M) the following dis-
tribution.
Distj(x,M)
1. choose I = [p, G, GT , g, e] with security parameter 1k;
2. compute [Msk,Pk] by executing Setup(1k, n);
3. choose R0 uniformly at random from GT and s uniformly at random from

Zp; set C0 = gs;
4. for i = 1, · · · , j choose Xi,Wi uniformly at random from G;
5. for i = j + 1, · · · , n

choose si uniformly at random Zp and set

Xi =

{
T s−si

i , if xi = 1;
Rs−si

i , if xi = 0.
and Wi =

{
V si

i , if xi = 1;
Msi

i , if xi = 0.

6. return: (R0, C0, (Xi,Wi)n
i=1);

From the proof of semantic security it follows, that under the BDDH, distri-
bution Dist0(x,M) is indistinguishable from the distribution of the legal cipher-
texts Enc(Pk,x,M) of M with attribute string x. Moreover, for all j, Distj(x,M)
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is independent from M and Distn(x,M) is the uniform distribution on GT ×
G2n+1 and thus is independent from x. Next lemma shows that distributions
Dist`−1 and Dist` are computational indistinguishable even to an adversary that
has access to the key generation oracle. This concludes the proof of the attribute
hiding property.

Lemma 1. Under the DL assumption, for ` = 1, 2, . . . , n and for any x ∈
{0, 1}n, we have that distributions Dist`−1(x) and Dist`(x) are computationally
indistinguishable to an adversary that has access to the key generation oracle.

Proof. Suppose that there exists PPT adversary A which distinguishes Dist`−1

from Dist`. We then construct an adversary B for the experiment DLExp.

Input. B takes in input [I, Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , U = gu, Z], where
either Z = gz2(u−z3) or Z is a random element of G.

Init. B receives from A the attribute string x it wishes to be challenged upon.

Setup. B sets Y = e(Z1, Z2) and, for i = 1 · · ·n, B chooses t′i, v
′
i, r

′
i,m

′
i uniformly

at random from Zp and sets

T` =

{
Z

t′`
2 , if x` = 1;

Z
t′`
1 , if x` = 0;

and V` =

{
Z

v′
`

1 , if x` = 1;

Z
v′

`
1 , if x` = 0;

R` =

{
Z

r′
`

1 , if x` = 1;

Z
r′

`
2 , if x` = 0;

and M` =

{
Z

m′
`

1 , if x` = 1;

Z
m′

`
1 , if x` = 0;

Moreover, for i 6= `, B sets

Ti =

{
gt′i , if xi = 1;

Z
t′i
1 , if xi = 0;

and Vi =

{
gv′

i , if xi = 1;

Z
v′

i
1 , if xi = 0;

Ri =

{
Z

r′
i

1 , if xi = 1;
gr′

i , if xi = 0;
and Mi =

{
Z

m′
i

1 , if xi = 1;
gm′

i , if xi = 0;

B runs A on input Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1].

Notice that Pk has the same distribution of a public key computed using
KeyGeneration, with y = z1 · z2, and ti = t′i, vi = v′i, ri = z1r

′
i,mi = z1m

′
i for

i 6= ` with xi = 1, and ti = z1t
′
i, vi = z1v

′
i, ri = r′i,mi = m′

i for i 6= ` with xi = 0;
moreover, if x` = 1 then we have t` = z2t

′
`, v` = z1v

′
`, r` = z1r

′
`,m` = z1m

′
`

whereas, if x` = 0, we have t` = z1t
′
`, v` = z1v

′
`, r` = z2r

′
`,m` = z1m

′
`.

Query Phase I. B answers A’s queries for y such that Px(y) = 0 in the
following way. We distinguish two cases.

Case 1: x` = y` or y` = ?. In this case there exists index j 6= ` such that
xj 6= yj and yj 6= ?.

Then, for i 6= j B chooses a′i uniformly at random in Zp and let us denote
by a′ the sum a′ =

∑
i 6=j,` a′i.
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For i 6= j and i 6= `, B sets

Yi =



Z
a′

i/t′i
1 , if xi = yi = 1;

Z
a′

i/r′
i

1 , if xi = yi = 0;
ga′

i/r′
i , if xi = 1, yi = 0;

ga′
i/t′i , if xi = 0, yi = 1;
∅, if yi = ?.

and Li =



Z
a′

i/v′
i

1 , if xi = yi = 1;

Z
a′

i/m′
i

1 , if xi = yi = 0;
ga′

i/m′
i , if xi = 1, yi = 0;

ga′
i/v′

i , if xi = 0, yi = 1;
∅, if yi = ?.

Moreover, B sets

Y` =


Z

a′
`/t′`

1 , if y` = 1;

Z
a′

`/r′
`

1 , if y` = 0;
∅, if y` = ?.

and L` =


Z

a′
`/v′

`
2 , if y` = 1;

Z
a′

`/m′
`

2 , if y` = 0;
∅, if y` = ?.

Finally, B sets

Yj =

{
Z

(1−a′
`)/t′j

2 g−a′/t′j , if yj = 1;

Z
(1−a′

`)/r′
j

2 g−a′/r′
j , if yj = 0.

and Lj =

{
Z

(1−a′
`)/v′

j

2 g−a′/v′
j , if yj = 1;

Z
(1−a′

`)/m′
j

2 g−a′/m′
j , if yj = 0.

By the settings above we have that, for i 6= j and i 6= `, ai = z1a
′
i, a` = z1z2a

′
`

and aj = z1z2−z1z2a
′
`−z1a

′. Therefore, the ai’s are independently and randomly
chosen in Zp under the costraint that their sum is z1z2 = y and thus the key
computed by B has the exact same distribution as the key computed by the
KeyGeneration algorithm.

Case 2: x` 6= y` and y` 6= ?. In this case, for i 6= `, B chooses a′i uniformly
at random in Zp and let us denote by a′ the sum a′ =

∑
i 6=` a′i. Then for i 6= `,

B sets Yi and Li exactly as in the previous case, whereas, B sets Y` and L` as
follows

Y` =

{
Z

1/r′
`

2 g−a′/r′
` , if x` = 1;

Z
1/t′`
2 g−a′/t′` , if x` = 0;

and L` =

{
Z

1/m′
`

2 g−a′/m′
` , if x` = 1;

Z
1/v′

`
2 g−a′/v′

` , if x` = 0;

By the settings above we have that ai = z1a
′
i and a` = z1z2−z1a

′. Therefore,
the ai’s are independently and randomly chosen in Zp under the costraint that
their sum is z1z2 = y. Hence, also in this case, the key computed by B has the
exact same distribution as the key returned by the KeyGeneration algorithm.
Challenge. B chooses R0 uniformly at random GT and, for ` ≤ i ≤ n, chooses
s′i uniformly at random in Zp. B then constructs the tuple

D∗ = (R0, C0, (Xi,Wi)n
i=1)

where C0 = U , and, for i < `, Xi and Wi are chosen uniformly from G whereas,
for i ≥ `, B computes

Xi =


Zt′l , if i = `, xi = 1;
Zr′

l , if i = `, xi = 0;
U t′ig−t′is

′
i , if i > `, xi = 1;

Ur′
ig−r′

is
′
i , if i > `, xi = 0;

and Wi =


Z

v′
l

13, if i = `, xi = 1;

Z
m′

l
13 , if i = `, xi = 0;

gv′
is

′
i , if i > `, xi = 1;

gm′
is

′
i , if i > `, xi = 0;
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Now observe that if Z = gz2(u−z3) then D? is distributed according to
Dist`−1(x), s = u, s` = z3, and si = s′i for i > `. On the other hand, if Z
is random in G, then D? is distributed according to Dist`(x) with s = u and
si = s′i for i > `.

Query Phase II. Identical to Query Phase I.

Output. A outputs η which represents a guess for the tuple in input (η = 0 for
D`−1 and v = 1 for D`). B forwards the same bit as its guess for the tuple of
the experiment DLExp.

By the observation above, we observe that if Z = gz2(u−z3) then A’s view is
exactly the same as A’s view (including the answers for queries for private keys)
when receiving an input from Dist`−1(x,M); if Z is randomly and uniformly
distributed in G then A’s view (again this includes the replies obtained to the
queries for private keys) is the same as when receiving an input from Dist`(x,M).
Therefore, if A distinguishes between Dist` and Dist`−1 then the DL assumption
is broken.

The above lemma implies the following theorem.

Theorem 3 (Attribute Hiding). Assume DL holds. Then HVE scheme (Setup,Enc,
KeyGeneration,Dec) described above is attribute hiding.

6 Applications

As we have discussed in the introduction HVE schemes are a special type of
predicate encryption schemes.

Definition 4. A predicate encryption scheme for a class F of predicates over n-
bit strings is quadruple of probabilistic polynomial-time algorithms (Setup,Enc,
KeyGeneration,Dec) such that:

1. Setup takes as input the security parameter 1k and attribute length n =
poly(k) and outputs the master public key Pk and the master secret key
Msk.

2. KeyGeneration takes as input the master secret key Msk and a predicate f ∈ F
and outputs the decryption key Kf associated with f .

3. Enc takes as input the public key Pk and an attribute string x ∈ {0, 1}n and
a message M in some associated message space and returns ciphertext Ctx.

4. Dec takes as input a secret key Kf and a ciphertext Ctx and outputs a
message M .

We require that for all k and n = poly(k), and for all strings x ∈ {0, 1}n and
predicates f ∈ F such that f(x) = 1, it holds that:

Prob[(Pk,Msk)← Setup(1k, n); Kf ← KeyGeneration(Msk, f);
Ctx ← Enc(Pk,x,M) : Dec(Kf ,Ct) = M ] = 1.
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The construction of searchable encryption of [BDOP04] can be seen an pred-
icate encryption for the class F of predicates Pa defined as Pa(x) = 1 iff and
only if a = x.

In [BW07], it is shown that HVE scheme can be used to construct predicate
encryption for the class of conjunctive comparison predicates defined as follows
Pa1,··· ,an

(x1, · · · , xn) = 1 if and only if ai ≤ xi for all i. Futhermore, in [BW07]
it was shown how to construct predicate encryption schemes also for conjunc-
tive range query predicates and subset query predicates starting from HVE. All
reductions can be applied to our HVE thus yielding the following theorem.

Theorem 4. Assume DL holds. Then there exist predicate encryption schemes
for conjunctive comparison predicates, conjunctive range query predicates and
subset query predicates that are semantically secure and attribute hiding.

We expect there to be several other applications of HVE.
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