
Steganography

S
teganography is the art and science of hiding

communication; a steganographic system

thus embeds hidden content in unremark-

able cover media so as not to arouse an eaves-

dropper’s suspicion. In the past, people used hidden

tattoos or invisible ink to convey steganographic

content. Today, computer and network technologies

provide easy-to-use communication channels for

steganography.

Essentially, the information-hiding process in a

steganographic system starts by identifying a cover

medium’s redundant bits (those that can be modified

without destroying that medium’s integrity).1 The

embedding process creates a stego medium by replac-

ing these redundant bits with data from the hidden

message. 

Modern steganography’s goal is to keep its mere

presence undetectable, but steganographic systems—

because of their invasive nature—leave behind de-

tectable traces in the cover medium. Even if secret

content is not revealed, the existence of it is: modify-

ing the cover medium changes its statistical properties,

so eavesdroppers can detect the distortions in the re-

sulting stego medium’s statistical properties. The

process of finding these distortions is called statistical

steganalysis.

This article discusses existing steganographic sys-

tems and presents recent research in detecting them via

statistical steganalysis. Other surveys focus on the gen-

eral usage of information hiding and watermarking or

else provide an overview of detection algorithms.2,3

Here, we present recent research and discuss the prac-

tical application of detection algorithms and the

mech-

a n i s m s

for getting around them. 

The basics of embedding
Three different aspects in information-hiding systems

contend with each other: capacity, security, and robust-

ness.4 Capacity refers to the amount of information that

can be hidden in the cover medium, security to an eaves-

dropper’s inability to detect hidden information, and ro-

bustness to the amount of modification the stego

medium can withstand before an adversary can destroy

hidden information.

Information hiding generally relates to both water-

marking and steganography. A watermarking system’s

primary goal is to achieve a high level of robustness—that

is, it should be impossible to remove a watermark with-

out degrading the data object’s quality. Steganography, on

the other hand, strives for high security and capacity,

which often entails that the hidden information is fragile.

Even trivial modifications to the stego medium can de-

stroy it.

A classical steganographic system’s security relies on

the encoding system’s secrecy. An example of this type of

system is a Roman general who shaved a slave’s head and

tattooed a message on it. After the hair grew back, the

slave was sent to deliver the now-hidden message.5 Al-

though such a system might work for a time, once it is

known, it is simple enough to shave the heads of all the

people passing by to check for hidden messages—ulti-

mately, such a steganographic system fails.

Modern steganography attempts to be detectable

only if secret information is known—namely, a secret
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Although people have hidden secrets in plain sight—

now called steganography—throughout the ages,

the recent growth in computational power and 

technology has propelled it to the forefront of today’s

security techniques.
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key.2 This is similar to Kerckhoffs’

Principle in cryptography, which

holds that a cryptographic system’s

security should rely solely on the key

material.6 For steganography to re-

main undetected, the unmodified

cover medium must be kept secret,

because if it is exposed, a comparison

between the cover and stego media

immediately reveals the changes. 

Information theory allows us to

be even more specific on what it

means for a system to be perfectly

secure. Christian Cachin proposed

an information-theoretic model for

steganography that considers the se-

curity of steganographic systems

against passive eavesdroppers.7 In

this model, you assume that the ad-

versary has complete knowledge of

the encoding system but does not

know the secret key. His or her task is

to devise a model for the probability distribution PC of

all possible cover media and PS of all possible stego

media. The adversary can then use detection theory to

decide between hypothesis C (that a message contains

no hidden information) and hypothesis S (that a mes-

sage carries hidden content). A system is perfectly se-

cure if no decision rule exists that can perform better

than random guessing. 

Essentially, steganographic communication senders

and receivers agree on a steganographic system and a

shared secret key that determines how a message is en-

coded in the cover medium. To send a hidden mes-

sage, for example, Alice creates a new image with a

digital camera. Alice supplies the steganographic sys-

tem with her shared secret and her message. The

steganographic system uses the shared secret to deter-

mine how the hidden message should be encoded in

the redundant bits. The result is a stego image that

Alice sends to Bob. When Bob receives the image, he

uses the shared secret and the agreed on stegano-

graphic system to retrieve the hidden message. Figure

1 shows an overview of the encoding step; as men-

tioned earlier, statistical analysis can reveal the pres-

ence of hidden content.8–12

Hide and seek
Although steganography is applicable to all data objects

that contain redundancy, in this article, we consider

JPEG images only (although the techniques and meth-

ods for steganography and steganalysis that we present

here apply to other data formats as well). People often

transmit digital pictures over email and other Internet

communication, and JPEG is one of the most common

formats for images. Moreover, steganographic systems

for the JPEG format seem more interesting because the

systems operate in a transform space and are not affected

by visual attacks.8 (Visual attacks mean that you can see

steganographic messages on the low bit planes of an

image because they overwrite visual structures; this usu-

ally happens in BMP images.) Neil F. Johnson and

Sushil Jajodia, for example, showed that steganographic

systems for palette-based images leave easily detected

distortions.9

Let’s look at some representative steganographic sys-

tems and see how their encoding algorithms change an

image in a detectable way. We’ll compare the different

systems and contrast their relative effectiveness.

Discrete cosine transform
For each color component, the JPEG image format uses

a discrete cosine transform (DCT) to transform successive 

8 × 8 pixel blocks of the image into 64 DCT coefficients

each. The DCT coefficients F(u, v) of an 8 × 8 block of

image pixels f(x, y) are given by

,

where C(x) = 1/ when x equal 0 and C(x) = 1 other-

wise. Afterwards, the following operation quantizes the

coefficients:
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Figure 1. Modern steganographic communication. The encoding step of a 

steganographic system identifies redundant bits and then replaces a subset of them

with data from a secret message.
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,

where Q(u,v) is a 64-element quantization table.

We can use the least-significant bits of the quantized

DCT coefficients as redundant bits in which to embed

the hidden message. The modification of a single DCT

coefficient affects all 64 image pixels.

In some image formats (such as GIF), an image’s visual

structure exists to some degree in all the image’s bit layers.

Steganographic systems that modify least-significant bits

of these image formats are often susceptible to visual at-

tacks.8 This is not true for JPEGs. The modifications are

in the frequency domain instead of the spatial domain, so

there are no visual attacks against the JPEG image format.

Figure 2 shows two images with a resolution of 640 ×
480 in 24-bit color. The uncompressed original image is

almost 1.2 Mbytes (the two JPEG images shown are

about 0.3 Mbytes). Figure 2a is unmodified; Figure 2b

contains the first chapter of Lewis Carroll’s The Hunting of

the Snark. After compression, the chapter is about 15

Kbytes. The human eye cannot detect which image holds

steganographic content.

Sequential
Derek Upham’s JSteg was the first publicly available

steganographic system for JPEG images. Its embedding

algorithm sequentially replaces the least-significant bit of

DCT coefficients with the message’s data (see Figure

3).13 The algorithm does not require a shared secret; as a

result, anyone who knows the steganographic system can

retrieve the message hidden by JSteg.

Andreas Westfeld and Andreas Pfitzmann noticed that

steganographic systems that change least-significant bits

sequentially cause distortions detectable by steganalysis.8

They observed that for a given image, the embedding of

high-entropy data (often due to encryption) changed the

histogram of color frequencies in a predictable way.

In the simple case, the embedding step changes the

least-significant bit of colors in an image. The colors are

addressed by their indices i in the color table; we refer to

their respective frequencies before and after embedding as

ni and ni
*. Given uniformly distributed message bits, if n2i

> n2i+1, then pixels with color 2i are changed more fre-

quently to color 2i + 1 than pixels with color 2i + 1 are

changed to color 2i. As a result, the following relation is

likely to hold:

|n2i – n2i+1| ≥ |n2i
* – n2i+1

*|.

In other words, embedding uniformly distributed mes-

sage bits reduces the frequency difference between adja-

cent colors.

The same is true in the JPEG data format. Instead of

measuring color frequencies, we observe differences in

the DCT coefficients’ frequency. Figure 4 displays the

histogram before and after a hidden message is embedded

in a JPEG image. We see a reduction in the frequency dif-

ference between coefficient –1 and its adjacent DCT co-

efficient –2. We can see a similar reduction in frequency

difference between coefficients 2 and 3.
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Figure 2. Embedded information in a JPEG. (a) The unmodified

original picture; (b) the picture with the first chapter of The Hunting

of the Snark embedded in it. 

Input: message, cover image 

Output: stego image

while data left to embed do

get next DCT coefficient from cover image 

if DCT ≠ 0 and DCT ≠ 1 then

get next LSB from message

replace DCT LSB with message LSB

end if

insert DCT into stego image

end while

Figure 3. The JSteg algorithm. As it runs, the algorithm sequentially

replaces the least-significant bit of discrete cosine transform (DCT)

coefficients with message data. It does not require a shared secret.
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Westfeld and Pfitzmann used a χ2-test to determine

whether the observed frequency distribution yi in an

image matches a distribution yi
* that shows distortion

from embedding hidden data. Although we do not know

the cover image, we know that the sum of adjacent DCT

coefficients remains invariant, which lets us compute the

expected distribution yi
* from the stego image. Letting ni

be the DCT histogram, we compute the arithmetic mean

to determine the expected distribution and compare it

against the observed distribution

yi = n2i.

The χ2 value for the difference between the distribu-

tions is given as

,

where ν are the degrees of freedom—that is, one less than

the number of different categories in the histogram. It

might be necessary to sum adjacent values from the ex-

pected distribution and the observed distribution to en-

sure that each category has enough counts. Combining

two adjacent categories reduces the degrees of freedom

by one. The probability p that the two distributions are

equal is given by the complement of the cumulative dis-

tribution function,

,

where Γ is the Euler Gamma function.

The probability of embedding is determined by calcu-

lating p for a sample from the DCT coefficients. The sam-

ples start at the beginning of the image; for each measure-

ment the sample size is increased. Figure 5 shows the

probability of embedding for a stego image created by JSteg.

The high probability at the beginning of the image reveals

the presence of a hidden message; the point at which the

probability drops indicates the end of the message.

Pseudo random 
OutGuess 0.1 (created by one of us, Niels Provos) is a

steganographic system that improves the encoding step

by using a pseudo-random number generator to select

DCT coefficients at random. The least-significant bit of a

selected DCT coefficient is replaced with encrypted

message data (see Figure 6).

The χ2-test for JSteg does not detect data that is ran-

domly distributed across the redundant data and, for that

reason, it cannot find steganographic content hidden by

OutGuess 0.1. However, it is possible to extend the χ2-

test to be more sensitive to local distortions in an image.

Two identical distributions produce about the same χ2

values in any part of the distribution. Instead of increasing

the sample size and applying the test at a constant posi-

tion, we use a constant sample size but slide the position

where the samples are taken over the image’s entire range.
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Figure 4. Frequency histograms. Sequential changes to the (a)

original and (b) modified image’s least-sequential bit of discrete

cosine transform coefficients tend to equalize the frequency of

adjacent DCT coefficients in the histograms.
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Figure 5. A high probability of embedding indicates that the image

contains steganographic content. With JSteg, it is also possible to

determine the hidden message’s length.
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Using the extended test, we can detect pseudo-randomly

distributed hidden data.

Given a constant sample size, we take samples at the

beginning of the image and increase the sample position

by 1 percent for every χ2 calculation. We then take the

sum of the probability of embedding for all samples. If the

sum is greater than the detection threshold, the test indi-

cates that an image contains a hidden message.

To find an appropriate sample size, we select an ex-

pected distribution for the extended χ2-test that should

cause a negative test result. Instead of calculating the arith-

metic mean of coefficients and their adjacent ones, we

take the arithmetic mean of two unrelated coefficients,

.

A binary search on the sample size helps find a value for

which the extended χ2-test does not show a correla-

tion to the expected distribution derived from unre-

lated coefficients.

Figure 7 shows an analysis of the extended χ2-test for

different false-positive rates. Its detection rate depends on

the hidden data’s size and the number of DCT coeffi-

cients in an image. We characterize their respective rela-

tion by using the change rate—the fraction of DCT coeffi-

cients available for embedding a hidden message that have

been modified. With a false-positive rate of less than 0.1

percent, the extended χ2-test starts detecting embedded

content for change rates greater than 5 percent. We im-

prove the detection rate by using a heuristic that elimi-

nates coefficients likely to lead to false negatives. Due to

the heuristic, the detection rate for embedded content

with a change rate of 5 percent is greater than 40 percent

for a 1 percent false-positive rate.

One of us (Niels Provos) showed that applying cor-

recting transforms to the embedding step could defeat

steganalysis based on the χ2-test.12 He observed that not

all the redundant bits were used when embedding a hid-

den message. If the statistical tests used to examine an

image for steganographic content are known, it is possible

to use the remaining redundant bits to correct statistical

deviations that the embedding step created. In this case,

preserving the DCT frequency histogram prevents ste-

ganalysis via the χ2-test.

Siwei Lyu and Hany Farid suggested a different ap-

proach based on discrimination of two classes: stego

image and non-stego image.10,11 Statistics collected from

images in a training set determine a function that discrim-

inates between the two classes. The discrimination func-

tion determines the class of a new image that is not part of

the training set. The set of statistics used by the discrimi-

nation function is called the feature vector.

Lyu and his colleague used a support vector machine

(SVM) to create a nonlinear discrimination function.

Here, we present a less sophisticated but easier to un-

derstand method for determining a linear discrimina-

tion function,

,

of the measured image statistics X = (x1, x2, …, xk)T that,

for appropriately chosen bi, discriminates between the
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Figure 6. The OutGuess 0.1 algorithm. As it runs, the algorithm

replaces the least-significant bit of pseudo-randomly selected

discrete cosine transform (DCT) coefficients with message data.

Input: message, shared secret, cover image 

Output: stego image 

initialize PRNG with shared secret 

while data left to embed do

get pseudo-random DCT coefficient from cover image

if DCT ≠ 0 and DCT ≠ 1 then

get next LSB from message

replace DCT LSB with message LSB

end if

insert DCT into stego image

end while
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Figure 7. The extended χ2-test detects pseudo-randomly embedded

messages in JPEG images. The detection rate depends on the

hidden message’s size and can be improved by applying a heuristic

that eliminates coefficients likely to lead to false negatives. The

graph shows the detection rates for three different false-positive

rates. The change rate refers to the fraction of discrete cosine

transform (DCT) coefficients available for embedding a hidden

message that have been modified.
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two classes.

For a new image X, the discriminant function Λ lets

us decide between two hypotheses: the hypothesis H0

that the new image contains no steganographic content

and the hypothesis H1 that the new image contains a hid-

den message.

For the binary hypothesis problem, detection theory

provides us with the Neyman-Pearson criterion, which

shows that the likelihood ratio test

maximizes the detection rate PD for a fixed false-negative

rate PF,
14 where px|H1 (X|H1) and px|H0(X|H0) de-

note the joint probability functions for (x1, x2, …, xk)

under H1 and H0, respectively. The constant η is the de-

tection threshold.

To choose the weights bi, we assume that the set xi of

non-stego images and the set yi of stego images are inde-

pendently and normally distributed. This assumption lets

us calculate the probability functions px|H1(X|H1) and

px|H0(X|H0), which we use to derive the weights bi.

Determining the discrimination functions is straight-

forward, but finding a good feature vector is difficult.

Farid created a feature vector with a wavelet-like decom-

position that builds higher-order statistical models of nat-

ural images.10 He derived the statistics by applying sepa-

rable low- and high-pass filters along the image axes

generating vertical, horizontal, and diagonal subbands,

which are denoted Vi(x,y), Hi(x,y) and Di(x,y), respec-

tively, for different scales i = 1, …, n.

The first set of statistics for the feature vector is given by

the mean, variance, skewness, and kurtosis of the subband

coefficients at each orientation and at scales i= 1, …, n– 1.

The second set of statistics is based on the errors in an op-

timal linear predictor of coefficient magnitude. For each

subband and scale, the error’s distribution is characterized

by its mean, variance, skewness, and kurtosis resulting in a

total size of 24(n – 1) for the feature vector.

Lyu and Farid’s training set consists of 1,800 non-

stego images and a random subset of 1,800 stego images

that contain images as hidden content. Using four differ-

ent scales, a program (or a researcher) calculates a 72-

length feature vector for each image in the training set.

Table 1 shows their achieved detection rate using a non-

linear SVM for false-positive rates 0.0 percent and 1.0

percent and different message sizes.

The discrimination function works well only if the

training set captures the image space’s useful characteris-

tics. For different types of images—for example, nature

scenes and indoor photographs—the detection rate

could decrease when using a single training set. Improv-

ing the training set by selecting images that match the

type of image we’re analyzing might be possible. The

probability models for clutter in natural images that Ulf

Grenander and Anuj Srivastava15 first proposed let us se-

lect similar images from the training set automatically.

We can improve the detection quality rate by using a

feature vector based on different statistics. Instead of using

a wavelet-like decomposition, we look at the distribution

of squared differences,

,

where i enumerates the number of blocks in the image,

and k enumerates the rows or columns in a single block.

For each distribution, we calculate the mean and its first

three central moments, resulting in 64 measurements for

V

F k j F k j

F k j
ik

i ij

ij

=
+ −( )

+

=

=

∑
∑

( , ) ( , )

( , )

1

1

2

0

6

0

6

H

F j k F j k

F j k
ik

i ij

ij

=
+ −( )

+

=

=

∑
∑

( , ) ( , )

( , )

1

1

2

0

6

0

6

Λ( )
( )

( )
X

X

X

x

x

= >
<

p H H

p H H

H

H

1 1

0 0

1

0

η

http://computer.org/security/ ■ IEEE SECURITY & PRIVACY 37

SYSTEM MESSAGE IMAGE SIZE PD IN PERCENT

(PF 1.0 ) (PF 0.0 )

JSteg 256 × 256 99.0 98.5

JSteg 128 × 128 99.3 99.0

JSteg 64 × 64 99.1 98.7

JSteg 32 × 32 86.0 74.5

OutGuess 256 × 256 95.6 89.5

OutGuess 128 × 128 82.2 63.7

OutGuess 64 × 64 54.7 32.1

OutGuess 32 × 32 21.4 7.2

Table 1. Detection rate PD for a nonlinear support vector machine.11
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a single image.

Figure 8 compares the linear discrimination functions

derived from the two feature vectors. Figure 8a shows re-

ceiver-operating characteristics (ROC) for OutGuess

messages and their corresponding change rates; Figure 8b

shows the ROCs for F5 messages (described in more de-

tail later). For OutGuess, the feature vectors show com-

parable detection performance. However, for F5, the

squared differences feature vector outperforms the

wavelet feature vector.

Using a discrimination function does not help us de-

termine a hidden message’s length. Jessica Fridrich and

her colleagues made a steganalytic attack on OutGuess

that can determine a hidden message’s length.16 Out-

Guess preserves the first-order statistics of the DCT coef-

ficients, so Fridrich and her group devised a steganalytic

method independent of the DCT histogram. They used

discontinuities along the boundaries of 8 × 8 pixel blocks

as a macroscopic quantity that increases with the hidden

message’s length. The discontinues are measured by the

blockiness formula

,

where gij are pixel values in an M × N grayscale image.

Experimental evidence shows that the blockiness B

increases monotonically with the number of flipped

least-sequential bits in the DCT coefficients. Its first de-

rivative decreases with the hidden message’s length,

meaning that the blockiness function’s slope is maximal

for the cover image and decreases for an image that al-

ready contains a message.

Using the blockiness measure, the algorithm to detect

OutGuess proceeds as follows:

1. Determine the blockiness BS(0) of the decompressed

stego image.

2. Using OutGuess, embed a maximal length message and

calculate the resulting stego image’s blockiness BS(1).

3. Crop the stego image by four pixels to reconstruct an

image similar to the cover image. Compress the result-

ing image using the same JPEG quantization matrix as

the stego image and calculate the blockiness B(0).

4. Using OutGuess, embed a maximal length message

into the cropped image and calculate the resulting

blockiness B(1).

5. Using OutGuess, embed a maximal length message

into the stego image from the previous step and com-

pute the resulting blockiness B1(1).

6. The slope S0 = B(1) – B(0) corresponds to the origi-

nal cover image, and S1 = B1(1) – (1) is the slope for

an image with an embedded, maximal length mes-

sage. The stego image’s slope S = BS(1) – BS(0) is be-

tween the two slopes S0 and S1. The hidden message’s

length is then determined as  
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Figure 8. Different feature vectors based on wavelet-like decomposition and on squared differences. (a) The receiver

operating characteristic (ROC) for OutGuess detection and (b) the ROC for F5 detection.
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,

where p = 0 corresponds to the cover image and p = 1

to an image with the maximal embedded message

length.

To counter randomness in the OutGuess embedding al-

gorithm, we repeat the detection algorithm 10 times. The

average of the p-values is taken as the final message length.

Fridrich and her group tested their algorithm on 70 im-

ages of which 24 contained hidden messages. Their analy-

sis showed an error in the estimated message length of

–0.48 percent ± 6 percent. This approach has two advan-

tages over class discrimination: it does not require a training

set and it determines the length of hidden messages.

Subtraction
Steganalysis successfully detects steganographic systems

that replace the least-significant bits of DCT coefficients.

Let’s turn now to Andreas Westfeld’s steganographic sys-

tem, F5.17

Instead of replacing the least-significant bit of a DCT

coefficient with message data, F5 decrements its absolute

value in a process called matrix encoding. As a result, there is

no coupling of any fixed pair of DCT coefficients, mean-

ing the χ2-test cannot detect F5.

Matrix encoding computes an appropriate (1, (2k – 1), k)

Hamming code by calculating the message block size k

from the message length and the number of nonzero non-

DC coefficients. The Hamming code (1, 2k– 1, k) encodes

a k-bit message word m into an n-bit code word a with 

n = 2k – 1. It can recover from a single bit error in the code

word.18

F5 uses the decoding function f(a) = ⊕n
i=1 ai ⋅ i and the

Hamming distance d. With matrix encoding, embedding

any k-bit message into any n-bit code word changing it at

most by one bit. In other words, we can find a suitable

code word a′ for every code word a and every message

word m so that m = f(a′) and d(a, a′) ≤ 1. Given a code

word a and message word m, we calculate the difference s

= m ⊕ f(a) and get the new code word as

Figure 9 shows the F5 embedding algorithm. First, the

DCT coefficients are permuted by a keyed pseudo-ran-

dom number generator (PRNG), then arranged into

groups of n while skipping zero and DC coefficients. The

message is split into k-bit blocks. For every message block

m, we get an n-bit code word a by concatenating the least-

significant bit of the current coefficients’ absolute value. If

the message block m and the decoding f(a) are the same,

the message block can be embedded without any changes;

otherwise, we use s = m ⊕ f(a) to determine which coeffi-

cient needs to change (its absolute value is decremented by

one). If the coefficient becomes zero, shrinkage happens,

and it is discarded from the coefficient group. The group is

filled with the next nonzero coefficient and the process re-

peats until the message can be embedded.

For smaller messages, matrix encoding lets F5 reduce

the number of changes to the image—for example, for k

= 3, every change embeds 3.43 message bits while the

total code size more than doubles. Because F5 decre-

ments DCT coefficients, the sum of adjacent coefficients

is no longer invariant, and the χ2 test cannot detect F5-

embedded messages.

However, Fridrich and her group presented a stegan-

alytic method that does detect images with F5 content.19

They estimated the cover-image histogram from the

stego image and compared statistics from the estimated

histogram against the actual histogram. As a result, they

found it possible to get a modification rate β that indicates

if F5 modified an image.

Fridrich and her colleagues’ steganalysis determined

how F5’s embedding step changes the cover image’s AC

coefficients. Let

huv(d) := |{F(u,v)| d = |F(u,v)|, u + v ≠ 0}|

be the total number of AC DCT coefficients in the cover

image with frequency (u,v) whose absolute value equals
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Figure 9. The F5 algorithm. F5 uses subtraction and matrix encoding

to embed data into the discrete cosine transform (DCT) coefficients.

Input: message, shared secret, cover image 

Output: stego image 

initialize PRNG with shared secret 

permutate DCT coefficients with PRNG 

determine k from image capacity 

calculate code word length n ← 2k – 1

while data left to embed do

get next k-bit message block

repeat

G ← {n non-zero AC coefficients}

s ← k-bit hash f of LSB in G

s ← s ⊕ k-bit message block

if s ≠ 0 then

decrement absolute value of DCT coefficient Gs

insert Gs into stego image

end if

until s = 0 or Gs ≠ 0

insert DCT coefficients from G into stego image

end while
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d. Huv(d) is the corresponding function for the stego

image.

If F5 changes n AC coefficients, the change rate β is

n/P, where P is the total number of AC coefficients. As

F5 changes coefficients pseudo randomly, we expect the

histogram values for the stego image to be

Huv(d) < (1 – β)huv(d) + β huv(d + 1),    for d > 0

Huv(0) < huv(0) + β huv(1), for d = 0.

Fridrich and her group used this estimate to calculate

the expected change rate β from the cover image his-

togram. They found the best correspondence when

using d = 0 and d = 1 because these coefficient values

change the most during the embedding step. This leads to

the approximation

.

The final value of β is calculated as the average of βuv for

the frequencies (u,v) ∈ {(1,2),(2,1),(2,2)}.

The histogram values for the cover image are un-

known and must be estimated from the stego image. We

do this by decompressing the stego image into the spatial

domain. The resulting image is then cropped by four pix-

els on each side to move the errors at the block bound-

aries. We recompress the cropped image using the same

quantization tables as the stego image, getting the esti-

mates for the cover image histogram from the recom-

pressed image.

Because many images are stored already in the JPEG

format, embedding information with F5 leads to double

compression, which could confuse this detection algo-

rithm. Fridrich and her group proposed a method for

eliminating the effects of double compression by estimat-

ing the quality factor used to compress the cover image.

Unfortunately, they based their evaluation of the detec-

tion algorithm on only 20 images. To get a better under-

standing of its accuracy, we present an evaluation of the

algorithm based on our own implementation.

Figure 10 shows the ROC for a test set of 500 non-

stego and 500 stego images. In the first test, both types

of images are double-compressed due to F5. The only

difference is that the stego images contain a stegano-

graphic message. Notice that the false-positive rate is

fairly high compared to the detection rate. The second

test uses the original JPEG images without double com-

pression as reference.

Statistics-aware embedding 
So far, we have presented embedding algorithms that

overwrite image data without directly considering the dis-

tortions that the embedding caused. Let’s look at a frame-

work for an embedding algorithm that uses global image

statistics to influence how coefficients should be changed.

To embed a single bit, we can either increment or

decrement a DCT coefficient’s value. This lets us change

a DCT coefficient’s least-significant bit in two different

ways. Additionally, we create groups of DCT coefficients

and use the parity1 of their least-significant bits as message

bits to further increase the number of ways to embed a

single bit. For every DCT block, we search the space of all

possible changes to find a configuration that minimizes

the change to image statistics. Currently, we search for so-

lutions that maintain the blockiness, the block variance,

and the coefficient histogram.

We are still in the progress of evaluating this approach’s

effectiveness. However, in contrast to previously pre-

sented steganographic systems, the changes our algo-

rithm introduces depend on image properties and take

statistics directly into consideration.

Comparison 
Detecting sequential changes in the least-significant bits

of DCT coefficients (as seen in JSteg) is easy. A simple χ2-

test helps us determine a hidden message’s presence and

size. Detecting other systems is more difficult, but all the
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Figure 10. Receiver-operating characteristics (ROCs) of the F5 detection

algorithm. The detection rate is analyzed when using double 

compression elimination and against single compressed images.
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systems presented here predictably

change the cover medium’s statistical

properties.

Steganographic systems use differ-

ent methods to reduce changes to the

cover medium. OutGuess, for exam-

ple, carefully selects a special seed for

its PRNG; F5 uses matrix encoding.

We can also compress the hidden

message before embedding it, but

even though this reduces the number

of changes to the cover medium, the

steganographic systems’ statistical dis-

tortions remain unchanged. For de-

tection algorithms that can determine

the hidden message’s length, the de-

tection threshold increases only

slightly.

We discussed two different classes

of detection algorithms: one based on

inherent statistical properties and the

other on class discrimination. Detection

algorithms based on inherent statistical

properties have the advantage that

they do not need to find a representa-

tive training set; moreover, they often let

us estimate an embedded message’s length. However, each

steganographic system requires its own detection algo-

rithm. Class discrimination, on the other hand, is univer-

sal—even though it doesn’t provide an estimate of the hid-

den message’s length, and creating a representative training

set is often difficult. A feature vector can help detect sev-

eral steganographic systems, once we get a good training

set. It remains to be seen if new steganographic systems

can circumvent detection using class discrimination.

Steganography 
detection on the Internet 
How can we use these steganalytic methods in a real-

world setting—for example, to assess claims that stegano-

graphic content is regularly posted to the Internet?20–22

To find out if such claims are true, we created a steganog-

raphy detection framework23 that gets JPEG images off

the Internet and uses steganalysis to identify subsets of the

images likely to contain steganographic content. 

Steganographic systems in use 
To test our framework on the Internet, we started by

searching the Web and Usenet for three popular stegano-

graphic systems that can hide information in JPEG im-

ages: JSteg (and JSteg-Shell), JPHide, and OutGuess. All

these systems use some form of least-significant bit em-

bedding and are detectable with statistical analysis.

JSteg-Shell is a Windows user interface to JSteg first

developed by John Korejwa. It supports content encryp-

tion and compression before JSteg embeds the data.

JSteg-Shell uses the RC4 stream cipher for encryption

(but the RC4 key space is restricted to 40 bits).

JPHide is a steganographic system Allan Latham first

developed that uses Blowfish as a PRNG.24,25 Version

0.5 (there’s also a version 0.3) supports additional com-

pression of the hidden message, so it uses slightly different

headers to store embedding information. Before the con-

tent is embedded, the content is Blowfish-encrypted

with a user-supplied pass phrase.

Detection framework
Stegdetect is an automated utility that can analyze JPEG

images that have content hidden with JSteg, JPHide, and

OutGuess 0.13b. Stegdetect’s output lists the stegano-

graphic systems it finds in each image or writes “nega-

tive” if it couldn’t detect any.

We calibrated Stegdetect’s detection sensitivity against

a set of 500 non-stego images (of different sizes) and stego

images (from different steganographic systems). On a

1,200-MHz Pentium III processor, Stegdetect can keep

up with a Web crawler on a 10 MBit/s network. 

Stegdetect’s false-negative rate depends on the

steganographic system and the embedded message’s size.

The smaller the message, the harder it is to detect by statis-

tical means. Stegdetect is very reliable in finding images

that have content embedded with JSteg. For JPHide, de-

tection depends also on the size and the compression qual-

ity of the JPEG images. Furthermore, JPHide 0.5 reduces
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Figure 11. Using Stegdetect over the Internet. (a) JPHide and (b) JSteg produce 

different detection results for different test images and message sizes. 
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the hidden message size by employing compression. Fig-

ure 11 shows the results of detecting JPHide and JSteg.

For JSteg, we cannot detect messages smaller than 50

bytes. The false-negative rate in such cases is almost 100

percent. However, once the message size is larger than

150 bytes, our false-negative rate is less than 10 percent.

For JPHide, the detection rate is independent of the mes-

sage size, and the false-negative rate is at least 20 percent

in all cases. Although the false-negative rate for OutGuess

is around 60 percent, a high false-negative rate is prefer-

able to a high false-positive rate, as we explain later. 

Finding images 
To exercise our ability to test for steganographic content

automatically, we needed images that might contain hid-

den messages. We picked images from eBay auctions (due

to various news reports)20,21 and discussion groups in the

Usenet archive for analysis.26

To get images from eBay auctions, a Web crawler that

could find JPEG images was the obvious choice. Unfor-

tunately, there were no open-source, image-capable Web

crawlers available when we started our research. To get

around this problem, we developed Crawl, a simple, effi-

cient Web crawler that makes a local copy of any JPEG

images it encounters on a Web page. Crawl performs a

depth-first search and has two key features:

• Images and Web pages can be matched against regular

expressions; a match can be used to include or exclude

Web pages in the search.

• Minimum and maximum image size can be specified,

which lets us exclude images that are too small to con-

tain hidden messages. We restricted our search to im-

ages larger than 20 Kbytes but smaller than 400.

We downloaded more than two million images linked

to eBay auctions. To automate detection, Crawl uses std-

out to report successfully retrieved images to Stegdetect.

After processing the two million images with Stegdetect,

we found that over 1 percent of all images seemed to con-

tain hidden content. JPHide was detected most often (see

Table 2). 

We augmented our study by analyzing an additional

one million images from a Usenet archive. Most of these

are likely to be false-positives. Stefan Axelsson applied the

base-rate fallacy to intrusion detection systems and showed

that a high percentage of false positives had a significant

effect on such a system’s efficiency.27 The situation is very

similar for Stegdetect. 

We can calculate the true-positive rate—the probabil-

ity that an image detected by Stegdetect really has

steganographic content—as follows

,

where P(S) is the probability of steganographic content in

images, and P(¬ S) is its complement. P(D|S) is the prob-

ability that we’ll detect an image that has steganographic

content, and P(D|¬ S) is the false-positive rate. Con-

versely, P(¬ D|S) = 1 – P(D|S) is the false-negative rate.

To improve the true-positive rate, we must increase

the numerator or decrease the denominator. For a given

detection system, increasing the detection rate is not pos-

sible without increasing the false-positive rate and vice

versa. We assume that P(S)—the probability that an

image contains steganographic content—is extremely

low compared to P(¬ S), the probability that an image

contains no hidden message. As a result, the false-positive

rate P(D|¬ S) is the dominating term in the equation; re-

ducing it is thus the best way to increase the true-positive

rate. Given these assumptions, the false-positive rate also

dominates the computational costs to verifying hidden

content. For a detection system to be practical, keeping

the false-positive rate as low as possible is important.

Verifying hidden content
The statistical tests we used to find steganographic con-

tent in images indicate nothing more than a likelihood

that content is embedded. Because of that, Stegdetect

cannot guarantee a hidden message’s existence.

To verify that the detected images have hidden con-

tent, Stegbreak must launch a dictionary attack against the

JPEG files. JSteg-Shell, JPHide, or Outguess all hide con-

tent based on a user-supplied password, so an attacker can

try to guess the password by taking a large dictionary and

trying to use every single word in it to retrieve the hidden

message. In addition to message data, the three systems

also embed header information, so attackers can verify a

guessed password using header information such as mes-

sage length. For a dictionary attack28 to work, the

steganographic system’s user must select a weak password

(one from a small subset of the full password space).

Ultimate success, though, depends on the dictionary’s

quality. For the eBay images, we used a dictionary with

roughly 850,000 words from several languages. For the

Usenet images, we improved the dictionary by including
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TEST EBAY USENET

JSteg 0.003 0.007

JPHide 1 2.1

OutGuess 0.1 0.14

Table 2. Percentages of (false) positives 
for analyzed images.
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four-digit PIN numbers and short pass phrases. We cre-

ated these short pass phrases by taking three- to five-letter

words from a list of the 2,000 most common English

words and concatenating them. The resulting dictionary

contains 1.8 million words.

We measured Stegbreak’s performance on a 1,200-

MHz Pentium III by running a dictionary attack against

one image and then against a set of 50 images (see Table 3).

The speed improvement for 50 images is due to key

schedule caching. For JPHide, we checked about 8,700

words per second; a test run with 300 images and a dictio-

nary of roughly 577,000 words took 10 days to check for

both versions of JPHide. Blowfish is designed to make key

schedule computation expensive, which slowed down

Stegbreak. When checking for JPHide 0.5, the Blowfish

key schedule must be recomputed for almost every image.

Stegbreak was faster for OutGuess—about 34,000

words per second. However, due to limited header in-

formation, a large dictionary can produce many candi-

date passwords. For JSteg-Shell, Stegbreak checked

about 47,000 words per second, which was fast enough

to run a dictionary attack on a single computer. JSteg-

Shell restricts the key space to 40 bits, but if passwords

consist of only 7-bit characters, the effective key space is

reduced to 35 bits. We could search that key space in

about eight days.

Distributed dictionary attack 
Stegbreak is too slow to run a dictionary attack against

JPHide on a single computer. Because a dictionary attack

is inherently parallel, distributing it to many workstations

is possible. To distribute Stegbreak jobs and data sets, we

developed Disconcert, a distributed computing frame-

work for loosely coupled workstations.

There are two natural ways to parallelize a dictionary

attack: each node is assigned its own set of images or each

node is assigned its own part of the dictionary. With

more words existing than images, the latter approach

permits finer segmentation of the work. To run the dic-

tionary attack, Disconcert hands out work units to

workstations in the form of an index into the dictionary.

After a node completes a work unit, it receives a new

index to work on.

To analyze the eBay images, Stegbreak ran on about

60 nodes at the University of Michigan, 10 of them at the

Center for Information Technology Integration. The

combined performance required for analyzing JPHide

was about 200,000 words per second, 16 times faster than

a 1,200-MHz Pentium III. The slowest client con-

tributed 471 words per second to the job; the fastest,

12,504 words per second. For the Usenet images, we in-

creased the cluster’s size to 230 nodes. Peak performance

was 870,000 keys per second, the equivalent of 72 1,200-

MHz Pentium III machines.

For the more than two million images Crawl down-

loaded from eBay auctions, Stegdetect indicated that

about 17,000 seemed to have steganographic content.

We observed a similar detection rate for the one million

images that we obtained from the Usenet archives. To

verify correct behavior of participating clients, we in-

serted tracer images into every Stegbreak job. As ex-

pected, the dictionary attack found the correct passwords

for these images. 

F rom our eBay and Usenet research, we so far have not

found a single hidden message. We offer four explana-

tions for our inability to find steganographic content on

the Internet:

• All steganographic system users carefully choose pass-

words that are not susceptible to dictionary attacks.

• Maybe images from sources we did not analyze carry

steganographic content.

• Nobody uses steganographic systems that we could find.

• All messages are too small for our analysis to detect.

All these explanations are valid to some degree. Yet,

even if the majority of passwords used to hide content were

strong, we would expect to find weak passwords: one study

found nearly 25 percent of all passwords were vulnerable to

dictionary attack.29 Similarly, even if many of the stegano-

graphic systems used to hide messages were undetectable

by our methods, we would expect to find messages hidden

with the popular and accessible systems for JPEG images

that are big enough to be detected. That leaves two re-

maining explanations: either we are looking in the wrong

place or there is no widespread use of steganography on the

Internet. We are currently researching new algorithms to

hide information and also improve steganalysis. 
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SYSTEM ONE IMAGE FIFTY IMAGES

(WORDS/SECOND) (WORDS/SECOND)

JPHide 4,500 8,700

OutGuess 0.13b 18,000 34,000

JSteg 36,000 47,000

Table 3. Stegbreak performance on a 1,200-MHz Pentium III.
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