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Abstract

In any ‘omics study, the scale of analysis can dramatically affect the outcome. For

instance, when clustering single-cell transcriptomes, is the analysis tuned to discover

broad or specific cell types? Likewise, protein communities revealed from protein

networks can vary widely in sizes depending on the method. Here, we use the

concept of persistent homology, drawn from mathematical topology, to identify

robust structures in data at all scales simultaneously. Application to mouse single-cell

transcriptomes significantly expands the catalog of identified cell types, while

analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method,

HiDeF, is available via Python and Cytoscape.

Keywords: Systems biology, Multiscale, Persistent homology, Community detection,

Resolution, Single-cell clustering, Protein-protein interaction network

Background

Significant patterns in data often become apparent only when looking at the right

scale. For example, single-cell RNA sequencing data can be clustered coarsely to iden-

tify broad categories of cells (e.g., mesoderm, ectoderm), or analyzed more sharply to

delineate highly specific subtypes (e.g., pancreas islet β-cells, thymus epithelium) [1–3].

Likewise, protein-protein interaction networks can inform groups of proteins spanning

a wide range of spatial dimensions, from protein dimers (e.g., leucine zippers) to larger

complexes of dozens or hundreds of subunits (e.g., proteasome, nuclear pore) to entire

organelles (e.g., centriole, mitochondria) [4]. Many different approaches have been de-

vised or applied to detect structures in biological data, including standard clustering,

network community detection, and low-dimensional data projection [5–7], some of

which can be tuned for sensitivity to objects of a certain size or scale (the so-called

resolution parameters) [8, 9]. Even tunable algorithms, however, face the dilemma that

the particular scales at which the significant biological structures arise are usually un-

known in advance.

Guidelines for detecting robust patterns across scales come from the field of topo-

logical data analysis, which studies the geometric “shape” of data using tools from alge-

braic topology and pure mathematics [10]. A fundamental concept in this field is
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“persistent homology” [11], the idea that the core structures intrinsic to a dataset are

those that persist across different scales. Recently, this concept has begun to be applied

to analysis of ‘omics data and particularly biological networks [12, 13]. Here, we sought

to integrate concepts from persistent homology with existing algorithms for network

community detection, resulting in a fast and practical multiscale approach we call the

Hierarchical community Decoding Framework (HiDeF).

Results and discussion

HiDeF works in the three phases to analyze the structure of a biological dataset (see

the “Methods” section). To begin, the dataset is formulated as a similarity network,

depicting a set of biological entities (e.g., genes, proteins, cells, patients, or species) and

pairwise connections among these entities (representing similarities in their data pro-

files). The goal of the first phase is to detect network communities, i.e., groups of

densely connected biological entities. Communities are identified continually as the

spatial resolution is scanned, producing a comprehensive pool of candidates across all

scales of analysis (Fig. 1a). In the second phase, candidate communities arising at differ-

ent resolutions are pairwise aligned to identify those that have been redundantly identi-

fied and are thus persistent (Fig. 1b). In the third phase, persistent communities are
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Fig. 1 Identification of persistent communities with HiDeF. a ‘Omics data often contain community structures at

different spatial resolutions. Increasing the resolution of the analysis generally increases the number of communities

and decreases the average community size. b Pan-resolution community detection yields a candidate pool of

communities. Communities that are robustly identified across a wide range of resolutions are considered persistent

and retained. c Set containment analysis is used to define the relationships between communities, leading to d the

final hierarchical model, in which vertices of increasing depths from the root represent communities of increasingly

high resolutions
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analyzed to identify cases where a community is fully or partially contained within an-

other (typically larger) community, resulting in a hierarchical assembly of nested and

overlapping biological structures (Fig. 1c, d). HiDeF is implemented as a Python pack-

age and can be accessed interactively in the Cytoscape network analysis and

visualization environment [14] (Availability of data and materials).

We first explored the idea of measuring community persistence via analysis of syn-

thetic datasets [15] in which communities were simulated and embedded in the similar-

ity network at two different scales (Additional file 1: Figure S1a; see the “Methods”

section). Notably, the communities determined to be most persistent by HiDeF were

found to accurately recapitulate the simulated communities at the two scales (Add-

itional file 1: Figure S1b-g). In contrast, applying community detection algorithms at a

fixed resolution had limited capability to capture both scales of simulated structures

simultaneously (Additional file 1: Figure S2; see the “Methods” section).

We next evaluated whether persistent community detection improves the

characterization of cell types. We applied HiDeF to detect robust nested communities

within cell-cell similarity networks based on the mRNA expression profiles of 100,605

single cells gathered across the organs and tissues of mice (obtained from two datasets

in the Tabula Muris project [16]; see the “Methods” section). These cells had been an-

notated with a controlled vocabulary of cell types from the Cell Ontology (CO) [17],

via analyses of cell-type-specific expression markers [16]. We used groups of cells shar-

ing the same annotations to define a panel of 136 reference cell types and measured

the degree to which each reference cell type could be recapitulated by a HiDeF commu-

nity of cells (see the “Methods” section). We compared these results to TooManyCells

[18] and Conos [19], two recently developed methods that generate nested communi-

ties of single cells in divisive and agglomerative manners, respectively (see the

“Methods” section). Reference cell types tended to better match communities generated

by HiDeF than those of other approaches, with 65% (89/136) having a highly overlap-

ping community (Jaccard index > 0.5) in the HiDeF hierarchy (Fig. 2a, b; Additional file

1: Figure S3a, b). This favorable performance was observed consistently when adjusting

HiDeF parameters to formulate a simple hierarchy, containing only the strongest struc-

tures, or a more complex hierarchy including additional communities that are less per-

sistent but still significant (Fig. 2c; Additional file 1: Figure S3c).

The top-level communities in the HiDeF hierarchy corresponded to broad cell

lineages such as “T cell,” “B cell,” and “epidermal cell.” Finer-grained communities

mapped to more specific known subtypes (Fig. 2d) or, more frequently, putative

new subtypes within a lineage. For example, “epidermal cell” was split into two dis-

tinct epidermal tissue locations, skin and tongue; further splits suggested the pres-

ence of still more specific uncharacterized cell types (Fig. 2e). HiDeF communities

also captured known cell types that were not apparent from 2D visual embeddings

(Additional file 1: Figure S4a, b), and also suggested new cell-type combinations.

For example, astrocytes were joined with two communities of neuronal cells to cre-

ate a distinct cell type not observed in the hierarchies of TooManyCells [18],

Conos [19], or a two-dimensional data projection with UMAP [20] (Fig. 2f; Add-

itional file 1: Figure S4c). This community may correspond to the grouping of a

presynaptic neuron, postsynaptic neuron, and a surrounding astrocyte within a so-

called tripartite synapse [21].
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Fig. 2 A hierarchy of mammalian cell types from single-cell transcriptomes. a, b Recovery of individual reference cell

types by HiDeF (y axis) in comparison to Conos [19] or TooManyCells [18] (x axis of a or b, respectively). For each

reference cell type (points), the extent of recovery is measured as the maximum F1-score of the set of reference cells

with those of any detected community (see the “Methods” section). c Recovery of reference cell types (evaluated by

the average F1-score) among the top N ranked cell communities. Communities are ranked in the descending order of

score for each community detection tool (e.g., persistence in HiDeF; see the “Methods” section). d Hierarchy of 273

putative mouse cell types identified by HiDeF. Vertices are cell communities, with color gradient indicating the extent

of the optimal match (Jaccard similarity) to a reference cell type. Selected matches to reference cell types are labeled.

Gray regions indicate sub-hierarchies (epidermal cells, astrocytes/neurons, and hepatocytes) related to subsequent

panels and other figures (Additional file 1: Figure S4). e Epidermal cell communities. Left: UMAP 2D projection of all

cells, with epidermal cells highlighted in dark blue. Middle: sub-hierarchy of epidermal cell communities as determined

by HiDeF. Right: correspondence between the UMAP projection and the sub-hierarchy, with colors marking the same

cell populations across the two representations. f Astrocyte and neuron communities. Left: UMAP 2D projection of all

cells, with astrocytes and neurons highlighted in dark blue. Middle: sub-hierarchy of astrocyte and neuron

communities as determined by HiDeF. Cells in the three small communities are highlighted in the below UMAP

projections. Right: broader UMAP context with cells colored and labeled as per the original Tabula Muris analysis [16].

Results in this figure are based on the FACS dataset in the Tabula Muris [16]; similar results were obtained for the

Tabula Muris droplet dataset (Additional file 1: Figure S3)
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Next, we applied HiDeF to analyze protein-protein interaction networks, with the

goal of characterizing protein complexes and higher-order protein assemblies spanning

spatial scales. We benchmarked this task by the agreement between HiDeF communi-

ties and the Gene Ontology (GO) [22], a database that manually assigns proteins to cel-

lular components, processes, or functions based on curation of literature (see the

“Methods” section). Application to protein-protein interaction networks from budding

yeast and human found that HiDeF captured knowledge in GO more significantly than

previous pipelines proposed for this task, including the NeXO approach to hierarchical

community detection [23] and standard hierarchical clustering of pairwise protein dis-

tances calculated by three recent network embedding approaches [24–26] (Fig. 3a, b;

Additional file 1: Figures S5, S6; see the “Methods” section). HiDeF could be directly

applied to the original interaction networks or to network embedded versions to fur-

ther improve the performance and robustness (Additional file 1: Figure S7).

We also applied HiDeF to analyze a collection of 27 human protein interaction net-

works [30, 31]. We found significant differences in the distributions of community sizes

across these networks, loosely correlating with the different measurement approaches

used to generate each network. For example, BioPlex 2.0, a network characterizing bio-

physical protein-protein interactions by affinity-purification mass-spectrometry (AP-

MS) [28], was dominated by small communities of 10–50 proteins, whereas a network

based on mRNA co-expression [29] tended towards larger-scale communities of > 50

proteins. In the middle of this spectrum, the STRING network, which integrated bio-

physical protein interactions and gene co-expression with a variety of other features

[27], contained both small and large communities (Fig. 3c). In agreement with the ob-

servation above, the hierarchy of BioPlex had a relatively shallow shape in comparison

to that of STRING (and other integrated networks including GIANT and PCNet [30,

32]), in which communities across many scales formed a deep hierarchy (Fig. 3d, e;

Availability of data and materials).

In contrast to clustering frameworks, HiDeF recognizes when a community is con-

tained by multiple parent communities, which in the context of protein-protein net-

works suggests that the community participates in diverse pleiotropic biological

functions. For example, a community corresponding to the MAPK (ERK) pathway par-

ticipated in multiple larger communities, including RAS and RSK pathways, sodium

channels, and actin capping, consistent with the central roles of MAPK signaling in

these distinct biological processes [33] (Additional file 1: Figure S8). The hierarchies of

protein communities identified from each of these networks have been made available

as a resource in the NDEx database [34] (Availability of data and materials).

To explore multiscale data analysis in the context of an urgent public health issue,

we considered a recent application of AP-MS that characterized interactions between

the 27 SARS-COV-2 viral subunits and 332 human host proteins [35]. We used net-

work propagation to select a subnetwork of the BioPlex 3.0 human protein interactome

[36] proximal to these 332 proteins (1948 proteins and 22,835 interactions) and applied

HiDeF to identify its community structure (see the “Methods” section). Among the 251

persistent communities identified (Fig. 3f), we noted one consisting of human

Transducin-Like Enhancer (TLE) family proteins, TLE1, TLE3, and TLE5, which inter-

acted with SARS-COV2 Nsp13, a highly conserved RNA synthesis protein in corona

and other nidoviruses (Fig. 3g) [37]. TLE proteins are well-known inhibitors of the Wnt
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signaling pathway [38]. Inhibition of WNT, in turn, has been shown to reduce corona-

virus replication [39] and recently proposed as a COVID-19 treatment [40]. If interac-

tions between Nsp13 and TLE proteins can be shown to facilitate activation of WNT,

TLEs may be of potential interest as drug targets.

Fig. 3 Hierarchical community structure of protein networks. a, b Recovery of cellular components documented in

GO by community detection methods (colored traces) versus number of top communities examined. Recovery is

evaluated by the average F1-score. Communities are ranked in descending order of score for each community

detection tool, similar to Fig. 2c (see the “Methods” section). A yeast network [23] and the human STRING network [27]

were used as the inputs of a and b, respectively. HC.1–3 represent UPGMA Hierarchical Clustering of pairwise

distances generated by Mashup, DSD, and deepNF [24–26], respectively. c Distributions of community sizes (x axis,

number of proteins) for three human protein networks: BioPlex 2.0 [28], Coexpr-GEO [29], and STRING [27]. d

Community hierarchies identified for BioPlex 2.0 (upper) or STRING (lower) databases. Vertex sizes and colors indicate

the number of proteins in the corresponding communities. e Twenty-seven public databases of protein-protein

interaction networks were analyzed by HiDeF and profiled by the maximum depths of their resulting hierarchies (y

axis), which do not correlate with their total sizes (numbers of proteins, x axis; numbers of edges, color bar). f A

hierarchy of communities of human proteins interacting with SARS-COV-2. The hierarchy, generated by HiDeF (see the

“Methods” section), contains 252 communities of 1948 human proteins. Communities colored red are enriched (odds

ratio > 1.5) for the 332 human proteins interacting with viral proteins of SARS-COV-2. Selected communities are

labeled by gene set enrichment function provided in CDAPS (Availability of data and materials). g A community of

interacting human proteins targeted by the SARS-COV-2 viral protein Nsp13 (see the “Methods” section). Direct

interactors of Nsp13 (TLE1, TLE3, TLE5) are shown in orange
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Conclusions

Community persistence provides a basic metric for distilling biological structure from

data, which can be tuned to select only the strongest structures or to include weaker

patterns that are less persistent but still significant. This concept applies to diverse bio-

logical subfields, as demonstrated here for single-cell transcriptomics and protein inter-

action mapping. While these subfields currently employ very different analysis tools

which largely evolve separately, it is perhaps high time to seek out core concepts and

broader fundamentals around which to unify some of the ongoing development efforts.

To that effect, the methods explored here have wide applicability to analyze the multi-

scale organization of many other biological systems, including those related to chromo-

some organization, the microbiome and the brain.

Methods

Overview of the approach

Consider an undirected network graph G, representing a set of biological objects (verti-

ces) and a set of similarity relations between these objects (edges). Examples of interest

include networks of cells, where edges represent pairwise cell-cell similarity in tran-

scriptional profiles characterized by single-cell RNA-seq, or networks of proteins, where

edges represent pairwise protein-protein biophysical interactions. We seek to group

these objects into communities (subsets of objects) that appear at different scales and

identify approximate containment relationships among these communities, so as to ob-

tain a hierarchical representation of the network structure. The workflow is imple-

mented in three phases. Phase I identifies communities in G at each of a series of

spatial resolutions γ. Phase II identifies which of these communities are persistent by

way of a pan-resolution community graph GC, in which vertices represent communities,

including those identified at each resolution, and each edge links pairs of similar com-

munities arising at different resolutions. Persistent communities correspond to large

components in GC. Phase III constructs a final hierarchical structure H that represents

containment and partial containment relationships (directed edges) among the persist-

ent communities (vertices).

Phase I: Pan-resolution community detection

Community detection methods generally seek to maximize a quantity known as the

network modularity, as a function of community assignment of all objects [41]. A reso-

lution parameter integrated into the modularity function can be used to tune the scale

of the communities identified [9, 42, 43], with larger/smaller scale communities having

more/fewer vertices on average (Fig. 1a). Of the several types of resolution parameter

that have been proposed, we adopted that of the Reichardt-Bornholdt configuration

model [42], which defines the generalized modularity as:

Q G
!
; γ

� �

¼
X

ij

Aij − γ
k ik j

2m

� �

δ i; jð Þ

where G
!

defines a mapping from objects in G to community labels, ki is the degree of

vertex i, m is the total number of edges in G, γ is the resolution parameter, δ(i, j) indi-

cates that vertices i and j are assigned to the same community by G
!
, and A is the adja-
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cency matrix of G. To determine G
!

, we use the extended Louvain algorithm imple-

mented in the Python package louvain-igraph (http://github.com/vtraag/louvain-igraph;

version 0.6.1). Values of γ are sampled logarithmically between lower and upper bounds

γmin and γmax at a minimum density such that for all γ there exist at least 10 nearby γ′

satisfying:

log10 γ
0

� �

− log10 γð Þ
�
�
�

�
�
� < 0:1

Two γ values satisfying the above formula are defined as γ-proximal. The sampling

step was practically set to 0.1 to sufficiently capture the interesting structures in the

data; it is conceptually similar to the Nyquist sampling frequency in signal processing

[44]. We used γmin = 0.001, which we found always resulted in the theoretical minimum

number of communities, equal to the number of connected components in G. We used

γmax = 20 for single-cell data (Fig. 2; Additional file 1: Figures S3, S4) and γmax = 50 for

simulated networks (Additional file 1: Figures S1, S2) and protein interaction networks

(Fig. 3; Additional file 1: Figures S5-8). Performing Louvain community detection at

each γ over this defined progression of values resulted in a set of communities G
!

at

each γ.

Phase II: Identification of persistent communities

To identify persistent communities, we define the pairwise similarity between any two

communities a and b as the Jaccard similarity of their sets of objects, s(a) and s(b):

J a; bð Þ ¼
s að Þ⋂s bð Þ

s að Þ⋃s bð Þ

Pairwise community similarity is computed only for pairs of communities identified

at two different γ-proximal resolution values, as communities within a resolution do

not overlap. To represent these similarities, we define a pan-resolution community

graph GC, in which vertices are communities identified at any resolution and edges

connect pairs of similar communities having J(a, b) > τ. Each component of GC defines

a family of similar communities spanning resolutions, for which the persistence can be

naturally defined by the number of distinct γ values covered by the component. For

each component in GC larger than a persistence threshold χ, the biological objects par-

ticipating in more than p% of communities represented by the vertices of that compo-

nent define a persistent community.

Phase III: A hierarchy of nested and overlapping communities

We initialize a hierarchical structure represented by H, a directed acyclic graph (DAG)

in which each vertex represents a persistent community. A root vertex is added to rep-

resent the community of all objects. The containment relationship between two verti-

ces, v and w, is quantified by the containment index (CI):

CI v;wð Þ ¼
j s vð Þ⋂s wð Þ j

j s wð Þ j

which measures the fraction of objects in w shared with v. An edge is added from v to

w in H if CI(v,w) is larger than a threshold σ (w is σ-contained by v). Since J(v, w) < τ
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for all v, w (a property established by the procedure for connecting similar communities

in phase II), setting σ ≥ 2τ/(1 + τ) guarantees H to be acyclic. In practice, we used a re-

laxed threshold σ = τ, which we found generally maintains the acyclic property but in-

cludes additional containment relations. In the (in our experience rare) event that

cycles are generated in H, i.e., CI(v, w) ≥ τ and CI(w, v) ≥ τ, we add a new community to

H, the union of v and w, and remove v and w from H.

Finally, redundant relations are removed by obtaining a transitive reduction [45] of

H, which represents the hierarchy returned by HiDeF describing the organization of

communities. The biological objects assigned to each community are expanded to in-

clude all objects assigned to its descendants. Throughout this study, we used the pa-

rameters τ = 0.75, χ = 5, p = 75. Note that since χ is a threshold of minimum

persistence, the results under a larger value of χ′ can be produced by simply removing

communities with persistence lower than χ′ (Figs. 2c and 3a, b; Additional file 1: Fig-

ures S2, S3c, S5). Generally, we observed that the conclusions drawn in this study were

robust to this choice of parameters. The persistence of communities only moderately

correlates with community sizes, with the consequence that different choices of persist-

ent threshold χ do not strongly favor structures at particular scales (Additional file 1:

Figure S9). Different combinations of parameters τ and p typically do not significantly

change the performance of HiDeF in the benchmark tests on protein-protein inter-

action networks (Additional file 1: Figure S6), except that certain parameters (e.g., τ =

0.9) are less robust to network perturbation (i.e., randomly deleting edges from net-

works). We found that combining HiDeF with node embedding resolved this issue and

further improved the performance and robustness (Additional file 1: Figure S7; see sec-

tions below).

Simulated benchmark networks

Simulated network data were generated using the Lancichinetti-Fortunato-Radicchi

(LFR) method [15] (Additional file 1: Figures S1, S2). We used an available implementa-

tion (LFR benchmark graphs package 5 at http://www.santofortunato.net/resources) to

generate benchmark networks with two levels of embedded communities, a coarse-

grained (macro) level and a fine-grained (micro) level. Within each level, a vertex was

exclusively assigned to one community. Two parameters, μc and μf, were used to define

the fractions of edges violating the simulated community structures at the two levels. All

other edges were restricted to occur between vertices assigned to the same community

(Additional file 1: Figure S1a). We fixed other parameters of the LFR method to values

explored by previous studies [9]. In particular, N = 1000 (number of vertices), k = 10 (aver-

age degree), maxk = 40 (maximum degree), minc = 5 (minimum number of vertices for a

micro-community), maxc = 20 (maximum number of vertices for a micro-community),

minC = 50 (minimum number of vertices for a macro-community), maxC = 100 (max-

imum number of vertices for a macro-community), t1 = 2 (minus exponent for the degree

sequence), and t2 = 1 (minus exponent for the community size distribution). The numbers

of coarse-grained communities and fine-grained communities in each simulated network

were approximately bounded by minC, maxC, minc, and maxc (10–20 and 50–200, re-

spectively), and the sizes of communities within each level were set to be close to each

other (as t2 = 1).
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Some community detection algorithms include iterations of local optimization and

vertex aggregation, a process that, like HiDeF, also defines a hierarchy of communities,

albeit as a tree rather than a DAG. We demonstrated that without scanning multiple

resolutions, this process alone was insufficient to detect the simulated communities at

all scales (Additional file 1: Figure S2). We used Louvain and Infomap [46, 47], which

have stable implementations and have shown strong performance in previous commu-

nity detection studies [48]. For Louvain, we optimized the standard Newman-Girvan

modularity (equivalent to γ = 1, see above) using the implementation at http://github.

com/vtraag/louvain-igraph (version 0.6.1). For Infomap, we used the version 1.0.0-

beta.47 from https://www.mapequation.org/, and set “Markov time” (the “resolution

parameter” of Infomap) to 1 and other parameters to default. In general, these settings

generated trees with two levels of communities. Note that Infomap sometimes deter-

mined that the input network was non-hierarchical, in which cases the coarse- and

fine-grained communities were identical by definition.

Single-cell RNA-seq data

Mouse single-cell RNA-seq data (Fig. 2; Additional file 1: Figure S3) were obtained

from the Tabula Muris project [16] (https://tabula-muris.ds.czbiohub.org/), which con-

tains two datasets generated with different experimental methods of separating bulk tis-

sues into individual cells: FACS and microfluidic droplet. We applied HiDeF to the

shared nearest neighbor graph parsed from the data files (R objects; accessible at

https://doi.org/10.6084/m9.figshare.5821263.v2) provided in that study. All data

normalization and pre-processing procedures have been described in the Tabula Muris

paper [16]. Briefly, counts were log-normalized using the natural logarithm of 1 +

counts per million (for FACS) or 1 + counts per ten thousand (for droplet). A threshold

(0.5) for the standardized log dispersion was used to select variable genes. A shared

nearest neighbor (SNN) graph was then created by the Seurat FindNeighbors function

[3] using the first 30 principal components of each dataset. Note that the input of

HiDeF is a plain text file representing this graph, and the HiDeF codebase does not de-

pend on the installation of a particular software suite for single-cell analysis. The shared

nearest neighbor graph of cells could be generated from scratch or with other param-

eter combinations of the FindNeighbors function in Seurat.

Identical analyses were applied to the FACS and the droplet datasets, respectively,

yielding a hierarchy of 273 and 279 communities, respectively (Fig. 2d). ScanPy 1.4.5

[49] was used to create tSNE or UMAP embeddings and associated two-dimensional vi-

sualizations [20] as baselines for comparison (Fig. 2e, f; Additional file 1: Figure S3a, b).

Through previous analysis of the single-cell RNA data, all cells in these datasets had

been annotated with matching cell-type classes in the Cell Ontology (CO) [17]. Before

comparing these annotations with the communities detected by HiDeF, we expanded

the set of annotations of each cell according to the CO structure, to ensure the set also

included all of the ancestor cell types of the type that was annotated. For example, CO

has the relationship “[keratinocyte] (is_a) [epidermal_cell],” and thus, all cells annotated

as “keratinocyte” are also annotated as “epidermal cell.” The CO was obtained from

http://www.obofoundry.org/ontology/cl.html and processed by the Data Driven Ontol-

ogy Toolkit (DDOT) [50] retaining “is_a” relationships only.
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We compared HiDeF to TooManyCells [18] and Conos [19] as baseline methods.

The former is a divisive method which iteratively applies bipartite spectral clustering to

the cell population until the modularity of the partition is below a threshold; the latter

uses the Walktrap algorithm to agglomeratively construct the cell-type hierarchy [51].

We chose to compare with these methods because their ability to identify multiscale

communities either was the main advertised feature or had been shown to be a major

strength. TooManyCells (version 0.2.2.0) was run with the parameter “min-modularity”

set to 0.025 as recommended in the original paper [18], with other settings set to de-

fault. This process generated dendrograms (binary trees) with 463 communities. The

Walktrap algorithm was run from the Conos package (version 1.2.1) with the parameter

“step” set to 20 as recommended in the original paper [19], yielding a dendogram. The

greedyModularityCut method in the Conos package was used to select N fusions in the

original dendrogram, resulting in a reduced dendrogram with 2N + 1 communities (in-

cluding N internal and N + 1 leaf nodes). Here, we used N = 125, generating a hierarchy

with 251 communities (Fig. 2c).

The communities in each hierarchy were ranked to analyze the relationships between

cell-type recovery and model complexity (Fig. 2c, Additional file 1: Figure S3c). HiDeF

communities were ranked by their persistence; Conos and TooManyCells communities

were ranked according to the modularity scores those methods associate with each

branch-point in their dendrograms. Conos/Walktrap uses a score based on the gain of

modularity in merging two communities, whereas TooManyCells uses the modularity

of each binary partition.

Protein-protein interaction networks

We obtained a total of 27 human protein interaction networks gathered previously by

survey studies [30, 31], along with one integrated network from budding yeast (S. cere-

visiae) that had been used in a previous community detection pipeline, NeXO [23].

This collection contained two versions of the STRING interaction database, with the

second removing edges from text mining (labeled STRING-t versus STRING, respect-

ively; Fig. 3). Benchmark experiments for the recovery of the Gene Ontology (GO) were

performed with STRING and the yeast network (Fig. 3a, b, Additional file 1: Figure S4).

The reference GO for yeast proteins was obtained from http://nexo.ucsd.edu/. A refer-

ence GO for human proteins was downloaded from http://geneontology.org/ via an

API provided by the DDOT package [50].

HiDeF was directly applied to all of the above benchmark networks. The NeXO com-

munities were obtained from http://nexo.ucsd.edu/, with a robustness score assigned to

each community. To benchmark communities created by hierarchical clustering, we

first calculated three versions of pairwise protein distances (HC.1–3; Fig. 3a, b; Add-

itional file 1: Figure S4) using Mashup, DSD, and deepNF [24–26]. Mashup was used to

embed each protein as a vector, with 500 and 800 dimensions for yeast and human, as

recommended in the original paper. A pairwise distance was computed for each pair of

proteins as the cosine distance between the two vectors. Similarly, deepNF was used to

embed each protein into a 500-dimensional vector by default. DSD generates pairwise

distances by default. Given these pairwise distances, UPGMA clustering was applied to

generate binary hierarchical trees. Following the procedure given in the NeXO and

Mashup papers [23, 24], communities with < 4 proteins were discarded.
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Since all methods had slight differences in the resulting number of communities,

communities from each method were sorted in decreasing order of score, enabling

comparison of results across the same numbers of top-ranked communities. HiDeF

communities were ranked by persistence. NeXO communities were ranked by the ro-

bustness value assigned to each community in the original paper [23]. To rank each

community c of hierarchical clustering (branch in the dendrogram), a one-way Mann-

Whitney U test was used to test for significant differences between two sets of protein

pairwise distances: (set 1) all pairs consisting of a protein in c and a protein in the sib-

ling community of c; (set 2) all pairs consisting of a protein in each of the two children

communities of c. The communities were sorted by the one-sided p value of signifi-

cance that distances in set 1 are greater than those in set 2.

Metric for evaluating the performance of multiscale structure identification

We adopted a metric average F1-score [52] to evaluate the overall performance of mul-

tiscale structure identification, focusing on the recovery of reference communities.

Given a set of reference communities C∗ and a set of computationally detected commu-

nities C
!
, the score was defined as:

1

j C� j

X

Ci∈C
�

F1 Ci;Cg ið Þ
��!� �

where g(i) is the best match of Ci in C
!
, defined as follows:

g ið Þ ¼ argmax
j

F1 Ci; C j
�!� �

and F1ðCi; C j
�!

Þ is the harmonic mean of PrecisionðCi; C j
�!

Þ and RecallðCi; C j
�!

Þ . The

calculations were conducted by the xmeasures package (https://github.com/

eXascaleInfolab/xmeasures) [53].

Combining HiDeF with network embedding

HiDeF was directly applied to the original networks in most of our analyses of protein-

protein interaction networks and compared with the results of hierarchical clustering

following the network embedding techniques [24, 26]. We sought to explore if we can

combine the strength of network embedding and HiDeF to further improve the per-

formance and robustness to parameter choices (Additional file 1: Figure S7). We bor-

rowed the idea of shared nearest neighbor (SNN) graph that we had been using in the

analyses of single-cell data. We made a customized script to use the 500-dimensional

node embeddings of the STRING network as the input of the Seurat FindNeighbors

function [3]. The parameters of this function remained as the default. The output SNN

graph has 1.65 × 106 edges, which is on the same magnitude as the original network

(2.23 × 106 edges). We then applied HiDeF to this SNN graph with different combina-

tions of parameters (Additional file 1: Figure S7).

Analysis of SARS-COV-2 viral-human protein network

Three hundred thirty-two human proteins identified to interact with SARS-COV-2 viral

protein subunits were obtained from a recent study [35]. This list was expanded to in-

clude additional human proteins connected to two or more of the 332 virus-interacting

Zheng et al. Genome Biology           (2021) 22:21 Page 12 of 15

https://github.com/eXascaleInfolab/xmeasures
https://github.com/eXascaleInfolab/xmeasures


human proteins in the new BioPlex 3.0 network [36]. These operations resulted in a

network of 1948 proteins and 22,835 interactions. HiDeF was applied to this network

with the same parameter settings as for other protein-protein interaction networks (see

the previous “Methods” sections), and enrichment analysis was performed via g:Profiler

[54] (Fig. 3f, g).
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