
 Open access Proceedings Article DOI:10.1145/1698790.1698810

Hiding co-occurring frequent itemsets — Source link

Osman Abul

Institutions: TOBB University of Economics and Technology

Published on: 22 Mar 2009 - EDBT/ICDT Workshops

Topics: Association rule learning

Related papers:

 Representative Itemset Mining

 Secure Frequent Itemset Hiding Techniques in Data Mining

 An Improved Approach for Mining Frequent Patterns

 Free-Sets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries

 Automatic discovery of locally frequent itemsets in the presence of highly frequent itemsets

Share this paper:

View more about this paper here: https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-
4okp4qz21t

https://typeset.io/
https://www.doi.org/10.1145/1698790.1698810
https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t
https://typeset.io/authors/osman-abul-114j0fakbj
https://typeset.io/institutions/tobb-university-of-economics-and-technology-2762k9no
https://typeset.io/conferences/edbt-icdt-workshops-kvieq0d4
https://typeset.io/topics/association-rule-learning-ycffk7bp
https://typeset.io/papers/representative-itemset-mining-ggakxrdrwv
https://typeset.io/papers/secure-frequent-itemset-hiding-techniques-in-data-mining-222fgsbw9x
https://typeset.io/papers/an-improved-approach-for-mining-frequent-patterns-109ivr0hp2
https://typeset.io/papers/free-sets-a-condensed-representation-of-boolean-data-for-the-54knb1fr4v
https://typeset.io/papers/automatic-discovery-of-locally-frequent-itemsets-in-the-59vux6pzpb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t
https://twitter.com/intent/tweet?text=Hiding%20co-occurring%20frequent%20itemsets&url=https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t
https://typeset.io/papers/hiding-co-occurring-frequent-itemsets-4okp4qz21t

Hiding Co-Occurring Frequent Itemsets

Osman Abul
∗

TOBB University of Economics and Technology
Ankara, Turkey

osmanabul@etu.edu.tr

ABSTRACT
Knowledge hiding, hiding rules/patterns that are inferable from

published data and attributed sensitive, is extensively studied in the

literature in the context of frequent itemsets and association rules

mining from transactional data. The research in this thread is fo-

cused mainly on developing sophisticated methods that achieve less

distortion in data quality. With this work, we extend frequent item-

set hiding to co-occurring frequent itemset hiding problem. Co-

occurring frequent itemsets are those itemsets that co-exist in the

output of frequent itemset mining. What is different from the classi-

cal frequent hiding is the new sensitivity definition: an itemset set is

sensitive if its itemsets appear altogether within the frequent item-

set mining results. In other words, co-occurrence is defined with

reference to the mining results but not to the raw input dataset, and

thus it is a kind of meta-knowledge. Our notion of co-occurrence is

also very different from association rules as itemsets in an associ-

ation rule need to be frequently present in the same set of transac-

tions, but the co-occurrence need not necessarily require the joint

occurrence in the same set of transactions.

In this paper, we briefly review the frequent itemset/association

hiding problems and define the co-occurrence hiding along with

the real world motivations. We explore its fundamental proper-

ties and show that frequent itemset hiding is a special case of the

co-occurring frequent itemsets hiding. As a solution, we propose

a two-stage sanitization framework, essentially a reduction, where

an instance of the frequent itemset hiding is constructed in the first

stage and the instance is solved in the second stage. Since the task

is shown to be NP-Hard and the reduction is one-to-many, we pro-

pose heuristics only for the first stage as the second stage is a well-

established field. Finally, an experimental evaluation is carried out

on a couple of datasets, and the results are presented.

∗O. Abul is fully supported by TUBITAK under the grant number
108E016

1. INTRODUCTION
Since the introduction of privacy preserving data mining in early

nineties [18], it has received considerable attraction from the data

mining research community [7, 10, 12, 19, 24]. In its nutshell, pri-

vacy preserving data mining is the study of data mining side-effects

on privacy, secrecy and sensitivity. The related literature has seen

the proliferation of various task formulations, many completely dif-

ferent solution approaches with different objectives, techniques and

application domains. The tasks range from privacy-aware dataset

regeneration [26] to privacy-aware data mining results publication

[9] to privacy-aware database sharing [8]. Privacy-aware database

sharing, in the context of data mining, is the study of how to se-

curely publish databases for the analysis of third parties. The main

concern is to not to disclose any sensitive knowledge that can be

extracted from the dataset by means of complex analysis like data

mining. Knowledge hiding aims at hiding some knowledge consid-

ered sensitive from shared databases.

Knowledge hiding refers to the activity of concealing some sensi-

tive knowledge that hold in a database that is going to be published.

Following the existence identification of some sensitive knowledge

in the database to be released, the data publisher faces with the se-

crecy/utility tradeoff and has three basic options: (i) do not share

the database, (ii) share it as is, or (iii) share it after suppressing

sensitive knowledge. Clearly, the first option is completely safe

but no external parties can utilize the dataset to extract nonsensitive

knowledge of their interest, while the second one is unsafe as the

data receiver may easily surface the sensitive knowledge by em-

ploying data mining but it allows full utilization of the dataset by

third parties. The third option is to allow data receivers to build

valid mining models from the released version of the database,

while ensuring recovery of the sensitive knowledge impossible.

Clearly, knowledge hiding problem is only relevant with the last

option of the database publishing policy.

Knowledge hiding is usually obtained by sanitizing the database in

such a way that the sensitive knowledge can no longer be inferred,

while the original database is changed as less as possible. Many

different approaches for knowledge hiding have emerged over the

years, mainly in the context of association rules and frequent item-

sets mining. The form of sensitive knowledge in frequent itemset

(associations rules, resp.) mining is a list of user specified frequent

itemsets (association rules, resp.). The respective hiding processes

transform the database such that the sensitive frequent itemsets and

association rules are impossible to recover. The implicit assump-

tion in the scenario is that the form of sensitive knowledge exactly

matches the form of knowledge that appear in the mining result.

However, this is not true in all real-world problems as sensitive

knowledge can be defined in meta-knowledge level for instance.

The observation is the main motivation of this study. As a first

attempt, we define co-occurring frequent itemsets as the form of

sensitive knowledge and frequent itemsets as the form of mining

result.

Co-occurring frequent itemsets is a group of itemsets that appear

altogether in the mining results. In other words, the group is sen-

sitive if every itemset in it appear in the mining results, and non-

sensitive if any of the itemset is missed. This kind of sensitivity

definition can be found in many contexts. As an example, con-

sider the shopping domain where there are two deals (itemsets):

D1={popcorn, peanut} and D2={bread, butter}. Here the sen-

sitive knowledge is that both deals have received customer kind-

ness. So, to hide this meta-knowledge suppressing either of D1

or D2 suffices, but hiding both is not essential. As another exam-

ple, consider the school domain where schools publish their annual

performances. For most schools, it is acceptable that its students

are mostly failing in social science or science courses, but failure

in both tracks is unacceptable. To keep the school’s reputation,

hiding (any) one of the failure suffices. As it is clear, the sensi-

tivity definition in these examples are different than that of found

in frequent itemsets/associations. The notion is that sensitivity is

not specified in isolation but with (mutual) reference to some other

knowledge, i.e. a piece of knowledge is nonsensitive in its own

but becomes sensitive if co-exists with some others. Co-occurring

frequent itemset hiding is the subject of the paper.

The paper is structured as follows. The frequent itemset mining, as-

sociation rules mining and respective hiding problems are reviewed

in Section 2. The section 3 introduces the co-occurring frequent

itemset hiding problem, and Section 4 gives an algorithmic frame-

work to solve it. The framework is a two-stage approach where the

first stage involves generating an instance of the frequent itemset

hiding problem, through a reduction, and the second stage involves

solving the instance using any algorithm developed for frequent

itemset hiding. In Section 4, we propose four algorithms to be used

in the first stage. The proposal is experimentally evaluated on two

datasets in Section 5. We briefly cover the related work in Section

6. Finally, Section 7 concludes and gives our future work.

2. FREQUENT ITEMSET HIDING
Frequent itemsets/associations mining problem is first introduced

in early 90s by Agrawal et al. [4,5] and later studied extensively by

data mining community and has found diverse application areas.

In this section, we briefly review the frequent itemsets/associations

mining and the respective sensitive knowledge hiding problems.

DEFINITION 1 (FREQUENT ITEMSET MINING).

Let I = {i1, i2, . . . , in} be a set of distinct symbols called items,

and itemset X be any non-empty subset of I. X is called k-itemset

if |X| = k. The transaction database, D, is an unordered col-

lection of transactions T ; each of which is an itemset over I, i.e.

T ∈ 2I − ∅. The support set of an itemset X in D, denoted

SD(X), is the set of transactions in D that accept X as a sub-

set, i.e. SD(X) = {T : X ⊆ T and T ∈ D}. The cardinality

of SD(X) is called the support, denoted supD(X), of X in D,

i.e. supD(X) = |SD(X)|. For a user-defined minimum support

threshold σ (a non-negative integer), frequent itemset mining prob-

lem is to find all itemsets X having support of at least σ in D. The

resulting itemsets are called frequent (a.k.a. large) itemsets and

formally denoted as F(D,σ) = {X : X ⊆ I, X 6= ∅, supD(X) ≥

Table 1: An example database (taken from [17])

D F(D,σ=3)

Tid Items Frequent itemset:support

1 a b c d e a b d :3, a c d :4, b c d :3, c d e :3

2 a c d a b:4, a c:5, a d:6, b c:4, b d:5, c d:6, c e:3, d e:3

3 a b d f g a :7, b :6, c :7, d :8, e :3

4 b c d e

5 a b d

6 b c d f h

7 a b c g

8 a c d e

9 a c d h

σ}. A sample database containing nine transactions and all fre-

quent itemsets mined (at σ = 3) are shown in Table 1.

The notion with itemsets is to study the co-occurrence of items (not

to be mixed with the co-occurring frequent itemsets) in transaction

databases, e.g. market-basket databases. Given a frequent itemset,

itemset occurring in sizeable portion of the transactions, one can

reason that there is a strong association between the items in the

itemset. Therefore, such an itemset is a pattern (a piece of knowl-

edge) that can be used for numerous purposes. For instance, in the

market-basket case a frequent itemset is a pattern showing the con-

sumer behaviors that can be used for marketing, e.g. offering new

deals. Clearly, such a pattern has a commercial value and may be

attributed sensitive.

Since the introduction [4, 5] of the frequent itemset mining prob-

lem, the research community has mainly concentrated on devel-

oping fast algorithms for support counting of exponentially grow-

ing itemsets space. To this end, one of the most useful property

is the anti-monotonic Apriori property: if an itemset is not fre-

quent none of its superset can be frequent, or equivalently if an

itemset is frequent then all of its subsets are frequent too. As a re-

sult, support counting of large portions of itemsets can be avoided

to gain efficiency. After the Apriori algorithm [4] which is ex-

ploiting Apriori property, several other algorithms have been de-

veloped using different approaches, techniques and advanced data

structures [3, 15, 21].

DEFINITION 2 (ASSOCIATION RULES MINING).

Let I = {i1, i2, . . . , in} be a set of items, and itemsets X and Y
be any non-empty subsets of I. An association rule is an impli-

cation of the form X ⇒ Y where X
⋂

Y = ∅. X is called the

left-hand side (lhs) or antecedent and Y is called right-hand side

(rhs) or consequent. The rule X ⇒ Y is said to hold in transaction

database D with support s and confidence c if (i) supD(X
⋃

Y) ≥

s and (ii)
supD(X

⋃

Y)
supD(X)

≥ c. Given the minimum support thresh-

old σ and the minimum confidence threshold minconf , associa-

tion rules mining problem is to find all significant association rules

holding in the database with at least σ support and minconf con-

fidence.

Association rule mining problem contains frequent itemset mining

problem as its subproblem. In fact, association rules are typically

generated as a postprocessing to frequent itemsets mining results.

Even though the similarities exist between the two problems, the

knowledge forms are different. For this reason, these two problems

offer two different respective hiding problems as defined next.

PROBLEM 1 (FREQUENT ITEMSET HIDING).

Let X s = {X1, X2, . . . , Xn} with Xi ∈ 2I −∅, ∀i ∈ {1, . . . , n},

be the set of sensitive itemsets that must be hidden from D. Given

a disclosure threshold ψ, the Frequent Hiding Problem requires to

transform D in a database D′ such that:

1. ∀Xi ∈ X s : supD′(Xi) < ψ;

2.
∑

X∈(2I−∅) |supD(X) − supD′(X)| is minimized.

The first requirement asks for lowering the support of sensitive

itemsets below ψ level, so the receiver of D′ can not mine any of

the sensitive itemsets at σ = ψ threshold. The second requirement

is the minimization objective which claims for solutions destroy-

ing supports of itemsets as less as possible. This is another way of

saying the similarity between D and D′ maximized, which is very

important to obtain valid mining models through D′.

Suppose X s = {{a, b, d}, {c, d}} is the sensitive knowledge that

must be hidden from the database in Table 1 at ψ = 3. A solution

(among many others) can be obtained by suppressing items d, c,

d and c from transactions 1, 2, 4, and 6, respectively to give D′.

Then, F(D′,σ=3) = {{a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d},
{b, c}, {b, d}, {c, e}}. Note that neither of sensitive frequent item-

sets can be mined, thus hidden, (at σ = 3) from D′, while most of

the nonsensitive frequent itemsets can still be mined.

PROBLEM 2 (ASSOCIATION RULES HIDING).

Let As = {X1 ⇒ Y1, X2 ⇒ Y2, . . . , Xn ⇒ Yn} be the set of

sensitive association rules that must be hidden from D. Given

the pair of disclosure threshold parameters (ψ1, ψ2), Association

Rules Hiding Problem requires to transform D in a database D′

such that:

1. the support of every rule in D is less than ψ1, i.e.

∀Xi ⇒ Yi ∈ As : supD′(Xi

⋃

Yi) < ψ1; or

the confidence of every rule is less than ψ2, i.e.

∀Xi ⇒ Yi ∈ As :
sup

D′ (Xi

⋃

Yi)

sup
D′ (Xi)

< ψ2;

2.
∑

X∈(2I−∅) |supD(X) − supD′(X)| is minimized.

One can easily recognize that associations rules hiding problem can

be easily reduced to frequent itemset hiding problem. This is sim-

ply because, solely decreasing the support solves both of the prob-

lems. However, association rules hiding has more flexibility, i.e.

decreasing either support or confidence (note the disjunction in the

first requirement of Problem 2) as opposed to support only decrease

in frequent itemset hiding. A suite of algorithms for frequent item-

sets/associations hiding is reviewed in Section 6.

3. CO-OCCURRENCE HIDING
In this section, we introduce the co-occurrence hiding problem in

the context of frequent itemsets. Co-occurring frequent itemsets

is a group of itemsets that appear altogether in the mining results.

Given the dataset D and support threshold σ, the F(D,σ) consti-

tutes the extracted knowledge set. Over this knowledge set, some

meta-knowledge forms, like the co-occurring frequent itemsets, can

easily be defined. Clearly, some of these meta-knowledge can be

attributed sensitive and thus need to be hidden before releasing the

dataset.

DEFINITION 3 (CO-OCCURRING FREQUENT ITEMSETS).

Let C be any non-empty subset of F(D,σ), i.e. C ∈ 2F(D,σ) − ∅,

then the set of itemsets in C are called co-occurring frequent item-

sets. In other words, any non-empty subset of frequent itemsets is a

co-occurring frequent itemsets. In the special case C = {X1, X2}
(i.e. |C| = 2), then X1 and X2 are called pairs of co-occurring

frequent itemsets. The definition can be easily extended to triples,

quadruples etc. Note that the definition still applies in the degener-

ate case of C = {X1}, i.e. |C| = 1.

PROBLEM 3 (CO-OCCURRING FREQUENT ITEMSET HIDING).

Let Cs = {C1, C2, . . . , Cn} be the set of sensitive co-occurring

frequent itemset sets that must be hidden from F(D,σ). Co-Occurrence

Hiding Problem requires to transform D in a database D′ such

that:

1. ∀Ci ∈ Cs : Ci * F(D′,σ);

2.
∑

X∈(2I−∅) |supD(X) − supD′(X)| is minimized.

Similar to frequent itemset hiding problem the first requirement in

Problem 3 is a hard constraint but the second requirement is the

optimization objective seeking best solution among all satisfying

the first requirement. To satisfy the first requirement it is enough

to exclude any one of the itemsets in every Cs from the frequent

itemset mining results. The Proposition 1 formalizes this notion.

PROPOSITION 1.

Hiding any frequent itemset in each itemset set from

Cs = {C1, C2, . . . , Cn} satisfies the first requirement in Problem

3.

Proof: Suppose Xi ∈ Cj (for any i, j) is hidden from F(D,σ), then

Xi /∈ F(D′,σ) by definition. Xi /∈ F(D′,σ) and Xi ∈ Cj together

imply that Cj * F(D′,σ). ✷

Suppose Cs = {C1}, where C1 = {{a, b, d}, {c, d}}, is the sen-

sitive knowledge that must be hidden from the database in Ta-

ble 1 at σ = 3. A solution (among many others) can be ob-

tained by suppressing item d from transaction 1 to give D′. Then,

F(D′,σ=3) = {{a}, {b}, {c},
{d}, {e}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e},
{a, c, d}}. Note that one, {c, d}, of sensitive frequent itemsets can

still be mined (at σ = 3) but the other, {a, b, d}, from D′. So,

the receiver of the D′ can not discover the knowledge that item-

sets {a, b, d} and {c, d} co-occur in F(D′,σ=3). Also note that, the

quality of the solution is higher compared to the cost of hiding both

frequent itemsets as required by Problem 1.

We would like to emphasize that co-occurring itemsets and asso-

ciation rules are fundamentally different concepts. To illustrate,

consider a co-occurring itemset set C1 = {X1, X2} and an associ-

ation rule A1 = {X1 ⇒ X2}. A1 requires both X1 and X2 appear

together in the same set of transactions and the union, X1

⋃

X2, to

be frequent; but C1 has no such a requirement, i.e. X1 and X2 may

appear independently in different transactions as long as both X1

and X2 are frequent.

In the next section, we propose a framework to solve Problem 3

which exploits Proposition 1.

4. A SANITIZATION FRAMEWORK
In this section, we propose a framework as a solution to Problem 3.

The key notion is exploiting the utility of Proposition 1 in Propo-

sition 2 to obtain an instance of Problem 1 from the instance of

Problem 3.

PROPOSITION 2.

Given an instance (Cs = {C1, C2, . . . , Cn} and σ) of Problem 3,

an instance (X s = {X1, X2, . . . , Xn} and ψ) of Problem 1 can

be obtained as follows, and hence the solution to the latter is also

a solution to the former.

Proof: The (one-to-many) reduction is as follows.

• Xi ← Y s.t. Y ∈ Ci, ∀i ∈ {1, 2, . . . , n};

• ψ ← σ.

The correctness of the reduction follows from Proposition 1. ✷

The reduction is one-to-many mapping because any itemset in Ci

can be assigned to Xi and all of them are correct albeit with dif-

ferent distortion costs. It is also clear that the reduction in Proposi-

tion 2 is the minimum requirement as hiding more than one itemset

(from each Ci) also works but monotonically causes more distor-

tion.

COROLLARY 1.

Problem 1 is a special case of Problem 3.

Proof: From Proposition 2, it is clear that these two problems are

equivalent in case in the instance (Cs = {C1, C2, . . . , Cn} and σ)

of Problem 3, every Ci is restricted to be singletons, i.e. |Ci| =
1, ∀i ∈ {1, 2, . . . , n}. ✷

COROLLARY 2.

Problem 3 is NP-Hard.

Proof: NP-Hardness follow from Corollary 1 as generalization

of any NP-Hard problem is NP-Hard too [14] and Problem 1 is

proven to be NP-Hard in [8]. ✷

The Corollary 1 allows us to use any algorithm developed for Prob-

lem 3 to solve Problem 1, but the opposite is not immediate. How-

ever, in the Algorithm 1 we develop a two-stage framework which

enables algorithms for Problem 1 to be employed to solve Problem

3. The framework exploits the proof of Proposition 2, the mini-

mization of which is equivalent to the hitting set problem known

to be NP-Hard [14]. The (generic) function SelectSensitiveSet
(in Line 1) obtains a hitting set from Cs by (potentially) employing

D and σ in its heuristic. The hitting set, X s, is fed to (generic)

FISHider (in Line 3) which is any algorithm solving standard

frequent itemset hiding problem. As a result, both stages in the

Algorithm 1 Co-occurring Frequent Itemset Hiding Framework

Input: D, Cs, σ
Output: D′

1: X s ← SelectSensitiveSet(D, Cs, σ)
2: ψ ← σ
3: D′ ← FISHider(D,X s, ψ)
4: return D′

framework are NP-Hard problems and thus each require heuristics

or approximations.

There are several algorithms proposed to solve the standard fre-

quent itemset hiding problem (see Section 6). Any of them can be

substituted for the generic FISHider function. This is the main

reason that we focus on the first stage rather than the second one in

this work. As the correspondence between the problem in the first

stage and the hitting set problem is already established, we look for

custom heuristics solving the problem in the first stage.

There are many algorithms proposed for the hitting set problem and

for its variants (weighted hitting set etc.), so any of them can be

customized to substitute generic SelectSensitiveSet function. In

what follows, we present four greedy custom algorithms to replace

SelectSensitiveSet. The reason that we focus on custom heuris-

tics (rather than using standard hitting set algorithms) is to enable

the use of some additional information like support and thresholds

in the design to maintain data quality as much as possible.

4.1 Heuristics for SelectSensitiveSet
The first algorithm (Algorithm 2), called MOMSH, is based on

maximum occurrence and minimum support heuristics. In each it-

eration of the first loop, an itemset occurring in maximum number

of Cs is selected to be included in the hitting set. However, if there

is no itemset shared among itemset sets in Cs, then the loop breaks.

At this time, it is guaranteed that there is no itemset shared by mod-

ified Cs. So, the second loop independently considers each set in

Cs and selects the itemset having the least support in the database.

Clearly, the first loop exploits the idea that to minimize the hitting

set cardinality, itemsets shared by most itemset sets should be in-

cluded in the hitting set; this is the maximum occurrence heuristic.

The second loop exploits the idea that selecting the itemset having

the least support has more potential to attain less distortion; this is

the minimum support heuristic.

The second algorithm (Algorithm 3), called MSH, exploits only the

minimum support heuristic. It considers every co-occurring itemset

set in Cs and includes the minimum support itemset in the hitting

set. Then, it removes other itemset sets from Cs intersecting with

the selected minimum support itemset, and the iteration continues

until Cs becomes empty.

The third algorithm (Algorithm 4), called GMSH, exploits global

minimum support heuristic. Global minimum support heuristic

first computes the ground set, S, of itemsets from Cs (Line 2).

Then it picks the minimum support itemset from S and removes

every itemset set from Cs containing this itemset. The itemset is

included in the hitting set and the iteration continues until Cs be-

comes empty. The basic idea behind the heuristic is to give prece-

dence (to be included in the hitting set) to those itemsets with the

least support to keep the distortion small.

The fourth algorithm (Algorithm 5), called UA, is a very simple

Algorithm 2 MOMSH: Maximum occurrence and minimum sup-

port heuristics

Input: D, Cs, σ
Output: X s // hitting set

1: X s ← ∅
2: S ←

⋃

Ci∈Cs Ci

3: while Cs 6= ∅ do

4: X ← arg maxX∈S |{X ∈ C|C ∈ Cs}|
5: maxOcc ← maxX∈S |{X ∈ C|C ∈ Cs}|
6: if maxOcc >= 2 then

7: Cs ← Cs \ {C ∈ Cs|X ∈ C}
8: X s ← X s

⋃

X
9: else

10: break

11: for C ∈ Cs do

12: X ← arg minX∈C |supD(X)|
13: X s ← X s

⋃

X
14: return X s

Algorithm 3 MSH: Minimum support heuristic

Input: D, Cs, σ
Output: X s // hitting set

1: X s ← ∅
2: while Cs 6= ∅ do

3: C ← first C ∈ Cs

4: X ← arg minX∈C |supD(X)|
5: Cs ← Cs \ {C ∈ Cs|X ∈ C}
6: X s ← X s

⋃

X
7: return X s

Algorithm 4 GMSH: Global minimum support heuristic

Input: D, Cs, σ
Output: X s // hitting set

1: X s ← ∅
2: S ←

⋃

Ci∈Cs Ci

3: while Cs 6= ∅ do

4: X ← arg minX∈SsupD(X)
5: Cs ← Cs \ {C ∈ Cs|X ∈ C}
6: X s ← X s

⋃

X
7: S ← S \ X
8: return X s

Algorithm 5 UA: Unite all

Input: D, Cs, σ
Output: X s // hitting set

1: X s ←
⋃

Ci∈Cs Ci

2: return X s

union find algorithm, aimed at serving as a reference for the other

heuristics.

5. EXPERIMENTAL EVALUATION
We experiment with two datasets; the running example given in Ta-

ble 1, hereafter referred Toy, and Connect dataset from FIMI repos-

itory 1, hereafter referred Connect. The sensitive knowledge (some-

what arbitrarily selected among large support itemsets) to be hid-

den is fixed for each dataset and the disclosure threshold is varied in

experiments. Dataset features and the selected sensitive knowledge

are presented in Table 2.

Recalling that our framework consists of two generic sub proce-

dures, SelectSensitiveSet and FISHider, we fix FISHider
to cyclic hiding algorithm [8] and allow SelectSensitiveSet to

be one of four algorithms presented in Section 4. For each sensi-

tive itemset, cyclic hiding algorithm goes through the dataset and

finds a transaction supporting the itemset. Then, from the trans-

action it deletes (suppresses) an item which is the next item in the

sensitive itemset. If the support of the sensitive itemset reduces

below the disclosure threshold, the process restarts with the next

sensitive itemset.

We tested with two distortion metrics, M1 and M2, as defined next.

M1 measures the raw data distortion while M2 measures the distor-

tion in knowledge space. Additionally, we also measure the size of

the hitting set which is the output of SelectSensitiveSet function

in Algorithm 1.

• M1 (Data distortion): total number of suppression in D′.

• M2 (Frequent Pattern Distortion):

|F(D,σ)| − |F(D′,σ)|

|F(D,σ)|

Toy dataset results are presented in Figure 1 and Table 3. The

results in Figure 1 (b) are obtained with frequent itemset mining

done on the output of respective sanitization, i.e. σ = ψ. The

results indicate that the proposed three heuristics perform better

than UniteAll, indicating that they are promising. Note that the dis-

tortion gap is considerable even on this toy dataset. On the other

hand, the utility of three heuristics are not immediate as they seem

to perform very close. In fact, the relative merits are explored in

bigger Connect dataset. Table 3 gives the hitting sets of the four

algorithms. Since MSH and GMSH produce same hitting sets, they

always give the same distortion in Figure 1.

Connect dataset results are presented in Figure 2 and Table 4. Since

the connect dataset is very dense, frequent itemset mining with

practical support thresholds (e.g. 5%) is not feasible as the out-

put size grows to several gigabytes. Due to this, we raise mini-

mum support thresholds to larger values (i.e. 60% and up). Even

with these larger minimum supports, the output size grows to sev-

eral megabytes. The results in Figure 2 (b) are obtained with fre-

quent itemset mining done on the output of complete sanitization,

i.e. support of the hitting set reduced to zero. Note that, this has

the worst effect on the utility of data as more non-sensitive fre-

quent itemsets are not frequent any more. The results indicate that

the proposed three heuristics perform better than UniteAll, again

indicating that they are promising. The results also indicate that

1http://fimi.cs.helsinki.fi/

Table 2: Dataset features and sensitive knowledge

D |D| Cs :support

Toy 9
{

{a b d :3, b c :4},

{e :3 , b c :4},

{c d :6 , c e :3}
}

Connect 67557
{

{ 31 37 75 127 :60802, 13 16 37 91 :61017 }

{121 106 19 55 75 127 109 91 :62137, 52 34 106 88 :61423},

{52 34 106 88 :61423, 34 72 88 19 55 75 109 :61941},

{13 16 37 91 :61017, 34 72 88 19 37 75 :62542, 52 34 106 88 :61423},

{121 106 19 55 75 127 109 91 :62137, 13 16 37 91 :61017},

{13 16 37 91 :61017, 16 85 72 106 88 19 127 109 :60812}
}

MOMSH performs significantly better than MSH and GMSH. Note

that MOMSH finds the minimum cardinality hitting set and thus

attains lowest distortion. However, Figure 2 (b) shows that over-

all distortion is quite high (as high as 98%), suggesting that the

utility of the released dataset in the complete sanitization is ques-

tionable even with the good sanitization solutions. In our experi-

ments (results not reported), however we have seen that acceptable

distortions are committed with relatively higher values of disclo-

sure threshold. Indeed, it is not magic but the well-known util-

ity/sensitivity tradeoff.

6. RELATED WORK
The work by Atallah et al. [8] proved that frequent itemset hid-

ing problem (their problem is a simpler version of Problem 1) is

NP-Hard. Their operation to solve the problem is to remove (sup-

press) items from transactions. They also proposed heuristics to

solve the problem by selectively reducing the support of sensitive

itemsets. The algorithm iterates over the set of sensitive frequent

itemsets until none of them is frequent, and picks an itemset to hide

at each step. Let’s suppose that a k-itemset X ∈ X s is selected to

be hidden. A level-wise traversal, starting from X and ending at a

singleton included in X , is carried out on the itemset lattice as de-

scribed next. Over all k − 1 subsets of X , the respective supports

are reviewed and subset with the maximum support is chosen as the

new point for the traversal. This process is iterated until k = 1, at

which time a singleton itemset is found. An occurrence of this sin-

gleton itemset is suppressed in one of the supporting transactions

of X . The criteria for this decision is minimal effect on the number

of 2-itemsets of the transaction, which is somewhat equal to dis-

torting remaining large-itemsets that this transaction is providing

support to. Since the support of X is reduced one at a time fashion,

the whole operation is repeated until X’s support reaches below the

disclosure threshold. The heuristic hides all sensitive itemsets, i.e.

no hiding failure, and the heuristic serves for minimally affecting

the support of non-sensitive itemsets.

A border-based approach is presented in [23]. The idea is to pre-

serve the shape of positive border during sanitization as much as

possible. The algorithm first computes the minimal set of sensitive

itemsets from the user-specified sensitive itemsets and hides each of

them one-by-one fashion after ordering based on length (descend-

ing) and support (ascending). Next, the elements of positive border

intersecting with the every single item in the sensitive itemset at

hand is determined and a weight factor is computed for each can-

didate (a pair of a single item and a transaction supporting it). The

minimum weight candidate is selected for suppression and the can-

didate selection is repeated until the sensitive itemset gets support

less than the disclosure threshold. The weight measures the degree

to which the candidate will distort the nonsensitive frequent item-

sets. Another border-based approach is presented in [17].

A linear time (w.r.t. the |D|) sanitization algorithm employing slid-

ing window approach is presented in [20]. The algorithm is in-

tended to hide the knowledge of association rules but it is actually

hiding frequent itemsets. For each batch of window size K, the al-

gorithm consists of five steps: (1) identifying sensitive and nonsen-

sitive transactions in the batch, (2) selection of the victim item, (3)

building the sensitive transaction list for every sensitive itemset and

computing the number of sensitive transactions to be sanitized, (4)

sorting the sensitive transactions by size, (5) sanitizing the transac-

tion by removing the victim item. Two main characteristics of the

algorithm are being scalable to large databases and allowing differ-

ent sensitivity threshold, i.e. rather than a common threshold, for

each sensitive itemset.

Lee et al. [16] proposes a sanitization matrix based approach. The

sanitization matrix has dimensions |I| × |I| where entries are re-

stricted to be {−1, 0, 1}. The database D is transformed to the

matrix (with the size |D| × |I|) representation in which the en-

tries are assigned to be either 0 (non-existence of the item in the

transaction) or 1 (otherwise). The matrix representation of D′ is

then obtained by multiplying the data matrix of D with the saniti-

zation matrix. To give 0 or 1 entries, the multiplication results are

truncated to zero or one. Clearly, if the sanitization matrix is the

identity matrix then D′ equals to D. The challenge is to selectively

turn some non-diagonal elements into -1 so that support of sensi-

tive itemsets reduce while the support of others are affected as less

as possible. Authors present three greedy algorithms to do so. The

main heuristic is selecting the entry (j, k), to be replaced with -1,

such that itemset {ij , ik} exists in some sensitive itemset but does

not exist in nonsensitive itemsets. The algorithms do not guarantee

hiding failure, i.e. some sensitive itemsets can still be mined.

A support/confidence framework is introduced in [13] where au-

thors present three strategies: (i) increasing the support of rule an-

tecedent, (ii) decreasing the support of rule consequent, (iii) de-

creasing the rule support. Clearly, first two strategies are to reduce

the rule confidence while the last one is to reduce rule support.

One of the important limitation of the strategies is the assumption

of the disjointness, i.e. sensitive rules do not share items, of the

sensitive rules. An extension of [13] is presented in [25]. Another

support/confidence framework is presented in [22]. The authors

introduce unknowns (symbol ?)in the data matrix representation

where the symbol ? has the interpretation of being either 0 or 1.

The notion brings a minimum and maximum values for both of the

support and confidence of rules. The objective is then to reduce the

Disclosure Threshold

1 2 3 4 5

D
is

to
rt

io
n

(M
1)

0

2

4

6

8

10

12

14

16

MOMSH
MSH
GMSH
UA

Minimum Support

1 2 3 4 5

D
is

to
rt

io
n

(M
2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MOMSH
MSH
GMSH
UA

(a) (b)

Figure 1: Toy dataset distortion results: (a) M1 (b) M2

Disclosure Threshold

0 10000 20000 30000 40000 50000 60000

D
is

to
rt

io
n

(M
1)

0.0

5.0e+4

1.0e+5

1.5e+5

2.0e+5

2.5e+5

MOMSH
MSH
GMSH
UA

Minimum Support (%)

60 65 70 75 80 85 90

D
is

to
rt

io
n

(M
2)

0.96

0.97

0.98

0.99

1.00

MOMSH
MSH
GMSH
UA

(a) (b)

Figure 2: Connect dataset distortion results: (a) M1 (b) M2

Table 3: Hitting sets for Toy dataset

Algorithm hitting set hitting set cardinality

MOMSH {b c, c e} 2

MSH {a b d, c e, e} 3

GMSH3 {a b d, c e, e} 3

UA {a b d, b c, c d, c e, e} 5

Table 4: Hitting sets for Connect dataset

Algorithm hitting set hitting set card.

MOMSH {106 34 52 88, 13 16 37 91} 2

MSH {106 34 52 88, 127 31 37 75,

13 16 37 91} 3

GMSH {106 109 127 16 19 72 85 88,

106 34 52 88,

127 31 37 75, 13 16 37 91} 4

UA {106 109 121 127 19 55 75 91,

106 109 127 16 19 72 85 88,

106 34 52 88,

109 19 34 55 72 75 88,

127 31 37 75, 13 16 37 91,

19 34 37 72 75 88} 7

support and/or confidence of all rules below the disclosure param-

eters. Authors give three algorithms for sanitization. Since both

zeros and ones can be turned to unknowns, the reconstruction of

the source database is shown to be impossible.

Recently, knowledge hiding is extended to hide sequential patterns

[2] from sequence databases and spatio-temporal patterns [1] from

trajectory databases against sequential pattern mining [6] and spatio-

temporal pattern mining [11], respectively.

In all of the works mentioned above, sensitive knowledge have the

same format as the knowledge in the respective data mining task.

In other words, the result of data mining is considered a list of

knowledge and some of them are attributed sensitive. With this

work, we extend the sensitivity specification beyond this restric-

tion to meta-knowledge level. This extension allows several new

directions of sensitivity specification at meta-knowledge level like

co-occurrence, conditionals and exceptions. We study one of the

directions, co-occurring frequent itemsets, in this work.

7. CONCLUSION
Privacy and related issues are becoming widespread with the ease

of powerful information processing and transmission. The problem

is becoming more versatile with development of sophisticated anal-

ysis software like data mining tools. This made privacy preserving

and privacy aware data mining a very hot topic for researchers and

practitioners. Knowledge hiding is aimed at hiding knowledge at-

tributed sensitive from the datasets to be released. In most non

trivial settings, it reduces to the study of the tradeoff between sensi-

tivity and utility protection. It is traditionally studied in the context

of frequent itemsets and associations rules and many algorithmic

solutions are proposed in the literature.

With this work, we extend sensitive knowledge hiding to meta-

knowledge hiding and present a version of it in the context of fre-

quent itemset mining. Namely, co-occurring frequent itemset hid-

ing problem is introduced and some theoretical properties are an-

alyzed. As a solution, a two-stage sanitization framework is pro-

vided, where both stages are generic. The framework obtains an

instance of the standard frequent itemset hiding problem in the first

stage, and to solves the instance in the second stage. We have de-

signed heuristic algorithms for the first stage as the second stage is

a well-established field. Experimental evaluations are carried out

on two datasets to understand the performances.

The results indicate that the proposed heuristics, especially MOMSH,

performs very well on the defined metrics, M1/M2 and hitting set

cardinality, in comparison to the most straightforward approach.

Our future work will include following;

• New heuristics: Currently, as an initial attempt we have de-

veloped three heuristics to be used in the first stage. We be-

lieve that there is room for more sophisticated heuristics like

weighted hitting set.

• New experiments: Currently, we experiment with a toy dataset

and a real dataset, Connect, from the game domain as initial

tests. Clearly, more datasets can be tried with more realistic

hiding scenarios.

• More direct algorithms: Currently, our solution involves trans-

forming the instance of co-occurring frequent itemset hiding

problem to an instance of frequent itemset hiding. More di-

rect algorithms may attain smaller distortion.

• Other meta-knowledge: Currently, we only define co-occurring

frequent itemsets as the meta-knowledge, but other meta knowl-

edge that can find real world applications, e.g. correlations

and exceptions, can be investigated.

• Other knowledge formats: Currently, we only address the

meta-knowledge in the context of frequent itemset mining,

but they can be defined similarly on other contexts such as

association rules mining, sequential pattern mining etc.

8. REFERENCES
[1] O. Abul, M. Atzori, F. Bonchi, and F. Giannotti. Hiding

sensitive trajectory patterns. In 6th International Workshop

on Privacy Aspects of Data Mining (PADM’07), in

conjunction with ICDM’07.

[2] O. Abul, M. Atzori, F. Bonchi, and F. Giannotti. Hiding

sequences. In Third ICDE International Workshop on

Privacy Data Management (PDM’07), in conjunction with

ICDE’07.

[3] R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection

algorithm for generation of frequent itemsets. Journal of

Parallel and Distributed Computing, 61:350–371, 2000.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In

Proceedings SIGMOD’93, pages 207–216, 1993.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of the

20th International Conference on Very Large Databases

(VLDB’94), pages 487–499, 1994.

[6] R. Agrawal and R. Srikant. Mining sequential patterns. In

Eleventh International Conference on Data Engineering

(ICDE’95), pages 3–14, Taipei, Taiwan, 1995.

[7] R. Agrawal and R. Srikant. Privacy-preserving data mining.

In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD 2000), pages

439–450, 2000.

[8] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and

V. S. Verykios. Disclosure limitation of sensitive rules. In

Proceedings of the 1999 IEEE Knowledge and Data

Engineering Exchange Workshop (KDEX’99), pages 45–52,

1999.

[9] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.

Blocking anonymity threats raised by frequent itemset

mining. In Proceedings of the Fifth IEEE International

Conference on Data Mining (ICDM 2005), pages 561–564,

2005.

[10] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.

Geopkdd: Alignment report on privacy-preserving data

mining. Technical report, Jan. 2006. Pisa KDD laboratory,

ISTI-CNR and University of Pisa.

[11] H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent

spatio-temporal sequential patterns. In Proceedings of the 5th

IEEE International Conference on Data Mining (ICDM

2005), 27-30 November 2005, Houston, Texas, USA.

[12] C. Clifton and D. Marks. Security and privacy implications

of data mining. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data

(SIGMOD’96), pages 15–19, Feb. 1996.

[13] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and

E. Bertino. Hiding association rules by using confidence and

support. In Proceedings of the 4th International Workshop on

Information Hiding, pages 369–383, 2001.

[14] M. R. Garey and D. S. Johnson. Computers and

Intractability – A Guide to the Theory of NP-Completeness.

W. H. Freeman, Jan. 1979.

[15] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree

approach. Data Mining and Knowledge Discovery,

8(1):53–87, 2004.

[16] G. Lee, C.-Y. Chang, and A. L. P. Chen. Hiding sensitive

patterns in association rules mining. In 28th Annual

International Computer Software and Applications

Conference (COMPSAC 2004), pages 424–429, 2004.

[17] G. Moustakides and V. Verykios. A maxmin approach for

hiding frequent itemsets. IEEE Transactions on Knowledge

and Data Engineering, 65:75–89, 2008.

[18] D. E. O’Leary. Knowledge discovery as a threat to database

security. In G. Piatetsky-Shapiro and W. J. Frawley, editors,

Knowledge Discovery in Databases, pages 507–516.

AAAI/MIT Press, 1991.

[19] S. R. M. Oliveira and O. R. Zaiane. A framework for

enforcing privacy in mining frequent patterns. Technical

report, Computer Science Department, University of Alberta,

Canada, June 2002.

[20] S. R. M. Oliveira and O. R. Zaïane. Protecting sensitive

knowledge by data sanitization. In Proceedings ICDM 2003,

pages 211–218, 2003.

[21] A. Savasere, E. Omiecinski, and S. Navathe. An efficient

algorithm for mining association rules in large databases.

pages 432–444, 1995.

[22] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to

prevent discovery of association rules. ACM SIGMOD

Record, 30(4):45–54, 2001.

[23] X. Sun and P. S. Yu. A border-based approach for hiding

sensitive frequent itemsets. In Proceedings ICDM 2005,

pages 426–433, 2005.

[24] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,

Y. Saygin, and Y. Theodoridis. State-of-the-art in privacy

preserving data mining. ACM SIGMOD Record,

33(1):50–57, 2004.

[25] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and

E. Dasseni. Association rule hiding. IEEE Transactions on

Knowledge and Data Engineering, 16(4):434–447, 2004.

[26] X. Wu, Y. Wu, Y. Wang, and Y. Li. Privacy aware market

basket data set generation: A feasible approach for inverse

frequent set mining. In Proceedings of the 2005 SIAM

International Conference on Data Mining (SDM 2005),

2005.

