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Abstract. In the generalized minimal residual method (GMRES), the global all-to-all commu-
nication required in each iteration for orthogonalization and normalization of the Krylov base vectors
is becoming a performance bottleneck on massively parallel machines. Long latencies, system noise,
and load imbalance cause these global reductions to become very costly global synchronizations.
In this work, we propose the use of nonblocking or asynchronous global reductions to hide these
global communication latencies by overlapping them with other communications and calculations. A
pipelined variation of GMRES is presented in which the result of a global reduction is used only one
or more iterations after the communication phase has started. This way, global synchronization is
relaxed and scalability is much improved at the expense of some extra computations. The numerical
instabilities that inevitably arise due to the typical monomial basis by powering the matrix are re-
duced and often annihilated by using Newton or Chebyshev bases instead. Our parallel experiments
on a medium-sized cluster show significant speedups of the pipelined solvers compared to standard
GMRES. An analytical model is used to extrapolate the performance to future exascale systems.
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1. Introduction. The use of partial differential equations (PDEs) to model the
dynamics of a complex system is widespread in scientific practice. Often, discretiza-
tion of such PDEs results in a very large, sparse linear system, typically solved by
a preconditioned Krylov method or by multigrid, either as a standalone multigrid
solver or as a preconditioner for a Krylov iteration. Nonstationary iterative Krylov
subspace methods, such as GMRES and CG, rely on vector inner products and norms
to construct an orthonormal set of Krylov basis vectors. As scalar products require
global information, i.e., from every core on every node of the machine, the lower
bound on the latency of such an operation is doomed to grow because the maximum
parallelism is limited to a tree-like structure with the number of leaves determined
by the number of cores. Thus, the minimum number of sequential steps grows with
the height of the tree. This can be contrasted with the other operations required in a
Krylov method, the most important ones being vector-vector addition (for instance,
αx + y, called axpy operation) and the sparse matrix-vector product (SpMV). For
PDE discretization matrices, which are typically very sparse, a parallel SpMV only
requires communication in some small fixed neighborhood of each node, regardless of
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HIDING GLOBAL COMMUNICATION IN GMRES C49

the problem size. (This assumes that neighboring simulation domains map to neigh-
boring processors.) The axpy is trivially data-parallel. Hence, the scalar products
will eventually become the limiting factor for the available parallelism in the algo-
rithm [5]. Furthermore, due to an extreme reduction in scale and voltages, future
generations of processors will exhibit both an increase in variability of speed and
an increased susceptibility to both transient and permanent failures. This hardware
variability, together with system noise and load imbalances, will make global commu-
nication an even more costly global synchronization step. For a study on the effects
of system noise on application scaling see [21] and [4].

One way to avoid expensive global communication is to use simple stationary
methods, like Jacobi, (red-black) Gauss–Seidel, or Chebyshev iteration, which do not
require global communication, apart from the stopping criterion. However, conver-
gence of these methods is typically quite slow and conditional. Recently, so-called
s-step Krylov methods have regained a lot of interest [8, 24, 14, 3, 26, 10, 9, 25]. The
main idea in these methods is to create several, s, new Krylov base vectors at once
and orthogonalize them together. This reduces the number of global synchronization
steps by a factor s. Apart from reducing global communication, this can also im-
prove data locality and cache reuse. However, the maximal s is limited by numerical
stability, although switching to a different basis, like Newton or Chebyshev [3, 24],
can stretch the limits for s a bit further. Still, in s-step GMRES, computation and
global communication phases are performed consecutively, potentially leaving many
processors idling during the communication phase.

Instead of trying to reduce the number of global reductions, we present a GMRES
variation that hides the reduction latency by overlapping the global communication
phase with other useful computations and local communications. The reductions are
performed in the background while new Krylov basis vectors are generated. The scalar
product values, needed to orthogonalize previous basis vectors, are used only when
they become available, which can be after one or possibly several new basis vectors
have been created. We call the resulting algorithm p(�)-GMRES, where p stands for
“pipelined” and �, for latency, is the number of new (not yet orthogonal) Krylov basis
vectors that can be constructed before the result of an inner product becomes avail-
able. The total number of floating point operations in the p(�)-GMRES algorithm
is slightly larger than in standard GMRES. Therefore, there is a trade-off between
improved scalability and computational overhead which highly depends on the hard-
ware specifications. As in s-step GMRES, our p(�)-GMRES algorithm can also use a
different basis to improve numerical stability. Section 7 gives a detailed comparison
of both s-step and pipelined GMRES. The idea of overlapping global communication
with local computations has been applied to the CG method before [12, 17]. How-
ever, the idea of pipelining is more general because it allows overlap with both local
computations and possibly several phases of local communication.

The major building block of the GMRES method is the Arnoldi process. Since
the other steps are usually small in terms of computation time and require no or little
communication, we primarily discuss the Arnoldi process. As a result, this work can
be used for other applications of Arnoldi’s method, such as eigenvalue problems, the
matrix exponential (i.e., time stepping), Lyapunov solvers, and model reduction. For
the same reason, we do not discuss restarting or any other tricks to reduce the memory
cost of GMRES. Within the Arnoldi process, we used classical Gram–Schmidt, in
contrast to the usually employed modified Gram–Schmidt in GMRES. We explain
this choice in section 2. Reorthogonalization, as required by eigenvalue computations,
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C50 GHYSELS, ASHBY, MEERBERGEN, AND VANROOSE

and often the solution of hard linear systems and model reduction can be added to
classical Gram–Schmidt, as we explain in section 2. In [18], the reorthogonalization
step of iterated Gram–Schmidt in an eigenvalue solver is performed asynchronously.

When a sufficiently accurate and locally operating load balancing strategy is used
in combination with asynchronous global reductions, the effect of system noise and
load imbalance on the parallel scaling will likely be reduced. By using nonblocking
communication, the resulting algorithm is much less sensitive to system noise, since
not only the link latencies but also the synchronization overhead can be hidden;
see also [21]. Apart from hiding scalar product latencies, the proposed p(�)-GMRES
variation also relaxes data dependencies, which allows more freedom in scheduling the
subtasks of a single GMRES iteration over the available cores; see, for instance, [1]
for similar runtime scheduling approaches applied to dense matrix factorizations.

The main contribution of this paper is the formulation of a GMRES version that
interleaves the calculation of dot-products with the matrix-vector product and the
vector additions. The paper also formulates an easy way to introduce matrix shifts
that increase the numerical stability. Various basis sets are validated on benchmark
matrices. Also new is a performance model that predicts a more favorable scaling of
the algorithms for large systems as a result of the latency hiding.

The paper continues as follows. Section 2 briefly reviews standard GMRES with
a focus on the communication pattern. In section 3 an alternative to classical Gram–
Schmidt is proposed where the reductions for orthogonalization and normalization
are combined. This technique is used in section 4.1 to create a one-step pipelined
algorithm in which dot-products are always interleaved with one matrix-vector prod-
uct. In section 4.2, this is generalized to p(�)-GMRES, which can hide the reduction
latency with � iterations. Numerical results for different matrices and different Krylov
bases are presented in section 5. In section 6, the parallel performance of the pre-
sented algorithms is evaluated on a medium-sized parallel machine. Also, using an
analytical model, parallel performance is extrapolated to a hypothetical exascale ma-
chine. Next, section 7 discusses preconditioning and gives a detailed comparison with
s-step GMRES [24]. An outlook is given in section 8.

2. Standard GMRES. We start with a brief overview of the standard GMRES
algorithm shown in Algorithm 1, as originally published by Saad and Schultz [29].
The key components of interest in this paper are the SpMV (line 3), Gram–Schmidt
orthogonalization (lines 4 and 5), and normalization (lines 6 and 7). We now discuss
each of these components.

Algorithm 1. GMRES.
1: r0 ← b−Ax0 ; v0 ← r0/||r0||2
2: for i = 0, . . . ,m− 1 do
3: z ← Avi
4: hj,i ← 〈z, vj〉 , j = 0, . . . , i

5: ṽi+1 ← z −∑i
j=1 hj,ivj

6: hi+1,i ← ||ṽi+1||2
7: vi+1 ← ṽi+1/hi+1,i

8: # apply Givens rotations to H:,i

9: end for
10: ym ← argmin||(Hm+1,mym − ||r0||2e1)||2
11: x← x0 + Vmym
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p1
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SpMV local dot
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Gram-Schmidt
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Normalization
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Fig. 2.1. Schematic representation of a single iteration of the standard GMRES algorithm on
four nodes; see Algorithm 1. Length of the different phases is not to scale. Communication for the
SpMV (dashed lines) is assumed to be among neighbors only, and its latency is completely overlapped
by computations for the SpMV.

The SpMV on line 3 can be a black box function call and can include applica-
tion of the preconditioner. In this work, the focus will be mostly on preconditioned
matrix-vector multiplications which only require communication between nodes that
are in a small fixed neighborhood of each other. As discussed in section 6.2, this class
of matrices is most interesting from an applications point of view and is targeted by
the latency hiding algorithms presented in section 4.

The dot-products in classical Gram–Schmidt on line 4 can be performed in a
single global reduction operation, typically using a reduction tree. On a parallel
machine this can introduce latency due to global communication. Classical Gram–
Schmidt is often replaced by modified Gram–Schmidt for its improved stability. On
the other hand, modified Gram–Schmidt requires i global reductions back-to-back
when orthogonalizing against i vectors (as is the case in the ith iteration). Hence, in
a distributed setting, modified Gram–Schmidt becomes too costly and classical Gram–
Schmidt can be used in combination with reorthogonalization when orthogonality of
the basis is lost. This is referred to as iterated classical Gram–Schmidt; see [6] and
also [11]. In this paper, we restrict ourselves to classical Gram–Schmidt, which works
well in practice for many applications, and keep in mind that iterated Gram–Schmidt
can be used to improve stability.

The normalization, line 6, also requires a global reduction. In the algorithm, ṽi
represents the nonnormalized version of vi. For an actual implementation, the tildes
can be dropped, meaning that ṽi will use the same memory location as vi; likewise z
can be stored in vi+1.

The least-squares problem in line 10 is typically solved by transforming the up-
per Hessenberg matrix H to upper triangular form using Givens rotations. These
Givens rotations are applied incrementally, one column per iteration. Solving the
least-squares problem then only requires a backward substitution, which can be per-
formed after the GMRES iteration has converged. The manipulations of H will not
be discussed in detail since the key part of the algorithm is the Arnoldi process.

The different steps of the algorithm in a parallel implementation are discussed in
Figure 2.1. This example discusses an implementation with four nodes. A parallel
SpMV only requires local communication, which should scale well with the number
of nodes and can often be overlapped with local computations. The axpy operations
in line 5 and the scalar-vector multiplication in line 7 do not require communication.
The dot-products in the Gram–Schmidt orthogonalization, however, do require global
communication, which in this example is done with a binomial reduction tree.

As the number of nodes increases, the global reductions required in lines 4 and 6
may well become the bottleneck [2, 14, 5]. This global communication cannot be
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C52 GHYSELS, ASHBY, MEERBERGEN, AND VANROOSE

overlapped by computations due to data dependencies. Each GMRES iteration takes
at least twice the total minimum latency of a global all-to-all reduce.

3. Avoiding explicit normalization of ṽi. Instead of first constructing ṽi,
orthogonal to all previous base vectors v0, . . . , vi−1, and then calculating its norm
using another global reduction, this norm can be computed immediately without extra
global communication. To improve numerical stability, a shift σi will be introduced
in the matrix-vector product.

Proposition 3.1. For i ≥ 0, let Vi+1 := [v0, v1, . . . , vi−1, vi] be an orthonormal
basis for the Krylov subspace Ki+1(A, v0) = span{v0, Av0, . . . , Aiv0} and let σi ∈ C.
The following steps expand the basis of the Krylov subspace to Vi+2 and calculate an
additional column of the Hessenberg matrix, H:,i, using a single reduction (compared
to two reductions for classical Gram–Schmidt):

1. zi+1 = (A− σiI) vi.
2. 〈zi+1, vj〉 for j = 0, . . . , i and ‖zi+1‖.
3. hj,i = 〈zi+1, vj〉 for j = 0, . . . , i− 1.
4. hi,i = 〈zi+1, vi〉+ σi.

5. hi+1,i =
√
‖zi+1‖2 −

∑i
j=0 〈zi+1, vj〉2 .

6. vi+1 =
(
zi+1 −

∑i
j=0 〈zi+1, vj〉vj

)
/hi+1,i.

Proof. The straightforward way would be to first compute ṽi+1 = Avi−
∑i

j=0 hj,ivj ,
which is orthogonal to all other vectors vj for j ≤ i, and then normalize it to
obtain vi+1 = ṽi+1/hi+1,i. The elements of the Hessenberg matrix are defined as
hj,i = 〈Avi, vj〉 for j ≤ i and hi+1,i = ‖ṽi+1‖. However, this requires an additional
latency cost due to the normalization.

Using zi+1 = (A− σiI) vi, i.e., line 1 from the proposition,

(3.1) ṽi+1 = zi+1+σivi−
i∑

j=0

〈Avi, vj〉 vj = zi+1−
i−1∑
j=0

〈Avi, vj〉 vj−(〈Avi, vi〉 − σi) vi

and since for j < i, 〈zi+1, vj〉 = 〈Avi, vj〉 = hj,i and 〈zi+1, vi〉 = 〈Avi, vi〉 − σi = hi,i,
this becomes

(3.2) ṽi+1 = zi+1 −
i∑

j=0

〈zi+1, vj〉vj .

Now, instead of calculating the norm of ṽi+1 explicitly, it can be found with the help
of ‖zi+1‖, which is also calculated in line 2,

(3.3) hi+1,i = ‖ṽi+1‖ = ‖zi+1 −
i∑

j=0

〈zi+1, vj〉vj‖ =
√√√√‖zi+1‖2 −

i∑
j=0

〈zi+1, vj〉2 .

This strategy allows us to construct the orthonormal vector vi+1 immediately in line 6.
Calculating the norm ‖zi+1‖ (in the same global reduction as the other dot-products)
allows us to calculate element hi+1,i of the Hessenberg matrix in line 5.

Remark. When orthogonality of the Vi basis is lost due to rounding errors, a
breakdown may occur in line 5 of Proposition 3.1 since the argument of the square
root can become negative. If such a square root breakdown happens, the GMRES
iteration can simply be restarted or a reorthogonalization can be applied. Restarting
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GMRES will slow down the convergence but it will also make the Gram–Schmidt
procedure cheaper since the Krylov basis is built up from scratch. Also, when hi+1,i

evaluates to zero, the algorithm breaks down in line 6. In GMRES, this is typically
called a happy or lucky breakdown since in exact arithmetic hi+1,i = 0 if and only
if the approximate solution is exact. However, in the GMRES algorithm based on
Proposition 3.1, hi+1,i can also become zero due to rounding errors.

Remark. Alternatively, one can use the formula [33]

hi+1,i = ‖zi+1‖ sin
(
cos−1

((∑i
j=0 h

2
j,i

)
/‖zi+1‖

))
,(3.4)

which is slightly more accurate than (3.3) but can of course also breakdown. Oth-
ers have proposed iterative schemes based on Halley’s method for computing such
Pythagorean sums; see, for instance, [27].

The introduction of the shift σ in the matrix-vector product (line 1) reduces the
growth of the vector norms in successive iterations, which makes the algorithm less
sensitive to rounding errors in the orthogonalization. This will be further discussed in
section 4.3. It is well known that the Krylov space for the shifted matrix is the same
as that spanned by the original matrix A. This is called the shift-invariance property.

By replacing lines 3 to 7 in the original GMRES algorithm with the steps from
Proposition 3.1, one gets a GMRES variation that requires only a single global reduc-
tion per iteration. We shall refer to this algorithm as �1-GMRES; see Algorithm 2.

Algorithm 2. �1-GMRES.
1: r0 ← b−Ax0 ; v0 ← r0/||r0||2
2: for i = 0, . . . ,m− 1 do
3: z ← (A− σiI)vi
4: hj,i ← 〈z, vj〉 , j = 1, . . . , i

5: hi+1,i ←
√
‖z‖2 −∑i

j=1 h
2
j,i

6: # Check for breakdown and restart or reorthogonalize if necessary

7: vi+1 ←
(
z −∑i

j=1 hj,ivj

)
/hi+1,i

8: hi,i ← hi,i + σi

9: end for
10: ym ← argmin||(Hm+1,mym − ||r0||2e1)||2
11: x← x0 + Vmym

4. Pipelined GMRES. In this section a class of pipelined GMRES methods is
presented. After introducing the idea with a depth 1 pipelined algorithm, overlapping
the reduction with one matrix-vector product, a more general version is derived with
an arbitrary pipelining depth. Subsection 4.3 explains how stability can be improved
by using a different Krylov basis.

4.1. One-step latency method. A method is presented to loosen the data
dependencies that, in standard GMRES, dictate the strict ordering: SpMV, orthog-
onalization, normalization, SpMV, et cetera. This method will make use of the nor-
malization as presented in Proposition 3.1.

Proposition 4.1. For i > 0 let Vi := [v0, v1, . . . , vi−2, vi−1] be an orthonormal
basis for the Krylov subspace Ki(A, v0) and let Zi+1 := [z0, z1, . . . , zi−1, zi] be a set of
i+1 vectors such that for each j > 0 it holds that zj = (A− σI) vj−1 with σ ∈ C and
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z0 = v0. The following steps, for i > 0, expand the basis of the Krylov subspace to
Vi+1 (and Zi+2), calculate an additional column of the Hessenberg matrix, and allow
simultaneous calculation of the dot-products and the matrix-vector product:

1. Compute 〈zi, vj〉 for j = 0, . . . , i− 1 and ‖zi‖.
2. w = Azi.
3. hj,i−1 = 〈zi, vj〉 for j = 0, . . . , i− 2.
4. hi−1,i−1 = 〈zi, vi−1〉+ σ.

5. hi,i−1 =
√
‖zi‖2 −

∑i−1
j=0 〈zi, vj〉2.

6. vi =
(
zi −

∑i−1
j=0 〈zi, vj〉vj

)
/hi,i−1.

7. zi+1 =
(
w −∑i−1

j=0 hj,i−1zj+1

)
/hi,i−1.

Proof. In line 7, an additional vector zi+1 is constructed, expanding Zi+1 to
Zi+2. This relation is easily found starting from the Arnoldi relation vi = (Avi−1 −∑i−1

j=0 hj,i−1vj)/hi,i−1. Multiplying on the left and right with (A−σI) leads to zi+1 =

(Azi−
∑i−1

j=0 hj,i−1zj+1)/hi,i−1 with Azi already calculated in line 2 using the matrix-
vector product. Note that the result of line 2 is used for the first time in line 7. The
calculation of the dot-products and the matrix-vector are overlapped. Dot-products
started in line 1 are first used in line 3.

The other steps are similar to Proposition 3.1, except here the Vi+1 basis lags one
iteration behind the zi+1 vector.

4.2. Deeper pipelining: p(�)-GMRES. When dot-product latency is longer
than the time to compute an SpMV, the interleaving of dot-products and SpMV as
in Proposition 4.1 will not be able to completely hide this latency. Next, Proposi-
tion 4.1 is extended such that the algorithm can hide a dot-product latency of up to
� iterations, including � SpMVs.

Let Vi−�+1 = [v0, v1, . . . , vi−�] be an orthogonal basis for the Krylov subspace

Ki−�+1(A, v0). For these vectors the Arnoldi relation vj = (Avj−1 −
∑j−1

k hk,j−1vk)/
hj,j−1 holds. Again there are i + 1 vectors in Zi+1 = [z0, z1, . . . , zi−�, zi−�+1, . . . , zi]
with z0 = v0. The index i denotes the number of matrix-vector products necessary to
construct the zi vectors. Note that due to the latency �, the size of the orthonormal
Krylov subspace is only i− �+ 1. The zj and vj vectors are now related through

(4.1) zj =

⎧⎪⎨
⎪⎩
v0 , j = 0 ,

Pj(A)v0 , 0 < j ≤ � ,

P�(A)vj−� , j > � ,

with the polynomials Pi(t) defined as

(4.2) Pi(t) =

i∏
j=0

(t− σj) , i ≤ �,

where σj ∈ C will be chosen later. The order of the polynomials is limited to �, hence
there will only be � different shifts σj .

Example 4.2. Take � = 2 and the shifts σ0 and σ1. The polynomials are P1(t) =
(t − σ0) and P2(t) = (t − σ1)(t − σ0). If the Krylov subspace has size 3 with V3 =
[v0, v1, v2], then the zi vectors are
(4.3)
Z5 = [v0, (A−σ0I)v0, (A−σ1I)(A−σ0I)v0, (A−σ1I)(A−σ0I)v1, (A−σ1I)(A−σ0I)v2] .
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For j ≤ �, successive zj are related as follows:

(4.4) zj+1 = (A− σjI)zj .

For j > �, an Arnoldi-like recurrence relation holds between successive zj, since fixed
polynomials P�(t) of order � are used for j > �. Indeed, this relation holds between
the vj−� and it translates to zj for j > � by multiplying the Arnoldi relation by P�(A),

P�(A)vj−� =

(
P�(A)Avj−�−1 −

j−�−1∑
k=0

hk,j−�−1P�(A)vk

)
/hj−�,j−�−1 ,(4.5)

zj =

(
Azj−1 −

j−�−1∑
k=0

hk,j−�−1zk+�

)
/hj−�,j−�−1 .(4.6)

These properties between the successive zj can be summarized as

(4.7) AZi = Zi+1Bi+1,i

with the upper Hessenberg matrix Bi+1,i, called the change of basis matrix [24], given
by

Bi+1,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ0

1
. . .

. . . σ�−1

1 h0,0 . . . h0,i−�

h1,0

. . .
...

hi+1−�,i−�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(4.8)

Proposition 4.3. Let � < k and let Vk be an orthonormal basis for the Krylov
subspace Kk(A, v0) and Zk a set of vectors related to Vk as zj = Pj(A)vj−� with
polynomials defined in (4.1). Then the vectors z and v are related as Zj = VjGj for
j ≤ k with Gj an upper triangular j by j matrix. Furthermore, the elements of the
last column of Gk, i.e., gj,k−1 with j = 0, . . . , k − 1, can be calculated using only the
dot-products 〈zk−1, vj〉 with j ≤ k − � − 1 and 〈zk−1, zj〉 with k − � − 1 < j ≤ k − 1
and the elements of Gk−1.

Proof. Since Zk and Vk span the same space it is possible to write Zk = VkGk.
The matrix G is upper triangular since Zj and Vj span the same space for all j ≤ k.
For j ≤ k − � − 1 the elements gj,k−1 of the last column of Gk are directly available
since the dot-products gj,k−1 = 〈zk−1, vj〉 are available. For k − �− 1 < j ≤ k − 1 we
have that

gj,k−1 = 〈zk−1, vj〉 = 〈zk−1,

(
zj −

j−1∑
m=0

gm,jvm

)
/gj,j〉(4.9)

=

(
〈zk−1, zj〉 −

j−1∑
m=0

gm,jgm,k−1

)
/gj,j ,(4.10)
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where

(4.11) gj,j =

√√√√〈zj , zj〉 − j−1∑
m=0

g2m,j .

This calculation requires the elements of the smaller Gk−1.
Example 4.4. Suppose � = 2 and i = 2. The Krylov subspace is spanned by

[v0, v1] and there are vectors Z4 = [z0, z1, z2, z3]. Since z0 = v0, we have that g0,0 = 1.
The elements of G2 are then calculated with the help of 〈z1, z1〉 and 〈z1, z0〉 as follows.
First, we calculate g0,1. Since g0,0 = 1 and the sum under the square root is zero, we

find that g0,1 = 〈z1, z0〉. We can now calculate g1,1 as
√
〈z1, z1〉 − g20,1.

Proposition 4.3 makes it easy to extend the basis Vi−� for the Krylov subspace
Ki−�(A, v0), given the set of vectors Zi; simply apply the proposition with k = i− �.
Indeed, as soon as the dot-products 〈zi−�, vj〉 are calculated for j = 0, . . . , i − 2� − 1
and 〈zi−1, zj〉 for i − 2� − 1 < j ≤ i − �, the last column of the Gi−�+1 matrix can
be calculated. With these matrix elements it is then possible to construct vi−�, the
additional vector that extends Vi−� to Vi−�+1 as

(4.12) vi−� =

(
zi−� −

i−�−1∑
j=0

gj,i−�vj

)
/gi−�,i−� .

To denote a column vector, the row index is replaced by a colon, and the height should
be clear from context.

Proposition 4.5. Let Gk be the upper triangular matrix that relates the basis
sets Zk = VkGk and let Bk+1,k be the matrix that connects the successive Zk as
AZk = Zk+1Bk+1,k. Then the Hessenberg matrix for the Vk basis can be calculated
column by column as

(4.13) Hk+1,k =

[
Hk,k−1 (Gkb:,k + g:,k+1bk+1,k −Hk,k−1g:,k)g

−1
k,k

0 gk+1,k+1bk+1,kg
−1
k,k

]
.

Proof. Combining (4.7) and the Arnoldi recurrence relation with the QR factor-
ization for Zk leads to

Hk+1,k = V T
k+1AVk = V T

k+1AZkG
−1
k = V T

k+1Zk+1Bk+1,kG
−1
k(4.14)

= Gk+1Bk+1,kG
−1
k ,(4.15)

which is a simple expression for the standard GMRES upper Hessenberg coefficient
matrix Hk+1,k. Matrix H can be constructed column by column as follows. From
(4.15),

Hk+1,k =

[
Gk g:,k+1

0 gk+1,k+1

] [
Bk,k−1 b:,k

0 bk+1,k

] [
Gk−1 g:,k
0 gk,k

]−1

(4.16)

=

[
GkBk,k−1 Gkb:,k + g:,k+1bk+1,k

0 gk+1,k+1bk+1,k

] [
G−1

k−1 −G−1
k−1g:,kg

−1
k,k

0 g−1
k,k

]
(4.17)

=

[
GkBk,k−1G

−1
k−1 (−GkBk,k−1G

−1
k−1g:,k +Gkb:,k + g:,k+1bk+1,k)g

−1
k,k

0 gk+1,k+1bk+1,kg
−1
k,k

]
(4.18)

=

[
Hk,k−1 (Gkb:,k + g:,k+1bk+1,k −Hk,k−1g:,k)g

−1
k,k

0 gk+1,k+1bk+1,kg
−1
k,k

]
.(4.19)
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Once this Hessenberg matrix is calculated it is easy to extend the set of Zi+1

vectors to Zi+2 by adding

(4.20) zi+1 =

{
(A− σiI)zi, i < � ,(
Azi −

∑i−�
j=0 hj,i−�zj+�

)
/hi−�+1,i−�, i ≥ � ,

a relation that is based on (4.4) and (4.6). Note that the shifts are only explicitly
used in the first � iterations.

The above formulae directly translate to Algorithm 3. As the pipelining has in-
troduced several potential sources of instability, the resulting algorithm has different
numerical stability properties compared to classical GMRES. As in �1-GMRES (see
the remark in section 3), the square root in line 7 can lead to a square root break-
down. The easiest solution in this case is to restart the GMRES algorithm. However,
restarting slows down the convergence and, since the pipeline has to be filled again,
parallel efficiency declines. When instead of restarting, a reorthogonalization step is
performed, convergence is affected less. Furthermore, to maintain good convergence
and hence avoid square root breakdown, proper choices for the shifts σi are crucial;
see section 4.3. In section 5, convergence results are shown for several matrices and
different shifts.

Algorithm 3. p(�)-GMRES.

1: r0 ← b−Ax0 ; v0 ← r0/||r0|| ; z0 ← v0
2: for i = 0, . . . ,m+ � do

3: zi+1 ←
{
(A− σiI)zi, i < �

Azi, i ≥ �

4: a← i− �
5: if a ≥ 0 then
6: gj,a+1 ← (gj,a+1 −

∑j−1
k=0 gk,jgk,a+1)/gj,j , j = a− �+ 2, . . . , a

7: ga+1,a+1 ←
√
ga+1,a+1 −

∑a
k=0 g

2
k,a+1

8: # Check for breakdown and restart or reorthogonalize if necessary
9: if a < � then

10: hj,a ← (gj,a+1 + σagj,a −
∑a−1

k=0 hj,kgk,a)/ga,a, j = 0, . . . , a
11: ha+1,a ← ga+1,a+1/ga,a
12: else
13: hj,a ← (

∑a+1−�
k=0 gj,k+�hk,a−� −

∑a−1
k=j−1 hj,kgk,a)/ga,a, j = 0, . . . , a

14: ha+1,a ← ga+1,a+1ha+1−�,a−�/ga,a
15: end if
16: va ← (za −

∑a−1
j=0 gj,avj)/ga,a

17: zi+1 ← (zi+1 −
∑a−1

j=0 hj,a−1zj+�)/ha,a−1

18: end if

19: gj,i+1 ←
{
〈zi+1, vj〉 , j = 0, . . . , a

〈zi+1, zj〉 , j = a+ 1, . . . , i+ 1

20: end for
21: ym ← argmin||(Hm+1,mym − ||r0||e1)||2
22: x← x0 + Vmym

Remark. Since in the p(�)-GMRES algorithm, two sets of basis vectors Vi−�+1

and Zi+1 are stored, the memory requirements are doubled compared to standard
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C58 GHYSELS, ASHBY, MEERBERGEN, AND VANROOSE

GMRES. However, it is possible to rewrite the vectors in Zi−�+1 as linear combina-
tions of vectors in Vi−�+1. In this case, only the last � vectors of Zi+1 have to be stored
explicitly. Furthermore, the first � vectors in Zi+1 are no longer used when i > 2�, so
they do not have to be stored any longer. A possible advantage of explicitly storing the
Zi+1 basis could be that in that case, the GMRES method can be made flexible, mean-
ing that the preconditioner is allowed to change from iteration to iteration; see [30].

4.3. Choosing the basis. Since the problem of determining good values for the
shifts σi in p(�)-GMRES is analogous to finding a good basis in s-step GMRES, we
shall refer the reader to [24] for an excellent overview.

It is well known that the Krylov basis Ki+1(v0, A) = [v0, Av0, . . . , A
iv0], called

the monomial basis, can become ill-conditioned very quickly. As in the power method,
for suitable starting vectors and certain condition on A, Aiv0 converges to the prin-
cipal eigenvector of the matrix. The basis condition number increases exponen-
tially and eventually the basis can become numerically rank deficient or can over-
flow. These problems can be reduced significantly by choosing a different basis as
Ki+1(v0, A) = [v0, P1(A)v0, . . . , Pi(A)v0]. Similarly, when using a monomial basis in
the p(�)-GMRES algorithm, the zi = P�(A)vj−� = A�vj−� vectors also tend to con-
verge to the principal eigenvector as � increases. In this case, numerical stability can
also be improved by proper choices of P�(A).

Bai, Hu, and Reichel [3] were the first to recognize the analogy with polynomial
interpolation and to apply a Newton basis in s-step GMRES. For the Newton basis,
we take Pi(A) =

∏i
j=0 (A− σjI), where natural choices for the shifts

1 σj are the Ritz
values of the matrix A. As p(�)-GMRES requires � shifts, this requires � iterations of
Arnoldi/GMRES. With the Leja ordering [28, 3], the shifts are ordered such that the
distance between a shift and all previous shifts is maximized in some sense. Intuitively,
it is clear that this ordering will also improve stability since two consecutive nearly
identical shifts correspond to two iterations with the monomial basis for the shifted
matrix.

In case all eigenvalues are known a priori to lie in a certain region of the complex
plane, a polynomial P�(A) can be constructed which is minimal over the given region.
For an ellipsoidal region with foci d ± c, these are the complex, scaled, and shifted
Chebyshev polynomials T̃i(t). Let the classical Chebyshev polynomials be defined as

(4.21) T0(t) = 1, T1(t) = t, Ti+1(t) = 2tTi(t)− Ti−1(t);

then the scaled and shifted Chebyshev polynomials are easily constructed using the
three-term recurrence relation

(4.22) T̃0 = 1, T̃1(t) = 1− t

d
, T̃i+1(t) =

σi

σi+1

(
2
d− t

c
T̃i(t)− σi−1

σi
T̃i−1(t)

)
,

where σi = Ti(d/c). When this recurrence relation is used to construct new Krylov
base vectors as zi+1 = σi/σi+1[2/c(d−A)zi−(σi−1/σi)zi−1], the structure of the basis
matrix (equation (4.8)) changes: its upper left (� + 1) × � part becomes tridiagonal
rather than lower bidiagonal [24]. However, this still affects only the first � iterations.
When all eigenvalues are real and lie in an interval [λmin, λmax], not containing the
origin, the zeros of the scaled and shifted Chebyshev polynomial of degree �, which is

1Called interpolation nodes in the context of polynomial interpolation.
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minimal over this interval, are given by

(4.23) σi =
λmin + λmax

2
+

(
λmax − λmin

2

)
cos

(
(2i+ 1)π

2�

)
for i = 0, . . . , �− 1 ,

and these σi (permuted to Leja ordering) can be used as shifts in the Newton basis,
just as the Ritz values can be used as shifts.

For real matrices and a real starting vector, eigenvalues and Ritz values with
nonzero imaginary part always come in complex conjugate pairs, say, λj and λj+1 =
λ̄j . In this case, complex arithmetic can be avoided by adding base vectors as [3, 24]

zj+1 = (A−R(λj)I) zj ,(4.24)

zj+2 = (A−R(λj)I) zj+1 + I(λj)
2zj

(≡ (A − λ̄jI)(A− λjI)zj
)
.(4.25)

This trick can be combined with the modified version of the Leja ordering [3, 24] to
prevent the complex conjugate pairs from getting separated.

4.4. Variation: Explicit normalization. In this section we present a one-step
pipelined GMRES algorithm, which differs from p(1)-GMRES as presented above in
the way the normalization is performed. In p(1)-GMRES, the norm of ṽ was com-
puted using the trick presented in section 3. However, this way of computing ‖ṽ‖ is
less accurate due to the subtraction in (4.11) and introduces potential square root
breakdown. Another possibility is to explicitly compute the norm after orthogonal-
ization, exactly like in standard GMRES. It is possible to combine the reduction for
normalization with the reduction for orthogonalization of the next iteration. However,
this doubles the delay, meaning that the orthonormal basis V and the Hessenberg ma-
trix are two iterations behind on the construction of the Z basis, opposed to just 1 in
p(1)-GMRES.

Proposition 4.6. For i > 0 let Vi := [v0, v1, . . . , vi−2, vi−2, ṽi−1] be an or-
thogonal basis for the Krylov subspace Ki(A, v0) with ‖vj‖ = 1 for j = 0, . . . , i − 2.
Furthermore, let Zi+1 := [z0, z1, . . . , zi−1, z̃i] be a set of i+1 vectors with z0 = v0 and
such that zj = Avj−1 for j > 0. Furthermore, let z̃i = Aṽi−1. The following steps,
for i > 0, expand the basis of the Krylov subspace to Vi+1 (and Zi+2), calculate an ad-
ditional column of the Hessenberg matrix, and overlap the calculation of dot-products
and the matrix-vector product:

1. Compute ‖ṽi−1‖ and 〈z̃i, ṽi−1〉 and 〈z̃i, vj〉 for j = 0, . . . , i− 2.
2. w̃ = Az̃i.
3. hi−1,i−2 = ‖ṽi−1‖.
4. vi−1 = ṽi−1/hi−1,i−2.
5. zi = z̃i/hi−1,i−2.
6. w = w̃/hi−1,i−2.
7. hj,i−1 = 〈z̃i, vj〉/hi−1,i−2 for j = 0, . . . , i− 2.
8. hi−1,i−1 = 〈z̃i, ṽi−1〉/h2

i−1,i−2.

9. z̃i+1 = w −∑i−1
j=0 hj,i−1zj+1.

10. ṽi = zi −
∑i−1

j=0 hj,i−1vj .
Proof. First, ṽi−1 is normalized to vi−1 in lines 3 and 4. Then, note that w = Azi,

since

(4.26) w =
w̃

hi−1,i−2
=

Az̃i
‖ṽi−1‖ =

A2ṽi−1

‖ṽi−1‖ = A2vi−1 = Azi ,
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and zi = Avi−1, since zi = z̃i/‖ṽi−1‖ = Aṽi−1/‖ṽi−1‖ = Avi−1. The Hessenberg
elements are computed as

hj,i−1 = 〈Avi−1, vj〉 = 〈zi, vj〉 = 〈z̃i, vj〉
hi−1,i−2

for j = 0, . . . , i− 2 ,(4.27)

hi−1,i−1 = 〈Avi−1, vi−1〉 = 〈zi, ṽi−1〉
hi−1,i−2

=
〈z̃i, ṽi−1〉
h2
i−1,i−2

.(4.28)

The vector ṽi = zi−
∑i−1

j=0 hj,i−1vj = Avi−1−
∑i−1

j=0 hj,i−1vj is added to the orthogonal
basis Vi just as in standard GMRES. Multiplying by A leads again to z̃i+1 = w −∑i−1

j=0 hj,i−1zj+1.
All dot-products and calculation of the norm of ṽi−1 are started in line 1 and

they can be combined in a single global reduction. The SpMV is computed in line 2
and the results of the reduction in line 1 are first used in line 3.

Note that it should be possible to generalize Proposition 4.6 to include a shift
in the matrix-vector product as well as to deeper pipelining depths, but we have not
explored this further.

Algorithm 4 shows the p1-GMRES method, which is based on the steps from
Proposition 4.6. In this code, the superimposed tildes on z̃i, ṽi, w̃, and h̃ are already
dropped since this simplifies the startup phase of the algorithm. Actual implementa-
tions will also overwrite ṽi with vi, et cetera. Algorithm 4 has been implemented in
the PETSc library (from release 3.3) as KSPPGMRES.2

Algorithm 4. p1-GMRES.

1: r0 ← b−Ax0 ; v0 ← r0/||r0||2 ; z0 ← v0
2: for i = 0, . . . ,m+ 1 do
3: w ← Azi
4: if i > 1 then
5: vi−1 ← vi−1/hi−1,i−2

6: zi ← zi/hi−1,i−2

7: w ← w/hi−1,i−2

8: hj,i−1 ← hj,i−1/hi−1,i−2, j = 0, . . . , i− 2
9: hi−1,i−1 ← hi−1,i−1/h

2
i−1,i−2

10: end if
11: zi+1 ← w −∑i−1

j=0 hj,i−1zj+1

12: if i > 0 then
13: vi ← zi −

∑i−1
j=0 hj,i−1vj

14: hi,i−1 ← ||vi||2
15: end if
16: hj,i ← 〈zi+1, vj〉 , j = 0, . . . , i
17: end for
18: ym ← argmin||(Hm+1,mym − ||r0||2e1)||2
19: x← x0 + Vmym

Figure 4.1 shows the p1-GMRES iteration schematically. Again, the phases are
not to scale. The figure shows the duration of a single iteration. However, due to the
pipelining, several iterations are fused. In this figure, the matrix-vector product does
not take long enough to overlap the complete reduction and broadcast step.

2http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPGMRES.html.
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p1

p2

p3

p4

H update
SpMV

+

+

+

reduction

b-cast scale axpy correction local dot

Fig. 4.1. Schematic representation of an iteration of p1-GMRES on four nodes. Note that
the reduction follows on the local dot phase from the previous iteration. As in Figure 2.1, local
communication for the SpMV is also overlapped with computations. The redundant computations are
represented by the correction block. Note that only a single global reduction is needed per iteration.

5. Numerical results. In this section, we present convergence results for the
presented algorithms applied on benchmark matrices. We give results for an artificial
test problem as well as for two matrices which are more relevant for applications.
The right-hand-side vector was always a random vector with elements uniformly dis-
tributed between 0 and 1.

The first test matrix is an artificial example. We take a lower bidiagonal matrix
A ∈ R500×500 with elements Ai,i = 1 + pi on the diagonal and Ai+1,i = qi on the
subdiagonal, where pi and qi are random numbers uniformly distributed on [0, 1]. The
matrix has a quite low condition number, κ2(A) ≈ 5, is unsymmetric, nonnegative,
not normal, positive definite, and diagonally dominant. The eigenvalues are randomly
distributed between 1 and 2.

Figure 5.1 compares convergence of standard GMRES, both with classical and
modified Gram–Schmidt, with the pipelined solvers presented earlier for � = 1, 2, 3, 4
as well as with the variation p1-GMRES and with �1-GMRES. The residual norm is
computed explicitly rather than via the recurrence relation. A restart length of 30 is
used. Figure 5.1, left, uses the standard monomial basis, i.e., all shifts zero. Note that
for longer pipelining depths, square root breakdown, denoted by the black dots, occurs
earlier and more frequently, hence slowing down convergence. In Figure 5.1, right,
the pipelined solvers use a Newton basis with the � Ritz values in Leja ordering as
shifts. For �1-GMRES, the first Ritz value is used as a shift in all iterations. These
Ritz values are computed from � standard GMRES iterations before starting the
pipelined iteration, which then rebuilds the Krylov basis from scratch. The shifts are
not updated when the pipelined solver is restarted. Convergence is nearly identical
to that of standard GMRES, except for a small delay. In Figure 5.1, bottom, the
Newton basis is used with the zeros of the �th order scaled and shifted (to [1, 2])
Chebyshev polynomial as shifts, again in Leja ordering. Convergence is similar to
standard GMRES.

The delay observed for the pipelined solvers in Figure 5.1 is caused by the dot-
product latency, which is hidden by the pipelining. After a restart, at 30 and 60, the
pipeline has to be filled again, resulting is a new delay of � steps.

5.1. Matrices from applications. Figure 5.2 shows convergence results for the
matrix pde9003 from the Matrix Market collection of sparse matrices. This is a real
unsymmetric 900× 900 matrix based on a five point central difference discretization
of a linear elliptic equation with Dirichlet boundary conditions on a regular 30× 30
grid. The condition number is κ(A) ≈ 2.9 · 102. All GMRES methods are restarted

3http://math.nist.gov/MatrixMarket/data/NEP/matpde/pde900.html.
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(a) Monomial basis (b) Newton basis

(c) Chebyshev basis

Fig. 5.1. Bidiagonal matrix with eigenvalues uniformly distributed between 1 and 2. Com-
parison between standard (both with classical and modified Gram–Schmidt), pipelined GMRES, and
�1-GMRES. Each solver uses a restart length 30. Black dots denote restart points due to square root
breakdown. Left: Monomial basis, i.e., all shifts zero. Right: Newton basis using � Ritz values as
shifts. Bottom: Newton basis with the shifts chosen as the zeros of the scaled and shifted Chebyshev
polynomials of degree �.

after 100 iterations. In Figure 5.2, left, the monomial basis is used. The number of
square root breakdowns increases with increasing pipelining depth and convergence
slows down correspondingly. Figure 5.2, right, reports convergence using the Newton
basis with � Ritz values as shifts.

The orsirr-14 matrix, from Matrix Market, is generated from an oil reservoir
simulation. It is a real unsymmetric 1030 × 1030 matrix with 6858 nonzero entries
and condition number κ(A) ≈ 100. Figure 5.3 show convergence using the monomial
basis (left) and the Newton basis with Ritz values as shifts (right). All GMRES
versions are restarted after 40 iterations. Here, the pipelined solver, with � = 3 and
� = 4, requires many restarts due to square root breakdown; see the black dots in the
figure. With the Newton basis, using � Ritz values as shifts, convergence is slightly
improved and is more or less in line with that of the standard GMRES solver.

Apart from the numerical results shown in this section, we have performed tests
on a variety of different matrices. We believe that the results reported here are

4http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/oilgen/orsirr 1.html.
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(a) Monomial basis (b) Newton basis

Fig. 5.2. Convergence results for the different GMRES versions applied to the pde900 test
matrix. The GMRES methods are restarted after 100 iterations. As the pipelining depth increases,
square root breakdowns (black dots) occur more frequently and convergence slows down correspond-
ingly. Left: Using the monomial basis, i.e., all shifts zero. Right: Using � Ritz values as shifts.

(a) Monomial basis (b) Newton basis

Fig. 5.3. Convergence results for the different GMRES versions applied to the orsirr-1 test
matrix. All methods are restarted after 40 iterations, or when a square root breakdown occurs,
illustrated by the black dots. Left: Using the monomial basis, i.e., all shifts zero. Right: Using �
Ritz values as shifts.

representative for the general behavior of the pipelined solvers. Generally, the Newton
or Chebyshev bases greatly improve numerical stability. However, in some cases the
monomial basis outperforms the Newton basis, as also observed for two-sided s-step
Krylov methods [7].

6. Performance evaluation. This section presents runtime and scalability re-
sults for the different GMRES variations for a two-dimensional (2D) Poisson problem
on a medium scale parallel machine. Next, an extrapolation to a hypothetical exascale
machine is presented using an analytical performance model.

6.1. Timings on Carver. The parallel performance of the different GMRES
variations is evaluated on an IBM iDataPlex machine from NERSC.5 The full

5http://www.nersc.gov/users/computational-systems/carver/.

D
ow

nl
oa

de
d 

11
/2

2/
18

 to
 1

93
.1

90
.2

53
.1

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C64 GHYSELS, ASHBY, MEERBERGEN, AND VANROOSE

system has 1,202 compute nodes (9,984 processor cores) with a theoretical peak per-
formance of 106 Tflops/sec. All nodes are interconnected by 4×QDR InfiniBand tech-
nology, providing 32 Gb/s of point-to-point bandwidth for high-performance message
passing and I/O. Most nodes (1.120) have two quad-core Intel Xeon X5550 Nehalem
2.67 GHz processors (eight cores/node) and since parallel jobs on Carver are limited
to 64 nodes, only these Nehalem nodes were used. The problem being solved is the 2D
Poisson equation discretized on a regular grid (N = 10242) using a standard five-point
finite difference stencil. The algorithms are implemented in C++ using the message
passing interface (MPI).

The asynchronous communication of the local boundary and the ghost points is
started using nonblocking MPI_Isend and MPI_Irecv, respectively. This communica-
tion can be overlapped with computation on the locally interior points. Afterward, a
call to MPI_Waitall blocks until communication for the boundary is finished. Finally,
the local boundary points may be computed. Communication for the matrix-vector
product is overlapped with stencil computations in this manner. Nonblocking ver-
sions of collective operations, such as nonblocking reductions, broadcasts or barriers,
are not included in MPI-1/2 but are proposed for the upcoming MPI-3 standard.
Alternatively, libNBC [19, 23, 20] implements nonblocking collectives on top of (stan-
dard MPI-1/2) nonblocking point-to-point communication. To maximize the potential
overlap with the nonblocking reduction, a progress thread should be used. Our tests
are performed using MPICH2 version 1.5rc1,6 configured to use the nemesis channel
with TCP and IP-over-Infiniband (IPoIB) network interfaces. When a progress thread
is used, one should configure MPICH2 with --enable-threads=runtime, set the en-
vironment variable MPICH_ASYNC_PROGRESS=1, and initialize the MPI library with
MPI_Init_thread(.., .., MPI_THREAD_MULTIPLE, ..). A nonblocking reduction
can then be performed by calling MPI_Iallreduce in combination with a matching
MPI_Wait.

Figure 6.1, left, shows the average runtime per iteration for the different GMRES
methods on Carver. The runtime is an average over 10 iterations; this is repeated
30 times and from this the minimum runtime is taken. Figure 6.1, right, shows
for the same experiment the speedup compared to the run on a single node. For
the pipelined solvers, filling and draining of the pipeline are included in the timing.
For instance, p(�)-GMRES actually requires 10 + � iterations to achieve the same
reduction in residual as standard GMRES achieves in 10 iterations. However, for
p(�)-GMRES, the first � iterations do not perform orthogonalization, whereas the
last � iterations do not apply the matrix-vector product. On a single node, the �1

and standard GMRES methods perform best, but on a larger number of nodes the
pipelined methods outperform the classical ones due to the improved scalability. We
refer to Table 6.1 for timings and for the speedup compared to standard GMRES with
classical Gram–Schmidt (cGS GMRES). On a single node, pipelining does not pay
off. On 256 cores (using 32) nodes, p(4)-GMRES already achieves a 1.45× speedup
compared to cGS GMRES, which goes up to 1.84× on 512 cores (64 nodes).

6.2. Extrapolation to exascale. In this section, an analytical model for the
parallel execution time of the presented algorithms is used to predict their parallel
performance and scalability properties on future hardware. As in [16], we assume that

6http://www.mcs.anl.gov/research/projects/mpich2/. When a progress thread is used, the MPI
implementation should be thread safe, which turned out to be problematic for most of the cur-
rently available MPI implementations. We found MPICH2 has good multithreading support, but
unfortunately it has no Infiniband support.
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Fig. 6.1. Average runtime per iteration (left) and speedup over a single node (right) for a 2D
Poisson problem on Carver ( IBM iDataPlex from NERSC) for the different GMRES variations
described in the text. On a single node, the �1 and standard GMRES methods perform best, but
on larger number of nodes the pipelined methods outperform the classical ones due to the improved
scalability.

Table 6.1

Results for different GMRES variations applied to the 2D Poisson problem on Carver. The
first number is runtime per iteration in seconds, the next is speedup compared to standard GMRES
with classical Gram–Schmidt (cGS). Different columns give timings for different numbers of nodes
with different numbers of processes per node. For instance, 64 × 8 denotes a run on 64 nodes with
8 MPI processes per node.

method 1× 1 1× 8 32× 8 64× 8

cGS 7.23e-2 / 1 1.21e-2 / 1 7.22e-4 / 1 6.45e-4 / 1
mGS 8.59e-2 / .84 1.25e-2 / .98 1.43e-3 / .50 1.48e-3 / 0.44

�1 7.00e-2 / 1.03 1.18e-2 / 1.03 5.73e-4 / 1.26 4.61e-4 / 1.40
p1 9.67e-2 / .75 1.72e-2 / .71 7.07e-4 / 1.02 5.44e-4 / 1.12

p(1) 8.40e-2 / .86 1.51e-2 / .81 5.88e-4 / 1.23 4.64e-4 / 1.39
p(2) 7.80e-2 / .93 1.48e-2 / .82 5.12e-4 / 1.41 3.77e-4 / 1.71
p(3) 7.67e-2 / .94 1.38e-2 / .88 5.16e-4 / 1.40 3.53e-4 / 1.83
p(4) 7.51e-2 / .96 1.23e-2 / .99 4.98e-4 / 1.45 3.50e-4 / 1.84

it takes roughly ts +mtw time for a simple exchange of an m-word message between
two processes running on different nodes. Here ts is the latency or startup time for
the data transfer and tw is the per-word transfer time, which is inversely proportional
to the available bandwidth between the nodes. The parallel execution time TP of a
single GMRES iteration on a parallel machine is modeled as TP = Tspmv +Tred +Tcalc,
with Tspmv the time per processor spent in the matrix-vector product, Tcalc the time
spent in local calculations for a single iteration (excluding the matrix-vector product),
and Tred the global communication (reduction) overhead per iteration per processor.
The local calculation time, Tcalc, is found by counting all floating point operations7 in
an iteration and multiplying by tc, the floating point performance of the machine (in
seconds per flop). We will assume the machine reaches 1 exaflop, i.e., 1018 floating
point operations per second.

Assuming the system matrix corresponds to a stencil on a regular three-dimen-
sional (3D) grid, it will have about nz = 7 nonzero elements per row, and hence

7This ignores the fact that on many modern architectures a scalar axpy operation can be done
in a single floating point instruction, a so-called fused multiply add.
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Table 6.2

Cost functions for the ith iteration of the different GMRES (or Arnoldi) formulations, only
counting work on the vectors, i.e., ignoring the manipulations on H and G.

GMRES cGS Tcalc tc((4i+ 3)N/Pc + (i + 1)�logr(Pn)�)
Tred 2�logr(Pn)�(ts + itw) + 2�logr(Pn)�(ts + tw)

GMRES mGS Tcalc tc((4i+ 3)N/Pc + (i + 1)�logr(Pn)�)
Tred (2i+ 2)�logr(Pn)�(ts + tw)

�1-GMRES Tcalc tc((4i+ 4)N/Pc + (i + 1)�logr(Pn)�)
Tred 2�logr(Pn)�(ts + (i+ 1)tw)

p1-GMRES Tcalc tc((6i+ 1)N/Pc + (i + 1)�logr(Pn)�)
Tred 2�logr(Pn)�(ts + itw) − min(3tcN/Pc + Tspmv, 2�logr(Pn)�(ts + itw))

p(�)-GMRES Tcalc tc((6i− 4� + 4)N/Pc + (i + 1)�logr(Pn)�)
Tred 2�logr(Pn)�(ts + (i+ 1)tw) − min(4�(i− �)tcN/Pc + �Tspmv,

2�logr(Pn)�(ts + (i + 1)tw))

the matrix-vector product requires 2nz = 14 flops per element in the vector. With
a regular 3D division of the domain over all nodes, neighboring nodes have to com-
municate (N/Pn)

2/3 doubles during the SpMV with N the total problem size and
Pn the number of nodes. This gives a sparse matrix-vector communication cost
TComm spmv = 6(ts + (N/Pn)

2/3tw) for all six sides of the cube, assuming send and
receive operations are overlapped. In actual implementations, this time can also be
overlapped with local matrix-vector calculations, but this is not taken into account
here. Typically, in stencil codes almost all matrix-vector computations can be used
to overlap the nearest-neighbor communication, so that the total time for the matrix-
vector product can be modeled as Tspmv = max(TComm spmv, 2nztcN/Pc), where Pc is
the total number of cores in the system.

Implementations for global reductions typically use a tree-like communication
pattern. The height of the tree is given by �logr(Pn)� with r the tree radix. For
the broadcast, which follows the reduce in an all-reduce operation, the same tree can
be used. Hence the communication cost for reducing mPc doubles, with Pc the total
number of cores, to m doubles and broadcasting them again over the entire machine is
Tred = 2�logr(Pn)�(ts+mtw) [32, 22]. The communication cost for the on-node reduc-
tion and broadcast has been neglected. Since in the pipelined GMRES algorithms the
reduction can be overlapped by other computations and communications, the total
cost for global reductions will not include the part that is effectively overlapped but
only that part that causes the processors to sit idle.

In Table 6.2, cost functions for the different variations of GMRES, presented in
this paper, are listed. It is assumed that all dot-products and norms that can easily be
combined in a single all-reduce are indeed combined. These models give the cost for a
typical iteration, not modeling the startup and draining of the pipeline. Furthermore,
all calculations on the smaller Hessenberg matrices are ignored in these models.

To model performance on a hypothetical exascale machine, we take parameters
from the Swimlane 1 extrapolation in report [31]: 220 nodes, 210 cores per node,
100GB/s interconnect bandwidth, and 1μs interconnect latency. The flop rate per
core is 1 Gflop/s, or tc = 230/1018s. For the reduction tree radix we take r = 8
instead of the more common, but much slower, binomial tree. We believe a higher
radix is a better approximation for a dedicated reduction network as found in some
of the high-end supercomputers.

Since the amount of work in Gram–Schmidt increases with the iteration number,
we consider iteration 15, which is the average when using GMRES(30), i.e., restarting
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Fig. 6.2. Left: Predicted runtime for a strong scaling experiment (N = 20003) with different
GMRES versions on a hypothetical exascale machine. The exascale machine parameters are taken
from [31]. Right: Prediction of the breakdown of the different GMRES variations in time spent at
local computation, matrix-vector product, and global all-reduce communication on 220 nodes with
N = 20003. For � ≥ 3 the global reduction latency can be completely hidden, which results in a 4.9×
speedup for both p(3)- and p(4)-GMRES compared to normal GMRES with classical Gram–Schmidt.

after 30 iterations. Figure 6.2, left, shows the runtime per iteration for the different
GMRES formulations as a function of number of nodes for a strong scaling experiment
with a total of N = 8 ·109 = 20003 unknowns. This clearly shows the unattractiveness
of modified Gram–Schmidt on large parallel machines. Due to the redundant work in
the pipelined algorithms, GMRES with classical Gram–Schmidt and �1-GMRES are
most efficient on a small number of nodes. The lines for p(1)-, p(2)-, and p(3)-GMRES
coincide for a small number of nodes, until at certain points the reduction latency be-
comes longer than one, two, or three iterations, and the corresponding p(1)-, p(2)-,
and p(3)-GMRES curves level off. These predictions for a hypothetical exascale ma-
chine show similar qualitative behavior as the measurements presented in Figure 6.1.

Figure 6.2, right, shows the breakdown of the different GMRES methods in their
different components: Tcalc, Tspmv, and Tred. Note that the Tcalc part grows slightly
for the pipelined solvers, while the reduction is partly or completely overlapped. For
� ≥ 3 the global reduction latency can be completely hidden, which results in a
4.9× speedup for both p(3)- and p(4)-GMRES compared to normal GMRES with
classical Gram–Schmidt. The speedups for �1, p1, p(1), and p(2) are 1.7×, 2.3×,
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2.3×, and 4.4×, respectively. Modified Gram–Schmidt GMRES was left out from
Figure 6.2, right, since the total runtime of 2.3e-4 was an order of magnitude bigger
than the times for the other methods.

We did not include the underlying network topology in the model but refer the
reader to [2] for a more detailed study of the feasibility of pipelining for different
network configurations. The simplified cost model as presented here also does not
include variability due to OS jitter, core speed variability, or load imbalance. It has
been observed [21, 4] that these effects can have a serious impact on the scaling be-
havior of collective operations and hence the entire solver or application. Finally, the
pipelined solvers are compared to GMRES using classical Gram–Schmidt. In practice
for stability reasons, iterated classical or even modified Gram–Schmidt are used, which
scale much worse. We believe iterated classical Gram–Schmidt can also be pipelined
relatively easily, but we leave this for future work. In [18], the reorthogonalization
step of iterated Gram–Schmidt in an eigenvalue solver is performed asynchronously.

7. Discussion. In this section, the use of preconditioning is discussed and a
short comparison with so-called s-step GMRES is given.

7.1. Preconditioning. The GMRES algorithm, including the pipelined vari-
ants, can easily be applied to preconditioned linear systems. The preconditioned
matrix-vector product will likely be much more expensive than the unpreconditioned
SpMV. This means that fewer iterations will be required to hide global communica-
tion latency, leading to shorter pipelines and hence better stability properties. In such
cases, the �1-, p1-, or p(1)-GMRES variants might do.

Of course, it would not make much sense to hide the latency of global reductions
in GMRES by overlapping them with much more global communication, for instance,
when doing a multigrid V -cycle all the way down to the coarsest level. However,
preconditioners based on the matrix-vector product, like Jacobi or polynomial pre-
conditioning, seem like a good fit for the pipelined GMRES solvers.

When using multigrid on a large parallel machine (either standalone or as a
preconditioner for some Krylov method), it makes sense to stop coarsening before
the mesh becomes too small and then switch to either a direct solver or some Krylov
method. This is also referred to as the truncated V -cycle or U -cycle [34]. On the
coarsest grid there would be relatively few gridpoints per node and the communication
overhead would be considerable. Hence, the application of a pipelined Krylov solver
for the coarsest grid of a truncated V -cycle might be a good scenario.

7.2. Comparison with s-step GMRES. As this work has been inspired by
the s-step or communication avoiding Krylov solvers by Hoemmen [24], Chronopou-
los and Gear [8], and various other authors, a short discussion on the differences
and similarities is appropriate here. The s-step Krylov solvers are designed to avoid
communication on two different levels. On the one hand, they reduce the number of
global synchronization phases. On the other hand, by the use of their matrix pow-
ers kernels [13], local synchronization as well as communication between processor
and slow memory are reduced. The matrix powers kernel combines s matrix-vector
products in such a way that the matrix has to be fetched from main memory only
once. However, this is hard to combine with preconditioning. In s-step GMRES,
orthogonalization is done using a combination of block modified Gram–Schmidt and
a (communication optimal) tall and skinny QR (TSQR) factorization. The TSQR
has the benefit that it can be implemented using BLAS3 routines, which typically
achieve a larger percentage of the machine’s peak performance than the vector oper-
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ations from standard GMRES (matrix-vector, BLAS2, for classical Gram–Schmidt,
and vector-vector, BLAS1, for modified Gram–Schmidt).

In terms of numerical stability, the s-step methods make some sacrifices by com-
puting s vectors at once (using an appropriate basis) without intermediate orthog-
onalization. However, their orthogonalization method, the TSQR, is very accurate.
Although in this work classical Gram–Schmidt was used, in practice a check for or-
thogonality will be used in combination with reorthogonalization. The pipelined al-
gorithms can be modified to also hide the latency of the reorthogonalization. For
the solution of linear equations, modified Gram–Schmidt or reorthogonalization in
every iteration is overkill for most applications. However, for eigenvalue solvers, the
accuracy of the orthogonalization is more important.

The pipelined solvers do not address the local communication to slow memory
like the matrix powers kernel does in the s-step methods. However, this can easily
be covered by a preconditioner. For instance, a stationary iterative method, such as
ω-Jacobi and red-black Gauss–Seidel, or a polynomial preconditioner, for instance,
Chebyshev iteration, can also be implemented using the matrix powers kernel [15].
Cache reuse in the matrix powers kernel is also better for a polynomial preconditioner
than when used in s-step GMRES, since the intermediate vectors do not have to be
stored.

8. Conclusion and outlook. We reported on our initial efforts to hide global
communication latencies in Krylov solvers. We derived a pipelined version of GMRES
in which this communication cost can be hidden by using nonblocking all-reduce
operations. If global communication latency would be longer than the time required
to perform a single SpMV, deeper pipelining can be used. However, the technique can
also be combined with preconditioning, in which case only a short pipelining depth
should be necessary.

We have shown speedups of the pipelined GMRES solver compared to classical
GMRES of up to 1.84× in a parallel 2D Poisson benchmark using 512 cores. Larger
speedups are to be expected on bigger machines. We predict scalability of the pre-
sented pipelined algorithms on a hypothetical exascale machine with an analytical
performance model. We note predicted speedups of up to 4.9× for the pipelined al-
gorithm compared to standard GMRES for solving a problem on a regular grid with
N = 20003 unknowns.

Although the pipelined GMRES solvers do require some additional floating point
operations, they certainly show potential. The amount of additional flops in p(�)-
GMRES increases linearly with the iteration number, just as the work in Gram–
Schmidt does, and does not depend on �. However, when the same pipelining idea
would be applied to a short recurrence relation Krylov method, like CG or BiCGStab,
the amount of redundant work would stay limited (it would probably only grow lin-
early for increasing �). This investigation is future work.

Apart from the ability to overlap the network latency of the global reduction
operations, other additional sources of parallelism were introduced in the pipelined
GMRES algorithms. When executing on a system with a so-called accelerator, like a
typical GPGPU or Intel’s MIC, the communication between main memory, main CPU,
accelerator processing cores, and accelerator memory can become possible bottlenecks.
By relaxing the data dependencies, the pipelined GMRES algorithms allow better
scheduling of finer grained tasks. Serial tasks such as updating the Hessenberg matrix
H and I/O could be handled by the CPU, while the more lightweight accelerator cores
can do the massively parallel number crunching. The pipelined solvers can also help
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to overlap communication latency between host CPU and accelerator. We will explore
this in future work.

Acknowledgment. We thank Jed Brown from Argonne National Laboratory
for implementing p1-GMRES in PETSc.8
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tural constraints to attain 1 Exaflop/s for three scientific application classes, in Proceed-
ings of the Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2011, pp. 80–91.
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