
IEEE TRANSACTIONS ON INFORMATIONTHEORY,VOL. IT-24,N0. 5, SEPTEMBER 1978 525

Hiding Information and Signatures in
T rap’door Knapsacks

RALPH c. MERKLE, STUDENT MEMBER, IEEE AND MARTIN E. HELLMAN, SENIOR MEMBER, IEEE

Ahwcz--The knapsack problem is aa Np-complete combinatorial
problem that is strongly bel ieved to be computationally difficult to solve in
general. Specific instances of this problem tbat appear very difficult to
solve unless one pawses “trapdoor information” used in the design of
the problem are demonstrated. Because only the designer can easily solve
problems, others can send bim ioformation h idden in the solution to the
problems without fear that au eavesdropper will be able to extract the
information. This approach differs from usual cryptograpkic systems in
that a secret key is not needed. Conversely, only the designer can generate
signature8 for messages, but anyone can easily check their authenticity.

I. INTRODUCTION

G IVEN A one-dimensional knapsack of length S and
n rods of lengths ~,,a,, . . . ,a,, the knapsack prob-

lem is to find a subset of the rods that exactly fill the
knapsack, if such a subset exists. Equivalently, find a
binary n-vector x such that S=a*x, if such an x exists (*
applied to vectors denotes dot product, otherwise normal
mu ltiplication).

A supposed solution x is easily checked in at most n
additions, but finding a solution is bel ieved to require a
number of operations that grows exponentially in n. Ex-
haustive trial and error search over all 2” possible x is
computationally infeasible if n is larger than 100 or 200.
The best publ ished method for solving knapsacks of the
form considered here requires 2”/* complexity both in
time and memory [l]. In addition, Schroeppel [2] has
devised an algorithm that takes 0(2”/*) time and 0(2”/3
space. Theory supports these beliefs because the knapsack
problem is known to be an NP-complete problem,’ and is

Manuscript received August 5, 1977; revised February 28, 1978. This
work was supported by the National Science Foundat ion under Grant
ENG 10173.

The authors are with the Department of Electrical Engineering, Stan-
ford University, Stanford, CA 94305.

‘Other definitions of the knapsack problem exist in the literature [l],
[5]. The definition used here is adapted from Karp [14]. To be precise,
Karp’s knapsack problem is to determine whether or not a solution x
exists, while the corresponding cryptographic problem is to determine x,
given that it exists. The cryptographic problem is not NP-complete, but
it is just as hard as the corresponding NP-complete problem. If there is
an algorithm for solving the cryptographic problem in time T(n), i.e., for
determining x given that it exists, then we can determine whether or not
an x exists in time T(n), i.e., solve the corresponding NP-complete
problem. If the algorithm determines x in time T(n), then some x exists.
If the algorithm does not determine x in time T(n) or determines an
incorrect x-which is easily checked- then no such x exists.

therefore one of the most difficult computational prob-
lems of a cryptographic nature [3, pp. 363-4041, [4]. Its
degree of difficulty, however, is crucially dependent on
the choice of a. If u = (1,2,4, * . * ,2*-l), then solving for x
is equivalent to finding the binary representation of S.
Somewhat less trivially, if for all i

i-l

ai > C q, 0)
then x is also easily found. x,, = 1 if and only if S > a,,, and
fori=n-l,n-2;..,1,xi=1ifandonlyif

s- 2 (2)
j=i+l

xj*aj > a,.

Wh ile the theory of NP-complete problems and these
examples demonstrate that the knapsack problem is only
difficult from a worst case point of view, it is probably
true that choosing the a, independently and uniformly
from the integers between 1 and 2” generates a difficult
problem with probability tending to one as n tends to
infinity. Wh ile several efficient algorithms exist for solving
the knapsack problem under special conditions [11, [5], [6],
none of these special conditions is applicable to trapdoor
knapsacks generated as suggested in this paper.

A trapdoor knapsack [4] is one in which careful choice
of a allows the designer to easily solve for any x but
prevents anyone else from finding the solution. We will
describe two methods for constructing trapdoor knap-
sacks and indicate how they can be used to hide informa-
tion. Each user Z in a system generates a trapdoor knap-
sack vector a(Z) and places it in a public file with his
name and address. When someone wishes to send the
information x to the Zth user, he sends S=x*u(Z). The
intended recipient can recover x from S, but no one else
can. Section VI shows how trapdoor knapsacks can be
used to generate electronic signatures and receipts [4].

Before proceeding, a word of caution is in order. F irst,
as is usually the case in cryptography, we cannot yet
prove that the systems described in this paper are secure.
For brevity, however, we will not continue to repeat this.
Second, the trapdoor knapsacks described in this paper
form a proper subset of all possible knapsacks, and their
solutions are therefore not necessarily as difficult as for
the hardest knapsacks. It is the hardest knapsacks with
which NP theory is concerned.

0018-9448/78/0900-0525$00.75 01978 IEEE

526 IEEE TRANSACIIONS ON INFORMATION THEORY, VOL. IT-%, NO. 5, SEPTEME RR 1978

II. A METHODFORCONSTRUCTINGTRAPDOOR
KNAPSACKS

The designer chooses two large numbers m and w such
that w is invertible modulo m (equivalently gcd(w,m)= 1).
He selects a knapsack vector a’ which satisfies (1) and
therefore allows easy solution of S’ = a’*~. He then trans-
forms the easily solved knapsack vector a’ into a trapdoor
knapsack vector a via the relation

a, = w*a,l mod m. (3)
The ai are pseudo-randomly distributed, and it therefore
appears that anyone who knows a, but not w and m,
would have great difficulty in solving a knapsack problem
involving a. The designer then can easily compute

S’=w-l*Smodm (4)

=w -‘*z xi*ui mod m (5)

= we’* 2 x,*w*a,’ mod m (6)

=x x,*a,’ mod m.
If m is chosen so that

(7)

m> xai, (8)

then (7) implies that S’ is equal to Xxi*u; in integer
arithmetic as well as mod m. This knapsack is easily
solved for x, which is also the solution to the apparently
difficult, but trapdoor knapsack problem S= u*x.

To help make these ideas clearer, we give a small
example with n = 5. Taking m = 8443, a’ =
(171,196,457,1191,2410), and w=2550 (so w-‘=3950),
then a = (5457,1663,216,6013,7439). Given S = 1663 +
60 13 + 7439 = 15 115, the designer computes

S’=w-‘*S mod m (9)
=3950*15115 mod 8443 (10)
= 3797. (11)

Because S’ > a;, he determines that xs = 1. Then using (2)
for the a’ vector, he determines that x4= 1, x3 =O, x2= 1,
X, =O, which is also the correct solution to S= u*x.

Anyone who does not know m, a’, and w has great
difficulty in solving for x in S= u*x even though the
general method used for generating the trapdoor knapsack
vector u is known by the public. The code breaker’s task
can be further complicated by scrambling the order of the
a, and by adding different random multiples of m to each
of the a,.

The example given was extremely small in size and was
only intended to illustrate the technique. Using n = 100,
which is the bottom end of the usable range for secure
systems, we would suggest that m be chosen uniformly
from the numbers between 2*Oi + 1 and 2*‘* - 1, that a; be
chosen uniformly from the range [1, 2ioo], that a; be
chosen uniformly from [2’O”+ 1, 2*2’O”], that a; be chosen
uniformly from [3*2’O”+ 1, 4*2loo], that ai be chosen uni-
formly from [(2’-‘- 1)*2ioo+ 1, 2’-‘*2’09], that aioo be

chosen uniformly from [(299- 1)*2”“‘+ 1, 2W*21”e’J, and
that w’ be chosen uniformly from [2, m -21 and then
divided by the greatest common divisor of w’ and m to
yield w.

These choices ensure that (8) holds and that an oppo-
nent has at least 2’O” possibilities for each parameter and
hence cannot even search over one of them. Note that
each ai will be pseudo-randomly distributed between 1
and m - 1 and hence will require a 202-bit representation.
Since S requires a 209-bit representation, there is a 2.09 : 1
data expansion from x to S.

III. MULTIPLICATIVE TRAPDOOR KNAPSACKS

A multiplicative knapsack is easily solved if the vector
entries are relatively prime. Given a’ = (6,11,35,43,169)
and P = 2838, it is easily determined that P =6* 11*43
because 6, 11, and 43 evenly divide P but 35 and 169 do
not. A multiplicative knapsack is transformed into an
additive knapsack by taking logarithms. To make both
vectors have reasonable values, the logarithms are taken
over GF(m) where m is a prime number [7].

A small example is again helpful. Taking it = 4, m = 257,
a’ = (2,3,5,7), and the base of the logarithms to be b = 13 1
results in u=(80,183,81,195). That is, 131*‘=2 mod 257,
13 1 lg3 = 3 mod 257, etc. Finding logarithms over GF(m) is
relatively easy if m - 1 has only small prime factors [7].
(On a computer, the current upper limit on small is in the
range lo6 to lo’*.)

Now suppose we are given S = 183 + 8 1 = 264 and are
asked to find the solution to S=u*x. Knowing the
trapdoor information m, a’, and b, we are able to compute

S’=b”modm
= 13 1264 mod 257
= 15
= (2°)*(3’)*(5’)*(70) (12)

which implies that x = (0, 1, 1,O). This is because
),S = b(%*“i)

= n b@i*“,)

=na,l”modm.

It is now necessary that

fi a,l<m
i=l

(13)

(14)

to ensure that IIuix, mod m equals J&z;xi in arithmetic
over the integers.

An opponent who knows the public information u, but
who does not know the trapdoor information m, a’, and b,
again appears to face an impossible computational prob-
lem.

The example given was again small and only intended
to illustrate the technique. Taking n = 100, if each a,! is a
random lOO-bit prime number, then m would have to be

MERRLE AND HELLMAN: TRAPDOOR KNAPSACKS 527

approximately 10 000 bits long to ensure that (14) is met. ists B and A such that
Wh ile a 100 : 1 data expansion is acceptable in certain
applications, such as secure key distribution over an in-

a = Gd’ mod A. (18)

secure channel [4], [8], it is probably not necessary for an Then a, = 25 and a; = 5 imply that
opponent to be so uncertain of the a,‘. It may even be 25 = #*5 mod fi. (19)
possible to use the first n primes for the a,‘, in which case
m could be as small as 730 bits long when n = 100 and still

F rom this we have

meet condition (14). There is a possible trade-off between 2*25 = 9*2*5 mod fi (20)
security and data expansion. or

50= 6 10 mod G i. (21)
IV. AN ITERATIVE METHOD But now the relation between a2 = 87 and a;l = 10 implies

This section discusses techniques for improving the
that

security and utility of the basic methods. 87= 9*10 mod #r (22)
In the first method we transformed a hard and appar-

ently very difficult knapsack problem u into a very simple
so 87= 50 mod & or 37=0 mod A, which implies that

and easily solved knapsack problem u’ by means of the
$r = 37. Equation (19) then becomes

transformation
25 = 9*5 mod 37 (23)

a; = w -‘*ai mod m . (15)
We could solve a knapsack involving a because we could
solve a knapsack involving a’. Notice though that it does
not matter why we are able to solve knapsacks involving
a’; all that matters is that we can solve them. Rather than
requiring that a’ satisfy (l), we could require that u’ be
transformable into a new problem u” by the transforma-
tion

a,!’ = w’-‘q’ mod m ’ (16)
where the new problem u” satisfies (1) or is otherwise easy
to solve. Having done the transformation twice, there is
no problem in doing it a third time. That is, we select an
u” that is easy to solve, not because it satisfies (l), but
because it can be transformed into a”‘, which is easy to
solve, by

qY=w “-‘*ail) mod m ”. (17)

It is clear that we can repeat this process as often as we
wish.

W ith each successive transformation, the structure in
the publicly known vector a becomes more and more
obscure. In essence, we are encrypting the simple knap-
sack vector by the repeated application of a transforma-
tion that preserves the basic structure of the problem. The
final result a appears to be a collection of random num-
bers. The fact that the problem can be easily solved has

so 8= 5. However, if C=5 and &=37, then (18) for
a3 = 33 and a; = 20 becomes

33 = 5*20 mod 37 (24)
or 33 =26 mod 37, a contradiction. We conclude that no
such +G and fi can exist.

The original easy-to-solve knapsack vector can meet
any condition, such as (l), that guarantees it is easy to
solve. For example it could be a mu ltiplicative trapdoor
knapsack. In this way it is possible to combine both of the
trapdoor knapsack methods into a single method, which is
presumably harder to break.

It is important to consider the rate of growth of a
because this rate determines the data expansion involved
in transmitting the n-bit vector x as the larger quantity S.
The rate of growth depends on the method of selecting the
numbers, but with n = 100, each ai need be at most seven
bits larger than the corresponding a,!, each al! need be at
most seven bits larger than a,“, and so on. Each successive
stage of the transformation needs to increase the size of
the problem by only a small fixed amount. Repeating the
transformation 20 times will add at most 140 bits to each
a,. If each a, is 200 bits long to begin with, then they need
only be 340 bits long after 20 stages, and S is represent-
able in 347 bits. The data expansion is then only 3.47: 1.

V. COMPRESSINGTHE PUBLIC FILE

been totally obscured. -
The effect of repeating the Process several times is very

As described above, the Zth user must place his

different from that obtained with certain ciphers, such as
trapdoor knapsack vector a(Z) in a public file. The Jth
user can then look up u(Z) and send a message x to I,

a simple substitution, A simple substitution cipher is not hidden as S=a(Z)*x. To avoid storing the rather large
strengthened by repetition because the composit ion of two
substitution ciphers is yet another substitution cipher. The

vector u(Z), J could ask Z to transmit u(Z) to him. But,

(w,m) transformations do not have this closure ProPeTtY.
unless J has some method for testing u(Z), user K m ight

The following example shows that the repetition of two
fool J by sending him U(K) and saying it was U(Z). J

(w,m) transforms need not be equivalent to a single (w,m)
would then m istakenly tell all his secrets to K. A method

transform.
is needed for J to convince himself that he was really sent
a(Z). W ith a public file, each user can make one personal

If w =3, m = 89, w’= 17, m ’=47, and 4” =(5,10,20), appearance when deposit ing his vector, and after identify-
then u’ = (38,29,11) and u = (25,87,33). Assume there ex- ing himself to the system, he could identify (authenticate)

528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 5, SEI’TEME ER 1978

himself to any user by his ability to decipher messages
hidden with his vector. The file itself must be protected,
but this is relatively easy because only write protection is
needed.

To preserve this authentication benefit of the public
file, but to reduce its size (potentially 20 or more kilobits
per user), we suggest storing a lOO-bit one-way hash total
h[u(Z)] instead of u(Z) itself. When J receives u(Z) from I,
he computes h[u(Z)] and checks this against the value Z
stored in the public file. The hash function h must be a
one-way function [4,9,10,11], so that K camot generate a
new vector u(K) such that h[u(K)]=h[(u(Z)], without
having to perform a computationally impossible feat.

Allowing 100 bits for storing the user’s name and
address, (or phone number) the public file now contains
200 bits, instead of over 20 kbit/user. A system with a
million users requires a 200 million bit, instead of a 20
billion bit, public file. Transmission costs are comparable
for both implementations.

A lOO-bit number can be coded as 20 alphanumeric
characters, which is small enough to fit in a telephone
book. A typical entry would look like this:

Joe Smith......497-1573
KSDJR E6K65 3GFVM OMK4K

The second line is the one-way hash total of Smith’s
trapdoor knapsack vector u(Smith). With this information
we can call up Smith and hold a secure conversation with
him that no one else can understand. We do not need to
have met Smith previously to know we are talking with
him or for him to know he is talking with us.

Transmitting 20 kbits on a high-speed 50 kbit/s link
takes 0.4 s, but on a low-speed 300 bit/s link, it takes
more than a minute. The transmitted data can be reduced
by a factor of five to about 4 kbits, which takes less than
15 s to transmit at 300 bit/s, by cutting the number of ai
to n = 20. The vector x, however, now has only 20 binary
elements, which is small enough to allow solution by
exhaustive search. To maintain security, the information
in the x vector must be increased to about 100 bits while
keeping n = 20. This can be done by allowing each ele-
ment xi to take on values in the set {0,1,2,3; * * ,31}
instead of just in (0, 1 }. Specifying each xi takes 5 bits and
specifying the whole vector x takes 100 bits. Equation (1)
must now be modified to

i-l
a,>31* x Qi.

j=l
(25)

If n is reduced to 1 and the single element of the x
vector assumes a value in (0, 1,2, * . . , 2ioo - 1 }, then the
system is easily broken because

x = S/a. (26)

When n = 2, the system can also be broken easily by an
algorithm similar in spirit to the greatest common divisor
algorithm. It seems that small values of n weaken the
system, and further research is needed to determine how
small n can be while still preserving security.

VI. SIGNATURES

As discussed in [4], the need for a digital equivalent of a
written signature is a major barrier to the replacement of
physical mail by teleprocessing systems. Usual digital
authenticators protect against third party forgeries but
cannot be used to settle disputes between the transmitter
and receiver as to what message, if any, was sent. A true
digital signature allows the recipient to prove that a par-
ticular message was sent to him by a particular person.
Obviously it must be impossible for the recipient to alter
the contents of the message and generate the correspond-
ing signature, but it must be easy for him to check the
validity of a signature for any message from any user. A
digital signature can also be used to generate receipts. The
recipient signs a message saying, “I have received the
following message: TEXT.” This section describes how
trapdoor knapsacks can be used to generate such signa-
tures and receipts.

If every S in some large fixed range had an inverse
image x, then it could be used to provide signatures.
When the Zth user wanted to send the message m, he
would compute and transmit x such that u(Z)*x= m. The
recipient could easily compute m from x and by checking
a date/time field (or some other redundancy in m) de-
termine that the message was authentic. Because the re-
cipient could not generate such an x, he saves x as proof
that the Zth user sent him the message m.

This method of generating signatures can be modified
to work when the density of solutions (the fraction of S
between 0 and Zu, that have solutions to x*a = S) is less
than 1, provided it is not too small. The message m is sent
in plain-text form or encrypted if eavesdropping is a
threat, and a sequence of one-way functions [4], [9], [lo],
[1 l] y, = F,(m), y,= F,(m); . . are computed. The trans-
mitter then seeks inverse images for yi, y2, * * * until one is
found and appends the corresponding x to m as a signa-
ture. The receiver computes y = u*x and checks that y is
equal to yk with k not too large, for example, at most 10
times the expected value of k.

The sequence of functions &(*) can be as simple as

or
4(m)=F(m)+i (204

&(m)=P(m+i) W’b)

where F(*) is a one-way function. It is necessary that the
range of F(*) have at least 2’O” values to foil trial and
error attempts at forgery. If the message is much longer
than 100 bits, the expansion caused by the addition of a
lOO-bit authentication field is unimportant.

If the trapdoor knapsack vector were generated as sug-
gested at the end of Section II, the solution density would
be less than 1/2im, and more than 2”“’ yk would have to
be tried on the average before one with a solution is
found. The multiplicative method of Section III has an
even smaller solution density. It is possible, however, to
use the iterative method of Section IV to obtain a solution

MERKLE AND HELLMAN: TRAPDOOR KNAPSACKS 529

density of approximately l/l@ with two iterations or
l/lo6 with three iterations when n = 100. F irst, a knapsack

Merkle and Reeds [12] have developed another ap-
proa& to obtaining high-density haps&s. Empirical

vector U” with a solution density near 1 is selected. If results indicate densities of approximately 20 percent
u”=(1,2,4,8;. . , 299) then the solution density is 1, but when n = 100.
increasing some of the larger a: need not greatly reduce
the solution density. For example, (1,2,4,8,17,35,68,142)
has a solution density of 0.92 and still satisfies (1). Such
choices may not be necessary, but they provide an addi-

VII. DISCUSSION

tional margin of safety at almost no additional cost.
After selecting u”, parameters m' and w’ are chosen

We have shown that it is possible to construct trapdoor

such that m' > Zuy and w - ” exists modu lo m'. The weak
knapsack problems and that information and signatures
can be hidden in them for transmission over an insecure

trapdoor knapsack vector channel. Conventional cryptographic systems also can
a’= w’*a” mod m' (27) hide information and authenticators during transmission

is then computed. New parameters m > LX,’ and w (with
over an insecure channel but have the disadvantage that

w - ’ existing mod m) are chosen, and the more secure
first a “key” must be exchanged via courier service or

trapdoor knapsack vector
some other secure means. Also in conventional cryptogra-
phy, the authenticator only prevents third party forgeries

u= w*u’ mod m (28) and cannot be used to settle disputes between the trans-
is computed. The process can be iterated more than twice m itter and receiver as to whether a message was actually
to obtain the final vector a, but the solution density sent*
typically decreases by a factor of n/2 with each iteration. We have not proved that it is computationally difficult
When used for hiding information this decrease is of little for an opponent who does not know the trap information
importance, but when used for signatures several itera- to solve the problem. Indeed, proofs of security are not
tions are all that can be afforded because of the need for a yet available for normal cryptographic systems, and even
high solution density. W ith so few iterations, it is possible the general knapsack problem has not been proved dif-
for two adjacent ui to be in the same ratio (usually 2 : 1) as ficult to solve. The theory of computational complexity
they were in the a vector. This weakness can be overcome has not yet reached the level of development where such
by adding mu ltiples of m' (or m) to a subset of the u,! (or proofs are feasible. The best publ ished algorithm for solv-
ui) that suffer from this problem. This decreases the splu- ing the knapsack problem is exponential, taking 0(2”/*)
tion density somewhat and accounts for our l/ 104 and time and space [l]. Schroeppel [2] has devised an algo-
l/ lo6 estimates for two and three iterations when n = 100. rithm that takes O(2n/2) time and 0(2”14) space. Faith in

A small example is again helpful in illustrating the the security of these systems must therefore rest on intui-
method. Starting with tion and on the failure of concerted attempts to break

u”=(1,2,4,8,17,35,68,142) (29)
them.

Attempts to break the system can start with simplified
whose components sum to 277, we choose m' = 291 and P roblems (e.g., assuming m is known). If even the most
w’ = 176 (w’- i = 167) resulting in favored of certificational attacks is unsuccessful, then

a’= (176,61,122,244,82,49,37,257). (30)
there is a margin of safety against cleverer, wealthier, or
luckier opponents. Or, if the favored attack is successful,

The second, third, and fourth components are in the ratio it helps establish where the security really must reside. For
of 2 : 1, which can be hidden by adding m' to the third example, if knowledge of m allows solution, then an
component to obtain the new vector opponent’s uncertainty about m must be large.

a/=(176,61,413,244,82,49,37,257) (31)
As noted, the techniques suggested in this paper gener-

whose components sum to 1319. Choosing m = 1343, w =
alize to xi in the set (0, 1,2,3, * * * ,N}. The advantages and

498 (w-l =925) yields
weaknesses of such systems deserve further study. Further
work with knapsack-based methods is in progress, and

a = (353,832,195,642,546,228,967,401) (32) research oriented toward placing trapdoors in other com-

whose components sum to 4164. The density of solutions
binatorial problems also appears promising.

using a is 256/4164=0.061 so approximately 16 attempts
O ther techniques for securely communicat ing over an

insecure channel have been proposed in [4], [8], and [13].
are needed on the average to obtain a signature. This The method described in [4] involved exponentiat ion mod
agrees well with the estimated range of n*/4= 16 to n*=
64.

q. The techniques proposed in this paper appear to be
significantly more secure and allow the direct transfer of

The density of solutions can be increased by restricting information x generated by the transmitter. The technique
the yk to lie near the m iddle of the range (O,ZuJ, say proposed in [4] allows the transmitter and receiver to
between 1000 and 3000 in this example. The law of large
numbers indicates that for most x the sum u*x will lie in

generate a common piece of information K which they

this range.
then use as the key in a normal cryptographic system, but
K cannot be predetermined by either party. Merkle’s

530 IBJ?B TRANSACTIONS ON INFORMATION THEORY, VOL. m-24, NO. 5, SEPTEMB ER 1978

technique [8] was generalized to the first public key
cryptosystem and is quite secure but computationally ex-
pensive. The current work describes a computationally
efficient public key cryptosystem.

Recently, Rivest, Shamir, and Adleman [131 have pro-
posed another public key cryptosystem that yields signa-
tures more directly because the density of solutions in

‘their problem is one. Their system also requires a smaller
key (apparently 600 bits versus 20 kbits). Neither system’s
security has been adequately established, but when
iterated, the trapdoor knapsack appears less likely to
possess a chink in its armor. When used for obtaining
signatures the trapdoor knapsack appears to be the
weaker of the two. Both public key systems clearly need
further certification and study.

REFERENCES

[l] E. Horowitz and S. Sahnl, “Computing partitions with applications
to the knapsack problem,” JACM, voi 21, no. 2, pp. 277-292, Apr.
1974.

[2] R. Schroeppel, unpublished work.
[3] A. V. Aho, J. E. Hopcroft, and J. D. Ulhnan, The Design and

141

151

PA

[71

Analysis of Computer Algorithms. Reading, MA: Addison-Wesley,
1974.
W. Diffie and M. E. Helhnan, “New directions in cryptography,”
IEEE Trans. Inform. T%eorv. vol. IT-22. Nov. 1976, pp. 644-654.
0. H. Ibarra &d C. E. K& “Fast approximation &orlthms for
the knapsack and sum of subset problems,” JACM, vol. 22, no. 4,
pp. 463-468, Oct. 1975.

181

191

WI

1111

WI
[I31

1141

E. L. Lawler, “Fast approximation algorithms for knapsack prob-
lems,” Electronics R&arch Laboratory, College of Eng. U.C.
Berkelev Memorandum UCB/ERL M77/45 21, June 1977.
S. C. Gohiig and M. E. He&n, “An’ improved algorithm for
computing logarithms over GF(P) and its cryptographic signlfi-
cance,” IEEE Trans. Inform Theory, vol. IT-24, pp. 106-110, Jan.
1978.
R. Merkie, “Secure communications over insecure channels,”
Commun ACM, vol. 21, no. 4, pp. 294-299.
M. V. Wilkes, Time-Sharing Computer Systems. New York: Eise-
vier, 1972.
A. Evans, Jr., W. Kantrowitz, and E. Weiss, “A user authentica-
tion system not requiring secrecy in the computer,” Commun
ACM, vol. 17, no. 8, Aug. 1974, pp. 437-442.
G. B. Purdy, “A high security log-m procedure,” Comrmrn ACM,
vol. 17, no. 8, Aug. 1974, pp. 442-445.
R. Merkle and J. Reeds, unpublished work.
R. L. Rivest, A. Shamir, and L. Adlernan, “A method for obtaining
digital signatures and public-key cryptosystems,” Commrur ACM,
vol. 21, no. 2, pp. 120-126, Feb. 1978.
R. M. Karp “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds. New York: Plenum, (1972), pp. 85-104.

.

Compression of lndiwdual Sequences via
Variable-Rate Coding

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER, IEEE

Abstract-Compressibiity of individuai sequences by the ciam of gener-
aihd finite-atate information-losales encoders ia investigated These en-
codersrpnoperateinavariabie-ratemodeasweUasaflxedrateone,nnd
they aiiow for any fhite-atate acheme of variabie-iength-to-variable-ien@
coding. For every individuai hfiite aeqence x a quantity p (x) ia defined,
calledthecompressibilityofx,whirhisshowntobetheasymptotieatly
attainable lower bound on the compression ratio tbat cao be achieved for x
by any finite-state encoder. ‘flds is demonstrated by means of a amatruc-
tivecodtngtbeoremanditsconversethat,apartfnnntheirafymptotic
significance, also provide useful performance criteria for finite and practi-
cai data-compression taaka. The proposed concept of compressibility ia aiao
shown to play a role analogous to that of entropy in ciaasicai informatfon
theory where one- deaia with probabilistic ensembles of aequencea ratk

Manuscript received June 10, 1977; revised February 20, 1978.
J. Ziv is with Bell Laboratories, Murray Hill, NJ 07974, on leave from

the Department of Electrical Engineering, Techmon-Israel Institute of
Technology, Halfa, Israel.

A. Lempel is with Sperry Research Center, Sudbury, MA 01776, on
leave from the Department of Electrical Engineer@, Technion-Israel
Institute of Technology, Haifa, Israel.

tium with individuai sequences. Widie the delinition of p (x) aiiows a
different machine for each different sequence to be compresse4 the
constructive coding theorem ieada to a universal algorithm that is aaymik
toticaiiy optfmai for au sequencea.

I. INTRODUCTION

I N A RECENT paper [l], data-compression coding
theorems and their converses were derived for the class

of finite-state encoders that map at a fixed rate input
strings drawn from a source of (Y letters into equally long
strings over an alphabet of /I < (Y letters. In the context of
data-compression, the aim is to m inimize the number of
bits/symbol log, /3, while securing zero or negligibly small
distortion. For every individual infinite sequence x, this
m inimal bit/symbol rate was shown in [l] to be equal to a
quantity H(x) that, in analogy with the Shannon entropy
(which is defined for probabilistic ensembles rather than

OOlS-9448/78/0900-053OWO.75 01978 IEEE

