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Abstract

The evaluation of incomplete satisfiability solvers depends critically on the availability
of hard satisfiable instances. A plausible source of such instances consists of random k-
SAT formulas whose clauses are chosen uniformly from among all clauses satisfying some
randomly chosen truth assignment A. Unfortunately, instances generated in this manner
tend to be relatively easy and can be solved efficiently by practical heuristics. Roughly
speaking, for a number of different algorithms, A acts as a stronger and stronger attractor
as the formula’s density increases. Motivated by recent results on the geometry of the space
of satisfying truth assignments of random k-SAT and NAE-£-SAT formulas, we introduce
a simple twist on this basic model, which appears to dramatically increase its hardness.
Namely, in addition to forbidding the clauses violated by the hidden assignment A, we also
forbid the clauses violated by its complement, so that both A and A are satisfying. It
appears that under this “symmetrization” the effects of the two attractors largely cancel
out, making it much harder for algorithms to find any truth assignment. We give theoretical
and experimental evidence supporting this assertion.

1. Introduction

Recent years have witnessed the rapid development and application of search methods for
constraint satisfaction and Boolean satisfiability. An important factor in the success of these
algorithms is the availability of good sets of benchmark problems to evaluate and fine-tune
them. There are two main sources of such problems: the real world, and random instance
generators. Real-world problems are arguably the best benchmarks, but unfortunately are
in short supply. Moreover, using real-world problems carries the risk of tuning algorithms
toward the specific application domains for which good benchmarks are available. In that
sense, random instance generators are a good additional source, with the advantage of
controllable characteristics, such as size and expected hardness.

Hard random instances have led to the development of new stochastic search methods
such as WalkSAT (Selman, Kautz, & Cohen, 1996), the breakout procedure (Morris, 1993),
and Survey Propagation (Mézard & Zecchina, 2002), and have been used in detailed com-
parisons of local search methods for graph coloring and related problems (Johnson, Aragon,
McGeoch, & Shevon, 1989). The results of various competitions for CSP and SAT algo-
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rithms show a fairly direct correlation between the performance on real-world benchmarks
and on hard random instances (Johnson & Trick, 1996; Du, Gu, & Pardalos, 1997; Johnson
et al., 1989). Nevertheless, a key limitation of current problem generators concerns their use
in evaluating incomplete satisfiability solvers such as those based on local search methods.

When an incomplete algorithm does not find a solution, it can be difficult to determine
whether this is because the instance is in fact unsatisfiable, or simply because the algorithm
failed to find a satisfying assignment. The standard way of dealing with this problem is to
use a complete search method to filter out the unsatisfiable cases. However, this greatly
limits the size and difficulty of problem instances that can be considered. Ideally, one would
use problem generators that generate satisfiable instances only. One relatively recent source
of such problems is the quasigroup completion problem (Shaw, Stergiou, & Walsh, 1998;
Achlioptas, Gomes, Kautz, & Selman, 2000; Kautz, Ruan, Achlioptas, Gomes, Selman, &
Stickel, 2001). However, a generator for random hard satisfiable instances of 3-SAT, say,
has remained elusive.

Perhaps the most natural candidate for generating random hard satisfiable 3-SAT for-
mulas is the following. Pick a random truth assignment A, and then generate a formula with
n variables and rn random clauses, rejecting any clause that is violated by A. In particular,
we might hope that if we work close to the satisfiability threshold region r ~ 4.25, where the
hardest random 3-SAT problems seem to be (Cheeseman, Kanefsky, & Taylor, 1991; Hogg,
Huberman, & Williams, 1996; Mitchell, Selman, & Levesque, 1992), this would generate
hard satisfiable instances. Unfortunately, this generator is highly biased towards formulas
with many assignments clustered around A. When given to local search methods such as
WalkSAT, the resulting formulas turn out to be much easier than formulas of comparable
size obtained by filtering satisfiable instances from a 3-SAT generator. More sophisticated
versions of this “hidden assignment” scheme (Asahiro, Iwama, & Miyano, 1996; Van Gelder,
1993) improve matters somewhat but still lead to easily solvable formulas.

In this paper we introduce a new generator of random satisfiable problems. The idea
is simple: we pick a random 3-SAT formula that has a “hidden” complementary pair of
satisfying assignments, A and A, by rejecting clauses that are violated by either A or A.
We call these “2-hidden” formulas. Our motivation comes from recent work (Achlioptas &
Moore, 2002b, 2005) which showed that moving from random k-SAT to random NAE-k-
SAT (in which every clause in the formula must have at least one true and at least one false
literal) tremendously reduces the correlation between solutions. That is, whereas in random
k-SAT, satisfying assignments tend to form clumps, in random NAE-kK-SAT the solutions
appear to be scattered throughout {0,1}" in a rather uniform “mist,” even for densities
extremely close to the threshold. An intuitive explanation for this phenomenon is that since
the complement of every NAE-assignment is also an NAE-assignment, the attractions of
solution pairs largely “cancel out.” In this paper we exploit this phenomenon to impose a
similar symmetry with the hidden assignments A and A, so that their attractions cancel
out, making it hard for a wide variety of algorithms to “feel” either one.

A particularly nice feature of our generator is that it is based on an extremely simple
probabilistic procedure, in sharp contrast with 3-SAT generators based on, say, crypto-
graphic ideas (Massacci, 1999). In particular, our generator is readily amenable to all
the mathematical tools that have been developed for the rigorous study of random k-SAT
formulas. Here we make two first steps in that direction. In Section 2, via a first mo-
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ment calculation we study the distribution of the number of solutions as a function of their
distance from the hidden assignments. In Section 3, we use the technique of differential
equations to analyze the performance of the Unit Clause (UC) heuristic on our formulas.

Naturally, mathematical simplicity would not be worth much if the formulas produced by
our generator were easily solvable. In Section 4, we compare experimentally the hardness of
“2-hidden” formulas with that of “1-hidden” and “0-hidden” formulas. That is, we compare
our formulas with random 3-SAT formulas with one hidden assignment and with standard
random 3-SAT formulas with no hidden assignment. We examine four leading algorithms:
two complete solvers, zChaff and Satz, and two incomplete ones, WalkSAT and the recently
introduced Survey Propagation (SP).

For all these algorithms, we find that our formulas are much harder than 1-hidden
formulas and, more importantly, about as hard as 0-hidden formulas, of the same size and
density.

2. A picture of the space of solutions

In this section we compare 1-hidden and 2-hidden formulas with respect to the expected
number of solutions at a given distance from the hidden assignment(s).

2.1 1-hidden formulas

Let X be the number of satisfying truth assignments in a random k-SAT formula with n
variables and m = rn clauses chosen uniformly and independently among all k-clauses with
at least one positive literal, i.e., 1-hidden formulas where we hide the all-ones truth assign-
ment. To calculate the expectation E[X], it is helpful to parametrize truth assignments
according to their overlap with the hidden assignment, i.e., the fraction « of variables on
which they agree with A, which in this case is the fraction of variables that are set to one.
Then, linearity of expectation gives (1), clause independence gives (2), selecting the literals
in each clause uniformly and independently gives (3), and, finally, writing z = an and using
Stirling’s approximation for the factorial gives (4) below:

EX] = Z Pr[A is satisfying] (1)
Ae{0,1}n

n
= Z ( > Pr[a truth assignment with z ones satisfies a random clause]™ (2)
z

z=0
- go () (1 5 é (5) = spmy e @
- 2005

= poly(n) x max [fy,(a)]"
a€(0,1]
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where

1 1—a®\"
Frr(@) = a®(1 — a)l-« <1 ook — 1>

From this calculation we see that E[X] is dominated by the contribution of the truth assign-
ments that maximize fi ,(«) (since we raise f, to the nth power all other contributions
vanish). Now, note that f is the product of an “entropic” factor 1/(a®(1 — a)'~®) which
is symmetric around « = 1/2, and a “correlation” factor which is strictly increasing in .
As a result, it is always maximized for some a > 1/2. This means that the dominant con-
tribution to E[X] comes from truth assignments that agree with the hidden assignment on
more that half the variables. That is, the set of solutions is dominated by truth assignments
that can “feel” the hidden assignments. Moreover, as r increases this phenomenon becomes
more and more acute (see Figure 1 below).

2.2 2-hidden formulas

Now let X be the number of satisfying truth assignments in a random k-SAT formula with
n variables and m = rn clauses chosen uniformly among all k-clauses that have at least
one positive and at least one negative literal, i.e., 2-hidden formulas where we hide the all-
ones assignment and its complement. To compute E[X] we proceed as above, except that
now (3) is replaced by

> (") (-5 > (%)= zpmyefm

z=0 j=1

m

Carrying through the ensuing changes we find that now

E[X] = poly(n) x max [gy ,(a)]"
a€l0,1]

1 1—aof —(1—a)"\"
gk,r(a)=W<l_ 2k—(2 ) )

where

This time, both the entropic factor and the correlation factor comprising ¢g are symmetric
functions of a, so g, is symmetric around o = 1/2 (unlike fj,). Indeed, one can prove
that for all r up to extremely close to the random k-SAT threshold rj, the function gy, , has
its global maximum at o = 1/2. In other words, for all such r, the dominant contribution
to E[X] comes from truth assignments at distance n/2 from the hidden assignments, i.e.,
the hidden assignments are “not felt.” More precisely, there exists a sequence €, — 0 such
that gy, has a unique global maximum at o = 1/2, for all

In2
r§2kln2—n7—1—ek. (5)

Contrast this with the fact (implicit in Kirousis, Kranakis, Krizanc, & Stamatiou, 1998)

that for

In2 1
> - — 2 = 6
r>2"In 5 T3 (6)
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a random k-SAT formula with n variables and m = rn clauses is unsatisfiable with probabil-
ity 1 —o0(1). Moreover, the convergence of the sequence ¢, — 0 is rapid, as can be seen from
the concrete values in table 1. Thus the gap between the values of r given by equations (5)
and (6) quickly converges to 1/2, even as the threshold becomes exponentially large.

k | 3 4 5 7 10 20
Eq. (5) | 7/2  35/4 2038  87.23 70840  726816.15
Eq. (6) | 4.67 1023  21.33  87.88  708.94  726816.66

Table 1: The convergence (in k) to the asymptotic gap of 1/2 is rapid

In Figure 1 we plot fi, and gy, for ¥ = 5 and r = 16,18,20,22,24 (from top to
bottom). We see that in the case of 1-hidden formulas, i.e., fj,, the maximum always
occurs to the right of & = 1/2. Moreover, observe that for r = 22,24, i.e., after we cross
the 5-SAT threshold (which occurs at r ~ 21) we have a dramatic shift in the location of
the maximum and, thus, in the extent of the bias. Specifically, since the expected number
of satisfying assignments is roughly fj ,(«)", and since fi (o) < 1 except for o = 1, with
high probability the only remaining satisfying assignments in the limit n — oo are those
extremely close to the hidden assignment.

In the case of 2-hidden formulas, on the other hand, we see that for r = 16, 18,20
the global maximum occurs at o = 1/2. For r = 20, just below the threshold, we also
have two local maxima near o = 0, 1, but since g , is raised to the nth power, these are
exponentially suppressed. Naturally, for r above the threshold, i.e., r = 22,24, these local
maxima become global, signifying that indeed the only remaining truth assignments are
those extremely close to one of the two hidden ones.

Intuitively, we expect that because g is flat at & = 1/2 where random truth assignments
are concentrated, for 2-hidden formulas local search algorithms like WalkSAT will essentially
perform a random walk until they are lucky enough to get close to one of the two hidden
assignments. Thus we expect WalkSAT to take about as long on 2-hidden formulas as it does
on 0-hidden ones. For 1-hidden formulas, in contrast, we expect the nonzero gradient of f
at o = 1/2 to provide a strong “hint” to WalkSAT that it should move towards the hidden
assignment, and that therefore 1-hidden formulas will be much easier for it to solve. We
will see below that our experimental results bear out these intuitions perfectly.

3. The Unit Clause heuristic and DPLL algorithms

Consider the following linear-time heuristic, called Unit Clause (UC), which permanently
sets one variable in each step as follows: pick a random literal and satisfy it, and repeatedly
satisfy any 1-clauses present. Chao and Franco showed that UC succeeds with constant
probability on random 3-SAT formulas with r < 8/3, and fails with high probability, i.e.,
with probability 1 — o(1) as n — oo, for r > 8/3 (Chao & Franco, 1986). One can think of
UC as the first branch of the simplest possible DPLL algorithm S: set variables in a random
order, each time choosing randomly which branch to take first. Their result then shows
that, with constant probability, S solves random 3-SAT formulas with r» < 8/3 with no
backtracking at all.
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Figure 1: The nth root of the expected number of solutions f; , and g, for 1-hidden and
2-hidden formulas respectively, as a function of the overlap fraction o = z/n with
the hidden assignment. Here kK = 5 and r = 16, 18, 20, 22, 24 from top to bottom.
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It is conjectured that the running time of S goes from linear to exponential at r = 8/3,
with no intermediate regime. Calculations using techniques from statistical physics (Cocco
& Monasson, 2001a, 2001b; Monasson, 2005) show that this is true of the ezpected running
time. Achlioptas, Beame and Molloy show that the running time is exponential with high
probability for » > 3.81; moreover, they show that if the “tricritical point” of (2 + p)-SAT
is r = 2/5, then this is the case for r > 8/3 (Achlioptas, Beame, & Molloy, 2001).

In this section we analyze the performance of UC on 1-hidden and 2-hidden formulas.
Specifically, we show that UC fails for 2-hidden formulas at precisely the same density as for
0-hidden ones. Based on this, we conjecture that the running time of S, and other simple
DPLL algorithms, becomes exponential for 2-hidden formulas at the same density as for
0-hidden ones.

To analyze UC on random 1-hidden and 2-hidden formulas we actually analyze UC on
arbitrary initial distributions of 3-clauses, i.e., where for each 0 < j < 3 we specify the initial
number of 3-clauses with j positive literals and 3 — j negative ones. We use the method of
differential equations; see the article by Achlioptas(2001) for a review. To simplify notation,
we assume that A is the all-ones assignment, so that 1-hidden formulas forbid clauses where
all literals are negative, while 2-hidden formulas forbid all-negative and all-positive clauses.

A round of UC consists of a “free” step, in which we satisfy a random literal, and the
ensuing chain of “forced” steps or unit-clause propagations. For 0 < i < 3 and 0 < j < 1,
let S; ; = s;jn be the number of clauses of length ¢ with j positive literals and i — j negative
ones. We will also refer to the total density of clauses of size i as s; = ) ;i Sij- Let X = an
be the number of variables set so far. Our goal is to write the expected change in these
variables in a given round as a function of their values at the beginning of the round. Note
that at the beginning of each round S = Si,1 = 0 by definition, so the “state space” of
our analysis will consist of the variables S; ; for ¢ > 2.

It is convenient to define two new quantities, mp and mpg, which are the expected
number of variables set True and False in a round. We will calculate these below. Then, in
terms of mp, mp, we have

383
E[AS;;] = —(mr+mp) 7% (7)
259, (4 +1)s3,54+1 (3 —7)s3,
E[Asz,j] = —(mpr+mp) 1_; +mp 1_mj +mTT33] (8)
E[AX] = —(mpr+mp) .

To see this, note that a variable appears positively in a clause of type 4, j with probability
j/(n—X), and negatively with probability (i —j)/(n — X). Thus, the negative terms in (7)
and (8) correspond to clauses being “hit” by the variables set, while the positive term is
the “flow” of 3-clauses to 2-clauses.

To calculate mp and mp, we consider the process by which unit clauses are created
during a round. We can model this with a two-type branching process, which we analyze
as in the article by Achlioptas and Moore(2002a). Since the free step gives the chosen
variable a random value, we can think of it as creating a unit clause, which is positive or
negative with equal probability. Thus the initial expected population of unit clauses can be
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represented by a vector
_( 12
bo = 1/2

where the first and second components count the negative and positive unit clauses respec-
tively. Moreover, at time X = xn, a unit clause procreates according to the matrix

M= 1 52,1 282,0
1—x \ 2522 821
In other words, satisfying a negative unit clause creates, in expectation, M = s2,1/(1 —x)
negative unit clauses and My; = 2s22/(1 — x) positive unit clauses, and similarly for
satisfying a positive unit clause.

Thus, as long as the largest eigenvalue A1 of M is less than 1, the expected number of
variables set true or false during the round is given by

< e ) :(I+M+M2+'--)-p0:(I—M)_1-po
mr

where [ is the identity matrix. Moreover, as long as A; < 1 throughout the algorithm, i.e., as
long as the branching process is subcritical for all z, UC succeeds with constant probability.
On the other hand, if A\; ever exceeds 1, then the branching process becomes supercritical,
with high probability the unit clauses proliferate, and the algorithm fails. Note that

891+ 2,/52,052,2 ()

1—=x

1=

Now let us rescale (7) to give a system of differential equations for the s; ;. Wormald’s
Theorem (Wormald, 1995) implies that with high probability the random variables S; j(xzn)
will be within o(n) of s; j(x) - n for all z, where s; j(x) is the solution of the following:

ng,j 38373'

= 10
dx 1—2 (10)
dsa; 28y mp  (J+1)s35+1 mr  (3—74)s3,
= - + +
dx 1—2 mr+mp 1—2 mr+mrp 11—z

Now, suppose our initial distribution of 3-clauses is symmetric, i.e., s30(0) = s33(0)
and s31(0) = s32(0). It is easy to see from (10) that in that case, both the 3-clauses and
the 2-clauses are symmetric at all times, i.e., s;; = s;;,; and mp = mp. In that case
S21 + 2,/52,052,2 = S2, SO the criterion for subcriticality becomes

52
AL =

= <1.
1—=x

Moreover, since the system (10) is now symmetric with respect to j, summing over j gives
the differential equations

d83 . 383

dz ~ 1-z

d82 o 282 383
dr _1—:L"+2(1—m)
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which are precisely the differential equations for UC on 0-hidden formulas, i.e., random
instances of 3-SAT.

Since 2-hidden formulas correspond to symmetric initial conditions, we have thus shown
that UC succeeds on them with constant probability if and only if r < 8/3, i.e., that UC fails
on these formulas at exactly the same density for which it fails on random 3-SAT instances.
(In contrast, integrating (10) with the initial conditions corresponding to 1-hidden formulas
shows that UC succeeds for them at a slightly higher density, up to r < 2.679.)

Of course, UC can easily be improved by making the free step more intelligent: for
instance, choosing the variable according to the number of its occurrences in the formula,
and using the majority of these occurrences to decide its truth value. The best known
heuristic of this type (Kaporis, Kirousis, & Lalas, 2003; Hajiaghayi & Sorkin, 2003) succeeds
with constant probability for r < 3.52. However, we believe that much of the progress that
has been made in analyzing the performance of such algorithms can be “pushed through”
to 2-hidden formulas. Specifically, nearly all algorithms analyzed so far have the property
that given as input a symmetric initial distribution of 3-clauses, e.g. random 3-SAT, their
residual formulas consist of symmetric mixes of 2- and 3-clauses. As a result, we conjecture
that the above methods can be used to show that such algorithms act on 2-hidden formulas
exactly as they do on 0-hidden ones, failing with high probability at the same density.

More generally, call a DPLL algorithm myopic if its splitting rule consists of choosing a
random clause of a given size, based on the current distribution of clause sizes, and deciding
how to satisfy it based on the number of occurrences of its variables in other clauses.
For a given myopic algorithm A, let r 4 be the density below which A succeeds without any
backtracking with constant probability. The results of Achlioptas, Beame and Molloy (2001)
imply the following statement: if the tricritical point for random (2 4 p)-SAT is p. = 2/5
then every myopic algorithm A takes exponential time for r > r 4. Thus, not only UC, but in
fact a very large class of natural DPLL algorithms, would go from linear time for r < r 4 to
exponential time for 7 > r4. The fact that the linear-time heuristics corresponding to the
first branch of A act on 2-hidden formulas just as they do on 0-hidden ones suggests that,
for a wide variety of DPLL algorithms, 2-hidden formulas become exponentially hard at the
same density as 0-hidden ones. Proving this, or indeed proving that 2-hidden formulas take
exponential time for r above some critical density, appears to us a very promising direction
for future work.

4. Experimental results

In this section we report experimental results on our 2-hidden formulas, and compare them
to 1-hidden and 0-hidden ones. We use two leading complete solvers, zChaff and Satz,
and two leading incomplete solvers, WalkSAT and the new Survey Propagation algorithm
SP. In an attempt to avoid the numerous spurious features present in “too-small” random
instances, i.e., in non-asymptotic behavior, we restricted our attention to experiments where
n > 1000. This meant that zChaff and Satz could only be examined at densities signifi-
cantly above the satisfiability threshold, as neither algorithm could practically solve either
0-hidden or 2-hidden formulas with n ~ 1000 variables close to the threshold. For WalkSAT
and SP, on the other hand, we can easily run experiments in the hardest range (around the
satisfiability threshold) for n ~ 10%.
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4.1 zChaff and Satz

In order to do experiments with n > 1000 with zChaff and Satz, we focused on the
regime where 7 is relatively large, 20 < r < 60. As stated above, for r near the satisfiability
threshold, 0-hidden and 2-hidden random formulas with n ~ 1000 variables seem completely
out of the reach of either algorithm. While formulas in this overconstrained regime are still
challenging, the presence of many forced steps allows both solvers to completely explore the
space fairly quickly.

We obtained zChaff from the Princeton web site (Moskewicz, Madigan, Zhao, Zhang,
& Malik, 2001). The first part of Figure 2 shows its performance on random formulas of
all three types (with n = 1000 for 20 < r < 40 and n = 3000 for 40 < n < 60). We see
that the number of decisions for all three types of problems decreases rapidly as r increases,
consistent with earlier findings for complete solvers on random 3-SAT formulas.

Figure 2 shows that zChaff finds 2-hidden formulas almost as difficult as 0-hidden ones,
which for this range of r are unsatisfiable with overwhelming probability. On the other
hand, the 1-hidden formulas are much easier, with a number of branchings between 2 and
5 orders of magnitude smaller. It appears that while zChaff’s smarts allow it to quickly
“zero in” on a single hidden assignment, the attractions exerted by a complementary pair of
assignments do indeed cancel out, making 2-hidden formulas almost as hard as unsatisfiable
ones. That is, the algorithm eventually “stumbles” upon one of the two hidden assignments
after a search that is nearly as exhaustive as for the unsatisfiable random 3-SAT formulas
of the same density.

We obtained Satz from the SATLIB web site (Li & Anbulagan, 1997b). The second
part of Figure 2 shows experiments on random formulas of all three types with n = 3000.
As can be seen, the median number of branches explored by Satz for all three types of
formulas are within a factor of five, with 0-hidden being the hardest and 2-hidden being the
easiest (note that a factor of five corresponds to setting fewer than 3 variables).

The reason for this is simple: while Satz makes intelligent decisions about which variable
to branch on, it tries these branches in a fixed order, attempting first to set each variable
false (Li & Anbulagan, 1997a). Therefore, a single hidden assignment will appear at a
uniformly random leaf in Satz’s search tree. In the 2-hidden case, since the two hidden
assignments are complementary, one will appear in a random position and the other one
in the symmetric position with respect to the search tree. Naturally, trying branches in
a fixed order is a good idea when the goal is to prove that a formula is unsatisfiable, e.g.
in hardware verification. However, we expect that if Satz were modified to, say, use the
majority heuristic to choose a variable’s first value, its performance on the three types of
problems would be similar to zChaff’s.

4.2 SP

SP is an incomplete solver recently introduced by Mézard and Zecchina (2002) based on a
generalization of belief propagation the authors call survey propagation. It is inspired by the
physical notion of “replica symmetry breaking” and the observation that for 3.9 < r < 4.25,
random 3-SAT formulas appear to be satisfiable, but their satisfying assignments appear to
be organized into clumps.
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zChaff performance on HIDDEN 1, 2 and 0 formulas

3

e
o

—+— HIDDEN-1
—=— HIDDEN-2
—— HIDDEN-0

-
o
T

-
(=]
>
T
L

e
o
(3
T
L

N

Median number of decisions over 25 trials
=
|
.

e
(=]

20 25 30 35 40 45 50 55 60

Satz performance on HIDDEN 1, 2 and 0 formulas
10 ; T : . .

—— HIDDEN-1
—=— HIDDEN-2
—— HIDDEN-0

Median number of branches over 25 trials
-
o

1 . . . . . . .
020 25 30 35 40 45 50 55 60

Figure 2: The median number of branchings made by zChaff and Satz on random instances
with 0, 1, and 2 hidden assignments (on a log;, scale). For zChaff we use
n = 1000 for » = 20,30,40 and n = 3000 for r = 40, 50,60, and for Satz we
use n = 3000 throughout. Each point is the median of 25 trials. The 2-hidden
formulas are almost as hard for both algorithms as the 0-hidden ones, while the
1-hidden formulas are much easier for zChaff.
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SP performance on HIDDEN 1, 2 and 0 formulas
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Figure 3: The fraction of problems successfully solved by SP as a function of density, with
n = 10* and 30 trials for each value of r. The threshold for solving 2-hidden
formulas is somewhat higher than for 0-hidden ones, and for 1-hidden formulas it
is higher still.

In Figure 3 we compare SP’s performance on the three types of problems near the
satisfiability threshold.  (Because SP takes roughly the same time on all inputs, we do
not compare the running times.) For n = 10% SP solves 2-hidden formulas at densities
somewhat above the threshold, up to r &~ 4.8, while it solves the 1-hidden formulas at still
higher densities, up to r &~ 5.6.

Presumably the 1-hidden formulas are easier for SP since the “messages” from clauses
to variables, like the majority heuristic, tend to push the algorithm towards the hidden
assignment. Having two hidden assignments appears to cancel these messages out to some
extent, causing SP to fail at a lower density. However, this argument does not explain
why SP should succeed at densities above the satisfiability threshold; nor does it explain
why SP does not solve 1-hidden formulas for arbitrarily large r. Indeed, we find this latter
result surprising, since as r increases the majority of clauses should point more and more
consistently towards the hidden assignment in the 1-hidden case.

We note that we also performed the above experiments with n = 2 x 10% and with
5000 iterations, instead of the default 1000, for SP’s convergence procedure. The thresholds
of Figure 3 for 1-hidden and 2-hidden formulas appeared to be stable under both these
changes, suggesting that they are not merely artifacts of our particular experiments. We
propose investigating these thresholds as a direction for further work.

4.3 WalkSAT

We conclude with a local search algorithm, WalkSAT. Unlike the complete solvers, WalkSAT
can solve problems with n = 10* fairly close to the threshold. We performed experiments
both with a random initial state, and with a biased initial state where the algorithm starts
with 75% agreement with one of the hidden assignments (note that this is exponentially
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unlikely). In both cases, we performed trials of 108 flips for each formula, without random
restarts, where each step does a random or greedy flip with equal probability. Since random
initial states almost certainly have roughly 50% agreement with both hidden assignments,
we expect their attractions to cancel out so that WalkSAT will have difficulty finding either
of them. On the other hand, if we begin with a biased initial state, then the attraction from
the nearby assignment will be much stronger than the other one; this situation is similar
to a 1-hidden formula, and we expect WalkSAT to find it easily. Indeed our data confirms
these expectations.

In the first part of Figure 4 we measure WalkSAT’s performance on the three types of
problems with n = 10% and r ranging from 3.7 to 7.9, and compare them with 0-hidden
formulas for r ranging from 3.7 up to 4.1, just below the threshold where they become
unsatisfiable. We see that, below the threshold, 2-hidden formulas are just as hard as
0-hidden ones when WalkSAT sets its initial state randomly; indeed, their running times
coincide to within the resolution of the figure! They both become hardest when r =~ 4.2,
where 102 flips no longer suffice to solve them. Unsurprisingly, 2-hidden formulas are much
easier to solve when we start with a biased initial state, in which case the running time is
closer to that of 1-hidden formulas.

In the second part of Figure 4, we compare the three types of formulas at a density
very close to the threshold, »r = 4.25, and measure their running times as a function of
n. The data suggests that 2-hidden formulas with random initial states are much harder
than 1-hidden ones, while 2-hidden formulas with biased initial states have running times
within a constant of that of 1-hidden formulas. Note that the median running time of all
three types of problems is polynomial in n, consistent with earlier experiments (Barthel,
Hartmann, Leone, Ricci-Tersenghi, Weigt, & Zecchina, 2002).

On the other hand, while 1-hidden formulas are much easier than 2-hidden ones for
sufficiently large or small r, they appear to be slightly harder than 2-hidden ones for 5.3 <
r < 6.3. One possible explanation for this is that while i) the solutions of a 2-hidden
formula are harder to find due to their balanced distribution, ii) there are exponentially
more solutions for 2-hidden formulas than for 1-hidden ones of the same size and density.
It seems that in this range of r, the second effect overwhelms the first, and WalkSAT finds
a solution more quickly in the 2-hidden case; but we have no explanation for why this is so
for this particular range of r. At higher densities, such as r = 8 shown in Figure 5, 2-hidden
formulas again appear to be harder than 1-hidden ones.

5. Conclusions

We have introduced an extremely simple new generator of random satisfiable 3-SAT in-
stances which is amenable to all the mathematical tools developed for the rigorous study of
random 3-SAT instances. Experimentally, our generator appears to produce instances that
are as hard as random 3-SAT instances, in sharp contrast to instances with a single hidden
assignment. This hardness appears quite robust; our experiments have demonstrated it
both above and below the satisfiability threshold, and for algorithms that use very different
strategies, i.e., DPLL solvers (zChaff and Satz), local search algorithms (WalkSAT), and
survey propagation (SP).
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WalkSAT performance on HIDDEN 1, 2 and 0 formulas
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Figure 4: The top part of the figure shows the median number of flips needed by WalkSAT
for formulas of all three types below and above the threshold, with n = 10%.
Below the threshold, 2-hidden formulas are just as hard as 0-hidden ones (they
coincide to within the resolution of the figure) and their running time increases
steeply as we approach the threshold. Except in the range 5.3 < r < 6.3, 2-
hidden formulas are much harder than 1-hidden ones unless the algorithm starts
with an (exponentially lucky) biased initial state. The bottom part of the figure
shows the median number of flips needed by WalkSAT to solve the three types of
formulas at » = 4.25 as a function of n. Here n ranges from 100 to 2000. While
the median running time for all three is polynomial, the 2-hidden problems are
much harder than the 1-hidden ones unless we start with a biased initial state.
Again, the running time of 2-hidden problems scales similarly to 0-hidden ones,
i.e., to random 3-SAT without a hidden assignment.
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E‘WaIkSAT performance on HIDDEN 1 and 2 formulas with r=8
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Figure 5: The median number of flips needed by WalkSAT to solve the two types of formulas

at r = 8, above the range where 1-hidden formulas are harder. At these densities,
2-hidden formulas are again harder than 1-hidden ones, although both are much
easier than at densities closer to the threshold.

We believe that random 2-hidden instances could make excellent satisfiable benchmarks,
especially just around the satisfiability threshold, say at r = 4.25 where they appear to be
the hardest for WalkSAT (although beating SP requires somewhat higher densities).

Several aspects of our experiments suggest exciting directions for further work, including;:

1.

Proving that the expected running time of natural Davis-Putnam algorithms on 2-
hidden formulas is exponential in n for r above some critical density.

. Explaining the different threshold behaviors of SP on 1-hidden and 2-hidden formulas.

Understanding how long WalkSAT takes at the midpoint between the two hidden as-
signments, before it becomes sufficiently unbalanced to converge to one of them.

. Studying random 2-hidden formulas in the dense case where the number of clauses

grows more than linearly in n.
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