AARHUS UNIVERSITY

Hiding the Input Size in Secure Two-Party Computation

Yehuda Lindell, Kobbi Nissim, Claudio Orlandi
 \title{

Privacy on

}
 \title{

Privacy on

}
(or a more privacy sensitive social network)

Secure Computation

Trusted Party

Privacy
\square Correctness
\square Input Independence"The protocol is as secure as the ideal world" Or is it?

Privacy on

(or a more privacy sensitive social network)

Privacy on

(or a more privacy sensitive social network)

Friend list Friend list

Intersection + size of friend list!

Padding?

\square Just add a lot of "fake entries" to your DB
\square Requires an upper bound $: \%$
\square Inherent inefficiency $)$

Impossibility of Size-Hiding: Proof by Authority

[G04] "...making no restriction on the relationship among the lengths of the two inputs disallows the existence of secure protocols for computing any nondegenerate functionality..."
[IP07] "...hiding the size of both inputs is impossible for interesting functions..."
[HL10] "...We remark that some restriction on the input lengths is unavoidable because, as in the case of encryption, to some extent such information is always leaked..."

Impossibility of Size-Hiding: Proof by Authority

[G04] "...making no restriction on the relationship among the lengths of the two inputs disallows the existence of secure protocols for computing any nondegenerate functionality..."
[IP07] "...hiding the size of both inputs is impossible for interesting functions..."
[HL10]"...We remark that some restriction on the input lengths is unavoidable because, as in the case of encryption, to some extent such information is always leaked..."
\square Is it impossible for

- Any nondegenerate functionality?
\square What is nondegenerate?
- What does no restriction mean?
- All interesting functions?
- What is interesting?
- What about hiding one party's input?
\square Is it really like encryption? Is length information always leaked?
\square Part of a general research effort to revisit the foundations of secure computation
\square Do we have any proof that it's impossible?
- If yes, where and for what functions?
\square Is it impossible always or sometimes?
-If sometimes, can we characterize when?
\square How do we define size hiding?
\square Compare to recent work on fairness...

Input Size Can be Hidden Sometimes

\square MicaliRabinKilian'O3 (and many subsequent work...):
Zero Knowledge Sets (check membership without revealing the size of the set)
\square Ishai Paskin'07:

- Branching programs (reveal length of the branching program but nothing else about input size)
- Implies set intersection, server input size is hidden
\square AtenieseDeCristofaroTsudik'11:
- Specific protocol for set intersection, client input size is hidden; efficient, in random oracle model
\square Note: all these are for specific problems/restricted class, and all hide only one party's input

A Test Case: Standard Definition

\square Standard definition, e.g. [Gol04]

\square Need to know other party's size in advance

- Introduces problem of input size dependence
- One party can choose its input after knowing the size of the other party's input (outside the scope of the protocol)

Defining Non-Input-Size Hiding

\square Formulation [G04]:

\square Our formulation:

\square Security guarantees incomparable

Defining Non-Input-Size Hiding

\square Formulation [G04]:

\square Security guarantees incomparable

Ideal Model - Classes

\square Classes
\square O: both input-sizes are leaked

- 1: Bob learns $|x|$, Alice does not learn $|y|$
\square 2: both input-sizes are not revealed
\square Subclasses
\square Who gets output?
- Is the output size leaked?
\square Our classification is complete for symmetric functions $f(x, y)=f(y, x)$

Class 0

Class 1

Essentially equivalent classes (outputs have same length)

Class 2

Positive Results

Tools

\square Fully Homomorphic Encryption

$$
(G, E, D, E v a l)
$$

- Correctness:

$$
D_{s k}\left(\operatorname{Eval}_{p k}\left(f, E_{p k}(x)\right)=f(x)\right.
$$

- Circuit privacy:

$$
\operatorname{Eval}_{p k}\left(f, E_{p k}(x)\right) \approx E_{p k}(f(x))
$$

Class 1.a

$$
\begin{array}{ccl}
\stackrel{x}{\rightleftarrows} & \text { Class } & \stackrel{y}{\longleftrightarrow} \\
\underset{\sim(x, y)}{\rightleftarrows} & \text { 1.a } & \stackrel{1^{|x|},}{(} f(x, y)
\end{array}
$$

$(p k, s k) \leftarrow \operatorname{Gen}\left(1^{k}\right)$

$$
c_{x} \leftarrow E n c_{p k}(x)
$$

$$
p k, c_{x}
$$

$$
z=\operatorname{Dec} c_{s k}\left(c_{z}\right)
$$

Class 1.a

\square The devil is in the details
\square In order to compute c_{z}, a circuit computing $f(\cdot, y)$ must be known, but this involves knowing the output length
\square Solution: P_{2} computes an upper bound (it can do this since it knows $|x|$ and y

Computing an Upper Bound

\square Example: set union

$E(x)$

$\square z=x \cup y$
\square Clear that $|z| \leq|x|+|y|$
\square But how long exactly?
Any upper bound reveals information about $|y|$

The Solution

$$
\downarrow \begin{gathered}
\text { Send } \\
\text { to Alice }
\end{gathered}
$$

Alice opens $\ell=|z|$

ℓ

$(p k, s k) \leftarrow G e n\left(1^{k}\right)$
$c_{x} \leftarrow E n c_{p k}(x)$

$$
p k, c_{x}
$$

$$
c_{\ell}=\operatorname{Eval}_{p k}(\operatorname{sizeof}(f(\cdot, y)), c)
$$

ℓ
$\ell=D e c_{s k}\left(c_{\ell}\right)$

$$
\frac{c_{z}=E v a l_{p k}\left(f_{\ell}(\cdot, y), c\right)}{Z} \begin{gathered}
\text { The circuit for output of length } \\
\text { exactly } \ell
\end{gathered}
$$

\square Thm: $\mathrm{FHE} \Rightarrow \forall f$ can be securely computed in Classes 1.a/c/e

Positive Results

Two-Size Hiding Protocols

\square Theorem: If FHE exists, then the following functions can be securely computed in class 2 (semi-honest)

- Greater than (Millionaire's problem)
\square And other functions:
■ Equality
- Mean
- Variance
- Median

Two-Size Hiding Protocols

\square Theorem: If FHE exists, then the following functions can be securelv comnuted in class 2 (sem
$\square \mathrm{Gr}$ First example of protocols for interesting functions

■
where the size of the input of both parties is protected

Size Independent Protocols

$\square \pi$ is size independent for f if

- Correct (except for negl(k))
- Computation efficient (runtime poly(input $+k$))
- Communication efficient (bounded by poly(k))
\square Construction idea: "compile" these insecure protocols using FHE.
\square (Concrete protocol for "greater than" in the paper)

Negative Results

\square Theorem: There exist functions that cannot be computed while hiding both parties' input size
\square Not everything can be computed in Class 2
\square Examples: Inner product, Set Intersection, Hamming distance, etc.

- Any protocol with "high" communication complexity

\square Theorem: There exist functions that cannot be securely computed in class 1.b
\square Proof: size-hiding OT
ㅁ $x=$ selection bit
$\square y=\left(y_{0}, y_{1}\right)$ two strings of different length
$\square f(x, y)=y_{x}$

Conclusions and Open Problems

Conclusions and Open Problems

\square Open Problems
\square (More) efficient protocols for specific tasks?
\square Malicious security?
\square Dealing with side-channel attacks (timing)?
\square Hiding the input size is (sometimes) possible.
\square Don't give up!
\square Landscape of size-hiding 2PC is very rich
\square Many positive and negative results.

Summary of Feasibility

	All \boldsymbol{f} (bounded output)	All \boldsymbol{f} (even unbounded output)	GT $(x>y)$	vecxor	Intersection	OT	omprf
2.a	\times	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark
2.b	\times	\times	\checkmark	\times	\times	\times	\checkmark
2.c	\times	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark
1.a	\checkmark						
1.b	\checkmark	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark
1.c	\checkmark						
1.d	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times
1.e	\checkmark						

