

Hiding the Input Size in Secure Two-Party Computation

Yehuda Lindell, Kobbi Nissim, Claudio Orlandi

(or a more privacy sensitive social network)

Secure Computation

- Privacy
- Correctness
- Input Independence
- "The protocol is as secure as the ideal world"

Or is it?

(or a more privacy sensitive social network)

(or a more privacy sensitive social network)

Intersection + size of friend list!

(or a more privacy sensitive social network)

Padding?

- Just add a lot of "fake entries" to your DB
- Requires an upper bound <a>©
- □ Inherent inefficiency 😊

Impossibility of Size-Hiding: Proof by Authority

[G04] "...making no restriction on the relationship among the lengths of the two inputs disallows the existence of secure protocols for computing any nondegenerate functionality..."

[IP07] "...hiding the size of both inputs is impossible for interesting functions..."

[HL10]"...We remark that some restriction on the input lengths is unavoidable because, as in the case of encryption, to some extent such information is always leaked..."

Impossibility of Size-Hiding: Proof by Authority

[G04] "...making no restriction on the relationship among the lengths of the two inputs disallows the existence of secure protocols for computing **any nondegenerate functionality**..."

[IP07] "...hiding the size of both inputs is impossible for interesting functions..."

[HL10]"...We remark that some restriction on the input lengths is unavoidable because, as in the case of encryption, to some extent such information is **always leaked**..."

Impossibility

- □ Is it impossible for
 - Any nondegenerate functionality?
 - What is nondegenerate?
 - What does no restriction mean?
 - All interesting functions?
 - What is interesting?
 - What about hiding one party's input?
- Is it really like encryption? Is length information always leaked?

This Work

- Part of a general research effort to revisit the foundations of secure computation
- □ Do we have any proof that it's impossible?
 - If yes, where and for what functions?
- □ Is it impossible always or sometimes?
 - If sometimes, can we characterize when?
- □ How do we define size hiding?

Compare to recent work on fairness...

Input Size Can be Hidden Sometimes

- Micali Rabin Kilian' 03 (and many subsequent work...):
 Zero Knowledge Sets (check membership without revealing the size of the set)
- □ Ishai Paskin'07:
 - Branching programs (reveal length of the branching program but nothing else about input size)
 - Implies set intersection, server input size is hidden
- □ AtenieseDeCristofaroTsudik'11:
 - Specific protocol for set intersection, client input size is hidden; efficient, in random oracle model
- Note: all these are for specific problems/restricted class, and all hide only one party's input

A Test Case: Standard Definition

Standard definition, e.g. [Gol04]

- Need to know other party's size in advance
 - □ Introduces problem of input size dependence
 - One party can choose its input after knowing the size of the other party's input (outside the scope of the protocol)

Defining Non-Input-Size Hiding

□ Formulation [G04]:

Our formulation:

Security guarantees incomparable

Defining Non-Input-Size Hiding

□ Formulation [G04]:

Security guarantees incomparable

Ideal Model - Classes

- Classes
 - 0: both input-sizes are leaked
 - \blacksquare 1: Bob learns |x|, Alice does not learn |y|
 - 2: both input-sizes are not revealed
- Subclasses
 - Who gets output?
 - Is the output size leaked?
- □ Our classification is complete for symmetric functions f(x,y) = f(y,x)

Class 0

Class 1

Essentially equivalent classes (outputs have same length)

Class 2

Positive Results

Tools

□ Fully Homomorphic Encryption

$$D_{sk}(Eval_{pk}(f, E_{pk}(x))) = f(x)$$

Circuit privacy:

$$Eval_{pk}(f, E_{pk}(x)) \approx E_{pk}(f(x))$$

Class 1.a

$$f(x,y) = \begin{cases} x \\ \text{Class} \\ \text{1.a} \end{cases} \xrightarrow{y} \begin{cases} y \\ \text{1.a} \end{cases}$$

$$(pk, sk) \leftarrow Gen(1^k)$$

 $c_x \leftarrow Enc_{pk}(x)$

$$z = Dec_{sk}(c_z)$$

pk, c_x

$$C_Z$$

$$\boldsymbol{Z}$$

$$c_z = Eval_{pk}(f(\cdot, y), c)$$

Class 1.a

- The devil is in the details
 - In order to compute c_z , a circuit computing $f(\cdot, y)$ must be known, but this involves knowing the output length

lacksquare Solution: P_2 computes an upper bound (it can do this since it knows |x| and y

Computing an Upper Bound

□ Example: set union

$$\Box z = x \cup y$$

The Solution

Class 1.a

$$f(x,y) \leftarrow 1.a \qquad \begin{array}{c} x \\ & \swarrow \\ & \downarrow \\ & \downarrow$$

$$(pk, sk) \leftarrow Gen(1^k) \qquad pk, c_x$$

$$c_x \leftarrow Enc_{pk}(x)$$

$$\ell = Dec_{sk}(c_\ell)$$

$$c_\ell = Eval_{pk}(sizeof(f(\cdot, y)), c)$$

$$c_z = C_z = Eval_{pk}(f_\ell(\cdot, y), c)$$

$$c_z = C_z = Eval_{pk}(f_\ell(\cdot, y), c)$$

$$c_z = Eval_{pk}(f_\ell(\cdot, y), c)$$

 \square Thm: FHE $\Rightarrow \forall f$ can be securely computed in Classes 1.a/c/e

Positive Results

$$\begin{array}{c|cccc}
x & & & & & x \\
\hline
f(x,y) & & & & & \\
& & & & & \\
\end{array}$$
Class
$$\begin{array}{c|cccc}
f(x,y) & & f(x,y) & & \\
\hline
\end{array}$$
Class
$$\begin{array}{c|cccc}
& & & \\
\hline
\end{array}$$
Class

$$f(x,y) = \begin{cases} x & y \\ \text{Class} \\ 2.c & 1^{|f(x,y)|} \end{cases}$$

Two-Size Hiding Protocols

- Theorem: If FHE exists, then the following functions can be securely computed in class 2 (semi-honest)
 - Greater than (Millionaire's problem)
 - And other functions:
 - Equality
 - Mean
 - Variance
 - Median

Two-Size Hiding Protocols

Theorem: If FHE exists, then the following functions can be securely computed in class 2 (sem First example of protocols for interesting functions ■ An where the size of the input of both parties is protected

Size Independent Protocols

- \square π is size independent for f if
 - $lue{}$ Correct (except for negl(k))
 - \blacksquare Computation efficient (runtime poly(input+k))
 - \blacksquare Communication efficient (bounded by poly(k))
- Construction idea: "compile" these insecure protocols using FHE.
- (Concrete protocol for "greater than" in the paper)

Negative Results

Lower Bounds

- Theorem: There exist functions that cannot be computed while hiding both parties' input size
 - Not everything can be computed in Class 2

- Examples: Inner product. Set Intersection, Hamming distance, etc.
 - Any protocol with "high" communication complexity

Class 1.b

- □ Theorem: There exist functions that cannot be securely computed in class 1.b
- Proof: size-hiding OT
 - $\square x = \text{selection bit}$
 - $\mathbf{D} y = (y_0, y_1)$ two strings of different length
 - $f(x,y) = y_x$

Conclusions and Open Problems

Conclusions and Open Problems

- Open Problems
 - □ (More) efficient protocols for specific tasks?
 - Malicious security?
 - Dealing with side-channel attacks (timing)?

- □ Hiding the input size is (sometimes) possible.
 - □ Don't give up!
- Landscape of size-hiding 2PC is very rich
 - Many positive and negative results.

Summary of Feasibility

	All f	All f (even	GT	vecxor	Intersection	ОТ	omprf
	(bounded output)	unbounded output)	(x > y)	VECXOI	IIItersection	O I	Ompri
2.a	×	×	✓	✓	×	√	✓
2.b	×	×	✓	×	×	×	✓
2.c	×	×	✓	✓	×	✓	✓
1.a	✓	✓	✓	✓	✓	✓	✓
1.b	✓	×	✓	✓	✓	×	✓
1.c	✓	✓	✓	✓	✓	✓	✓
1.d	✓	×	✓	✓	✓	✓	×
1.e	✓	✓	✓	✓	✓	✓	✓