
HIDUINO: A firmware for building driverless USB-MIDI
devices using the Arduino microcontroller

 Dimitri Diakopoulos1

California Institute of the Arts1
24700 McBean Parkway

Valencia, California 91355
ddiakopoulos@alum.calarts.edu

 Ajay Kapur1, 2
New Zealand School of Music2

P.O. Box 2332
Wellington, New Zealand

akapur@calarts.edu

ABSTRACT
This paper presents a series of open-source firmwares for the
latest iteration of the popular Arduino microcontroller
platform. A portmanteau of Human Interface Device and
Arduino, the HIDUINO project tackles a major problem in
designing NIMEs: easily and reliably communicating with a
host computer using standard MIDI over USB. HIDUINO
was developed in conjunction with a class at the California
Institute of the Arts intended to teach introductory-level
human-computer and human-robot interaction within the
context of musical controllers. We describe our frustration
with existing microcontroller platforms and our experiences
using the new firmware to facilitate the development and
prototyping of new music controllers.

Keywords

Arduino, USB, HID, MIDI, HCI, controllers, microcontrollers

1. INTRODUCTION
A core goal of the Music Technology program at the
California Institute of the Arts is to teach students how to
connect the physical and virtual world. Interface Design for
Music and Media Applications is a yearlong class that
introduces students to artistic interactivity through
microcontrollers and sensors/actuators. Modeled after the
template presented at CCRMA by Bill Verplank et al in 2001,
“A Course on Controllers [11],” and Gideon D’Arcangelo’s
course at ITP [3], the class required a modern microcontroller
platform that was neither too high-level nor too complex.
 The Arduino turned out to be the ideal solution for the
class, although there was a major usability issue which we felt
restricted its potential as the core of a musical controller,
described later in section 2.2. Combined with a redesign of
the Arduino platform in 2010 and an open-source USB
communication library for Atmel AVR microcontrollers (on
which the Arduino is based), we were able to develop a
firmware permitting driverless USB-MIDI communication
between Arduino and host computer, a solution that resolved
our greatest usability concern with the Arduino.
 In section 2, we present our reasons for switching to the
Arduino, some other platforms aimed at artistic interactivity,
and frustrations with both. Section 3 details the nuts and bolts
of the HIDUINO firmware. Section 4 explains the process of
prototyping a controller using HIDUINO. We conclude in
Section 5 with several ideas about future improvements.

2. BACKGROUND
The third iteration of the Interface Design class in 2009 was
the first to switch to the Arduino1. It was during this time we
became acutely aware of the power of the platform, but also
its shortcomings, namely that serial data needed to be parsed
and converted to a more useful format. While the complete
history of using microcontrollers in the context of NIME is
outside the scope of this paper, we provide a brief overview
of some related projects that attempt to solve this protocol
problem.

2.1 Why the Arduino
The class follows the basic ideas Perry Cook outlines in
“Designing Principles for Computer Music Controllers [1,
2],” as well several requirements described by Nicola Orio et
al in [5], including learnability, exportability, and feature
compatibility. Our selection of a suitable microcontroller for
the class held these concepts in mind, applying them not only
to the properties of a musical controller but also to the
elements core to their design. Based on the research presented
by Scott Wilson et al in [12], the results of using Atmel’s
AVR microcontroller appeared to meet many of these design
criteria.
 Since the publication of that paper, many AVR-based
microcontroller platforms have been released, including the
increasingly popular Arduino. Our choice to move to this
platform was motivated by the large community of support
and open-source nature of many Arduino-based projects. In
Alicia Gibb describes the Arduinos’ growing reputation as an
extensible platform for interactive media and goes on to say,
“The design of the Arduino microcontroller caters to a non-
technical audience by focusing on usability to achieve its
intended goal as a platform for designers and artists [4],”
supporting one of our core criteria of learnability. As the
Arduino language is simply an abstracted form of C, we
found that our exportability and feature-compatibility
requirements were sufficiently satisfied by the ability to write
and use low-level C libraries for more advanced projects.

2.2 On Protocol Confusion & Usability
Hans-Christoph Steiner’s paper, “Firmata: Towards making
microcontrollers act like extensions of the computer [9],”
reveals a general problem in existing microcontroller
platforms: protocols for communication. Arduino, and other
similar platforms like Wiring2 and Gainer3, implement
Virtual COM ports via USB for basic serial I/O between
microcontroller and host. Since no major music application
outside of Max/MSP4 supports reading serial directly, there is
a significant disconnect between controller and application. Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2010, Oslo, Norway.
Copyright remains with the author(s).

1 http://www.arduino.cc/
2 http://wiring.org.co/
3 http://gainer.cc/
4 http://cycling74.com/

For us, this single limitation created a large usability gap in
the platform which turned into the primary motivating factor
behind HIDUINO.
 It was necessary in the 2009 CalArts Interface Design
class that each new musical controller required a new
Arduino sketch and accompanying ‘decoder’ software to
interpret the raw serial data and convert to music-friendly
MIDI or OSC. MIDI was particularly problematic since it
required the use of virtual MIDI loopback drivers (or
proprietary loopback software, in the case of Windows).
Considerable time was added to the development of
controllers on account of the need for this middleware
software. Additionally, it created a single point of failure and
added additional latency between performer and application.
Figure 1 illustrates an overview of a controller using this
complicated method.

Figure 1. Controller Development Pre-HIDUINO

 Our initial attempts at simplifying the process led us to
look to preexisting solutions in the Arduino community.
Sidestepping the need for serial and separate software, we
sound several potential solutions in the form of external
hardware add-ons known to the Arduino community as
shields. We evaluated two shields, one for MIDI5, and
another for Ethe 6rnet .

 In the case of the MIDI shield, we noted that the host
computer still needed a separate MIDI interface for the older-
style 5-pin DIN connection and was additionally limited by
all the typical constraints of MIDI. The Ethernet shield we
tested was used in conjunction with a simple OSC
implementation. This combination added additional cost and
extra cabling: USB is required for power, Ethernet for data.
Moreover, many students wishing to use their controller with
commercial software still needed an OSC to MIDI conversion
app.

2.3 USB HID & the CUI
The vast majority of commercial MIDI controllers on the
market implement a protocol known as USB-HID7. This
protocol is often viewed negatively by developers, citing its
implementation complexity and bloat [9]. On account of these
difficulties, few have been able to implement the protocol in a
working form suitable for musical controller development.
However, one of the more recent and successful projects
using USB-HID is the Create USB Controller (CUI)
developed by Dan Overholt at UC Santa Barbara [6].
 Prior to the 2009 Interface Design class, the CUI was the
main controller platform on account of its native USB-HID
support. Built on top of a Microchip PIC8 (a competitor to the
Atmel AVR), the CUI comes bundled with a generic MIDI-

5 http://www.sparkfun.com/products/9595
6 http://www.arduino.cc/en/Main/ArduinoEthernetShield
7 http://www.usb.org/developers/hidpage/
8 http://www.microchip.com/

HID firmware which sends out 12-channels of pitch-bend
data, one for each ADC pin present on the board.
 In previous years, students in the class noted a few
frustrations with the CUI, claiming the propriety development
chain and necessity of low-level C required by Microchip
complicated the process of making changes to the firmware.
We also investigated the use of the micro-OSC firmware on
the CUI, uOSC [7, 8]. The uOSC firmware also required
separate serial to OSC software on the host. In short, it did
not meet our expectation of usability.
 Figure 2 illustrates the benefits of the USB-HID protocol
by simplifying the number of steps present in Figure 1 and
demonstrates our ideal model for a musical controller
development platform.

Figure 2. Simplification of protocols and software by
using HID.

2.4 A New Firmware
Underling several ideas presented by Owen Vallis et al in his
2010 NIME presentation, “A Shift toward Iterative and Open-
Source Design for Musical Interfaces [10],” the concept of
HIDUINO aimed to directly attack our usability issues by
removing the protocol confusion. Driven by a desire to see
the Arduino act as a true USB-HID device, the primary goal
of HIDUINO was to dismiss the need for custom software
and remove the Arduino’s dependence on the serial protocol.
A secondary goal was to develop a feature-complete
framework to meet the needs of both prototype and
performance-ready controllers.

3. IMPLEMENTATION
Implementation of HIDUINO was aided by two recent events
within the Arduino community: a redesign of the Arduino
microcontroller and the support of an existing USB-HID
library by the Arduino team.

3.1 2010 Arduino Redesign
The 2010 revision to the Arduino platform introduces the
UNO and the Mega2560, using the Atmel ATmega328 and
the ATmega2560 chips respectively. Earlier revisions were
equipped with an FTDI chip permitting users to interface with
the Arduino via USB. The FTDI chip presented a few
challenges to familiar users, namely that it required propriety
drivers on all platforms and could only act as a virtual serial
port. The 2010 redesign omitted this chip in favor of the
ATmega 8U2, the tiniest chip in Atmel’s lineup that included
native support for USB. The new Arduino includes a pre-
loaded firmware which emulates the functionality of the older
FTDI chip, but more importantly exposes the pins necessary
to re-flash the 8U2 with the users’ own custom firmware.
This change opened up the possibility of writing a firmware
that could conform to the USB-HID protocol specification
and still communicate with the primary microcontroller on the
Arduino. Without this redesign, the HIDUNO project would
have required the production of a new shield that incorporated
the 8U2 or similar ATmega USB chip.

Figure 3. High-level architecture of a controller using HIDUINO

3.2 LUFA Library
In 2008 Dean Camera started the MyUSB library, an open-
source Human Interface Device (HID) library for the USB-
compatible line of AVR microcontrollers. Later renamed
LUFA (Lightweight USB Framework for AVRs)9, the project
set out to create an elegantly-written library to demystify the
USB-HID protocol. In contrast with a number of libraries
written for the same purpose (detailed in the LUFA
documentation)10, the API is straightforward and not
restricted to any specific AVR USB microcontroller. In
addition, the library comes preloaded with descriptors for
generic HID devices, including MIDI. Descriptors, as a core
part of the USB protocol, instruct which drivers a host
computer should use to interface with the device. Most
operating systems provide built-in drivers for these USB
class-compliant devices.

3.3 The Firmware(s)
Initial firmware programming took place late in 2010 shortly
after the new Arduino designs shipped. The LUFA library
already provides appropriate descriptors for USB-MIDI, thus
the majority of HIDUINO code is targeted at structuring the
communication between the main ATmega chip and the new
8U2. Figure 3 illustrates a full-system overview of a
controller using the HIDUINO, showing the primary
functions of the firmware.
 The main Arduino ATmega and 8U2 chip communicate
over shared transmit/receive USART11 pins. Although the
structure of the serial sent from the main chip does not matter
on account of its later re-packaging as 32-byte USB-MIDI
event, we decided implement a standard 3-byte MIDI
protocol to standardize and simplify sending data between the
chips. Once the HIDUINO firmware receives a complete 3-
byte message, it is checked for validity, placed into a USB-
MIDI event container, and finally pushed over USB. After
developing MIDI-out, all communication functions were re-
written in reverse for MIDI-in.
 While we emphasize development of USB-MIDI in this
publication, other HIDUINO firmwares are currently being
released that give an Arduino the power to act like other
common HID devices, including mice, keyboards, joysticks,
game controllers, and even audio devices. Several music
programming languages and frameworks currently support

9 http://code.google.com/p/lufa-lib/
10http://www.fourwalledcubicle.com/files/LUFA/Doc/101122
11 http://arduino.cc/en/Reference/serial

reading HID, though these are aimed primarily at repurposing
commercial USB devices as musical controllers [13].

4. PROTOTYPING
The process of building a controller implementing HIDUINO
is designed to be as straightforward as possible. In the context
of the Interface Design class, the process of prototyping a
new controller can be broken down into four steps:

1. Design
2. Signal Conditioning
3. Transitioning to HIDUINO
4. Testing

4.1 Design
The design phase exists to consider aspects of overall form,
function, and effectiveness as musical controller. Students are
encouraged to test and experiment with various sensors
including potentiometers, soft potentiometers, force sensing
resistors, buttons, accelerometers and gyros, photocells,
resistive touch surfaces, proximity sensors, hall-effect
sensors, and flex sensors.

4.2 Signal Conditioning
All sensors connected to the Arduino require some level of
conditioning and scaling before being sent to the host. For
example, accelerometers are often low passed and soft-pots
are read using sample-and-hold logic. Data during this step is
sent to the host using serial so it can be displayed in the serial
monitor in the Arduino IDE. As a final step, sensor data is
clamped to MIDI-friendly 0-127 resolution.

4.3 Transitioning to HIDUINO
After a user is content with the sensor data, the Arduino
sketch is ready to implement MIDI. Using a simple Arduino
library for reading and writing MIDI over serial, the data can
be packaged as a note on, continuous control, or pitch bend
message.

4.3.1 Flashing the firmware
The flashing process can be accomplished one of two ways
depending on whether a user has access to an in system
programmer (ISP). Both ATmega chips on the redesigned
Arduino have exposed in circuit serial programming (ICSP)
headers. In our own testing and within the class, an Atmel
AVR-ISP MKII was utilized to flash firmwares directly onto
the 8U2. A second option is through the use of a bootloader.

The DFU bootloader12 written by Atmel can piggyback on
top of any firmware granted there is enough free flash
memory. When certain pins on the exposed 8U2 headers are
tripped, the chip will enter bootloader mode and then can be
programmed via USB. All HIDUINO firmwares are currently
built with the DFU bootloader so both methods are available.
Section 5 provides a link to the HIDUINO project page which
presents this entire process in greater depth (including tools
and software used) in tutorial format.

 In the first iteration of HIDUINO, host communication
with the primary ATmega328 chip needed the virtual-serial
port firmware and thus complicated the process of updating
Arduino sketches as most users need to continuously switch
between virtual-serial and HIDUINO. A recent build of the
software combines the virtual-serial and HIDUINO firmwares
into a single package so a user is able to select which
firmware is loaded based on header pin configuration. This
build requires the use of an ISP programmer to initially load
the firmware as the combined version could not be combined
with the DFU bootloader in the 8kB of space available on the
8U2.

4.4 Testing
The testing phase ensures that each sensor is correctly scaled
and addressed by the right MIDI identifier.

5. SUMMARY AND FUTURE WORK
The HIDUINO project represents a significant step forward
for students, musicians, and artists who desire their own
custom controller. With HIDUINO, the Arduino now has the
potential to become a powerful base for driverless, cross
platform MIDI controllers and other HID devices. With these
firmwares, DIY controllers can compete with the plug-and-
play usability of commercial offerings while maintaining our
core values of learnability, modularity, and flexibility for
teaching and prototyping.
 With respect to future work, considerable ongoing effort
is being applied toward extending the quality and number of
HID firmwares, including device types for joysticks, game
controllers, mice, and keyboards. One of the largest student
complaints about the MIDI firmware is that it is still restricted
to 12713 steps of resolution. We are investigating the
possibility of implementing a part of the USB specification
called CDC-ECM14 – Ethernet Control Model. Although not
currently a part of the LUFA library, CDC-ECM would allow
the possibility of native Ethernet-over-USB functionality
permitting the use of high-resolution protocols like OSC.
 The HIDUINO project page is located online at
http://mtiid.calarts.edu/research/hiduino and includes a
tutorial-style guide to alter and compile the firmwares from
scratch. The current SVN code repository is located on
GoogleCode at http://code.google.com/p/hiduino/.

6. ACKNOWLEDGMENTS
This project would have been very difficult without the
Lightweight USB Framework for AVRs (LUFA) written by
Dean Camera. The authors would also like to thank Martijn
Zwartjes, Jim Murphy, and the entire Arduino team and

12 DFU bootloader datasheet:

http://www.atmel.com/dyn/resources/prod_documents/doc7
618.pdf

13 Assuming MIDI pitch bend is not used
14 CDC-ECM Specification:

http://www.usb.org/developers/devclass_docs/CDC_EEM1
0.pdf

community. Special thanks to Tahnee Gehm for illustrating
Figures 1, 2 and 3.

7. REFERENCES

[1] Cook, P.R. "Principles for Designing Computer Music

Controllers," in ACM SIGCHI New Interfaces for
Musical Expression (NIME) Workshop Seattle, WA,
2001.

[2] Cook, P.R. "Re-Designing Principles for Computer
Music Controllers: a Case Study of SqueezeVox
Maggie," in New Interfaces for Musical Expression
(NIME) Pittsburgh, PA, 2009.

[3] D’Arcangelo, G. "Creating a Context for Musical
Innovation: A NIME Curriculum," in New Interfaces
for Musical Expression (NIME) Dublin, Ireland, 2003.

[4] Gibb, A.M. New Media Art, Design, and the Arduino
Microcontroller: A Malleable Tool. Master's Thesis,
Pratt Institute, New York, NY, 2010.

[5] Orio, N., Schnell, N., and Wanderley, M.M. "Input
Devices for Musical Expression: Borrowing Tools from
HCI," in Computer Music Journal, 26(3), MIT Press,
2002.

[6] Overholt, D. "Musical Interaction Design with the
CREATE USB Interface: Teaching HCI with CUIs
instead of GUIs," in International Computer Music
Conference (ICMC) New Orleans, LA, 2006.

[7] Schmeder, A. and Freed, A. "A Low-level Embedded
Service Architecture for Rapid DIY Design of Real-
time Musical Instruments," in New Interfaces for
Musical Expression (NIME) Pittsburgh, PA, 2009.

[8] Schmeder, A. and Freed, A. "uOSC: The Open Sound
Control Reference Platform for Embedded Devices," in
New Interfaces for Musical Expression (NIME)
Genova, Italy, 2008.

[9] Steiner, H.C. "Firmata: Towards making
microcontrollers act like extensions of the computer,"
in New Interfaces for Musical Expression (NIME)
Pittsburgh, PA, 2009.

[10] Vallis, O., Hochenbaum, J., and Kapur, A. "A Shift
Towards Iterative and Open-Source Design for Musical
Interfaces", in New Interfaces for Musical Expression
(NIME) Sydney, Austalia, 2010.

[11] Verplank, B., Sapp, C., and Mathews, M. "A Course on
Controllers," in ACM SIGCHI New Interfaces for
Musical Expression (NIME) Workshop Seattle, WA,
2001.

[12] Wilson, S., et al. "Microcontrollers in Music HCI
Instruction", in New Interfaces for Musical Expression
(NIME) Montreal, Canada, 2003.

	1. INTRODUCTION
	2. BACKGROUND
	2.1 Why the Arduino
	2.2 On Protocol Confusion & Usability
	2.3 USB HID & the CUI
	2.4 A New Firmware

	3. IMPLEMENTATION
	3.1 2010 Arduino Redesign
	3.2 LUFA Library
	3.3 The Firmware(s)

	4. PROTOTYPING
	4.1 Design
	4.2 Signal Conditioning
	4.3 Transitioning to HIDUINO
	4.3.1 Flashing the firmware

	4.4 Testing

	5. SUMMARY AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

