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1. INTRODUCTION.

Assurance of the reliability and accuracy of computed data is fundamentally
important in computer aided analysis and design. In this paper we address the
question of how to ensure the reliability and accuracy of computed data in engi-
neering computations concerned with analyses of structures comprised of beam,
arch, plate and shell components and components which require fully three dimen-
sional representation. We consider only formulations based on the linear theory
of elasticity but our approach can be generalized to cases that involve geometric
and/or material nonlinearities.

Beams and arches are three dimensional bodies characterized by the fact that
two of the three dimensions are much smaller than the third. Similarly, plates
and shells are three dimensional bodies characterized by the fact that one of the
dimensions is much smaller than the other two. The various theories for beams,
arches, plates and shells recognize and exploit this. These theories are useful
because the quantities of interest in the analyses of beams, arches, plates and
shells, such as membrane forces, bending moments and shear forces, are related to
certain averages of the displacement across the small dimension(s) of these three
dimensional bodies. This permits reduction of the dimensions in the case of beams
and arches from three to one and in the case of plates and shells from three to
two.

In engineering problems the line of demarkation between problems of three di-
mensional elasticity and problems which can be modeled with conventional beam,
arch, plate and shell theories is not sharp. Usually plates and shells are stiffened
and/or joined with solid bodies. Of greatest engineering interest are the neighbor-
hoods of shell intersections, cutouts, attachments, etc. where the stress states are
truly three dimensional and therefore the assumptions of conventional shell theo-
ries do not hold. If we are to ensure the reliability and accuracy of computed data
without sacrificing computational efficency then we must be able to model these
parts of the structure with three dimensional theories while retaining the simplify-

ing assumptions incorporated in plate and shell theories where those assumptions



hold. This raises the fundamentally important question stated by Naghdi in [1] as

follows:
“Under what circumstances do the equations of shell theory supply an ap-

proximate solution to the three-dimensional equations and how ‘close’ is this

approximate solution to the exact solution?”

In this paper we present a systematic process which provides means for find-
ing answers to this question with respect to specific problems in engineering design
and analysis. Our approach is based on hierarchic sequences of approximation con-
structed in such a way that the approximate solutions corresponding to a hierarchic
sequence of models converge to the exact solution of the fully three dimensional
model. Selection of the discretization parameters and the stopping criterion are
based on (1) estimation of the relative error in energy norm; (2) equilibrium tests,
and (3) observation of the convergence of quantities of interest. This approach
is closely related to p-extension procedures which have been used successfully for
estimating and controlling errors of discretization.

Several beam, arch, plate and shell theories exist. These theories have been
created and justified by two approaches:

(a) By a priori assumptions concerning the mode of deformation. This approach
is favored in the engineering literature, see for example [2-4].

(b) By power series expansion of the solution of the three dimensional differential
equations of elasticity so that powers of the thickness parameter are factored.
There are several possible variants of this approach: The power series expan-
sion can be applied to the differential equations of elasticity directly (see for
example [5-8]) or any of the variational formulations of the differential equa-
tions of elasticity. Power series expansion procedures applied to variational
formulations lead to theories characterized by the variational formulation.
Ciarlet and Destuynder showed, without a priori assumptions based on phys-
ical arguments, that Kirchhoff’s theory of plates is the first in a sequence of
plate theories that can be constructed from the Hellinger-Reissner variational
principle [9].

In this paper we will be concerned with formulations based on the principle

of virtual work or, equivalently, the principle of minimum potential energy. Our
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focus is not on the development or justification of new theories for beams, arches,
plates or shells but on aspects of computer implementation of hierarchic sequences
of finite element spaces suitable for numerical treatment of a large variety of prac-
tical problems which may concurrently contain thin and thick plates and shells,
stiffeners, and regions where truly three dimensional representation is required.
The discretization parameters which characterize the transverse variation of the
displacement components are not fixed a priori, but taken into consideration in

the selection of discretization.

We have selected the principle of virtual work as the basis for our formulation
because this is the best understood formulation among alternatives and we have
substantial experience with it. Analogous construction of hierarchic approximation
spaces is possible for formulations based on other principles.

Error control procedures require feedback information concerning the accu-
racy of the solution in terms of the quantities of interest, and means for reducing
the error when necessary. Our approach makes it possible to select sequences of
discretization by adaptive or feedback procedures. We will outline and demon-

strate such procedures by examples.



2. CONVENTIONAL AND HIERARCHIC THEORIES FOR
PLATES AND SHELLS

We note that there are fundamental differences between the motivations un-
derlying the development of classical and modern approaches to modeling of plates

and shells. Development of classical theories was motivated by the recognition
that the system of partial differential equations of three dimensional elasticity is
intractable analytically except in severely restricted cases. Reduction of the num-
ber of dimensions in the case of beams, arches and bars from three to one and
in the case of plates and shells from three to two permit analytical treatment of
large classes of problems. In the cases of arches and shells the coordinate systems
must be appropriately chosen (e.g. cylindrical, spherical, ellipsoidal, etc. systems)
to allow analytical treatment. Comprehensive surveys of classical theories with
historical notes and lists of key references are available in [1,10].

The motivation of modern development is quite different. The main goal is
to allow computer implementation so that a very wide range of problems can be
analyzed by numerical methods efficiently and with guarantee of reliability. The
range of problems is to include, for example, simple bars as well as laminated shells
of arbitrary curvature, regions of shell intersections and solid bodies attached to

shells.
In the following we briefly review the essential features of the most widely

used conventional plate and shell theories and outline the hierarchic theory. The
notation used for representing the components of the displacement vector « is

given in Fig. 2.1.

2.1 Kirchhoff’s theory.

In Kirchhoff’s theory of plates, formulated in 1850 [11], there are three dis-
placement fields. The functions uo(z,y), uyo(z,y) in the following equations repre-
sent the components of the in-plane displacement vector in the x and y directions,

respectively, and the function u,0(z,y) represents the transverse displacement vec-

tor component.

3“-0
oz

uz =tzo(z,y) — 2 (2.1a)
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Fig. 2.1. Components of the displacement vector. Notation.

Ous0
dy

(2.1)

uy =tyo(z,y) — 2
uy =uy0(z,y). (2.1¢)

In its generalization to shells, known the Kirchhoff-Love theory [12], u., 4y, u, are

understood to mean the curvilinear (contravariant) displacement components.

From the assumed mode of deformation: ¢, %' du,/dz = 0. The assumption
that ¢, = 0 implies that the plate is orthotropic with Poisson’s ratios v,, = v, = 0.
The shear strains v, and 7,, are zero. E.g.:

def Ouy  Ous _ Juso  Ouso

Vzs dz 3z 8z oz =0

In applications of the principle of virtual work the transverse displacement u,o
and its first derivatives must be continuous. This is a major disadvantage of this

formulation because enforcement of slope continuity is difficult in the general case.

2.2. The Reissner-Mindlin theory.
In the Reissner-Mindlin theory, formulated in the 1940’s and early 1950’s [13-

15], two new fields v.1, u,, are introduced. These fields represent the rotation of

the cross-sectional planes to which (respectively) the x-axis and y-axis is normal:

Us =u30(%, ¥) — zu51(2, 9) (2.20)
uy =uyo(z, ¥) — zus(z, ¥) (2.2b)
Uy =u10(z: y) (2.26)
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Again, ¢, = 0 and o, = 0 is assumed. The shear strains ,, and v,, are independent

of z. For example:

Oduso
oz

Yz = —“sl(z) y) +

In applications of the principle of virtual work the shear strain energy is adjusted
by a shear factor. In its generalization to shells u,, u,, u, are understood to mean

the curvilinear (contravariant) displacement components [16].

2.3. Higher order theories.
In higher order theories the displacement fields are typically approximated by

expressions of the form:

we =3 fi(#) vz, ) (2:30)
$=0

uy = 2'.: fi(2) uyi(z, 9) (2.3b)
$=0

Uy = Z fi(2) vai(z, y). (2.8¢)

Usually fi(z) = 2*. The various theories differ in the chice of » and m and the
constitutive law. For example, in the plate theory proposed by Lo, Christensen
and Wu [17,18] n = 8, m = 2 and the constitutive law is the stress-strain law of

isotropic elasticity. Discussion of other higher order theories is available in [17].

2.4. Hierarchic theories.

A hierarchic theory is essentially a system of progressively higher order the-
ories based on the same generalized formulation and the same constitutive law.
Each theory within a hierarchic system is embedded in all higher order theories in
that system and the approximate solutions corresponding to progressively higher
order theories converge to the exact solution of the generalized formulation of the
fully three dimensional problem. Various hierarchic theories can be constructed
by choosing alternative generalized formulations, e.g. the Hellinger-Reissner prin-
ciple, the principle of virtual work, etc.

In this paper we present a hierarchic system of theories based on the principle

of virtual work for homogeneous plates. The general form of approximation is the
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same as in (2.3a,b,c). We propose hierarchic basis functions for the displacement
components u.;(z,y), v,(z,y), usi(z,y) so that shell elements can be readily joined
with three dimensional finite elements. The formulation can be extended to apply

to laminated plates and shells as well. This is briefly discussed in Section 3.3.




3. HIERARCHIC BEAM, ARCH, PLATE AND SHELL MODELS.

In this section the procedures for the computation of stiffness matrices and
load vectors for hierarchic plate and shell models are described. We begin with the
simplest representative case for this class of problems, the case of beam-columns

and arches.

3.1. Beam-columns and arches.

Let us consider the kth element of an arch, shown in Fig. 3.1. The element is
mapped from the standard quadrilateral element, also shown in Fig. 3.1, by some

smooth mapping functions:

\ z= z(k)(fx ’7)) y= y(k)(fl 'l): (fx ’7) € (I (3'10')

where 0,, is the standard element and the superscript (k) refers to the kth finite

element, 0,. The inverse mapping is:

§= f(k)(x; V)’ n= ’7(") (z: y)’ (zr y) € (li. (S.Ib)

In the following we omit the superscript (k) with the understanding that the dis-

cussion refers to the kth element.

In the case of beam-columns and arches one dimension is generally much larger
1 than the other two. We will assume that the lines corresponding to constant 5
values (—1 < ¢ < 1) are in the “long” direction of the curved beam or arch.

Let us now consider an arbitrary point P, as shown in Fig. 3.1. Point P is
located at the intersection of two coordinate lines, one corresponding to constant
¢, the other corresponding to constant n values. We denote the unit vector which
is tangent to the constant 5 line by & and the unit vector which is tangent to
the constant ¢ line by ¢,. Given the mapping (3.1) the normalized covariant basis

vectors are:

f = ! 8z ay)” 2a
NOECRE
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Fig. 3.1. Typical arch element. Notation.

o 1 dxr Jy T
ey = {5;]- 5} . (3.2b)

Y&+ (2)

Note that & is generally not orthogonal to ¢,.

We denote the displacement vector components in the direction of ¢ (resp.
é,) by u, (resp. u,). Similarly, we denote the displacement vector components in
the direction of z (resp. y) by u. (resp. u,). The components u,, u, are related to

u¢, u, by the following relationships:

1 oz 1 oz

- = oo ue+ — u, (3.3a)
VGG

Uy =

V&) (&)

! Sy 1 %, . (3.36)

e -G e

We now introduce the notation:

{“}(z.v) ) { ) } ) {u}(e,,,) def { ¢ } . (3.4)

-9-
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With this notation (3.3a,b) can be written as:
{u}(zv) = [R{u}(e,m) (3.5)

where the definition of the 2 x 2 matrix [R] is obvious from (3.3a,b).
We now define space §77 to be the span of the following (p+1)(¢+1) monomials

on the standard quadrilateral element:

l’ 6’ 62’ rey Ep’
n, &n, €9, ..., &,
7%, &n%, €399, ..., £

For example, the spanning set for §42 is the set of monomials inside the dotted

lines in Fig. 3.2.

1
7 SN
P £ ¢ " \\?
p
& én n?
e
€& n 3 e ) n®
e €n e S e n*
I3 N £4n &2 < n® &nt n®
e
¢ e N er o e et en® n°
£ £ A &nt q° én n7

Fig. 3.2. Space §*2 is spanned by the monomial terms inside the dotted lines.

We denote the dimension of §7¢ by n, that is:

n Y dim $7¢ = (p + 1) (g + 1). (3.6)

We define n basis functions for §#¢ and denote these basis functions by N;(¢,n),

i =1,2,...,n. The definition of basis functions is given in Section 4. Thus any
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function u, defined on the standard element Q,,, which lies in §77 can be written
in the form:

u= 2": a; N;(&, 1) (3.7)

=1

where a; are arbitrary real numbers. We remark that in the finite element method
a; are not completely arbitrary because interelement continuity constraints and
constraints that represent kinematic (principal) boundary conditions must be en-
forced. Although the basis functions are defined on the standard domain, and are
given in terms of the standard variables ¢ and 5, we can (at least in principle)
substitute (3.1b) for ¢ and n and view the basis functions as functions defined on
Q.

We will investigate two approaches: In the first approach the approximations
to the curvilinear components of the displacement vector u¢, u, lie in §P9. In
the second approach the approximations to the Cartesian components of the dis-
placement vector u,, u, lie in §P9. The first is the classical approach. Its main
advantage is that for certain types of mapping analytical solutions can be obtained.
Also, in this approach different degrees of approximation can be used for the dis-
placement components. For example, in the Reissner-Mindlin theory u; € §7! and
u, € §7°. Note that index ¢ identifies a particular beam or arch theory within the
hierarchic system of theories whereas index p identifies a particular discretization
within a hierarchic sequence of discretizations based on p-extension. The second
approach is better suited for computer implementation because enforcement of
the appropriate continuity conditions between elements mapped by different map-
ping functions, a condition which frequently occurs in engineering applications,
is simpler. This permits the use of a great variety of mapping functions. Also,
computation of the stiffness matrices and load vectors as well as post-solution
procedures are somewhat simpler. On the other hand, when Cartesian systems
are used then the displacement components are not oriented in the long and short
dimensions in general. Therefore the same degree of approximation has to be used
for each displacement component. While this increases the computational work
somewhat, an important advantage is gained: all monomial terms which contain

7, 7%, ..., n? are retained in the approximation.
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When we approximate the curvilinear components we have:

a
ug Ny N, ... N, 0 0 ves 0 a:
= . (3.84)
uy 06 0 ... 0 N N ... N, :
n+m
or, in short hand:
{u}(em) = [N]{a} (3.8b)
where a3, a3 ..., an4m are coefficients to be determined from the finite element

solution. When we refer to a specific element, for example the kth element, we
write: ag") (¢ =1,2,...,n+m) or, simply, {a(¥}. We denote individual columns of

[N] by {N;}. Thus we can also write (3.8a,b) in the following form:

n+m

{u}em = D ai{M}. (3-8¢)

=1

When we approximate the Cartesian components then the expressions are

similar but we must have n = m:

2n

{“}(z,y) = Z ai{Ns'}- (3.9)

=1

We remark that if we accept the restriction n = m then the two approaches can
be interpreted as the choice of the space §79: When the curvilinear components
are approximated then {u}(,,) € $?»¢ where §¢ is spanned by [R]{N:}, i =1,2,...2n.
When the Cartesian components are approximated then {u}(,,) € $»¢ where §#.
is spanned by {N;}, ¢ = 1,2,...2n. We now describe the computation of elemental

stiffness matrices and load vectors for both cases.

3.1.1. Element stiffness matrices.
The strain energy of the kth element is of the form:

U, & _;_ / o (0z€z+0y€y+Taysy)tdzdy = % //m ([D]{u}(,,y))r [E][D){v}(z,y) t dz dy (3.10)

where o,, 0y, 7z, are the stress components, e,, ¢,, 7., are the strain components,

t = t(z,y) is the thickness; [D] is a differential operator matrix. In the case of plane
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elasticity:

r 9 T
az
:]
[Dj=| o0 3y . (3.11)
s 8
Lay Oz

[E] is the material stiffness matrix. For example, in the case of plane stress:

1 v 0
E
[E] = = | 1 0 (3.12)
1—-v
0 0 2

where E and v are, respectively, the modulus of elasticity and Poisson’s ratio.
We now transform the integral (3.10) so that the integration is on the standard

element 0,,. We denote the Jacobian matrix of the transformation (3.1a) by [J]

and its inverse by [J*|:

Ju  Jia 3¢ B¢ I i
% it (5.19)
Jar - Jaa 3% 3n Ji i
n dn
and we denote the determinant of the Jacobian matrix by |J|. We define:
8 .. a
Jflb’g + Jn% 0
o1 def ) 2
[D*] & 0 Tirgg + Ty, (3.14)
9 .8 .93 .9
J;lb'g""’zz% J“a_€+J“5;;

Clearly, [D*] is [D] written in terms of the variables ¢ and n. When we approximate
the Cartesian components of the displacement vector then we can write (3.10) in

the following form:

Ok = % / /n.. ((D*Hodew) " [BID* {8} t | dE dn. (3.15a)
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The subscript k is a reminder that [D*] and |J| are computed from the mapping
functions of the kth element. When we approximate the curvilinear components

of the displacement vector then from (3.5) and (3.15a) we have:
1
U= [[[ (DR en)T LEUD RN} e 18 . (3.15)
The stiffness matrix for the kth element is defined so that:
U, = %{a(h)}r[ K®]{al®} (3.16)

therefore, when we approximate the Cartesian displacement components then the

elements of [K(¥)] are:
K9 = [ (D NN BN} el de . (5.174)

When we approximate the curvilinear displacement components then the elements

of [K(*)] are:
K9 = [[ (D URKNDT (BIDIRICN; 41 de . (5.173

These terms are usually computed by numerical quadrature. However when the
mapping is linear then the integrations can be performed in closed form and the

speed of computation greatly increased. See, for example, [19,20].

3.1.2. Element load vectors: traction loading.

Let us assume that the load is known in terms of traction components applied
in the normal and tangential directions on the upper surface of the beam-column
or arch, that is on the surface corresponding to n = 1, see Fig. 3.1 and (3.1a). We
will consider this case only, the other cases are treated analogously. By definition,

the potential of external traction loads acting on element 0, is:
P = / (T2 uz + Ty u,) dS (3.18)
a0,

where 30, represents the bounding surfaces of element k; 7,, T, are components
of the traction vector; dS is the differential surface. We will write dS in terms of
the differential arclength ds and the thickness: dS =t ds (see Fig. 3.3). In practical
problems usually T,, and T; rather than 7, and T, are given. Referring to Fig. 3.3

{E}-[me el (%} -

-14-
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Fig. 3.3. Notation: Traction vector components.

From the definition of « in Fig. 3.4 we have:

sina = _dz, Sa = dy
=-%  ee=g
and, from (3.1a):
az(*) dytk)
dz = d§; dy = d¢.
z 85 n=1 € y 85 n=1 e

Therefore we can write:

ay(®)  gz(k) T
- A
- T
Py —-/_1 {u}(,,y) az(®)  ayh) tde.

3€ 3€ n=1

If we work in a Cartesian system we substitute:
{u},y = [N]{a}
or, if we work in the curvilinear system, we substitute:
{u},, = [R][N]{a}
into (3.22) and write P, in the following form:

Pe = {a}T{+*)}

-15-
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where {r(¥)} is the load vector of the kth element. Thus, when the Cartesian
components of the displacement vector are approximated, the ith element of the

load vector of the kth finite element is:

ay*)  gz(k)
(k) + T ¢ 13 Tn
(%) = A de. .24b
f" [—1 {N} az(k) ay(k) t e (3 )
o0& ¢ 1,

3.2. Plates and shells.

The computation of stiffness matrices and load vectors for plate and shell
elements is analogous to the procedure described in Section 3.1. Plate and shell
elements are usually six sided but five sided elements are often useful also. We
will consider six-sided elements only, thus the standard element is the hexahedron,

shown in Fig. 3.3. The mapping functions are:

z=z®(g,n,¢), y=9v¥(&n¢), z=20(&n¢), -1<é&n¢<l. (3.25)

We will assume the mapping to be so that ¢ =0 is the middle surface of the shell.
Thus ¢ = +1 gives the ‘upper’ surface and ¢ = —1 the ‘lower’ surface of the shell. In

the following we will omit the superscript (k).

Fig. 3.4. Typical shell element. Notation.

-16-



The strain energy of the kth element is:

Us d—_'-'—‘% // (0z€z + Oyey + Oa€s + ToyYay + TysTys + TazVsz) dz dy dz
n
h (3.26)
1 T
=3 / / A (ID{{8}aw.r))” |END){}(z,p.s) dz dydz
&

where {u}(sy.s) < {u, u, u,}T is the displacement vector; [D] is the differential
operator matrix of the three dimensional strain-displacement relationship and [E]
is the stress-strain law in three dimensions. The definitions are analogous to those
in (3.11), (3.12) and the details are available in every textbook on elasticity and
strength of materials.

Once again we have the option of approximating either the curvilinear or
Cartesian components of the displacement vector. The relationship between the
curvilinear and Cartesian components is analogous to (3.5). Thus the approxima-

tion is either:
{u}(emn.) = [N]{a} (3.27a)

where [N] is a $ x (2n + m) matrix of basis functions; or:
{v}(2.v.0) = [N]{a} (3.270)

where [N] is a 8 x 3n matrix of basis functions. The basis functions are defined
on the standard hexahedral element. The space spanned by the basis functions is
denoted by $r»4. Basis functions, based on Legendre polynomials, are defined in

the following section. Equation (3.27a) represents the conventional approach.

3.3. Laminated arches and shells.

In this paper we are primarily concerned with homogeneous arches and shells.

In the case of laminated arches and shells the normal and shear stresses are con-

tinuous across laminar interfaces but the strains are not. Three approaches are

possible:

(1) The arch or shell elements can be “stacked” so that the laminar interfaces
correspond to interelement boundaries. This is feasible when there are only

a few laminae, as in the case of arches and shells of sandwich construction.

-17-



(2)

(3)

When there are many laminae and interlaminar stresses are of interest then
the mapping should be so that the laminar interfaces correspond to constant
n lines in two dimensions or constant ¢ surfaces in three dimensions. In this
case N;(¢,n) in two dimensions (resp. N;(¢,n,¢) in three dimensions) must be
piecewise polynomials in the n (resp. ¢) direction which are continuous at the
laminar interfaces, with discontinuous derivatives. The derivative ratios are
computed so that the condition of continuity of the normal and shear stresses

is satisfied.

When there are many laminae and the interlaminar stresses are not of interest

then the material can be treated as homogeneous, and the material properties

chosen to represent average properties of the laminae.

-18-



4. HIERARCHIC BASIS FUNCTIONS FOR $r¢ AND $rra,

The key considerations in the selection of basis functions are to ensure nu-
merical stability and to make the computational effort required for the generation
of stiffness matrices and load vectors as small as possible. We wish to perform
p-extensions, therefore the basis functions should be hierarchic, that is the basis
functions corresponding to polynomial degree p (p > 1) should contain, as subsets,
the basis functions corresponding to polynomal degrees p—1, p—2, ..., 1. Compu-
tational experience has shown that basis functions based on Legendre polynomials
have good properties from the point of view of numerical stability. We also wish
to construct our basis functions in such a way that curved beam elements can
be readily joined with plane elastic elements and plate and shell elements can be
readily joined with three dimensional finite elements. In the following we define

the basis functions used for §»7 and $P*9 in the present investigation.

4.1. Hierarchic basis functions for $r:9,
The basis functions for §1:! are the usual basis functions for four-noded quadri-
lateral finite elements:
Mi=3(t-801-n Fa=(1+8(1+n)
(4.1)
Ny=

] - -

1+9a-n  F=Z0-ou+n)

where the superscript (°) indicates that these basis functions are associated with

the vertices which are domains of dimension zero. We now define:

¢.~(€)=\/2i2_1/:1’.-_1(t)dt i=23,...,p (4.2)

where P,, P, ..., P,_; are the Legendre polynomials. The basis functions for $»!,

p > 1 are comprised of the four vertex modes (4.1) and the following functions
associated with the sides corresponding to n = +1, hence are usually referred to as

side modes:

1419
2

1 1- n 1 .
N3 = — $:(£), Niia= #:(£), 1=2,3,...,p (4.3)
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The basis functions for §79, ¢ > 1 are comprised of the basis functions for §! plus

the following edge modes:

1+¢

1- E ¢j(’7)) 11v2p+2:i—2 = 2 ¢J'(’7)1 J. =2, 3: <9 q (4‘4)

2

1
Nopizj-s =

and, when p, ¢ > 2, we have the following basis functions, called internal modes:

fv"=(1—£2)(1_'72)R(€)Pj(r’)! "=0)112)“')P—2; j=0’1!2)"'1q_2 (45)

where the superscript 2 indicates that these basis functions are associated with the
area of the standard quadrilateral element which is a domain of dimension two.
The subscript k ranges from 1 to (p —1)(g — 1).

In summary, we have four nodal basis functions, given by (4.1); 2(p—1)+2(¢—1)
edge modes, given by (4.3) and (4.4); (p — 1)(¢ — 1) internal modes (p,¢ > 2), given
by (4.5), a total of (p+ 1)(g + 1) basis functions, which is the dimension of §rs.
These basis functions are polynomials and are linearly independent. There are no
monomial terms in the basis functions which are not in the spanning set for §»9.

Therefore these basis functions also span §r9,

4.2. Hierarchic basis functions for §PP9,

4.2.1. The vertex modes: Basis functions for §1.1.1,
There are 8 vertex modes, denoted by Rf.-, i=12,...,8. Once again the
superscript (°) indicates that these modes are associated with the vertices which

are of dimension zero:

Fy=g(1- 9 -n)(1-) (4.8a)
Fa=g(1+ 9 -n)(1 -9 (4.65)
Mo =3t~ &)(t-n)(1+g). (4.6¢)

4.2.2. Edge modes.
We use the superscript 1 to indicate that the edge modes pertain to the edges

which are of dimension one.




————— — -

(a) In the case of §»»! (p > 2) there are 8(p — 1) edge modes. These are defined in

terms of the function ¢;, see (4.2):

Nisaen =4O = n)(1 =) (4.7a)
Nasaion =3(n) (1 + €)1~ ) (e75)
Nesagi-2) =ghi(n)(1 - (1+9) (470

wheres=2,3,...,p.
(b) In the case of §#74 (p > 2, ¢ > 2) there are 8(p — 1) + 4(¢ — 1) edge modes. These

are defined as follows:

Nivson =361~ n)(1 =) (4.30)
Nasagon =5oin)(1+ €)1 o) (4.89)
Nasapn =g d:l)(1 = )1+ ) (4.80)
11V9+4(1'—2) =i¢j(s)(1 —§)(1—1n) (4.8d)
Niosa(i-n) =541(6) (1 + )1~ ) (4.8)
Nivsag-n =34i(6)(1 + (1 + 1) (480)
Nisai- =393(0)(1 = (1 +1) (4.80)

wheres=12,8,...,p;7=2,8,...,q.

4.2.3. Face modes.

We use the superscript 2 to indicate that the face modes pertain to faces

which are of dimension two. The hierarchic face modes can be treated in one

of two ways: Either all face modes are analogous to the internal modes (4.5), in

which case there are 2(p — 1)? + 4(p — 1)(¢ — 1) face modes, p,q > 2, or only the face
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modes which are nonvanishing on faces ¢ = £1; n = %1 are analogous to (4.5) and.

the face modes which are nonvanishing on faces ¢ = +1 are defined by:

K{m=%(1——{2)(1—n2)(1:tg)13.-(€)P5(q) ,7=0,1,...,p—4; (+7)=0,1,...,p—4 (4.9)

and m = m(i,;) depends on the numbering scheme used. In this case the number

of face modes (ng) is:

_ {4(p~1)(q—l) for p=12,3 w10

4p-1)(¢~1)+(p-2)(p—3) forp>4

This is analogous to the definition of hierarchic internal modes in the case of plane

elastic elements [21,22].

4.2.4. Internal modes.
We identify the internal modes by the superscript 8. There are (p—3)(p—2)(¢—

1)/2 internal modes (p > 4; ¢ > 2), defined as follows:

N = (1= €)(1 - 1)(1 = ¢*) Bi(E) Py (n) Pu ) (4.110)

where:

,7=0,1,...,p—4; (¢+J5)=0,1,...,p—4 k=0,1,...,¢—2 (4.11b)

and m = m(s, j, k) depends on the numbering scheme used.
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5. EXAMPLES.

The following examples illustrate p-extension procedures and demonstrate
that conventional curvilinear bases can be replaced by Cartesian bases for a wide
range of radius to thickness ratios without significant loss in performance. Ex-
tension procedures are the only means available for the estimation and control of
errors of discretization. Here we are interested in ensuring that the stress resul-
tants (i.e. membrane forces, shear forces and moments) are accurate to within one
percent relative error.

We report the percent estimated relative error in energy norm, denoted
by (e;)e- These estimates are based on the theoretical estimate of error for p-
extensions. The constants in the theoretical estimate can be computed once the
strain energies have been computed from finite element solutions corresponding to
three polynomial degrees p—2, p—1, p; p > 8. Details are available in [21,23,24].
The estimated exact values of the strain energy were computed by the computer
program PROBE [21].

In all example problems the mapping functions were generated by the blending
function method [21]. Thus circular arcs and cylindrical surfaces were represented

exactly.

5.1. Circular arch, constant cross section, r/t~15.

Our first example is the moderately thick circular arch shown in Fig. 5.1.
The thickness of the arch, i.e. its dimension perpendicular to the x,y plane, is
unity. It is loaded by parabolically distributed shearing traction in the plane of
symmetry so that the shear stresses vanish at the top and bottom surfaces and
Fpy = —1.0. Poisson’s ratio is zero. The goal of computation is to determine the

stress resultants Fyx, Fay, Mao, Fex and Mpo. By definition:
Fx = / (02 cosa + 14y sina) dA (5.1a)
A

where A is the cross sectional area and « is the angle measured from the positive

z axis to the outward normal to the cross section. Similarly:
Fy = / (rzy cosa + 0y sina)dA (5.1b)
A
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and

M, = / [(r2y cosa + oy sina) z — (0 cosa + 7,y sina) y] dA. (5.1¢)
A

The stress resultants were computed from the finite element solutions directly by
numerical quadrature using twelve Gaussian quadrature points on each boundary
segment. Of course, the computed stress resultants are not independent. From

the equations of statics we have:
Fax =—Fpx, Fay =—Fpy =1000, Mao=—Mpo. (5.2)

The exact solution is not known. To obtain a good approximation to the
exact solution, we solved this as a problem in two dimensional elasticity. The
computer program PROBE was used [21]. In PROBE the standard polynomial

space for quadrilateral elements is spanned by all monomial terms of degree p plus
the terms ¢Py and ¢n° for p > 2. The maximal value of p is 8. Details, including
the definition of element level basis functions, are available in [21,22]. The results
for p = 1,2,...,8 are shown in Table 5.1. We see that at p = 8 the equations of
equilibrium are satisfied to at least four digits. The estimated exact value of the
strain energy, determined from a sequence of fully two dimensional finite element

solutions by PROBE, is 0.146660 x 10®/E where E is the modulus of elasticity.

Table 5.1. Circular arch, constant cross section, 3 elements. r/t =~ 15.
Solution as a problem of elasticity.

p N (e)E Fax  Fay M, Fpx Fpy Msp
44 14.9 2.760 1.950 —46.17 3.366 ~—-1.547 51.58
67 6.1 1.653 1.141 —28.17 -1.782 —-0.984 28.07
96 3.6 1.577 0.996 —25.82 -—1.577 -0.996 25.81
131 2.5 1.580 1.000 -—-25.86 -1.580 -—0.999 25.86
172 1.9 1.580 1.000 -—-25.86 —1.580 -0.999 25.86
219 1.5 1.580 1.000 -25.86 -—1.580 -1.000 25.86

Q@ -3 O O ia S0

In this problem the estimated error in energy norm is related to the error in
the average displacement of the loaded cross section. Because by definition the
energy norm of the error is the square root of the strain energy of the error, 10
percent error in energy norm corresponds to 1 percent error in the displacement.

For ¢ =1 and ¢ = 2 the error in energy norm is virtually constant as p is increased.
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Fig. 5.1. Circular arch.

For ¢ = 8 there is a substantial decrease of error. This is due to the fact that
at ¢ = 3 representation of the shear deformation is greatly improved. In general,
if the estimated relative error in energy norm is not changing as p is increased
while ¢ is held constant, then virtually all of the error in energy norm is caused
by the fact that ¢ is too low. However, as the results in Table 5.2 indicate, large
error in energy norm does not necessarily mean that the error in stress resultants
or other quantities of interest is large. The converse of this statement is also
true, see for example [24]. At (p,q) = (5,1) the estimated relative error in energy
norm is 7.9 percent, that is 0.079. The relative error of the displacement of the
loaded cross section is is 0.079% = 0.0062, that is 0.62 percent. This level of precision
is usually more than adequate in elastostatics. In elastodynamics on the other
hand, computation of the high frequency displacement modes necessitates greater

precision and thus higher ¢ values.

5.2. Circular arch, constant cross section, r/t~1000.
Our second example is similar to the first, except the arch is now thin: We

have changed the r; from 14.0 to 14.985, see Fig. 5.1. We examine two cases: In
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Table 5.2 Circular arch, constant thickness, 3 elements. r/t = 15.
(a} Curvilinear basis.

e N (e)e Fax Fay Myo Fpx Fpy Mpo

31 34 11.2 1.668 0.870 —-18.45 -0.942 -—-1.870 16.48
4,1 46 7.9 1.555 0.969 —25.30 -—-1.544 —-0.991 25.33
51 58 7.9 1.580 1.001 -25.88 -—1.582 -0.999 25.88
6,1 70 7.9 1.581 1.000 -—-25.87 -1.581 -—1.000 25.87
7,1 82 7.9 1.581 1.000 -25.87 -1.581 -—1.000 25.87
8,1 94 7.9 1.581 1.000 -25.87 -—-1.581 —-1.000 25.87
3,2 51 11.2 1.668 0.370 -—-18.45 -0.942 -1.370 16.48
4,2 69 7.9 1.555 0.969 -—-25.30 -1.544 —-0.991 25.33
5,2 87 7.9 1.581 1.001 -—-25.88 —1.582 -—0.999 25.88
6,2 105 7.9 1.581 1.000 -—-25.87 -—-1.581 -—1.000 25.87
7,2 123 7.9 1.581 1.000 -—-25.87 -—-1.581 —1.000 25.87
8,2 141 7.8 1.581 1.000 -—-25.87 -1.581 -1.000 25.87
3,3 68 8.5 1.684 0.356 —18.39 —-0.937 -—1.396 16.40
4,3 92 2.0 1.580 0.952 —25.25 -—1.541 -1.025 25.28
5,3 116 1.6 1.603 0.986 —25.84 —1.579 -—1.029 25.84
6,8 140 1.3 1.600 0988 —25.84 -1.579 -1.023 25.84
7,8 164 1.1 1.596 0.990 -25.85 -1.580 -1.016 25.85
8,3 188 1.0 1.591 0.993 -—-25.85 -1.580 -1.009 25.85

(b) Cartesian basis.

9 N (e)E Fax  Fay Myo Fpx Fpy Mpo

1 34 15.8 2.761 1950 —46.18 —8.367 —1.547 51.58
1 46 8.0 1.653 1.141 -—-28.18 —1.788 —-0.984 28.08
1 58 7.9 1.576 1.000 -—-25.88 -—1.677 -0.996 25.82
1 70 7.9 1.580 1.000 -25.87 -1.581 -1.000 25.87
1 82 7.9 1.581 1.000 -25.87 -1.581 -—1.000 25.87
1 94 7.9 1.581 1.000 -25.87 -—-1.581 -1.000 25.87
2 51 15.8 2.761 1.950 —46.18 -3.367 —1.547 51.58
2 69 8.0 1.653 1.142 -—-28.18 -1.738 -—-0.984 28.08
2 87 7.9 1.576 1.000 -25.83 -1.577 -—0.996 25.82
2 105 7.9 1.5680 1.000 —-25.87 -—-1.581 —1.000 25.87
2 123 7.9 1.5681 1.000 -25.87 -1.581 -1.000 25.87
2 141 7.8 1.581 1.000 -—-25.87 -—1.581 -—1.000 25.87

3,3 68 14.1 2,784 1946 —46.29 -8.376 -—1.577 51.71
4,3 92 23 1.685 1.132 -28.28 -1.741 -1.021 28.20
5,3 116 16 1603 0.992 -25.92 -1.585 -—-1.026 25.92
6,8 140 1.3 1.603 0.993 -—-25.94 -1.586 —1.023 25.95
7,3 164 1.1 1598 0.995 -25.98 -1.585 -—1.016 25.93
8,3 188 1.0 1598 0.997 -2591 -1.584 -—-1.009 25091



the first case Poisson’s ratio (v) is zero, in the second case v = 0.3 and plane strain

conditions are assumed.

5.2.1. The case v =0.

The results of computation are shown in Table 5.3. The errors for p < 5 are
much larger than in the case of the moderately thick arch discussed in Section 5.1.
Nevertheless, p-convergence is strong and at p = 7,8 the equilibrium relations are
satisfied to at least three digits of precision. Once again the data show that choice
of the basis does not affect the accuracy of the solution significantly. For low p
values the approximate solutions computed with curvilinear bases are worse than
the approximate solutions computed with Cartesian bases. For high p values the

curvilinear bases are slightly better, although both approaches yield good results.

Table 5.3. Circular arch, r/t ~ 1000, constant cross section, 3 elements, » = 0.
(a) Curvilinear basis.

e N (e)E Fax Fay Myo Fpx Fpy Mpo

3,1 34 69.2 —54.812 -104.234 1763.79 131.438 -—-5.038 —1969.76
4,1 48 9.7 —13.459 ~26.267 440.09 28.010 —1.549 —417.16
5,1 58 0.1 2.035 1.767 —40.27 -2.662 -—0.981 42.90
6,1 70 0.0 1.642 1.067 -28.10 -1.673 —0.999 28.07
7,1 82 0.0 1.610 1.000 -27.11 -1.610 -1.000 27.11
8,1 94 0.0 1.610 1.000 -27.12 -—-1.610 -1.000 27.12

(b) Cartesian basis.

9 N (e)e Fax Fuy Mao Fpx Fpy Mpo

3,1 34 70.8 33.982 56.500 -—988.73 -—90.010 -—-0.664 1350.25
4,1 46 11.2 16.860 80.957 -—-530.15 -—39.502 0.903 594.98
5,1 58 0.4 2.351 2.833 —56.49 ~3.406 -0.761 54.06
6,1 70 0.0 1.565 0.922 -25.77 —1.514 —-0.998 25.68
7,1 82 0.0 1.611 0.997 —27.09 -1.608 —1.000 27.09
8,1 94 0.0 1.612 0.999 -27.12 —1.610 —-1.000 27.12

The fully two dimensional solution, using the same three-element mesh, was
computed by PROBE. At p = 8 the following stress resultants were obtained:
Fax = 1.612; Fay = 0.999; Mao = —27.124; Fpx = —1.610; Fpy = —1.000; Mpo = —27.124.
The computed value of the strain energy at p = 8 (N = 219) was 0.381787 x 10%/E,

where E is the modulus of elasticity.
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5.2.2. The case v = 0.3, plane strain.

In the case of thin arches and shells Poisson’s ratio does not affect the stress
resultants significantly but it does affect the displacement and the strain energy.

It also affects the discretization error in finite element computations. The ap-
proach presented herein provides for control of the discretization error. This is
demonstrated in the following.

If we use the same three-element mesh as before, and ¢ = 2, then we obtain
the data shown in Table 5.4. We see that the error in stress resultants is large
at the fixed support. The reason for this is that the radial displacement induced
by the nonzero Poisson’s ratio is prevented by the fixed support. This excites the
singularities, causing an oscillatory behavior of the stresses in the element at the
boundary. We refer to this as the boundary layer effect. To compensate for the
boundary layer effect we need to introduce a small element which is approximately

of the same size as the thickness of the arch or shell. The results obtained for a
four element mesh, which differs from the mesh shown in Fig. 5.1 in that r; = 14.985

and a fourth element of arc length 0.015 is introduced at the fixed boundary, is
shown in Table 5.5. We see that there is a marked improvement in convergence
and the stress resultants are converging to the same values as in the case of v = 0.

The fully two dimensional solution, using the same four-element mesh, was
computed by PROBE. At p = 8 the following stress resultants were obtained:
Fax = 1.810; Fuy = 1.000; Mao = —27.125; Fgx = —1.611; Fpy = —1.000; Mgo = —27.128.
The computed value of the strain energy at p = 8 (N = 295) was 0.347414 x 108/E
which is almost exactly 0.881787 x 108 (1—»2)/E, that is (1—1?) times the value of the
strain energy computed for v = 0. Since the strain energy is proportional to the
applied force times the displacement in the direction of the force, the displacements
computed by the two methods are also close.

This example demonstrates that in the case of thin shells very good results
can be obtained if we replace E with E/(1 — »?) but otherwise use v = 0. If we
do not use this simplification then we must take into consideration the boundary

layer effects in designing the mesh and the value of ¢ has to be at least 2.

5.3. Circular arch, variable cross section.
Our third example is the circular arch of variable cross section, shown in

Fig. 5.2. The r/t ratio ranges from approximately 4 to approximately 15. The
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Table 5.4. Circular arch, r/t &~ 1000, constant cross section, 3 elements, » =0.3.
Cartesian basis.

e N (&) Fax Fay Myo Fpx Fpy Mpo

3,2 51 72.0 40.540 70.051 —1213.92 -—-118.871 1.883 1782.86
4,2 69 14.3 22.197 43.754 ~736.68 —60.514 2.459 909.99
5,2 87 8.0 0.145 0.875 —14.88 —5.073 -—0.643 79.05
6,2 105 6.7 —1.491 -2.574 42.22 —1.476 —-0.997 25.11
7,2 123 5.8 —1.525 -—2.503 41.60 —-1.614 -—-1.003 27.17
8,2 141 5.1 -1.588 -—2.522 42.35 —1.608 —0.998 27.09

Table 5.5. Circular arch, r/t ~ 1000, constant cross section, 4 elements, » = 0.3.
Cartesian basis.

9 N (e)e Fax Fay Myo Fpx Fpy Mpo

3,2 69 717 -6.295 3.927 —6.16 —119.302 1.912 1789.32
4,2 93 11.5 0.145 2,409 -—34.54 —60.552 2.473  910.57
5,2 117 0.8 0.633  1.557 -27.08 -5.051 —0.639 78.72
6,2 141 0.6 1.155 1.264 —27.16 —1.480 -—-1.001 25.17
7,2 165 0.6 1418 1.111 -27.14 —-1.606 -—1.001 27.06
8,2 189 0.6 1.537 1.043 -27.13 —1.611 -1.000 27.13
9,2 213 0.6 1.584 1.015 -27.12 —1.611 —1.000 27.13
10,2 237 0.6 1.602 1.005 -—27.12 -1.611 —1.000 27.13

thickness is unity. To obtain reference values, the problem was solved as a problem
of elasticity, by PROBE using 3 finite elements. The results are shown in Table

5.8. The estimated exact value of the strain energy, determined from a sequence

of fully two dimensional solutions by PROBE, is 0.728440 x 10%/E.

Table 5.6. Circular arch, variable cross section, 3 elements.
Solution as a problem of elasticity.

p N (e)g Fax  Fay Mj Fpx Fpy Mp

1 10 86.8 0.734 1.512 —-22.71 -0.394 -1.793 6.08
2 27 63.7 2.413 1.105 -32.15 -2.320 -38.431 34.22
] 44 22.7 1.694 1.164 —28.88 —3.547 —2.036 53.20
4 67 8.7 1.706 0.983 —-26.79 -—2.185 —-0.990 33.89
5 96 4.5 1.714 1.000 —-27.05 -1.716§ -0.951 27.09
6 131 3.0 1714 1,000 -—27.04 -1.701 —0.996 26.86
7 172 23 1.714 1.000 -27.05 -1.712 -1.001 27.08
8 219 1.8 1714 1.000 -27.05 -1.712 -1.001 27.08
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Fig. 5.2. Circular arch, variable cross section.

The results computed with the curvilinear and Cartesian bases are shown in
Tables 5.7a, 5.7b. Although in this case the radius to thickness ratio is quite small,
remarkably good results can be obtained with the lowest order approximation of
the transverse displacement (¢ = 1). Compare, for example, the results obtained
with the fully two-dimensional solution in Table 5.6, p = 6 and the results in Table
5.7b corresponding to (p, q) = (6,1).

For low ¢ values the Cartesian basis is better, for high p values both approaches
yield similarly good results. Once again, the error in energy norm is largefor ¢ =1,2
with a sharp decrease in the error at ¢ = 3. This is due to better representation of

the shear deformation terms at ¢ > 3.

5.4. Cylindrical shell, r/t=100.

Our fourth example is one of the most widely investigated test problems in
finite element analysis of shells, often called the Scordelis-Lo problem because
the first finite element analysis of this problem was performed by Scordelis and
Lo in 1964 [25]. Other finite element solutions were published by Cowper et
al. [26] and Forsberg [27] in 1970; Dawe in 1975 [28]; MacNeal and Harder in
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Table 5.7a. Circular arch, variable thickness, 3 elements.
Curvilinear basis.

N
34
46
58
70
82
94
51
69
87

105

123

141

68
92
116
140
164
188

85
115
145
175
205
235

(er)e
26.0
23.2
23.2
23.2
23.2

23.2

15.3
10.1
10.1
10.0
10.0
10.0
12.2
2.7
2.1
18
1.7
1.5
12.2
2.6
1.9
1.6
14
1.3

Fax

1.559
1.733
1.710
1.711
1.711
1.711
1.512
1.729
1.708
1.712
1.713
1.713
1.539
1.740
1.715
1.716
1.715
1.718

1.538
1.739
1.718
1.7138
1.718
1.712

1.081
1.032
1.010
1.016
1.015
1.015
1.072
1.014
0.992
1.000
1.000
1.000
1.062
1.010
0.989
0.999
0.999
1.000

1.062
1.009
0.988
0.998
0.999
1.000

My
—26.69
—27.23
—26.81
—26.89
—26.88
—26.88
—26.63
—-27.31
—26.90
—27.08
—-27.03
—27.04
—26.68
—27.85
—26.92
—27.04
—-27.04
—27.04

—26.68
—~27.38
—26.90
—27.02
—27.02
—27.03
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Fpx
—1.209
—1.606
-1.711
-1.710
—1.708
~1.706
—1.195
—1.614
-1.719
-1.717
-1.713
-1.713
-1.189
—1.613
-1.719
-1.717
-1.714
-1.718

—1.189
-1.613
—-1.719
-1.717
-1.714
—-1.718

Fpy
—1.695
—0.955
—0.969
—0.999
—1.001
-1.000
—1.663
—0.952
—0.972
—0.999
—1.000
—1.000
—1.870
-—0.989
-1.005
-1.022
—-1.016
-—1.009

—1.870
—0.989
—1.004
-1.021
—-1.015
—1.008

Mp

19.40
25.45
26.96
26.94
26.88
26.88
19.26
25.62
27.18
27.10
27.04
27.04
19.17
25.59
27.12
27.09
27.04
27.04

19.17
25.59
27.12
27.09
27.04
27.04



Table 5.7b. Circular arch, variable thickness, 3 elements.
Cartesian basis.

19 N (e)e Fax Fay My Fpx Fpy Mg

3,1 34 197 1.736 1.428 —-32.38 -—3.274 —1.840 49.36
4,1 46 11.4 1.682 0952 -26.25 -2.037 -0.967 31.74
5,1 58 111 1716 1.000 -—27.08 -—1.707 -0.966 26.95
6,1 70 111 1718 1.00t -27.04 -—-1.705 -—0.998 26.92
7,1 82 111 1718 1.000 -27.03 -1.712 -1.001 27.02
81 94 111 1713 1.000 -27.03 -1.718 -1.000 27.03
3,2 51 191 1.726 1.424 -—32.28 -3.276 —1.838 49.40
4,2 69 102 1.675 0.946 -—26.14 -—2.036 -—0.968 31.73
5,2 87 9.9 1712 0.998 -27.01 -1.707 -0.966 26.96
6,2 105 9.9 1711 0999 -27.02 -1.705 -0.998 26.92
7,2 123 98 1712 1000 -27.03 -1.712 -1.001 27.02
8,2 141 9.8 1.713 1000 -27.08 -1.718 -1.000 27.03
3,3 68 1868 1.760 1.418 -32.42 -3.297 -—1.852 49.69
4,3 92 3.3 1.689 0944 -—26.22 -—-2.047 -1.007 31.89
5,8 116 1.9 1.722 0.997 -27.08 -1.716 -0.999 27.08
8,3 140 16 1717 1.000 -27.07 -1.718 -1.022 27.03
7,3 164 1.4 1715 1.000 -27.06 -1.719 -1.017 27.11
8,3 188 1.3 1714 1.000 -27.05 -1.718 -1.010 27.10
3,4 85 16.8 1.759 1.418 -—-32.42 -—3.297 -—1.851 49.69
4,4 115 3.2 1688 0944 -—26.21 -2.047 -1.007 31.89
5,4 145 1.7 1719 0.997 -27.05 -1.716 -0.998 27.08
6,4 175 14 1715 0.999 -27.04 -1.718 -1.021 27.08
7,4 205 1.2 1.713 0999 -27.04 -1.719 -1.015 27.11
8,4 235 1.0 1713 1.000 -27.04 -1.718 -1.008 27.10
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1985 [29], and Carpenter et al. in 1986 (30]. Displacement data, computed from
solutions obtained with various finite element computer programs, are summarized
in [31]. Both displacement data and stress resultants are given in {32]. Selected
data computed from finite element solutions based on shallow shell formulation
are tabulated in [26] and data computed from finite element solutions based on
deep shell formulation are given in [28]. Reference data computed from the exact

solution of the shallow shell formulation are given in [26].

5.4.1. Problem statement.
The shell is shown in Fig. 5.3. It is loaded by its own weight which is

approximated by uniformly distributed traction of 90.0 Ibf/ft? acting on the middle
surface of the shell in the negative z direction. The cylindrical shell is supported
by diaphragms at the ends. The diaphragms prevent displacement in the z and
z directions but allow displacement in the y direction. Poisson’s ratio is zero and
the modulus of elasticity (E) is 3.0 x 10® 1bf/in?. Because there are two planes of
symmetry, it is sufficient to discretize only one quarter of the shell. In the following
we refer only to the domain ABCD, see Fig. 5.3. The goal of computation is to
compute displacements, membrane forces and moments at selected points to about

one percent relative error.

5.4.2. Solution as a problem in three dimensional elasticity.

The problem was solved as a problem in three dimensional elasticity by means
of PROBE. Four finite elements mapped by quadratic parametric mapping were
used. Half of the 90.0 Ibf/ft2 traction acting in the negative 2 direction was applied
to the upper surface of the shell, half to the lower surface. The mesh and the
deformed configuration are shown in Fig. 5.4. The computed values of the strain
energy, the estimated relative error in energy norm (e,)g and the displacement
components (u,)s, (v )p are shown in Table 5.8.

The displacement component (u,)s computed by various computer codes was
plotted in [31] against N. The exact analytical solution reported for the shallow
shell formulation is —3.70331 inches [26] and for the deep shell formulation is —3.53
inches [31]. Our three dimensional result of (u,)s = —3.618 inches agrees to at

least three significant digits with the results obtained with STARDYNE’s QUADS
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Fig. 5.3. Cylindrical shell problem. (Not to scale).

Fig. 5.4. Cylindrical shell. Deformed configuration. (Quarter model).

element using 2016 degrees of freedom and differ by less than one percent from the
results obtained with ABAQUS’ S4R element which yielded (u,)s = —3.629 inches
when 2166 degrees of freedom were used [31]. The strain energy of the exact
a.na-lytical solution of the shallow shell formulation is 0.14707 x 105 in - Ibf for one
quarter of the shell [26]. Of course, the exact solution of the three dimensional
formulation is not known. Our estimate of the exact value of the strain energy

corresponding to the three dimensional formulation is 0.145049 x 10% in-1bf. This
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Table 5.8. Computed values of the strain energy, estimated
relative error e, (@re) (percent) and displacement components (u,)s, (uy)5.
Solution as a problem in three dimensional elasticity. Four finite elements.

Ulirg) - (us)B (w)s

PN (in - 1bf) e(@re) ) (in)

1 32 0.942193 x 108 96.69 —0.081 —0.003
2 104 0.605197 x 104 76.34 —0.937 -0.360
s 176 0.120684 x 105 40.98 —2.927 —1.525
4 300 0.144160 x 10° 7.83 -3.606 —1.902
5 476 0.144844 x 105 3.76 —3.611 -1.903
6 716 0.144896 x 10° 3.25 -3.611 —1.903
7 1032 0.144924 x 105 2.94 -3.612 —1.908
8 1436 0.144950 x 10° 2.61 —-3.613 —1.904

value was found by extrapolation based on detailed analyses. The relative errors

were computed with reference to this value.

5.4.3. Solution by hierarchic shell model, Cartesian basis, ¢ = 1.

In the hierarchic model mapping was by the blending function method. Uni-
formly distributed tractions were applied on the upper and lower surfaces of the
shell so that the total force acting on the upper surface was the same as the total
force acting on the lower surface. The strain energy, the estimated relative error
in energy norm e, (érg), and the displacement components (u,)s, (v,)s computed
from solutions obtained by means of the hierarchic shell model, Cartesian basis,
¢ = 1 with one finite element (resp. four finite elements) are given in Table 5.9a
(resp. Table 5.9b). On comparing the results in Tables 5.9a,b with those in Ta-
ble 5.8, we see that the simplest hierarchic shell model yields results which are
of similar quality as the results obtained with the fully three dimensional model
when v = 0. The strain energy of the fully three dimensional model at p = 8,
N = 1436 is slightly lower than the strain energy of the hierarchic shell model,
Table 5.9b, (p,q) = 8,1. This result 'appears to be inconsistent because the finite
element meshes are the same and §81 is a subset of the standard polynomial space
in PROBE corresponding to p = 8. In reality there is no inconsistency, however:
The ﬁnite element space defined by the shell model is not a subset of the finite
element space defined by the fully three dimensional model. This is because in the
fully three dimensional model quadratic parametric mapping was used whereas in

the hierarchic shell model mapping was by the blending function method so that
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Table 5.9a. Computed values of the strain energy, estimated
relative error e, (irg) (percent) and displacement components (u,)s, (u:)5.
Solution by hierarchic shell model. Cartesian basis. One finite element.

U(i-l‘FE) (“;)B (uz)B
N i :
Pe (in - Ibf) el(ire) i) (in)
4,1 64 0.856464 x 104 63.99 —-1.799 —8.730
6,1 128 0.144514 x 108 8.07 -3.623 -1.912
8,1 212 0.144881 x 105 3.40 -3.610 —1.908
10,1 322 0.144924 x 10° 2.94 -3.612 -~1.904
12,1 4586 0.144957 x 10® 2.52 -3.613 -1.904

Table 5.9b. Computed values of the strain energy, estimated
relative error e, (érg) (percent) and displacement components (u,)s, (us)5.
Solution by hierarchic shell model. Cartesian basis. Four finite elements.

U(ﬁ'pE) - (“s)B (“z)B

N

P g o) c@FE) Ty
4,1 224 0.144130 x 105 7.96 —8.606 —1.902
6,1 456 0.144903 x 10% 3.17 -3.611 —1.908
8,1 784 0.144952 x 105 2.58 -3.618 —1.904

10,1 1208 0.144993 x 105 1.96 —3.615 —1.905

12,1 1728 0.145022 x 105 1.36 -3.616 —1.906

Table 5.10a. Displacement, moment and membrane force data at points B and C.
Solution by hierarchic shell model. Cartesian basis. One finite element.

oq N (wsde  (No)e  (Ny)e (My)e (Mg)e (M) (My)s
’ (in)  (Ibf/in) (bf/in) (bf)  (Ibf)  (Ibf/in)  (Ibf)

4,1 64 0.0668 —4088.2 10778.0 169.4 1120 4700 -539.9
8,1 126 0.5353 -—15325.0 —-72.4 61.2 1951 6408 —642.2
8,1 212 0.5422 —-304.9 -—117.8 104.4 2088 6328 —634.8
10,1 322 0.5417 —-297.7 -130.8 101.5 2060 6306 —644.3
12,1 456 0.5412 —285.9 —133.4 97.1 2058 6313 —643.7

Table 5.10b. Displacement, moment and membrane force data at points B and C.
Solution by hierarchic shell model. Cartesian basis. Four finite elements.

N (e (Ng)e (Mo (M) (My)e (Ny)s (My)s

P (in)  (Ibf/in) (Ibf/in)  (Ibf)  (Ibf)  (Ibf/in)  (Ibf)
4,1 224 0.5363 389276.0 922.4 150.3 2108 9420 —704.5
6,1 456 0.5415 -2157.1 —134.5 940 2055 6318 —645.4
8,1 784 0.5418 —283.8 —133.2 95.8 2059 6312 —643.6

10,1 1208 0.5420 —285.5 —-132.7 95.8 2059 6314 —642.3

12,1 1728 0.5422 -283.7 —132.5 95.9 2059 6314 —641.5
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the cylindrical surfaces were exactly represented. In addition, there were slight
differences in loading: In the three dimensional model half of the traction was ap-
plied to the upper surface, half to the lower surface of the shell. In the hierarchic
shell model the traction of 90 Ibf/ft? was split between the upper and lower surfaces
so that the force acting on the upper surface was equal to the force acting on the

lower surface.
Additional data are presented in Tables 5.10a,b. The definitions of Ny, N,,

My, M, are as follows: N, and M, are defined on sections of constant ¢, see Fig.

5.3:

Ny & / ogdr, M, / o4 (r—rm)dr (5.3a)
r r

where o4 is the normal stress in the r, ¢, y system; r; (resp. r,) is the inner (resp.

outer) radius of the shell and r,, &' (r; +r,)/2 is the mean radius. Similarly N, and

M, are defined on sections of constant y:

N, & / ) o, dr, M, & ) oy (r—rm)dr. (5.3b)
r§ i

Convergence of the tabulated data is evident. When convergence is monotonic
then some simple extrapolation scheme may be used to estimate limiting values.

When convergence is oscillatory then the average of consecutive data is generally

a good estimate of the limiting value.
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6. SUMMARY AND CONCLUSIONS.

The only means for ensuring and verifying that engineering data computed
from finite element solutions are within acceptable tolerance levels is by performing
extensions. Extensions are orderly sequences of discretization constructed in such
a way that the sequence of finite element solutions corresponding to a sequence
of discretization converges to the exact solution. Of course, the exact solution
and the norms in which convergence can be meaningfully measured depend on
the choice of generalized formulation. In this paper the generalized formulation
considered is the principle of virtual work.

In conventional theories for curved beams, arches and shells the generalized
formﬁlation, as well as the displacement modes and stress distributions, vary from
theory to theory. For this reason conventional theories do not constitute an orderly
sequence, so that the corresponding solutions converge to the exact solution of a
particular generalized formulation.

In this paper we proposed an orderly sequence of discretizations controlled by
two parameters. One of the parameters, denoted by p, represents the polynomial
degree of basis functions with respect to standard coordinates mapped to the
middle surface. The other parameter, denoted by ¢, represents the polynomial
degree of the basis functions with respect to the standard coordinates which is
mapped transversely to the middle surface. The finite element solutions converge
to the exact solution of the fully three dimensional formulation of the theory of
elasticity, based on the principle of virtual work, as p —» o and ¢ —+ . The
examples presented herein are representative of a large class of problems which
include thick, moderately thick and thin arches and shells. The results show that
coarse meshes and ¢ = 1, 5 < p < 12, are generally sufficient to achieve levels of
accuracy in the computed displacements, shear forces and moments which are
normally expected in engineering practice. The hierarchic model characterized by
¢ = 1 is similar to the Reissner-Mindlin theory except that one additional field

which represents linear variation of the transverse displacement is incorporated.
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The modeling strategy outlined herein views any beam, arch, plate or shell
model as a particular discretization of the fully three dimensional model. Given a
fixed finite element mesh, p-extension is performed when either p or ¢ is increased.
Convergence to the exact three dimensional solution is guaranteed. Recent surveys
of the theoretical basis of p-extensions are available in [33,34]. The efficiency of
p-extensions depends on the finite element element mesh. Initial mesh design
is based on the analyst’s judgement concerning the expected smoothness of the
solution. Modification of the initial mesh design is based on information generated
by p-extension [24].

Our investigation has shown that curvilinear bases are not more advantageous
than Cartesian bases in computer implementations. Originally, curvilinear bases
had been used to permit analytical solutions for cylindrical, spherical, conical,
toroidal and other shells mapped by relatively simple functions. In problems
of current computer aided design and analysis a much wider range of mapping
functions must be considered. Also, shells are connected to attachment lugs,
stiffeners, etc. and are joined with other shells. In such regions the assumptions
of conventional shell theories do not hold, and analytical treatment is impossible,
yet those are the regions which are of greatest practical interest. The use of
Cartesian bases provides for connection of shells of various types, stiffeners, three

dimensional elements, etc., in a natural and systematic way. There is no need for

transition elements and the process is computationally efficient.

We have defined hierarchic sequences of basis functions based on Legendre
polynomials. These basis functions lead to well conditioned stiffness matrices so
that the accumulation of round-off error with respect to increasing p is slow. We
have not encountered problems caused by round-off even at extreme aspect ratios
(see Section 5.2) and p = 12.

We have demonstrated by an example that in the case of thin arches and shells
finite element discretizations can be substantially simplified by replacing E with
E/(1 — »?) but otherwise using » = 0. The computed values of the stress resultants

and displacements are not affected significantly by this substitution.
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