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Hierarchical Active Shape Models,
Using the Wavelet Transform

Christos Davatzikos*, Xiaodong Tao, and Dinggang Shen

Abstract—Active shape models (ASMs) are often limited by the
inability of relatively few eigenvectors to capture the full range of
biological shape variability. This paper presents a method that
overcomes this limitation, by using a hierarchical formulation of
active shape models, using the wavelet transform. The statistical
properties of the wavelet transform of a deformable contour
are analyzed via principal component analysis, and used as
priors in the contour’s deformation. Some of these priors reflect
relatively global shape characteristics of the object boundaries,
whereas, some of them capture local and high-frequency shape
characteristics and, thus, serve as local smoothness constraints.
This formulation achieves two objectives. First, it is robust when
only a limited number of training samples is available. Second,
by using local statistics as smoothness constraints, it eliminates
the need for adopting ad hoc physical models, such as elasticity
or other smoothness models, which do not necessarily reflect true
biological variability. Examples on magnetic resonance images of
the corpus callosum and hand contours demonstrate that good
and fully automated segmentations can be achieved, even with as
few as five training samples.

Index Terms—Active shape model, deformable contours, the
wavelet transform.

I. INTRODUCTION

D
EFORMABLE shape models have played an important
role in the medical image analysis literature during the

past 15 years. They have been used for segmentation and
deformable registration of biomedical images. They overcame
some of the limitations of earlier “bottom-up” approaches by
imposing higher level constraints on the kinds of shapes that are
likely to be encountered in biomedical images. They typically
impose some form of local smoothness constraint [1] via elastic
forces or some combination of local and global constraints
[2]. Computationally efficient finite-element formulations
of elastic deformable models have also been proposed [3].
Extensive application of these models soon revealed one of
their limitations: elastic models are often too flexible, and they
can be trapped by spurious edges or by edges adjacent to the
structure of interest, thus converging to a suboptimal, and often
very poor, solution. Therefore, a very careful initialization is
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typically necessary, rendering these models subjective, as they
depend on human interaction, and less practical for routine use.

Some of the limitations of deformable shape models were
overcome by models that impose constraints not pertaining to
some physical model (e.g., elastic), but rather to a statistical
shape model derived from a training set. In [4] and [5], a
frequency-based model was proposed, and in [6] a model using
principal component analysis (PCA) was used. Other inves-
tigators subsequently used these models with some success
[7]–[12]. Active shape models (ASMs) certainly mitigated
the problem of local minima, by restricting the possible con-
figurations a deformable shape can assume. However, they
themselves suffer from a fundamental limitation: they often
restrict the deformable shape too much, particularly if they
have been trained on a relatively small number of samples.
This is because the number of eigenvectors that can be used to
represent any shape is at most equal to the number of training
samples minus one, whereas the number of points comprising
the shape might be two or more orders of magnitude higher. In
other words, it is difficult to estimate a high-dimensional prob-
ability distribution of a shape from a relatively small number
of samples. As a result, the subspace of “allowable shapes”
spanned by the relatively few eigenvectors limits the ability of
an ASM to follow the finer details of a shape. Combinations of
physical and statistical shape models have also been proposed
[6], [12], but they suffer from the limitations of each individual
component of the model, depending on the relative weights
assigned to the physical versus the statistical prior.

Our premise is that physical models, although often offer a
convenient way to impose shape priors, do not necessarily re-
flect the variation of real biological shapes. Accordingly, we
present a model that is based entirely on statistical shape priors.
A hierarchical formulation of ASMs allows our model to capture
both the global shape characteristics and the finer local details,
thus overcoming current limitations of ASMs. Experimental re-
sults demonstrate that the proposed hierarchical model performs
substantially better than the standard ASM, if the ASM is trained
on relatively small number of training samples.

A. Overview

Deformable contours and deformable surfaces are sometimes
represented in parametric forms by ordered lists of landmark
points, or structured meshes. Classic active shape model is built
from the statistics of the positions of landmark points on the con-
tours in a set of training samples. The model is iteratively fitted
to an image from a rough starting approximation [13]. A mul-
tiresolution implementation for image segmentation using ac-
tive shape model was proposed [14] to improve the robustness,
accuracy and speed. In that method, the image to be segmented
is smoothed using Gaussian kernels with different sizes so that a
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sequence of multiscale versions of the testing image is obtained.
The active shape model is applied first to the coarse, low resolu-
tion version of the image, and then refined on higher resolution
versions. In the process of image segmentation, the shape model
is the same for different scales. Therefore, the model space for
different scales remains the same.

In this paper, we propose new methods for building the sta-
tistical shape model for planar shapes based on multiresolution
representation of the deformable contours. Multiresolution
representation of curves and surfaces has been studied in
computer graphics community for more than two decades.
Methods based on subdivision [15], scale space representation
[16] and hierarchical splines [17] have been used extensively
in geometric modeling and computer vision. Recently, wavelet
based multiresolution representation of curves and surfaces has
received much attention [18], [19], and [20], because wavelet
coefficients provide a convenient way to describe parametric
curves and surfaces in different resolutions. In this paper, we
use wavelet decomposition of the coordinates of the landmark
points of training shapes to build hierarchical active shape
models and apply the models for segmentation of callosal
boundaries in the midsagittal sections of magnetic resonance
images (MRIs) of human brains and contours of hand images.

The remainder of the paper is organized as follows: Section II
provides a detailed description of the hierarchical active shape
models. In this section, two methods are described. One method
uses heuristic partition of the shape to achieve shape hierarchies,
and the other one uses wavelet decomposition. Section III shows
some experimental results. Finally Section IV discusses those
results and gives a brief summary.

II. HIERARCHICAL ACTIVE SHAPE MODELS

Assume that training samples are available in the form

of sets of corresponding landmarks in the -dimensional

space. Assume, also, that standard Procrustes alignment [21]

has been performed on the training samples to eliminate the

variations introduced by translation, scaling, and rotation. Let

the vectors , , be formed by concatenating the

coordinates of the landmark points of the th sample. Let

be the eigenvectors corresponding to the nonzero

eigenvalues of the covariance matrix, , calculated from these

vectors. (There could, in principle, be fewer than eigen-

vectors with nonzero eigenvalues, but this is rarely the case

when only a limited number of samples is available, which is

the focus of our paper.) If, as is typically the case, ,

it is likely that the space, , spanned by does

not represent the full range of shape variation one expected

to find in biomedical images. Therefore, in a standard ASM,

which includes a step in which tentative shapes are projected

onto , final shape reconstructions often appear to lack fine de-

tails. Clearly, the more samples are available, the larger is,

and the more faithful the shape reconstruction is.

Assume, now, that we are only interested in representing a

segment of a shape, comprising points, rather than the whole

shape (see Fig. 1). If is small enough, then samples will

be adequate to represent the variability of that segment, thus al-

lowing the model to locally capture the fine details of the seg-

ment. This would be achieved, however, at the expense of dis-

Fig. 1. A contour can be partitioned into smaller segments. The global shape
characteristics can be captured by a statistical prior relating the centers of mass
(solid circles) of all segments. Finer and local shape characteristics can be
captured by statistical priors for each segment individually. When the global
prior is used to reposition the center of mass points, the respective segments
are repositioned rigidly by the same displacement vector. This might lead to
discontinuities. In order to remedy this situation, we use overlapping segments,
with a continuous blending.

regarding spatial relationships between points of that segment

and points of other segments of the shape. Such relationships

can be captured by a statistical prior relating the positions of the

segments relative to each other. For example, one can apply a

standard ASM on the centers of mass of these segments. This

is one of the simplest forms of a hierarchical ASM, and is re-

ferred to as Method 1 next. A more formal framework is the

wavelet decomposition of a contour or surface representing the

shape, followed by estimation of the statistics of the resulting

expansion coefficients. This is referred to as Method 2 below.

Although Method 1 is somewhat heuristic, it is presented along

with Method 2, because it provides a more intuitive explanation

of the framework of hierarchical ASM.

A. Hierarchical ASM Based on Heuristic Partition of the Shape

We define a deformable contour as a collection of seg-

ments, each comprising points. Let , ,

be a vector corresponding to the th segment, and formed by

concatenating the coordinates of all points in that segment. Let,

also, be the center of mass of the points on the th seg-

ment. In one of its simplest forms, a hierarchical ASM can be

represented by two levels. At the bottom level, the covariance

matrix of is used as prior for the deformation of the th seg-

ment, thus imposing some sort of local smoothness constraint.

At the top level, statistics of the vector are

collected from the training set, and are used as prior for more

global shape properties. The algorithm is as follows.

Step 1) Move each point of the contour toward a nearby target

location (e.g., toward a nearby edge);

Step 2) Calculate the center of mass of each segment of the

contour, forming the vector ;

Step 3) Project to the space formed by the respective eigen-

vectors of the top level of the statistical prior. Contour

segments are translated according to their respective

centers of mass (see Fig. 1);

Step 4) Project the coordinate vector of each individual seg-

ment to its respective subspace spanned by the eigen-

vectors for that segment;

Step 5) Go to Step 1.

For simplicity, we have omitted standard steps of the ASMs

that include mapping of a shape into and out of a model space,

by accounting for overall pose and size differences.
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In practice, we implement this algorithm using overlapping

segments, in order to avoid discontinuities that can be intro-

duced at connecting points (see Fig. 1). Although we used two

levels of statistical priors in our description above, the method

can be generalized to include any number of levels, so that

at each level, the length of the vector on which the statistical

prior is calculated is small enough for the number of available

samples. “Small enough” depends not only on the number of

training samples, but on the compactness of the underlying dis-

tributions, as well. Therefore, it will vary from one application

to another.

B. Hierarchical ASM Based on Wavelet Decomposition

Method 1 effectively divides the spectrum of the parametric

representation of the deformable contour into two levels, in a

rather crude way. The first level is a coarse sampling of the con-

tour. It corresponds to the contour represented by the center of

mass of the segments and it can be thought as a subsampled

contour following spatial smoothing by a filter with “box” type

impulse response. The second level contains the details of the

contour. It is represented by the local shape properties of the

contour segments. Below Method 2 formalizes and generalizes

this idea, by using a wavelet transform.

1) Wavelets and Wavelet Transform: Wavelets, ,

, are functions generated from a mother wavelet by di-

lations and translations [22]. In this paper, we only consider the

discrete wavelets generated using dilations by powers of two

and integer translations

(1)

Because wavelets are well localized in both space and fre-

quency domains, they are suitable for representing local fre-

quency components in a given signal. The wavelet transform

is a tool for applying wavelets to perform localized analysis of

signals [23]. It has been applied with great success to a wide

range of signal/image processing and analysis problems, such

as signal compression [24], denoising [25], and pattern recog-

nition [26].

Instead of the heuristic partition of the spatial domain de-

scribed in Section II-A, the wavelet transform provides an el-

egant way to perform a scale-space decomposition. In the con-

text of this paper, we use a logarithm tree 2-band wavelet packet

to divide the space-frequency domain. For a -level wavelet

packet, we divide the space-frequency domain into 2

bands (see Fig. 2).

2) Analysis Steps Using Wavelet Transform: Now, let us

consider the wavelet transform of the deformable contours.

As stated before, we assume that training samples are

available in the form of sets of corresponding landmarks.

Assume that the -, -coordinates of the th landmark of the

th training sample after Procrustes alignment are ( ),

and . Then each training sample

can be represented by its -, -coordinate vectors

(2)

(3)

Fig. 2. Three-level logarithm tree 2-band wavelet packet. The wavelet
transform is iterated for the low-pass branches (marked as LP in the figure).
The outputs of the high-pass branches (marked as HP in the figure) are divided
into a number of bands. The number of bands for each high-pass branch is
determined by the level at which the high-pass filtering is performed. In this
way, for a p level wavelet decomposition the frequency domain is divided into
B = 2 bands. The space-frequency domain partition of the signal is shown
on the right.

By applying wavelet transform to and , we get their

wavelet coefficients

(4)

(5)

where denotes the wavelet decomposition. Note that

and are not necessarily -dimensional vectors. Their di-

mension, , depends on what scaling/wavelet functions we use

in the transform. In this paper, we use a -level logarithm tree

2-band wavelet packet to divide the digital frequency domain

into 2 bands (see Fig. 2). In particular, and

. By using the wavelet transform, large s in (4) and

(5) correspond to high-frequency information (local shape in-

formation), while small s carry relatively lower frequency in-

formation (global shape information). Moreover, the index is

related to the spatial location along the contour, around which

shape information is collected.

Let be the 1

vector formed by concatenating the wavelet coefficients of the

th subject. We divide the vectors into

bands each. Let be the wavelet coefficient vector for band

, , . We calculate the inter-indi-

vidual variation of the wavelet coefficients within each band

(see Fig. 3) from vectors . The complete statistical shape

model includes the mean and covariance matrix of wavelet co-

efficients for each band

(6)

(7)

We then perform PCA in each band individually, thus ob-

taining 64 sets of eigenvectors and eigenvalues. Let be the

matrix formed by the eigenvectors for the wavelet coefficients

of the th band and be the vector of the eigenvalues of the

wavelet coefficients of the th band. The eigenvectors and eigen-

values of the first few bands represent relatively global aspects

of shape variability, whereas bands with higher indices repre-

sent higher frequency and more localized aspects of shape vari-

ability. Each band has a relatively small number of variables,
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Fig. 3. A wavelet transform is applied to the parametric functions representing
a deformable contour. The resulting wavelet coefficients are then grouped
into 64 bands (see Fig. 2), and the joint distribution of each band is estimated
from the available training samples, via its mean and covariance matrix. This
effectively transforms the covariance matrix of the full joint distribution into
a matrix that is close to, but not necessarily exactly, a block diagonal matrix.
The submatrix corresponding to band B reflects global shape characteristics,
whereas the submatrix corresponding toB reflects local shape characteristics
at a particular segment.B reflects local shape characteristics of a neighboring
segment.

compared to the total number of points. Moreover, these vari-

ables form a fairly compact distribution, since they tend to be

correlated. Therefore, its eigenvectors span a relatively large

subspace. In this way, the overconstraining effect of standard

ASMs is overcome.

3) Reconstruction of the Contour From the Wavelet Coeffi-

cients: With the eigenvectors and eigenvalues for each of the

bands, , and , , we can approximate

any new shapes by projecting the wavelet coefficients of each

band to the corresponding eigen space and, thus, reconstruct the

plausible shapes. Suppose a new shape, , is represented by a list

of landmark points ( ), . We approximate

using the statistical shape model as follows.

Step 1) Align with the mean shape in the model using

appropriate translation, scaling, and rotation to get

.

Step 2) Apply the wavelet transform to the - and

-coordinate vectors of to get the wavelet co-

efficients and [(4) and (5)].

Step 3) Divide and into bands each using the same

partition of the space-frequency domain used in

building the model. The coefficient vector for each

band is , .

Step 4) Approximate using the statistical shape model

as

(8)

where is a parameter vector computed by trun-

cating each component of with

two standard deviations of corresponding eigen vari-

ation for the th band.

Fig. 4. 5 representative training samples used in the experiments of this paper.

Step 5) Group , into wavelet coefficients

and , and use inverse wavelet transform to recon-

struct the shape .

Step 6) Apply the inverse of the transform in Step 1) to get

, , which is

the approximation of in the image space.

C. Justification in Terms of the Underlying Prior Distribution

In calculating a statistical shape prior, and under the assump-

tion of a Gaussian distribution, one needs to invert the covari-

ance matrix of a very high-dimensional distribution

(9)

where is a normalization constant. However, is a “highly

singular” matrix, since it is estimated from a very small number

of training samples. Therefore, an estimate of (

), which is found via projections of ( ) on the eigenvec-

tors of by the PCA, is often a very rough approximation of

the true value of ( ). Accurately estimating

the value of and, therefore, the proba-

bility of a particular shape, from few samples is not possible.

However, it is possible to accurately estimate the inverse of cer-

tain submatrices of and, therefore, of marginal distributions

that pertain to local and finer shape details. Such estimation can

be achieved if the dimensionality of these submatrices is “small

enough.” “Small enough” here is relative to the degree of spa-

tial correlation among neighboring points, and to the number

of available training samples. Low degree of spatial correla-

tion would require either larger number of training samples or

smaller bands (submatrices), or both. These marginal distribu-

tions replace local smoothness constraints, which are often bor-

rowed in an ad hoc way from physical systems, such as elastic

objects.

It is worth noting that the goal of our hierarchical scheme is

to utilize marginal distributions that can be estimated accurately.

Equivalently, it utilizes marginal distributions whose covariance

matrix has eigenvectors that can span a relatively large sub-

space. This goal is achieved simultaneously in two ways. First,

smaller sets of highly correlated variables are examined; these

are the small contour segments and correspond to the high-index

bands in the wavelet transform ( ). Second, the joint
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Fig. 5. (Left) Midsagittal MR image. (Right) Automated segmentation obtained using the standard active shape model (ASM) trained on 99, 50, 20, 10, and 5
samples (top to bottom, respectively). The ASM performs well when enough training samples are available, relative to the variability of the structure, but starts to
fail when relatively few training samples are available.

distribution of a large number of variables is considered after

smoothing, which effectively makes the distribution more com-

pact. For example, band in Fig. 3 examines the joint distri-

bution of a number of linear combinations of all points along

the contour, since the wavelet transform is a linear operator.

III. EXPERIMENTS

In this section, we provide experimental results and quan-

titative analysis of the performance of different models as we

change the number of training samples.

We applied the standard active shape model, Method 1, and

Method 2 to the midsagittal sections of magnetic resonance im-

ages of human brains to find the callosal boundaries and to the

hand images to find the hand contours. For the corpus callosum,

we randomly selected midsagittal sections from our database of

normal elderly subjects participating in the Baltimore Longitu-

dinal Study of Aging [27]. The training set was built by having

an expert outline the callosal boundary, and specify two land-

mark points, namely the anterior most and posterior-most tips of

the callosum along its axis of symmetry. Training contours were

then parameterized by piece-wise constant speed parameteriza-
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Fig. 6. Wavelet functions for Haar (left) and Daubechies-7 (right) wavelets.
Haar wavelet has only one vanishing moment, while Daubechies-7 wavelet has
seven vanishing moments. Therefore, Daubechies-7 wavelet provides much
smoother results.

tions in-between landmarks. The hand contours used as training

samples were manually outlined from the gray level hand im-

ages with the points corresponding to the tips of the fingers and

the points in between fingers specified. The contours were then

parameterized by piece-wise constant speed parameterizations

in-between these points. Both the callosal boundaries and the

hand contours were represented by 512 landmark points. Fig. 4

shows some examples for callosal boundaries and hand contours

we used to train our model.

In order to compare the performance of different models, we

used the same initialization and the same deformation scheme

for all models. During the deformation, each landmark point

was moved to its nearby feature in the image. And this displace-

ment was propagated to its neighbors according to a Gaussian

fall-off function in order to achieve a smooth deformation. After

all landmark points were moved according to the image fea-

tures, the tentative contour was mapped to the shape space (con-

strained by two standard deviations from the mean in the direc-

tion of each eigenvector) to initialize the next iteration. The iter-

ative deformation was terminated when the difference between

two successive iterations was small enough.

A. Corpus Callosum

We first tested the standard ASM for different numbers of

training samples. The images are 256 256 pixels in size. Fig. 5

shows a test image on the left, and the results obtained using

ASMs trained on 99, 50, 20, 10, and 5 samples. Although for an

adequately large number of samples a good segmentation was

obtained, the segmentation error increased rapidly when less

than 50 samples were used.

We then used the five samples of Fig. 4 to train our hierar-

chical ASM. For Method 2, we tested two different wavelets:

the Haar and the Daubechies-7, whose wavelet functions are

shown in Fig. 6. Figs. 7 and 8 show the principal modes of

variation for the lowest frequency component of callosal bound-

aries derived for each of these wavelets. Since Daubechies-7

wavelet has wider support and more vanishing moments, it

gives smoother contours. Therefore, we used the Daubechies-7

wavelet for all the experiments in the following.

Fig. 9 shows three examples of segmentations obtained using

ASM and the hierarchical methods proposed in this paper. It

is clear that ASM needs to be trained on a sufficiently large

number of samples in order to capture the finer details of

individual shapes, which is not the case with the hierarchical

methods.

Fig. 7. The first (left) and second (right) mode of variation of the lowest
frequency component using the limited support Haar wavelet. Choppiness of
the resulting shapes is due to the small support of the basis functions.

Fig. 8. The first two principal modes of variation of the lowest frequency
component using the Daubechies-7 wavelet. The broader support of the basis
functions provides a smooth representation of shape variation in terms of the
eigenvectors of the wavelet coefficients of different bands.

B. Hand Contours

We also conducted the above experiment with hand images.

Fig. 10 shows the model for the hand contour trained on five

samples. The first and second columns show the first two eigen

variations of the traditional ASMs. The last three columns show

a few eigen variations obtained using Method 2, for example,

the third and the fourth columns show the first two eigen vari-

ations for Band-1; and the last column shows the most signif-

icant eigen variation for Band-3. From the figure, we can see

that Band-1 can be used to describe global shape variations such

as the movements of figures, while Band-3 encodes some more

local shape variations.

Fig. 11 shows three hand images we used to test the methods.

Fig. 12 shows the image searching results using different

methods. The first and the second rows show the results using

standard ASMs trained on 5 and 50 samples. The third and

fourth rows show the results using Method 1 and Method

2 trained on five samples. When enough samples (50) were

available, the standard ASM can achieve satisfying results. But

when only a very limited number (5) of training samples were

available, the standard ASM failed to find the desired contours,

because the ASM trained on five samples is too restrictive.
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Fig. 9. Top row: Midsagittal images of the corpus callosum of three subjects. Second-fifth rows: Segmentations obtained using ASM trained on five samples,
ASM trained on 99 samples, Method 1, and Method 2 trained on five samples. It is clear that ASM needs to be trained on a sufficiently large number of samples
in order to capture the finer details of individual shapes, which is not the case with the hierarchical methods.

Fig. 10. Eigen variations of hand contour for standard shape model and
wavelet-based hierarchical shape model. The first two columns show the first
two eigen variations of the standard shape model. The third and fourth columns
show the first two eigen variations of the lowest frequency band (Band-1) of
the hierarchical shape model. These two columns show the global variations
of the hand contour. The last column shows the first eigen variation of Band-3
of the hierarchical shape model. It shows relatively local variation of the hand
contour.

During the deformation, image features (edge points) try to

attract the landmark points. When the tentative contours are

projected to the shape space, only a very small portion of

tentative deformation is kept for the future iterations, which

can result in failure because the projection may move the

deformable contour far away from its desired location.

For Methods 1 and 2, five samples are adequate to achieve

good results since these methods provide efficient ways to

describe both global and local information presented in the

training samples. However, for the standard ASMs, details in

the training samples are often overwhelmed by the global shape

variations and are not reflected by the statistical model.

C. Quantitative Analysis of the Methods

In this experiment, we applied standard ASMs, Method 1, and

Method 2, trained on different number of training samples, to

the midsagittal sections of MR images of eight human brains

and eight hand images, and computed the error between the re-

sults using different shape models and the corresponding con-

tours manually outlined by the human expert. The error is cal-

culated by averaging the distance from the points on a contour

to the closest point on the contours outlined manually by the

human expert. Table I shows the average errors of the eight cal-

losal boundaries. And Table II shows the average errors of the
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TABLE I
AVERAGE ERRORS BETWEEN THE RESULTS OF DEFORMABLE SEGMENTATION OF EIGHT CALLOSAL BOUNDARIES USING DIFFERENT MODELS TRAINED ON

DIFFERENT NUMBER OF TRAINING SAMPLES. THE RESULTS OF DEFORMABLE SEGMENTATION ARE COMPARED WITH THE CORRESPONDING BOUNDARIES

MANUALLY DRAWN BY THE HUMAN EXPERT. NUMBERS IN THE TABLE ARE IN PIXELS

TABLE II
AVERAGE ERRORS BETWEEN THE RESULTS OF DEFORMABLE SEGMENTATION OF EIGHT HAND CONTOURS USING DIFFERENT MODELS TRAINED ON DIFFERENT

NUMBER OF TRAINING SAMPLES. THE RESULTS OF DEFORMABLE SEGMENTATION ARE COMPARED WITH THE CORRESPONDING BOUNDARIES MANUALLY

DRAWN BY THE HUMAN EXPERT. NUMBERS IN THE TABLE ARE IN PIXELS

Fig. 11. Hand images used to test the methods.

eight hand contours. Fig. 13 shows the average errors. From the

tables and the figure, we can see that for the standard ASMs,

the errors drop quickly as we augment the training set when the

model is trained on relatively small number of samples; the er-

rors drop slowly as we increase the training sample number if

we already have enough (more than 25) training samples. For

Methods 1 and 2, the errors drop relatively slowly as we in-

crease the training sample number. Also, from the table, we can

see that for the hierarchical shape models, the errors are sub-

stantially smaller than the error for standard ASMs when only a

small number of training examples is available. From Table I, we

also observe that once we have enough training samples (more

than 50), the errors for the three methods are comparable to each

other. This is because when we have enough training samples,

the shape spaces generated using three methods do not differ

much from each other. They all reflect the true biological vari-

ation of the shape.

IV. SUMMARY AND DISCUSSION

We presented a hierarchical formulation of active shape

models, which allows a statistical shape prior to be able to

capture fine as well as coarse shape characteristics, and which

overcomes limitations of previous models based on PCA of

the covariance matrix. A hierarchical representation of a shape

in terms of its wavelet transform was followed by a PCA on

the wavelet coefficients. The premise of our method is that,

although a relatively small number of training samples cannot

necessarily capture the high-dimensional probability density

Fig. 12. Final segmentation results of different methods. Top row shows the
result using the standard active shape model trained on five samples. The method
failed for all three testing images because extremely small training set results
in a very restrictive shape model. The second row shows the result of using
standard active shape model trained on 50 samples. In this case, the model can
follow the detail of the shape fairly well. The third and the fourth rows show
the result using Method 1 and Method 2 trained on five samples, respectively.
Again, as we observed in Fig. 9, Methods 1 and 2 give satisfying results when
very small number of training samples are used to train the model.

function of a shape, it can be used to estimate patterns of

covariation of smaller numbers of variables, thus allowing

the hierarchical model to capture local and fine shape details,

without the need for an ad hoc physically-based smoothness
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(a) (b)

Fig. 13. Average errors between the results of deformable segmentation for corpus callosum (left) and hand contour (right) using different models trained on
different number of training samples.

constraint (e.g., elasticity). It is true that if certain variation

of the shape is not presented in the training samples. Then no

matter how many samples we use to train the model, there is

no way for the model to recover this variation. This is true for

not only the standard active shape model, but also the methods

proposed in this paper. However, the methods proposed can

provide ways to better describe the variations that occur in the

training samples.

In the paper, we also described a more heuristic Method

1, which is based on a crude multiscale representation of the

shapes. It provides some intuition of multiscale curve represen-

tation and a rather simplistic way to build hierarchical active

shape model. Method 2 is based on the wavelet decomposition.

It has a rigorous mathematical background, and the multires-

olution hierarchy is more meaningful than the one used by

Method 1. Since Method 2 requires wavelet decomposition and

reconstruction when mapping a shape into and out of a model

space, it is more computationally demanding than Method 1.

Experiments performed on midsagittal sections of the corpus

callosum and hand images showed that the proposed hierar-

chical models perform better than standard active shape models

when a limited number of samples is available. We note that,

for the case of callosal boundaries and hand contours param-

eterized with 512 landmark points, when 50 or more training

samples were available, then standard ASM performed reliably

for callosal boundaries and hand contours. However, we antic-

ipate that on more complex and three-dimensional (3-D) struc-

tures, such as cortical structures, a prohibitively large number of

training samples would be necessary, if standard ASMs were to

be used, whereas our experiments herein indicate that remark-

ably low numbers of training samples might be sufficient when

the hierarchical model is used.

Method 1 can be extended to 3-D objects easily since it in-

volves only an overlapping partition of the object and standard

ASM procedures for each partition and for the centers of mass

of partitions. Method 2 can be extended into 3-D using some ex-

isting wavelet based multiresolution representation of surfaces,

such as the one described in [18]. An extensive validation will

be necessary, in order to better understand strengths and weak-

nesses of this model. In particular, we need to better understand

how performance of our algorithm depends on parameters such

as the number of levels used in the wavelet transform, and the

number and size of bands used in the statistical analysis, and

how performance is affected by different wavelets.
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