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ABSTRACT

Ultrasound is the primary modality to examine fetal growth
during pregnancy, while the image quality could be affected
by various factors. Quality assessment is essential for con-
trolling the quality of ultrasound images to guarantee both
the perceptual and diagnostic values. Existing automated ap-
proaches often require heavy structural annotations and the
predictions may not necessarily be consistent with the assess-
ment results by human experts. Furthermore, the overall qual-
ity of a scan and the correlation between the quality of frames
should not be overlooked. In this work, we propose a rein-
forcement learning framework powered by two hierarchical
agents that collaboratively learn to perform both frame-level
and video-level quality assessments. It is equipped with a
specially-designed reward mechanism that considers tempo-
ral dependency among frame quality and only requires sparse
binary annotations to train. Experimental results on a chal-
lenging fetal brain dataset verify that the proposed framework
could perform dual-level quality assessment and its predic-
tions correlate well with the subjective assessment results.

Index Terms— Quality assessment, Fetal ultrasound, Re-
inforcement learning

1. INTRODUCTION

Real-time sonography is the most widely used imaging tech-
nique for prenatal evaluation [1]. It is economical, pain-
less, and non-ionizing, while the image quality can be user-
dependent and thereby may affect subsequent diagnosis and
management [2]. Multiple factors affect the acquired images,
including the skills and experience of the operator, fetal posi-
tion, gestational age, etc. Clinical guidelines were published
to help control the ultrasound(US) image quality and pro-
mote the detection of abnormalities [3]. They defined a series
of standardized planes to evaluate key anatomical structures
and acquire reproducible biometric measurements. This pro-
cess requires specialized knowledge and a comprehensive
understanding of the rapidly changing fetal anatomy and the
corresponding sonographic patterns.

Efforts have been made to automate this process. Exist-
ing methods usually transform the task of US quality con-
trol into a structure detection problem on 2D planes [4, 5].

This reveals the location and the size of certain structures
through the ‘eye’ of a detection model, while is not equiva-
lent to whether this structure is of its optimal visibility (i.e.,
high quality) to the naked eye. As a result, their results may
not be consistent with the subjective assessment rated by hu-
man experts. Fluctuated or inaccurate detection predictions
are also expected which can lead to incorrect quality assess-
ment (QA) results. Furthermore, the training of these mod-
els necessitates detailed annotations (e.g., bounding boxes of
structures in every plane), which is labor-intensive and time-
consuming. Innovative methods that are label-efficient and
more in line with experts’ QA ratings are therefore needed.

Another limitation of current popular approaches is that
they often assess the quality of a single US frame separately
(e.g. classifying it into whether it is a standardized plane or
not), ignoring the fact that US examination is a dynamic pro-
cess. In other words, they built upon the assumption that the
quality of frames or planes is independent of each other and
fail to incorporate the rich temporal features that lie within
a video. Furthermore, it is desired to have tools that could
highlight videos of overall inferior quality to assist the less
experienced operators to improve scan quality.

To address these, we design a novel framework by evalu-
ating the frame-level and video-level quality simultaneously
during a fetal ultrasound examination. The main contribu-
tions are:
1. A reinforcement learning (RL) based framework that
jointly considers the quality of each frame and the whole
video. The proposed tool not only provides standard planes
but also calls attention to scans of unsatisfying quality that
may require a re-scan.
2. A novel reward mechanism that considers the temporal
correlation between the quality of consecutive frames. It also
allows direct exploitation of subjective quality assessment
scores and does not require detailed structural annotations.
3. A hierarchical agent design consists of a subordinate agent
that performs frame-level quality assessment (FQA) and a
superordinate agent that performs video quality assessment
(VQA). This allows flexible feature extraction in different
spatial or temporal dimensions while enabling collaborative
learning that benefits both tasks.
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2. RELATED WORKS

US quality assessment. The quality control/assessment of fe-
tal US images is indispensable to obtaining reproducible mea-
surements and accurate diagnosis. To achieve this, Wu et al.
used a classification CNN model to generate probability maps
of key regions and classify the ROIs [6]. Dong et al. proposed
a two-staged framework to classify the cardiac four-chamber
planes of cardiac US and score the quality of each plane based
on whether a certain structure can be detected [7]. In [8], Lin
et al. used a multi-task model to detect six anatomical struc-
tures and also scored the quality of each image based on the
number of detectable structures. Similarly, Zhang et al. com-
bined a region proposal network and a classification model to
classify whether a US image is qualified [9].
Standard plane detection. Identifying the standard planes is
one of the most important steps during a prenatal US screen-
ing. The quality of the obtained planes is essential to the eval-
uation of fetal growth and thus is closely related to the QA
task for fetal US. To address this, Baumgartner et al. designed
a 6-layer CNN model which allowed robust scan plane detec-
tion [10]. Lei et al.proposed a multi-task learning model that
jointly optimized key structure recognition and plane classifi-
cation tasks for fetal head ultrasound [11]. Chen et al. com-
bined LSTM and CNN to automatically detect several stan-
dard planes [12]. Pu et al. proposed an automatic standard
plane recognition model using a two-branch model with opti-
cal flow [13]. Liu et al. utilized the Bi-LSTM model for se-
quential modeling under a reinforcement learning framework
to generate a summarization of US videos [14].

3. METHOD

The quality of US images reveals both whether it is clini-
cally valuable (e.g., relevant anatomical structures are visi-
ble) and whether it is visually satisfying to human viewers.
This highly abstract task aims to find the mapping from the
pixel space to the perceptual assessment scores rated by hu-
man experts. Moreover, the quality of a single image and that
of a whole US scan are correlated, yet intrinsically different,
as the latter should take the overall spatial-temporal informa-
tion into account. To better coordinate the learning between
the two, we integrate them through the RL-based model with
hierarchical agents. The whole pipeline is shown in Fig.1.

This framework follows the common setting of RL with
slight alterations: two agents in their respective state Ssub,
Ssup, interact with the environments E by making suitable
action actionsub, actionsup to maximize the expectation of
the total reward Rtotal. Formally, a raw US video with un-
fixed length can be denoted as V = {vi}N1 , with the size of
H ×W × C ×N , while N represents the number of frames.
We also define the following elements:

Agents: The proposed framework consists of a subordi-
nate agent Agentsub that processes a US video to perform

frame selection and a superordinate agent Agentsup that
takes both the US video and the features of Agentsub to as-
sess the overall quality of the video. Both of them sample
sequentially from a Bernoulli distribution to generate suitable
actions. In specific, Agentsub is composed of a 2D CNN
model (e.g., DenseNet) to extract spatial features of each
frame vi, followed by a one-layer Bi-LSTM model (with a
hidden size of 256) to further combine them and yield the
high-level features ff = LSTM(Dense(V )). Finally, it
outputs the probability for each frame that should be selected
as ‘qualified’ using a sigmoid layer. Contrarily, Agentsup
utilizes the classical C3D model to extract spatial-temporal
features of the whole video fv . fv and then fused with ff to
perform the video quality rating. Agentsub is first pre-trained
to warm up the learning. The two agents are then trained
together end-to-end to allow interactive learning. This hierar-
chical design enables flexible feature learning with different
focuses, but also guides the video quality rating task with the
frame-level quality information.
Action: The two agents have different action space. Actionsub
is defined as the set of frame-wise QA operation: Actionsub =
{ai|ai ∈ {0, 1}}N1 , where ‘1’ indicates the current frame is
‘qualified’ and should be selected in the standard plane set,
while ‘0’ indicates otherwise. Actionsup, instead, is a video-
level operation: Actionsup ∈ {0, 1}, where ‘1’ indicates
satisfactory video quality, ‘0’ indicates otherwise.
State: State Ssub = {vp}

Np

1 corresponds to the standard
plane set that is selected by Agentsub. Np denotes the total
number of selected frames. State Ssup = Q̂v denotes the
quality of the whole video predicted by Agentsup.
Reward: One key limitation of existing QA approaches fails
to consider the temporal dependency of the quality of adja-
cent frames. In other words, the quality of the consecutive
frames of a ‘qualified’ frame is also expected to be high,
and vice versa. Meanwhile, analyzing fetal US videos faces
unique challenges as multiple ‘clusters’ of qualified planes
may exist within a single video as different structures may
be identified. Note that these clusters may overlap with each
other or be far apart given different fetal positions, probe ma-
nipulation trajectory/speed, and spatial relationships among
different organs. To handle these without requiring explicit
structural annotations, we leverage help from the signal pro-
cessing theory to smooth the binary QA results rated by
human experts. Given the ground truth frame-level quality
score for the whole video: Qf = {qif |qif ∈ {0, 1}}N1 , it can
be expressed as a combination of several rectangular pulse
functions, each of which is defined by Rect(τt,∆τt), where
τt defines the activation time point while ∆τt defines its acti-
vation interval. Formally, Qf =

∑T
t Rect(τt,∆τt), where T

is the total number of such pulses. The reward for Agentsub
can be calculated as:

Rsub = env(Tr(id|τ1,∆τ1), T r(id|τ2,∆τ2), .., T r(id|τT ,∆τT ))

(1)



Fig. 1. The proposed hierarchical agent-based RL framework. It consists of an inner loop (blue) where Agentsub performs
frame-level quality assessment, and an outer loop (green) where Agentsub assesses the overall video quality based on the input
video and the features learned by Agentsub.

Tr(id|τt,∆τt) =


Amax

d
(id− τt + d) τt − d ≤ id ≤ τi

Amax τt ≤ id ≤ τt + ∆τt
Amax

d
(τi + ∆τt + d− id) τt + ∆τt ≤ id ≤ τt + ∆τt + d

−1 else

(2)
, where env() denotes the envelope function, Tr() represents
a trapezoidal wave function, d and Aamx are hyperparam-
eters that control the slope and the amplitude of the trape-
zoid. Tr() could be considered as a temporally-smoothed
Rect(), that proportionally credits the frames that are adja-
cent to high-quality ones based on their distance. We also in-
troduce an extra negative reward of −1 to penalize the agent
if unqualified frames were selected to avoid trivial solutions.
The env() function handles the clusters overlapping scenario
and could process videos with arbitrary numbers and distri-
bution of qualified frames.

Agentsup is trained using a cubic reward function to pe-
nalize inaccurate video quality prediction Q̂v , denoted as:

Rsup = −||Q̂v −Qv||
3

(3)

The total reward can be represented as Rtotal = Rsub + β ∗
Rsup, where β is a hyper-parameter that controls the weight-
ing of the two tasks.

4. EXPERIMENTS

Dataset. We evaluate the proposed approach using a US
fetal brain dataset collected at Shenzhen Maternity&Child
Healthcare hospital. The study was approved by the local
Institutional Review Board. It contains 878 US videos of
different fetuses, with a gestational age range from 29 to 40
weeks. Note that this dataset is especially challenging to an-
alyze due to skull calcification and rapid brain development
during the third trimester. All videos were then resized to
have a height of 256 and a width of 256, and split or padded
to have a fixed length of 128 for easier analysis. To simplify
the annotation process, one clinical expert (>8 years of expe-
rience) was invited to rate the quality of each frame into two

classes (i.e., ‘poor’(0) or ‘satisfactory’(1)), based on whether
this frame could be used in routine examination. Similarly,
the expert also rated the overall quality of each video into
either ‘qualified’ or ‘unqualified’ based on whether this video
is of acceptable quality for standard examination or a re-scan
is required after full evaluation of the whole video.
Experiments. The model performance is evaluated using
standard accuracy, precision, specificity, sensitivity, and F1-
score in both frame- and video-level. We compared the
proposed model with both the state-of-the-art approaches in
frame-level QA (i.e., T-RNN [12], UVS [14], FUSPR [13],
3DST-UNet [15]). 3DST-UNet and UVS also utilized an RL-
based framework. Note that some frame-based QA methods
such as [6] are not feasible here as no structural annotation
was available for this study. As there exists no established
baseline for VQA of fetal US, we also implement 2 strong
video DL models as the competing methods (i.e., C3D [16],
VST [17]). Another factor worth investigating is whether the
proposed dual-agent design is beneficial for both tasks. To
investigate this, we carry out an ablation study by removing
the Agentsup. All quantitative results are shown in Table 1.
Implementation. All experiments were implemented in Py-
Torch with a GeForce RTX 3090 GPU. For the RL-based
algorithm, the number of episodes is fixed to 5. An SGD
optimizer with momentum is used to train the models. The
initial learning rate is set to 1e−5 and subsequently reduced
by a factor of 0.5 for every 30 epochs.

5. RESULTS AND DISCUSSION

Table 1 shows that the proposed framework performed supe-
riorly in frame-level QA than the competing methods in ACC,
SEN, F1-score, and AUC, indicating a balanced performance.
Statistical tests further proved that the difference in AUC be-
tween the proposed and all its variants is significant (delong
test, p < 0.05). This suggests that our method produces QA
results that are consistent with those rated by human experts.
Note that the T-RNN scored high SPE and PRE scores, while



Table 1. Experimental results of the quality assessment accuracy in both frame- and video-level.
Method Frame Quality Assessment Video Quality Assessment

ACC(%) SEN(%) SPE(%) PRE(%) F1(%) AUC(%) p < 0.05 ACC(%) SEN(%) SPE(%) PRE(%) F1(%) AUC(%) p < 0.05
UVS 87.79 62.33 93.41 67.63 64.87 77.87 Y es – – – – – – –

3DST-UNet 83.23 45.61 91.53 54.34 49.60 68.57 Y es – – – – – – –
FUSPR 85.93 69.45 89.57 59.52 64.10 79.50 Y es – – – – – – –
T-RNN 87.62 41.19 97.87 81.03 54.62 69.52 Y es – – – – – – –

C3D – – – – – – – 86.67 89.20 83.06 88.20 88.70 86.13 Y es
VST – – – – – – – 58.67 100 0 58.67 73.95 50.0 Y es

Ours w/o Rsup 88.69 68.97 93.05 68.66 68.81 81.01 Y es – – – – – – –
Ours 88.80 71.37 92.61 68.07 69.68 81.99 – 90.67 93.75 86.29 90.66 92.18 90.02 –

its SEN and F1-score are substantially lower than ours. This
may be caused by severe overfitting to the ‘unqualified’ class.
On the contrary, our model obtained promising performance
in all metrics, showing its ability to handle the class imbalance
between qualified planes and the unqualified ones. The UVS
model also scored a relatively good ACC and AUC, which are
still lower than those of the proposed model. This may be the
result of the proposed reward mechanism that considers the
temporal correlation of the quality among adjacent frames.
Furthermore, the UVS model does not penalize false-positive
predictions, while the proposed Rsub explicitly considers this
through the additional negative reward. Note that the 3DST-
UNet also shares a similar RL setting, while it yielded slightly
lower performance. This may be explained by that the frame-
level QA decision-making relies more on 2D spatial informa-
tion, thus the 3D-based model is not suitable for this task.

Row 5-6 of Table.1 display the VQA performance of dif-
ferent approaches. To the best of our knowledge, this work
is the first to perform QA for both the frames and the whole
video jointly for fetal US data. Experimental results prove
its versatility, which exceeded popular baselines (C3D and
VST) in video analysis. It is also interesting to see that the
VST scored inferiorly to C3D model despite its sophisticated
design and the incorporation of a multi-layer self-attention
mechanism and suitable hyper-parameter tuning. We conjec-
ture that the VST’s performance might be improved given a
larger dataset due to its significantly larger model size.

The penultimate row of Table.1 reports the results of the
ablation study whereAgentsup (i.e. outer loop in Fig.1) is re-
moved from the proposed framework. It can be seen that the
incorporation of video-level quality information can help to
boost the performance in frame-level QA as well, especially
in SEN. Note that the performance of the C3D model also
indicates how the proposed model would perform without
Agentsub, as Agentsup also utilizes the same C3D architec-
ture. It can be seen that the Agentsup benefited substantially
from the subordinate frame-based QA task, and obtained a 4%
increase in ACC, 4.55% increase in SEN, and 3.89% increase
in AUC. This may stem from that the Agentsub is trained
with frame-level supervision that may be more informative
than the single binary quality label used by Agentsup. As a
result, the latter gained more from the former during the train-
ing, while co-learning still proved to be advantageous as both
of the two tasks reported higher performance in all metrics.

Fig. 2. Visual results of the comparison experiment.

Figure 2 provides a visual example of the comparison ex-
periments. A test data is randomly selected (row 1). As a
result, the quality of frames exhibits a complex pattern (GT
QA score shown in dark blue, row 2). Row 3-7 reveal how
competing methods performed in frame-level QA. Overall,
the UVS model’s predictions are close to the GT, while being
over-confident in part of the scan. FUSPR model rated most
frames as ‘qualified’, leading to more false-positive results
(low SPE). Fast probe movement might have caused larger
difference among frames and may have distracted the model.
On the contrary, 3DST-UNet and T-RNN chose fewer frames
as standard planes (i.e., qualified frames). This suggests that
these two either have problems in capturing long-range tem-
poral dependency or might have overfitted the training data.
Contrarily, the proposed framework excelled in this challeng-
ing case and its predictions align well with the GT (row 7).

6. CONCLUSION

In this paper, we proposed an RL framework that is equipped
with hierarchical agents for FQA and VQA for fetal US scans.
It can automatically yield standard planes and also highlight
videos with overall unsatisfying quality. The framework has
been evaluated on a challenging dataset of fetal brain, while
the overall methodology is general and could be applied to
analyze other datasets. Additionally, it is worth noting that
this pioneering study is the first to address automated VQA
for fetal US while it only considers data collected from the
same center. Future studies may also explore whether it is
suitable for data collected in multiple sites and the impact of
US vendors on VQA.
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