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ABSTRACT 

 

The primary idea behind deploying sensor networks is to utilize the distributed sensing 

capability provided by tiny, low powered and low cost devices. Multiple sensing devices 

can be used cooperatively and collaboratively to capture events or monitor space more 

effectively than a single sensing device. The realm of applications envisioned for sensor 

networks is diverse including military, aerospace, industrial, commercial, environmental 

and health monitoring. Typical examples include: traffic monitoring of vehicles, cross-

border infiltration-detection and assessment, military reconnaissance and surveillance, 

target tracking, habitat monitoring and structure monitoring, to name a few.  

Most of the applications envisioned with sensor networks demand highly reliable, 

accurate and fault-tolerant data acquisition process. The integrity of data alone can have 

tremendous effects on the performance of any data acquisition system. Due to the low 

manufacturing cost, the sensors lend themselves to be deployed in large numbers with a 

high spatial distribution. Such a large deployment scheme often generates enormous 

amount of data that needs to be efficiently summarized and delivered for analysis and 
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processing. In-network data compression, data aggregation/fusion, and decision 

propagation are some of the processes that deal with huge data issues. A hierarchical data 

aggregation scheme developed in this thesis is a highly effective and energy efficient 

means (by reducing communication packets) to deliver decision milestones to the end-

user. The sensing devices are also prone to failure due to the inherent characteristics such 

as construction and deployment. It is thus necessary to devise a fault-tolerant mechanism 

with a low computation overhead to validate the integrity of the data obtained from the 

sensors. Moreover, a robust diagnostics and decision making process should aid in 

monitoring and control of critical parameters to efficiently manage the operational 

behavior of a deployed sensor network. Specifically, this research will focus on 

innovative approaches to deal with multi-variable multi-space problem domains (data 

integrity, energy-efficiency and fault-tolerant framework) in wireless sensor networks. 

We present three information-based methods for improving the performance (fault-

tolerance and efficiency) of wireless sensor networks (WSNs). The first is a method for 

time varying weight adaptation in a mixture model for sensor data aggregation. The 

second technique applies fuzzy inference methods to solve a multi-criteria decision 

problem, specifically the efficient management of data collection in a WSN. The third 

method presented proposes the use of spatially variant weights to reduce the significance 

of sensor readings taken near the boundary of the sensor range, in order to minimize 

potential corruption of aggregated data. The solutions proposed in this thesis have 

practical implementation in developing power-aware software components for designing 

robust networks of sensing devices. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background – Sensors and Sensor Networks 

The concept of sensing physical phenomena has been inspired from biological living 

creatures. Sensors have been in existence for few decades now and are being used in 

everyday life. Applications of sensors include automobiles, machines, aerospace, 

medicine, robotics, etc. With emerging technologies such as Microelectromechanical 

Systems (MEMS), sensors are being manufactured at low cost and at microscopic level. 

In most cases, these micro-sensors reach significantly higher speeds and higher 

sensitivity compared to macro-sensors. Such emerging manufacturing technologies, 

along with improvements in wireless communication and computation processes, sensor 

research has undergone a revolution. The traditional single sensor system is replaced by 

large array of tiny, self-powered sensors that can wirelessly communicate to the 

“outside” world. Large numbers of sensors may be integrated into systems to improve 

performance and lifetime, and decrease life-cycle costs. As with many technologies, 

defense and military applications have driven the research and development of sensor 

networks. The solution to use one expensive sensor to cover the whole area of interest is 

too risky and expensive, with the related false alarms and single point of failure. Having 

multiple sensors clearly alleviates the problem of single point of failure. For example, 

swarm of Unmanned Aerial Vehicles (UAVs) can provide better situation awareness than 

a single UAV used for reconnaissance and surveillance. Thus, traditional single sensing 
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system is replaced by multiple spatially distributed sensors that not only sense but also 

process and communicate critical information and decision milestones. This has been 

facilitated by the integration of multiple sensors, processors, memory and RF 

communication devices onto a single board.  

 

1.1.1 Glossary of Terms 

a. Sensor node: A multi-sensor platform that houses variety of MEMS based sensors 

(such as temperature, humidity, accelerometer, light, pressure, etc) along with low 

power microprocessor and radio. Generally, these nodes are powered by battery. 

b. Ubiquitous computing: Also known as pervasive computing or calm computing. It 

is a model of computing in which computer functions are integrated into everyday 

life, often in an invisible way. 

c. Data Aggregation: Meaningful summary of the given data. 

d. Middleware: Software that connects other software applications often to support 

complex distributed systems.  

 

1.2 Problem Statement and Motivation 

Sensor network applications often require minimal human intervention, thereby 

exhibiting autonomous behavior. Once deployed, these sensor nodes often form an ad-

hoc network. The role of each sensor node is to acquire data samples from various 

sensors on-board and communicate the acquired data and/or summary statistics rather 

than raw data for further processing. For an autonomous system to operate normally, it is 

necessary to monitor it continuously or at predetermined time intervals. To monitor the 
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integrity and performance degradation in a cost-effective way, it is first necessary to 

probe the integrity of data acquired from the sensors. Such probing methods are often 

termed as system diagnostics. Thus the capability of a data acquisition system must have 

a high degree of accuracy and efficiency in acquiring and interpreting data from multiple 

information sources.  

This research work is motivated by several problems that are still persistent in the real-

world network of sensors. Therefore, the primary aim of this research thesis is to provide 

innovative solutions to each problem domain – efficient data acquisition, large data 

processing, decision making and monitoring that all help in optimizing the performance 

of the given sensor network in real-world deployment scenarios. Most of the solution 

proposed herein is first of its kind in the area of sensor networks. In doing so, we hope 

that this research work will provide an entry point to a larger body of literature in sensor 

networks management.  

 

1.3 Research Challenges and Contributions of this Thesis 

1.3.1 Research Challenges 

The research challenges identified in sensor networks fall into three broad categories - 

Sensing, computing and communication as shown figure 1.1. Sensor networks generally 

pose considerable technical problems in data processing, communication and sensor 

management [1-2]. We have identified data processing and sensor network management 

as the key challenges within this thesis and provide solution along with merits and 

demerits of existing solutions for practical implementation.  
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Figure 1.1 Research Areas Identified In Sensor Networks 

Sensor networks must deal with resources – energy, bandwidth, processing power, etc. 

– that are changing dynamically. Given such dynamic situation, the sensor nodes need to 

operate autonomously. This requires research into issues such as number of nodes to keep 

network alive, proper size of network with redundant nodes, effective means to optimize 

on resources, increase network lifetime, etc. Such issues often fall into sensor network 

management.  

Processing data from large number of sensors requires more resources (bandwidth, 

transmission power at intermediate nodes). More nodes on the other hand, results in 

better performance. Therefore, it is necessary to communicate as much data as possible 

but at the same time reduce the resource consumption. Since large data sets might also 

get corrupted during communication or acquisition, there needs to be ways to handle 

faulty data. Other data processing issues that are dependent on application are latency, 

reliability and completeness of the data.  

1.3.2 Research Objectives 

This subsection discusses the objectives of this research work. Following are the major 

Sensing 
- Manufacturing 

- Calibration 

- Data acquisition 

Computation 
- Hardware 

- OS, Middleware 

- Application 

development  

 

Communication 
- Network issues 

       - Bandwidth 

       - Latency 

       - Routing 

      - MAC
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objectives identified along with a brief problem description. These objectives are based 

on the data processing and sensor network management challenges.  

1. Fault-Tolerant Data Acquisition and Fusion 
 

While there are several automated data fusion approaches, handling faulty information 

contributing to fusion process still remains a challenging task. If the data from faulty 

sensors are accommodated in the fusion process, the resultant fused decision/data still 

remains faulty. This can pose a serious problem in situation awareness scenarios, such as 

false information about a target.  With multiple sensors, there is an increasing risk 

involved in faulty information associated with the data.  

2.  System Monitoring 

 

For systems such as networks of sensing devices, it is necessary to monitor 

continuously or at pre-determined time interval. Such monitoring process becomes 

complicated with the increase in system parameters. For example, generating a state-

space model for a sensor node or network would be a hard task. In such situations, 

identifying, probing and tuning critical parameters are effective means to monitor and 

diagnose the network. Such diagnostics will often help to maintain or improve the 

integrity of the deployed sensor network. 

3.  Interpretation, Decision and Learning from Acquired Data 

 

Data is everything. Data from the network provides important information on the state 

of the network as well as the environment being sensed. Interpreting data will help to 

diagnose the network for reliability and integrity. For example, one of the objectives of a 

sensor network with on-board batteries is to survive as long as possible and derive 
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meaningful feature level information from the environment. Therefore, such networks are 

generally faced with the management of conflicting objectives such as conserving limited 

on-board energy and keeping the sensor awake to pick up stimuli from the environment.  

We have identified automated decision making with multiple objectives/criteria and 

learning to take such actions based on the varying situations.   

 

1.3.3 Specific Contributions 

The contributions of this research thesis are as follows: 

1. Development of theory for meaningful aggregation of acquired data from 

sensors with tolerance to faults. 

2. Development of middleware for implementing the theory proposed for data 

aggregation. 

3. Theory and application of multi-criteria decision making in sensor networks. 

4. Theory and application of approximate reasoning and rule-based approaches for 

sensor node integrity. 

5. Network protocol design and implementation for message passing among 

sensor nodes, cluster-head and base-station.  

6. Development of an extensive graphical user-interface (GUI) for interpreting 

and analyzing the acquired data from sensor network. 

7. Implementation of reinforcement function or critic on a sensor node.  

The presentation of material from conceptual ideas to focused research has resulted in 

following technical papers: 

1. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Hierarchical Aggregation and 
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Intelligent Monitoring and Control in Fault-Tolerant Wireless Sensor Networks”, 

Inaugural Issue of the IEEE Systems Journal, to be published in 2007 

 

2. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Multicriteria 

Decision Making in Robot Path Planning using Sensor Networks”, First IEEE 

Systems Conference, Hawaii, 2007 

 

3. Madni, Asad M., Sridhar, Prasanna, Jamshidi, Mo, “Fault-Tolerant Data 

Acquisition in Sensor Networks”, IEEE System of Systems Engineering 

Conference, San Antonio, 2007. 

 

4. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Object-Tracking 

using Sensor Networks”, IEEE Co-sponsored Sensor Applications Symposium 

(SAS), San Diego, 2007. 

 

5. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Hierarchical Data 

Aggregation in Spatially Correlated Distributed Sensor Network”, IEEE Co-

sponsored World Automation Congress, 2006 

 

6. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Monitoring of 

Sensor Networks using Fuzzy Logic Based Control”, IEEE Conf. on Systems, 

Man and Cybernetics, 2006 

 

7. Azarnoush, Hamed, Horan, Ben, Sridhar Prasanna, Madni, Asad M., Jamshidi, 

Mo, “Towards Optimization of a Real-World Robotic-Sensor System of 

Systems”, IEEE Co-sponsored World Automation Congress, 2006 

 

8. Sridhar, Prasanna, “Optimal Node Density Estimation in Sensor Networks”, 

Workshop on Systems and Intelligent Control, October 2005 

 

9. Sridhar, Prasanna, Jamshidi, Mo, “Discrete-event modeling and simulation: 

Application to wireless sensor networks”, IEEE Conf. on Systems, Man and 

Cybernetics, 2004. 

 

1.3.4 Related Research Areas 

The research area in sensor networks is relatively broad and interdisciplinary; 

predominantly dealing with computation and communication. Most of the challenges and 

bottlenecks in sensor network research deal with energy efficient design and 

development of software and/or hardware components [3]. The focus of this research 



 

 8 

work is to present novel ideas that have practical implementation in developing power-

aware software components for designing robust networks of sensing devices.  

We identify at least four major research areas – data acquisition and information 

processing, fault-tolerant algorithms, decision making, and diagnostics that directly relate 

to the proposed approach presented in this paper. Each chapter will discuss in detail the 

existing literature and how our method deviates or improves on the existing work.  

1.3.5 Preliminary Assumptions 

We consider multiple heterogeneous sensors (such as temperature, pressure, humidity, 

etc.) on a single sensor board. We consider static sensors for our experimentation 

assuming that the drift is very negligible. Such a multi-sensor platform, often referred to 

as a sensor node, has limited computation and communication capabilities. These nodes 

when densely deployed in a region of interest, offer a spatially distributed sensing 

capability. The resultant network of these nodes is often clustered in order to efficiently 

manage and implement information routing, data aggregation, event localization, etc., – a 

divide and conquer strategy.  Several different clustering algorithms for sensor networks 

have been proposed [4-6]. An important feature of clustering is that it enables a 

hierarchical organization of sensor nodes, with different functional capabilities at each 

level. Sensing can be done at the lowest level of hierarchy and decision making at higher 

levels, such as at a cluster-head level, gateway level or base-station level. A base-station 

is assumed to have higher processing and communication capabilities compared to sensor 

nodes.  

A cluster-head can represent the information and operational characteristic for a cluster 
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of sensor nodes. By information characteristic we mean that, information generated from 

several sensor nodes can be fused at the cluster-head to obtain an aggregated data or a 

decision milestone. By operational characteristic we mean that the operation of each 

sensor in that particular cluster is validated by examining the quality or integrity of data.  

We assume that the sensor nodes are grouped into different clusters. 

 

1.4 Summary of Chapters 

This section will present the preview of all the chapters that follow. In total there are 

seven chapters, the first being the introduction. The second chapter deals with efficient 

data acquisition and processing in sensor networks. The problem of handling large data 

sets, simple yet effective fault-tolerant data acquisition methods and decision propagation 

techniques in sensor networks are introduced in this chapter. Whereas chapter 2 discusses 

data integrity in sensor networks, chapter 3 outlines innovative methods to ensure 

network integrity by intelligently monitoring and diagnosing the given network of 

sensors. Chapter 4 introduces the concept of multi-criteria decision making to further 

enhance the integrity of the network. Learning and optimization techniques specifically 

related to real-world sensor networks are introduced in chapter 5. Chapter 6 provides the 

design, implementation and results of the concepts portrayed in previous chapters on 

commercially available hardware platforms. Chapter 7 concludes by opening the stage to 

possible future work and extensions to the ideas and algorithms proposed in this research 

work. Each chapter concludes with summary with any related work being discussed 

within the context of the chapter. Moreover, any simulation results to validate the 

approach illustrated are given in the same chapter. 
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CHAPTER 2 

DATA ACQUISITION AND PROCESSING 

 

Data acquisition is simply the process of acquiring raw data from different sources of 

interest for data analysis and processing. In large distributed systems, there is an 

enormous amount of data delivered to the central processing unit. Particularly, in sensor 

networks, due to the low manufacturing cost, the sensors lend themselves to be deployed 

in large numbers with a high spatial distribution, generating huge data that needs to be 

efficiently delivered for data processing. Efficient data acquisition process for 

information processing is the foremost priority for analyzing or diagnosing the status of a 

deployed sensor network. Efficiency is the key issue in terms of energy consumption, 

fault-tolerance and relevancy of the sensor data. In this chapter, we propose an innovative 

way to acquire fault-tolerant data from distributed embedded sensors and then summarize 

the acquired data hierarchically in an energy efficient manner to optimize the 

performance of the data acquisition and delivery process.  

 

2.1 Fault-Tolerant Techniques in Sensor Networks 

 
Fault tolerant techniques have been studied in the field of computers for over a half 

century now. Such techniques are either specific to a given application or have a desired 

reference for comparing the output. The principle idea behind fault tolerance is the 

system’s ability to perform or operate correctly even in the presence of faults. The 

problem of fault identification and isolation is generally a hard task in sensor networks 
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due to the very nature of their construction and deployment. In this chapter, we will relate 

our proposed approach of fault-tolerance in sensor networks to some of the already 

existing methods sensors and embedded systems. Built-in Self Test (BIST) or Continuous 

Built-In Test (CBIT) has been studied extensively for combinational and sequential logic, 

memories and other embedded logic blocks. BIST technique involves embedding 

additional hardware logic which can be used to test the operation of the primary circuit 

logic [7]. Few researches have addressed the concept of software based built-in test [8]. 

In [9], a fault-tolerant approach for sensor network is proposed by using back-up sensors 

for faulty ones. Elnahrawy et al. [10] proposed a Bayesian approach to reduce noise and 

uncertainty in sensor networks. This, however, assumes prior knowledge of true sensor 

reading. Hereford [11], proposed an Evolvable Hardware (EHW) design to reprogram the 

circuit in case of any faults occurring in the sensors. In order to detect faults in the 

sensors, the paper proposed to use spatial correlation and Kalman Filter (to estimate 

actual output).   

Thus, most of the fault-tolerant techniques in sensor networks [8-11] either assume 

prior knowledge of the sensor reading or have a desired reference to compute the error of 

the sensor reading. Our proposed approach in this chapter is similar to the one proposed 

in [11], however, we use weighted function to reduce the “contribution” of faulty sensors 

instead of reprogramming the circuit. The advantage of our proposed fault tolerant 

mechanism is that, in general, it does not rely on the sensors to be geographically 

deployed close to each other. The geographic proximity of sensors can be used to 

complement the proposed fault identification process.  
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2.2 Fault-Tolerant Data Acquisition 

 

The integrity of data has tremendous effects on the performance of any data acquisition 

system. Noise and other disturbances can often degrade the information or data acquired 

from these systems. Devising a fault-tolerant mechanism in wireless sensor networks is 

very important due to the construction and deployment characteristics of these low 

powered sensing devices. Moreover, due to the low computation and communication 

capabilities of the sensor nodes, the fault-tolerant mechanism should have a very low 

computation overhead.  

 

2.2.1 Built-In Test Method 

 

Each sensor within a node is assumed to work within a usable threshold window 

[min,max]. A built-in test is said to have passed if the sensor reading r is within this 

window. That is, reading r should follow the equation min<r<max, where min and max 

are chosen appropriately for a given sensor and given application, which constitutes the 

operational behavior of the sensor.  Every sensor is guaranteed to work “correctly” within 

a given operating range specified by the manufacturer. For example, a manufacturer 

could specify an operating range for a temperature sensor as -25 to 125
o
C. Similarly, a 

chemical sensor (such as carbon monoxide sensor) can have an operating range from 0 to 

500 ppm (parts per million). We call this operating range as guaranteed window. This 

window is usually obtained from the sensor manufacturer. The usable threshold window 

[min,max] will incorporate the guaranteed window for a given sensor. That is, min of the 

usable threshold window will be lesser than the minimum range of operation defined by 



 

 13 

the guaranteed window and max will be greater than the maximum operating range of the 

sensor.  For example, we can define -40 to +150
o
C as usable threshold window for a 

temperature sensor that is guaranteed to sense temperature within the range -25 to 

+125
o
C with a specified accuracy.  The sensor might still work outside this guaranteed 

window, however, with a much lesser accuracy. By using the concept of an added usable 

window versus a guaranteed window alone, we are trading off the performance 

optimization of the individual sensor versus optimizing (maximizing) the performance of 

the sensor network. In order to uniquely identify the sensor, each cluster head assigns 

even numbered binary code for each of the sensors within its cluster. A binary addition of 

the unique binary code at the cluster-head is used to exactly determine the faulty 

sensor(s). For example, consider four sensors in one of the cluster. If they are assigned 

binary code of 0001, 0010, 0100, 1000, then cluster-head simply computes a bit parity 

check. In case one of the sensors has failed the built-in test, it resets the binary code 

before sending it. By checking the parity of the binary sum, we can uniquely identify the 

sensor which has failed the built-in test. A possible message structure for implementing 

such protocol is as shown in figure 2.1. 

 

 

 

 

 

Figure 2.1. Message Structure 

The major limitation of the above mentioned approach is the way the cluster head 

differentiates a common node that belongs to two or more clusters. If we have a closed 
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Binary code Sensor reading r 
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overlapping clustering, few nodes belong to two or more clusters. Consider a scenario (as 

show in figure 2.2) where a sensor node has same node identification 0010 and belongs 

to two clusters. The checksum for parity check will be wrong in this case, since there are 

two nodes which transmit 0010 as a unique binary code. 

 

 

 

 

 

 

 

Figure 2.2 Overlapping Clustering Zone 

Also, the number of bits used increases with the increase in the number of nodes in the 

cluster. The problem of time synchronization at the summing node could also pose a 

problem. In order to resolve these problems, we use node identification as integers. 

Operating system such as TinyOS [12] running on sensor nodes often allows users to 

program the nodes with identification numbers (node-id’s).  The modified message 

structure is as show in figure 2.3. 

 

 

 

 

 

 

Figure 2.3 Modified Message Structure 

 

We consider two different test methods to utilize the windowing effect to detect faulty 

behavior of a sensor.  

 

1.  Boolean Test: The built-in test can be a simple pass or fail test for each sensor on a 

0010 

0001 

0100 

1010 

0010 

4      0/1     01111010100001000000 

Sensor-id 

Sensor reading r 
BIT result 



 

 15 

sensor node. Such tests can often be run on a sensor node since each node offers limited 

computation. The base station sends out a beacon message, possibly carrying a query to 

the cluster heads. The cluster heads in turn send out their respective beacon messages to 

all the nodes within their cluster. The node, when interrogated, transmits an encoded 

message that contains sensed information r for each of the sensors on-board. This 

hierarchical structure distributes the computation burden of decoding the messages from 

the sensors on to local cluster heads.  

Two possible scenarios can be considered for the sensor to respond to such message. 

One method is that the sensor does not transmit any data if it fails the built-in test, 

thereby conserving communication cost and bandwidth of the network. However, this 

does not guarantee that the sensor has actually received a query. Packets might have been 

dropped due to network congestion. In order to alleviate this problem, our second 

approach is to send the result of the built-in test along with the sensor-id (node-id) in the 

header of the message, as shown in figure 2.3. 

Although the above mentioned approach provides a simple solution to track faulty 

sensors, it does not capture the graceful degradation of a given sensor or a sensor node. 

For example, consider a scenario where a sensor reading r for a given sensor node, is 

closer to either min or max of the usable threshold window.  For this situation, the sensor 

passes the built-test, even though its performance is degrading. One might argue that the 

sensor reading is still correct. For example, a temperature sensor used in environmental 

monitoring can read a sudden drastically high value in case of fire. This can cause the 

reading r to approach max within the defined window. However, the designer would have 
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ensured that the operational behavior of the sensor is captured in the built-in test. There is 

thus an important aspect in designing such a built-in test, to choose the window 

appropriately for a given application and a given sensor.  

 

 

 

 

 

 

 

 
Figure 2.4 Weighted Method as Built-In Test 

 

2. Weighted Method: A robust built-in test mechanism is to determine the performance 

degradation of a sensor based on how close the reading r gets to min or max of the usable 

window. This will help the decision making process to evaluate the likelihood of the 

sensor failure. It should be noted that, as a preventive measure for sensor failure (or a 

complete node failure), redundant sensors (or nodes) can be deployed in the region. This 

is, however, an expensive solution. The idea behind this second method is to assign a 

weighting factor to each of the sensors in a sensor node based on the reading r. 

Depending on how close the reading is to the usable window boundaries, the weight can 

be adaptively decreased. As described earlier, each sensor can operate within a 
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guaranteed window and the weight is set to 1, if the output of the sensor is within this 

window, i.e., wij= 1, where i =(1..m) signifies the sensor node number and j= (1..n) 

signifies the sensors on-board the i-th sensor node. If the sensor reading goes beyond the 

guaranteed window and approaches the usable window boundary, the weights are 

decreased. A simple methodology is to use a bell-function as shown in figure 2.4, where 

the weight exponentially decreases as the reading deviates from the guaranteed window.  

Since such a method imposes a heavy computation burden on the sensor node, the built-

in test is performed for each sensor in a given node on the cluster-head or at higher level 

in the cluster hierarchy. 

 

2.3 Protocol Design for Weighted Method 

For the weighted method, we appropriately change the message structure as shown in 

figure 2.5. The message header now contains the sensor-id (or node-id), a difference 

value indicating how far the sensor output has deviated from the guaranteed window 

threshold.  In order to realize such a design, we consider a sample working scenario with 

three sensors and a parent node. When the parent node interrogates the three sensors, 

each sensor replies with a message carrying its identification, a computed difference 

value and sensed value r. We assume that the parent node has the knowledge of 

guaranteed window and usable window for each of the sensors.  Upon receiving the 

sensor reading, the parent node computes the difference value and compares it with the 

received difference value. This is similar to checksum. This will ensure that the message 

was correctly received without any communication errors. Once this test is passed, an 
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appropriate weighting factor is assigned based on how far the value has deviated from the 

guaranteed working window.  

 

 

 

 

 

Figure 2.5 Modified Message Structure for Weighted Method 

 

Algorithmic Design 

Input:  define min and max as threshold window. α and β as guaranteed window.  

Output: wij, weighting factor for each sensor within the given cluster. Pri(j), likelihood 

of failure of senor j in the given sensor node i. Final sensor reading rij  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational complexity of the above mentioned algorithm is O(m*n). However, 

n, number of sensors on-board a sensor node is usually small (<= 4). So the overall 

complexity is O(k*m), where k is the number of clusters and m is the number of sensor 
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nodes within each cluster.   

2.4 Limitation of Built-In Test Methods 

Both Boolean Test and Weighted Method can prove to be useful in determining sensors 

that are operating outside their specified guaranteed window. In the case of Boolean Test, 

a sensor is said to have failed if the sensor reading is outside the guaranteed window. In 

Weighted Method, if the sensor reading is outside the guaranteed window, then an 

appropriate weighting factor is applied to the sensor reading in order to compensate for 

the degradation in accuracy of the sensor.  It should be noted, however, that under certain 

circumstances, even when the sensor is working within a specified guaranteed window, 

the sensor precision and accuracy might be compromised due to the presence of external 

noise, environmental disturbances, etc. For example, consider a scenario, where a 

temperature sensor is transmitting erroneous/noisy data (say, temperature as -1
o
C instead 

of +10
o
C). However, if the sensor reading is still within the guaranteed window (-20

o
C to 

+120
o
C) then sensor is still deemed to be working good according to the Built-in Tests, 

even though in reality it is reporting a faulty reading.  

 

2.5 Approaches to Support Built-In Tests  

In situations where sensor linearity and sensor reading are critical, a redundancy 

feature helps to determine the accuracy of the sensor reading. Redundant nodes can be 

deployed in order to validate the true sensor reading. Applications involving sensor 

networks require dense deployment of sensors [12]. The sensors deployed in large 

numbers are spatially correlated within the region of events, that is, the sensor i reads the 

same event value (with minimal variation) as the neighboring k sensors which are closely 
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deployed. Validation mechanism can be performed as follows. Consider three sensor 

readings a,b, and c from three redundant sensors. Two sensor readings are averaged 

((a+b)/2, (a+c)/2, and (b+c)/2) at each predetermined time interval. The actual reading is 

set to the value at which the majority of the three averaged values agree upon – a 

majority voting principle.  This helps to eliminate the faulty sensor in the group of the 

three sensors under consideration.  

Depending on the type of sensor and the application, there might be a high degree of 

correlation between each consecutive sensor reading over time. This suggests the sensor 

readings are temporally correlated. Consider a temperature sensor reporting a steady 

increase or decrease in the temperature over time. The readings are thus correlated over 

time. If there is a drastic change (large fluctuations) in the temperature over a small 

period of time, there is a high likelihood that the sensor is faulty. However, temporal 

correlation does not guarantee necessary and sufficient condition to claim that the sensor 

has failed. It vastly depends on the physical phenomenon being sensed.  

If there is a drastic change in the reading of a given sensor, either due to environmental 

effects or sensor failure, then an interrogation signal can be sent to the sensor (with its 

associated signal conditioning circuit) for validating its operation. Interrogation could be 

in the form of a specific code, upon receiving which, the sensor responds with a unique 

code that identifies whether the sensor has failed or not. This interrogation can be done 

periodically or when there is an unusual reading reported by the sensor. 
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2.6 Simulation Benchmarking 

We experiment both Boolean Test and Weighted Method for a temperature sensor 

using simulated data set.  Guaranteed window is set to [+20
o
C, +120

o
C] and usable 

window to [+10
o
C, +150

o
C].   

Discussion: Figure 2.6 (a) shows simulated sensor data reading and the corresponding 

compensated reading obtained from Boolean Test and Weighted method.  In the 

Weighted method, when the temperature reading is within the guaranteed window, the 

weighting factor is set to 1. As the temperature crosses the limits of the guaranteed 

window and approaches the limits of usable window, weighting factor is adaptively 

decreased (as shown in figure 2.6(b)) and the corresponding sensor reading also 

decreases (figure 2.6 (a)). An interesting factor to analyze is that the slope of weighting 

factor (w), as shown in figure 2.6 (b), helps in failure prediction of the given sensor. 

However, the slope decrease could also be a result of sudden increase or decrease in the 

sensor reading. Figure 2.6 (c) shows the how likely the sensor will fail over time 

indicating the performance degradation of the given sensor. As seen from the above 

results, at time interval 8-9, the sensor reading jumps from very low (+10
o
C) to a high 

value (+120
o
C). There is thus an uncertainty as to whether the sensor has actually 

recorded a high event or has failed. This uncertainty is well demonstrated in probability 

of failure (refer figure 2.6c). 
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(a) Comparison of Built-In Test Methods 

 

(b) Weighting Factor 
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(c) Performance Degradation of the Sensor 

Figure 2.6 Experimental Benchmarking 

 

2.7 Effect of Built-in Test on Data Aggregation 

Faulty data acquisition can have effects on decision making and sensor data fusion [13-

15]. In the second benchmarking scenario, we consider three homogenous sensors (say 

all temperature sensors) with guaranteed window set to [+20
o
C, +120

o
C] and usable 

window to [+10
o
C, +150

o
C].  We aggregate the data obtained from all the three sensors 

and compare the actual aggregated value with the aggregated value obtained from 

Weighed Method.  As the temperature reading from any one of the sensors approaches 

the usable window, the corresponding sensor value is decreased by an appropriate 

weighting factor. Hence, the aggregated value obtained from the Weighted Method 

decreases, thus indicating the decrease in the “contribution” of the faulty sensor to the 

fusion (aggregation) process. This scenario is demonstrated in figure 2.7. We see that 

sensor-1 consistently reports a high temperature value (+180
o
C) outside the usable 
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window. Reading from sensor-2 gradually approaches the usable window, thereby 

suggesting that there degradation of the sensor. Our proposed Weighed Method 

incorporates the degradation of sensor-2 and failure of sensor-1 during the aggregation 

process, and thus has a lower aggregated value compared to aggregating the actual sensor 

readings.  

 

 
 

Figure 2.7 Aggregated Data and Weighted Method 

The built-in test methods discussed help to answer the likelihood of component failure 

in any fault-tolerant design technique. Although built-in test methods such as Boolean 

test do not provide a fool-proof mechanism to validate the accuracy of a given sensor, 

they provide a mechanism to capture any intermittent faults. Weighted Method helps 

achieve failure prediction (or likelihood to failure) and provides gradual performance 
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degradation between usable and guaranteed windows, thereby extending the performance 

characteristics of a given sensor in a multi-sensor network environment. 

In case of criticality, having redundant nodes and performing built-in test provides a 

robust feature in the design for fault tolerance. We focus on the summarization and in-

network aggregation of data in order to achieve energy efficient and cost effective 

scheme for optimizing data transmission.  Specifically, we use the concept of spatial 

correlation of the distributed sensors to aggregate the “built-in tested” (fault-tolerant) 

data.  

Multi-sensor data aggregation is an important application in data acquisition systems 

with low communication power. Parallel fused data from multiple sensors can represent 

decision milestones which will incur less communication cost than serially processing 

raw data acquired by individual sensors. It is an intractable problem to actually detect if a 

sensor is faulty by looking at the raw data acquired from the sensors [16].  However, 

because of faulty sensors, the fused data will deviate from the actual physical value being 

sensed. In order to reduce the impact of faulty information prior to fusing, we propose a 

novel method to aggregate the data from the distributed sensors.  

We will first identify different aggregation operators and aggregation process. We then 

analyze the necessity and impact of data aggregation in sensor networks. Following 

which we will propose a methodology for aggregating data and finally discuss other 

competing power-aware data transmission techniques.   
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2.8 Common Aggregation Operators and Aggregation Process 

Definition: Data aggregation is a process in which data or information from different 

sources is expressed in a summary form. 

Data aggregation and data fusion are often interrelated and interchangeable. The 

importance of data aggregation arises from the fact that there is need for reducing 

redundant data and number of transmissions (network packets) in sensor networks. Data 

fusion is a broad area which could include aggregation as a sub-process and focuses on 

information rather than data with the use of several interdisciplinary techniques such as 

signal processing, statistical analysis, machine learning, and probability. Reference [17] 

including references therein, provide detailed information on data fusion architectures 

and methods. 

Common aggregation operators found in literature are max, min, median, quasi-

arithmetic mean, weighted min, weighted max, weighted average and ordered weighted 

average [18]. Although most of these aggregation methods offer reduction in data, they 

generally incur data loss and do not represent the actual physical phenomenon being 

sensed by the sensors. For example, max and min operators do not perform well when the 

standard deviation of the given data set is large. Operators such as quasi-arithmetic 

means are not stable under positive linear transformation [19], i.e., it does not satisfy the 

equation: 

H(αx1+t, αx2+t, αx3+t…., αxn+t) = α H(x1, x2, x3 …., xn) + t 

where H is the aggregation operator.  

However, with aggregation process such as weighted average, the user can set weights 

(1) 
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and thus can control the aggregation process. In fact, more advanced aggregation 

operators such as Choquet and Sugeno Integrals [20] are special cases of weighted 

average method. Since weighted average is stable and not computationally intensive, it is 

very well suited for data aggregation in sensor networks.  

Data aggregation process can be either flat or hierarchical. In a flat structure, all the 

sensory information is fused to produce a global estimate of the sensor data. However, 

this fusion or aggregation method has higher computation overhead on the aggregation or 

fusion node.  In a hierarchical structure, sensor information is fused in each cluster to 

produce a local estimate which is then fused to obtain a global estimate of the sensed 

information. Several fusion steps are needed in each cluster; however, each of these local 

estimates can be performed in parallel as shown conceptually in figure 2.8. Weighted 

adaptation can be easily managed resulting in more reliable information from each 

sensor/cluster heads.  

Figure 2.8 Hierarchical Data Aggregation from Difference Sources 
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2.9 Importance of Data Aggregation in Sensor Networks 

We stress on the issue of energy conservation as the major factor while designing 

computational or communication intensive operations in sensor networks. Most of the 

energy is consumed in communication – transmitting sensed information from sensors to 

the gateway or base station for information processing.  

Sensor networks are primarily used where focus is on aggregated query. For example, a 

query such as “what is the chemical concentration in that area?” is common compared to 

a query such as “what is the chemical concentration reported by a single sensor?” Such 

queries  causes several sensors to report information from the area of interest causing a 

large flow of data from distributed sensing devices thereby causing increased 

communication cost, congestion and high battery usage. Therefore, there is a very high 

need to summarize information from different sensors. Such in-network aggregation 

helps in reducing redundant information, minimizing number of transmission (or packets) 

and thus conserving energy [21].  

With in-network data aggregation, there is always an energy-latency tradeoff. Data 

aggregation incurs end-to-end latency in data delivery to the processing station. 

However, by reducing the number of transmissions, we achieve better performance 

optimization and increased lifetime through aggregation. 

 

2.10 Sensor Network Protocols for Data Aggregation 

An important issue for data aggregation in sensor network is time synchronization. To 

this end, several protocols are developed to reduce communication cost and also achieve 
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synchronization during the aggregation process. Directed diffusion [22], SPIN [23], TAG 

[24], Time Synchronization in Sensor networks [25] and cascading timeouts [26] 

protocols have been proposed to achieve either explicit time synchronization or simple 

timeout to guarantee “data freshness” [26-27]. The timeout mechanism best suits our 

aggregation process.  

 

2.11 Proposed Aggregation Mechanism 

Our proposed algorithm for data aggregation can be broadly divided into two phases. 

The first phase is the fault-tolerant data acquisition process using test methods described 

in Section 2.2.1.  The second phase of our approach is how well the acquired data can be 

aggregated inducing more fault-tolerance before transmitting data to the command center.  

We use the concept of hierarchical aggregation scheme with weighted average 

aggregation operator for information fusion. Our innovation lies in the fact on how we 

dynamically update the weights during the aggregation process based on the spatial event 

correlation and likelihood of sensor failure. 

Consider three overlapping sensing regions. The region of interest is the aggregated 

data obtained around the region of the intersection of these sensing regions. For a large 

deployment scenario, these sensing regions can be extended to cluster regions. The idea 

here is to parallel process rather than serial process data from each sensor node.  Data 

aggregation can be either flat or hierarchical. In a flat structure, all the sensor information 

is fused to produce a global estimate of the sensor data. This fusion or aggregation 

method has higher computation overhead on the aggregation or fusion node. In a 
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hierarchical structure, sensor information is fused in each cluster to produce a local 

estimate which is then fused to obtain a global estimate of the sensed information. 

Several fusion steps are needed in each cluster, however, each of these local estimates 

can be done in parallel. Weighted adaptation can be easily managed resulting in more 

reliable information from each sensor/cluster heads.  

 

 

 

 

 

 

 

Figure 2.9 Event Region Data Aggregation with Three Sensor Nodes 

 

In Figure 2.9, we investigate our weighted average data aggregation method. Each 

sensor node has a weighting factor at any instance of time t, given by wi(t).  In the event 

of sensor failure, the proposed algorithm adaptively decreases the weight for sensors 

which have failed or demonstrate likelihood to fail. At the same time, weighting factors 

for the neighboring sensor nodes is increased. Hence, every reading from each sensor is 

weighted at each predetermined time interval t, and weight updates are computed as 

follows:   

( +1) = ( )  ( )i i iw t w t w t± Δ  

A fusion node (cluster-head or base station) can simply query the nodes for sensor 

  Sensor node 
 
  Sensing region 

Fusion node 

Event region 

(2) 
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reading in the event region. Based on a specific timeout, the fusion node performs 

weighted average aggregation based on the data it has received currently from the 

sensors.  

In traditional neural networks, the change in weights ∆wi(t) is a function of the error 

estimate, which is based on the difference between the expected reading and the actual 

reading. However, in sensor nodes, we do not know the expected or desired reading a 

priori.  In order to estimate ∆wi(t), we use the concept of spatial correlation.  

Sensor i reads the same event value (with minimal variation) as the neighboring k 

sensors which are closely deployed.  In order to estimate ∆wi(t), we propose the 

following model: 

∆wi(t)= |τi|*ε 

where, τ, the adaptation parameter is given by, 

1 2 1 1.... 1... i i k
i i

r r r r r
r

k
τ − + ++ +
= −  

ri is the reading from the i-th sensor, k is the number of neighboring sensors and ε, the 

scaling factor, is a  small value 0< ε<1 and is chosen appropriately for a given 

application. The scaling factor ensures that 0<∆wi(t)<1. An algorithm to update such 

weights based on equation (3) and (4) is given below: 

 

Algorithm for Weight Updates 

1. Initialize all weights at t=0, wi(0)=1 

2. At time t+1, calculate τ i for all sensor readings within the region of event.  

3. Calculate ∆wi(t)= |τi|*ε.  Choose ε appropriately. 

(3) 

(4) 
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4. For i=1 to k,   

a. if ∆wi is minimum for all i, then wi(t+1) = wi(t) + ∆ wi(t) 

b. if ∆wi is not minimum for all i, then wi(t+1) = wi(t) - ∆ wi(t) 

5. Repeat step 2-4 for next time interval 

We provide a theoretical proof to validate the above algorithm in various working 

conditions of the sensors.  

Theorem 1: The weighting factor is increased only if the sensor reading is correlated 

with the k-neighboring sensor readings. 

Proof:  In other words, we need to prove that wi(t+1) = wi(t) + ∆wi(t) for the ith sensor 

when its reading agrees with the majority of the neighboring sensors in the given event 

region. Alternatively, we prove that if ∆w (and in turn, τ given in equation (4)) is 

minimum for all k sensors, then we increase the weighting factor (proving 4a of the 

algorithm).  

Case 1: Consider the case when the reading of the i-th sensor perfectly correlates with 

the k-neighboring sensors, i.e., r = x for all sensors. τ evaluates to ( ) /k x k x× −  = 0, and 

thus ∆w= 0, which means that w(t+1) does not change.  

Case 2: In the second case, we consider a situation where majority of sensors (say p 

sensors) in the set of k sensors are reporting same sensor reading (say r=x) as the i-th 

sensor. This means that the sensor i is correlated with sensors in subset p. 

 

 

 

x,x,x,x,x,x,x,x,x,x   y,y,y,y,y 

 

             p                      k-p   
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 It should be noted that τ in equation (4) simply represents the difference between a 

desired output and an actual output. This absolute value of the difference (desired output-

actual output) will be a value that is closer to zero (but not necessarily zero) and thus 

minimum in the set of τi and ∆wi. Therefore, when the sensor reading correlates with 

majority of sensors in the event region, its corresponding adaptation parameter is 

minimum in the set and thus we increase the weighting factor.  

Case 3: In this case, we consider a situation where m sensors in the set k are reporting 

same sensor reading (say r=x) as the i-th sensor. This subset of m sensors is much smaller 

than the remaining sensors in the set k, i.e., m<k-m. This means, sensor i is uncorrelated 

with majority of sensors in the event region. The difference value (from equation (4)) 

evaluates to value that is maximum in the set of τi. Therefore, the weighting factor is 

reduced as the sensor reading does not correlate with the majority of the neighboring 

sensors.  

Corollary 1: In spatially correlated sensor networks, the adaptation parameter τ, is 

proportional to the posterior probability of nearest neighbor rule.  

Proof:  Consider k neighboring sensors. Let ki be the sensors report same sensor 

reading in a given event as sensor node i. Let p be the subset of sensors that are 

uncorrelated, and remaining (k-p) sensors report a value x, then equation (4) evaluates to: 

( ) /

( ) /

k p x k

k p k

τ
τ
∝ −
∝ −

 

According to k-nearest neighbor rule, the posterior-probability estimate that a reading 

ri is equal to value x is given by P(ri |x) =  ki /k. (k-p)/k gives the posterior probability 

estimate that (k-p) nodes read the sensor reading x, in the groups of k sensors. 
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2.12 Simulation Benchmarking 

Case 1:  Consider three sensors. If all the three sensors are reading different physical 

value with large variations, then we trigger built-in test.  We determine the likelihood of 

failure of a sensor by looking into how close the value is to the usable threshold window.  

Case 2:  Given 3 sensors deployed geographically close to each other. If two of the 

sensors are reading same value (say, temperature) and the third sensor reads a high value, 

then we can say that third sensor has a likelihood of failure. The weighted average 

ensures that the weight for the third sensor is reduced. We demonstrate this case by 

deploying accelerometer sensors to sense vibration on a dummy structural bridge. The 

weight updates for three sensors are as shown in figure 2.10(b). It is clear from the figure 

that sensor-2 and 3 are more correlated than sensor-1 and this can be observed from the 

data obtained from the sensors. Also, from the experimental set up, it is evident from the 

fact that sensor-1 is deployed in an area where there is more vibration in the structure 

compared to sensor-2 and sensor-3. In this experimental setup, we collect the data for 

period of 0.2 seconds sampled at 500Hz (sampling time of 0.002 seconds). We run the 

algorithm offline on stand-alone computer rather then online computation on a sensor 

node.  
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(c) Raw Sensor Readings 

 

       

(b) Weight Updates for Three Sensors 
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(c) Absolute Error Variations 

 

Figure 2.10 Data Aggregation Benchmarking Results 

 

Figure 2.10(c) gives the error obtained from the difference between the aggregating 

data with our proposed algorithm and aggregating reading samples from three sensors 

without spatial correlation.  

Case 3:  If three sensors are reading the same value (with minimal variations), then 

they are spatially correlated and we have ∆w=0.  

 

2.13 Advantages of the proposed approach 

The proposed model considers spatial correlation while computing the adaptation 

parameter τ.  By using adaptation parameter, we increase or decrease the weights on the 

sensor reading dynamically. The model does not zero on the faulty sensors, but decreases 
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the weight on the reading, which decreases the “contribution” of the faulty sensor to the 

aggregation. This helps in identifying any intermittent faults or communication faults that 

might occur for only small interval of time. If the sensor reading gets correlated with the 

neighboring sensors in the next time interval, then the weights are dynamically increased 

due to the adaptation parameter. This approach can be easily extended to all sensors 

within a cluster and the cluster-head acting as the fusion node to aggregate the data.  

Data aggregation in sensor networks in general helps to reduce communication cost. 

However, a faulty reading by a sensor can represent a false estimate for the aggregated 

data. In this chapter, we proposed a robust mechanism to aggregate data from different 

sensors with some tolerance to faults.  

In Section 2.2 and Section 2.11 we have proposed a methodology to identify and deal 

with faults and summarize the fault-tolerant data in sensor networks. In the next section, 

we identify other competing data reduction methods such as in-network data 

compression.  

 

2.14 Data Compression Techniques 

Data compression techniques can be broadly classified into two groups – general 

purpose and special purpose data compression. Special purpose data compression 

algorithms are focused on audio, video or image compression. General purpose data 

compression algorithms are generally applied to data buffers and text files. In both these 

categories, we can have lossless or lossy data compression [28]. In lossy data 

compression technique, decompressing the compressed output (upon retrieval) will not 
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yield original data, but is close enough to be useful. This is most commonly seen in 

compressing multimedia data (audio, video, and image). Lossless compression technique 

allows exact original data to be reconstructed from the compressed data.  

Generally, in sensor networks, it is desirable to have lossless data compression. 

However, depending on application where sensors are deployed, a tolerance is admissible 

for lossy data. We will see some of the lossless data compression techniques and their 

application and/or limitations in sensor networks. Although data compression is a vast 

research area by itself, we will identify common techniques and do a theoretical study on 

their application in sensor networks  

Lossless compression techniques can be further be divided into: 

1. Entropy methods:  

a. Huffman coding [29]: The basic idea in Huffman coding is to replace 

each symbol by code based on a known input probability distribution. 

The inputs are symbols and its corresponding weights (usually 

probabilities). This is not known a priori in many live applications 

including readings from sensors.  

b. Arithmetic coding [30]: Similar to Huffman coding, however, the 

symbols are replaced by real numbers in the range [0,1]. Arithmetic 

coding is expensive both in terms of computation and space (memory) 

requirements.  

2. Encoding methods: 

a. Run-length encoding [31]: Very simple compression technique where 
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repeated data value are stored as single data value and corresponding 

count. Example, WWWWWBBBBACD can be replaced by 5W4BACD. 

Such compression techniques computationally less expensive.  

3. Dictionary methods: 

a. LZ77 [32]: This is a generalization of Run-length encoding method. 

Instead of looking at the whole data buffer at a time, LZ77 uses 

windowing method to replace repeated symbol by a single symbol. 

Therefore, LZ77 algorithm is sometimes referred to as sliding window 

data compression technique. This algorithm is highly suitable for sensor 

network data compression due to its simplicity and low computation 

overhead. We programmed our sensor node with an available open 

source implementation of LZ77 algorithm [33].  

 

2.14.1  Data Aggregation and Compression 

An important feature of our proposed data aggregation scheme is the adaptive weight 

change to deal with faulty information. Compression techniques such as LZ77 does not 

take into account such fault detection or recovery mechanism.  

 LZ77 implementation for sensor node (on TinyOS) looks into repeating 16-bit 

sensor reading (for example 0x17A8) within a given sliding window. From empirical 

analysis with temperature sensors, we found out that such repeating values rarely occur. 

Also, LZ77 uses buffer to temporarily hold the data before being compressed and 

therefore, there is an end-to-end delay in delivery of data to the base-station from the 

time a sensor reading was taken. Data aggregation scheme can be supplemented with data 
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compression schemes to reduce communication costs in network. But such schemes 

would have high computation overhead.  

 

2.15 Chapter Summary 

In this chapter, we developed a data aggregation scheme that when implemented 

hierarchically will reduce the number of network transmission by an order of number of 

nodes transmitting. Moreover, such aggregation scheme also exploits the spatial 

distribution and correlation often seen in sensor networks to generate a weight adaptation 

scheme for fault tolerance. Such technique when augmented with Built-in Test (BIT) 

provides robust mechanism to process and acquire large amounts of data. To demonstrate 

the effectiveness of the aggregation scheme proposed in this chapter, we developed a 

middleware at the cluster-head node that implemented the timeout mechanism and 

aggregation of temperature sensor data. The detailed description of the design and 

implementation of the middleware as well as the experimental results and discussions are 

given chapter 6 of this thesis.  
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CHAPTER 3 

INTELLIGENT DIAGONOSTICS IN SENSOR NETWORKS 

 

 

3.1 Uncertainty, Fuzzy Logic and Approximate Reasoning 

In most of the complex large-scale systems, uncertainty can be found both in 

information received as well as the operational state of the system. A comparative 

description of different systems and their uncertainties is shown in figure 3.1. As seen 

from figure 3.1, in sensor networks, there is a high uncertainty both in terms of data 

acquired and system operations.  

 

 

 

 

 

 

 

 

Figure 3.1 Study of Uncertainties in Systems. Image Courtesy of [34] 

Uncertainty generally takes the form of vagueness or ambiguity in the context of 

information [35]. Vagueness in information is characterized by fuzziness, unclearness, 

cloudiness, etc. The level of uncertainty in both data and the state in sensor networks 

demands a simplistic approach to handle such uncertainties rather than designing a state-
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space model. Even designing a state-space model for a multi-parameter sensor networks 

is generally hard. Often times solutions for characterizing behavior (for control) of such 

complex parameter space problems is to use simple rule based techniques with expert 

knowledge. Also, due to the fact that uncertainties in these systems are common, a fuzzy 

rule based approach is an effective solution for characterizing the behavior of the given 

system (sensor networks). Fuzzy rule-based approach provides a simplified approach to 

multi-parameter problem that is persistent in sensor network. Even though fuzzy 

inference is not new in control/decision making, its application is a significant 

contribution to provide an approximate reasoning in sensor networks.  

 

3.2 Fuzzy Logic Based Controller 

 

3.2.1 Performance Degradation and Network Integrity 

With fault-tolerant hierarchical data aggregation, we can ensure high data integrity and 

energy-efficient data delivery process. Our next key issue is to focus on a cost-effective 

way of prioritizing critical parameters of a given sensor network while maintaining high 

data integrity. With in-network data aggregation, there is always an energy-latency 

tradeoff. Data aggregation incurs end-to-end latency in data delivery to the processing 

station. By carefully analyzing the network and node parameters, we can control the 

process of data aggregation. For example, consider a decision making problem in which a 

cluster is to be selected to aggregate data based on critical parameters such as level of 

network congestion, power level of the aggregating node, data criticality, event levels, 

etc. In such situations, a feedback mechanism, often used in control theory can help to 
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efficiently monitor the current state of a given cluster and to determine appropriate 

actions (say, to aggregate or not) to improve the operational performance. By 

dynamically changing the operations of the nodes based on a changing environment, we 

can extend the performance (for example network lifetime) of a given network. 

Specifically, we represent the ideal state of each cluster as a reference input to our 

controller. The ideal state for a sensor cluster would depend on the threshold limit on the 

operating values for parameters such as, bandwidth usage, network congestion, number 

of dead nodes, activity in the region, and overall energy (power) consumption. These 

parameters depend on the application for which the sensor nodes are deployed. 

 

3.2.2 Need for State Feedback and Fuzzy Logic Based Control 

Designing a state-space model for managing the parameters for sensor networks is 

difficult, simply because of unpredictable state and uncertainties in the operation of the 

network. One such way to handle uncertainties in the system and to characterize the 

behavior of the system (sensor network) using human knowledge and experience is by 

fuzzy logic. Fuzzy logic provides an alternative solution to non-linear control; non-

linearity handled by rules, membership functions and inference process. Conventional 

controller such as PD or PID relies heavily on understanding the physical system (full 

knowledge of a mathematical model), and being able to define its transfer function 

mathematically [36].  

 

3.2.3 System Design 

We consider four parameters – network congestion, data burst due to activity in the 
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region, data criticality, and battery power, as critical parameters that evaluate the state of 

the given network of unattended sensors. These parameters are fed to a fuzzy logic 

controller running on a base station as shown in figure 3.2, which gives an estimate based 

on the expertise or knowledge of the current state of the dynamic system. For instance, 

fuzzy rules can be designed to adaptively change the routing of the query based on the 

traffic (or congestion) in the network.  Simple common-sense rules can be devised, such 

as “IF traffic is HIGH and battery is LOW, then delayQuery is HIGH”.  The controller 

makes intelligent analysis of the state of each cluster by considering the parameters and 

also their combinatorial effect, so as to idealistically distribute the information to all the 

nodes.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.2 Conceptual Design of Intelligent Monitor 

 

 

3.2.4   Detailed design 

Typical fuzzy logic system consists of fuzzification, inference and defuzzification 

process [37]. Fuzzification creates fuzzy variables from crisp inputs that are then fed into 

the inference system. Fuzzy rule base drive the inference system to produce fuzzy 
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outputs, which are defuzzified to get system outputs. The fuzzy rule base consists of 

fuzzy rules (IF antecedent THEN consequent) that are devised by an expert knowledge 

base or through system input-output learning. The core of fuzzy system is this rule base 

which mimics human reasoning [38].  

 

Figure 3.3 Inside a Fuzzy Controller/Monitor 

 

The reference inputs to the fuzzy system helps in designing the membership functions 

for fuzzification as shown in figure 3.3. The crisp inputs to the fuzzy systems are the 

critical parameters – level of congestion, battery level, data criticality and burst. 

Level of congestion plays an important role in routing our query from base station to 

the sensor nodes in the event region. We borrow the definition of depth of congestion 

from [39], to define level of congestion as the level in the routing hierarchical tree at 

which the backpressure message has traversed before a non-congested node is 

encountered. Whenever congestion occurs, the source node simply sets the congestion bit 

and sends the message back to the parent node (in the routing tree) as a backpressure 

message.  

In our proposed approach, fuzzy rules have multiple consequents to achieve the 
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following goals: 

1. Minimizing congestion - Avoid overloading of a given node or cluster of nodes 

2. Optimizing density - Optimal number of sensor nodes in a given cluster without 

loss of information quality.  

3. Optimizing power - Optimal use of sensor nodes by conserving battery power. 

 

3.2.5   Fuzzy Inference Engine 

We define following rules for different functionality of our estimator. 

For Congestion mitigation: 

 Define Q as queue length and DQ as rate of change of queue 

R1: IF Q is empty and DQ is zero THEN congestion_alert is zero 
R2: IF Q is empty and DQ is increasing THEN congestion_alert is low 
R3: IF Q is moderate and DQ is zero THEN congestion_alert is medium 
R4: IF Q is moderate and DQ is decreasing THEN congestion_alert is low 
R5: IF Q is moderate and DQ is increasing THEN congestion_alert is high 
R6: IF Q is full and DQ is zero THEN congestion_alert is high 
R7: IF Q is full and DQ is decreasing THEN congestion_alert is medium 

For power control: 

 Define P as battery power, E as events detected in the region, delay_query as 

delaying the query from base station to event region (caching the query/data) and 

Decrease_nodes as putting the nodes to sleep so as to sustain the lifetime of network (or 

decrease the sleep time of the nodes). Here, we assume that sensor nodes are not powered 

by a central power unit, but each sensor node is driven by their own power, thereby 

having a distributed power supply for the entire network.  

R8: IF P is low and E is high THEN delay_query is high and 
Decrease_nodes is zero 
R9: IF P is high and E is high THEN delay_query is low and 
Decrease_nodes is zero 
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R10: IF P is low and E is low THEN delay_query is medium and 
Decrease_nodes is zero 
R11: IF P is high and E is low THEN delay_query is zero and 
Decrease_nodes is high 

 

For Congestion Control: 

 Define LC as level of congestion, P as battery power  

R12: IF LC is zero and P is low then delay_query is zero and 
Decrease_nodes is zero 

R13: IF LC is medium and P is low then delay_query is medium and 
Decrease_nodes is zero 
R14: IF LC is high and P is low then delay_query is high and 
Decrease_nodes is zero 
R15: IF LC is zero and P is high then delay_query is zero and 
Decrease_nodes is high 
R16: IF LC is medium and P is high then delay_query is medium and 
Decrease_nodes is high 
R17: IF LC is high and P is high then delay_query is high and 
Decrease_nodes is high 

 

We define burst rate as data transmission mode in which large amount of data appears 

for a small interval of time in the network. In sensor network, burst can occur during high 

events or when data is requested (periodic or aperiodic intervals). During burst, important 

sensed information needs to be delivered to the base station. Burst usually causes high 

traffic rates (high channel capacity/bandwidth utilization) which will need more 

intermediate nodes to transmit data. There is thus a higher requirement of resources - 

number of nodes.  

Define BR as burst rate and decrease_node as putting some of the nodes to sleep (or 

decrease the sleep time of the nodes) 

R18: If BR is high then Decrease_node is zero 
R19: If BR is medium then Decrease_node is medium 
R20: If BR is low then Decrease_node is high 
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3.2.6   Advantages of the approach 

The controller can be easily adapted to varying application scenarios by changing the 

fuzzy rules. Having a continuous monitoring system such as the one proposed here, helps 

in sustaining a longer network lifetime by appropriately balancing critical parameters 

thereby ensuring survivability of the network. Efficient routing decisions can be 

adaptively made based on the congestion, power level and activity level in the region of 

interest.  

 

3.2.7   Hierarchical Fuzzy Scheme 

In section 3.2.5 we organize the fuzzy rules based on the functionality. However, a 

more efficient scheme to organize the fuzzy rules is in hierarchical fashion based on the 

criticality; top-level being highly critical to the system as shown in figure 3.4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.4 Hierarchical Rule Base 

 

In addition to the hierarchical organization of fuzzy rules for criticality, we can design 

fuzzy rules to ensure data reliability and quality. These fuzzy rules are applied to fuse the 
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data from different sensors which are organized in a tiered architecture. Thus, we not 

only ensure the quality and survivability of the sensor network, but also guarantee the 

quality of data delivered by the network.  

As a case study, we consider the tiered sensory fusion approach [40] in an 

environmental monitoring application. Specifically, we consider inputs from three 

different sensory sources - temperature, visual, and heat-sensing IR camera. Single 

sensory information, such as from temperature, alone can not accurately determine the 

presence or absence of fire. However, with multiple sensors, detection, severity and 

localization of fire can be determined with lower false positives.  

Consider group of low powered sensing devices capable of sensing temperature, 

distributed spatially to monitor environment (such as forest) for potential fire threats. A 

break-out fire produces enough thermal radiation for the temperature sensors to signal a 

presence of fire. In order to backup the information received from these sensors, a camera 

can provide visual aid to validate the presence of fire. However, smoke generated from 

fire can hinder the visualization of fire and therefore becomes harder to determine the 

severity of fire and hence difficult to isolate the hazard. We also note that camera alone 

cannot provide full information about the fire but relies initially on temperature sensors. 

An aerial information (such as from an UAV) can provide a thermal camera (heat-sensing 

IR camera) to determine location and spread (severity) of the fire. All three sensors 

compliment each other in monitoring, detecting and isolation of fire.  A tiered approach 

helps to detect feature of the threat in each tier as shown below: 
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Tier                          Problem 

----------------------------------------------------------------- 

1                              Detection  

2          Detection, Validation 

3          Detection, Validation, Severity 

 

In tier 1, group of in-situ sensing devices provides the initial detection of fire based on 

temperature readings. In tier 2, validation of the initial detection is done by camera. The 

severity of the threat (fire) is estimated using an IR camera based on the validation and 

detection from camera and temperature sensors respectively.  

We develop a multi-level danger or severity score for each small region of the 

environment. This score d, can take the value  0 ( , ) 1d x y≤ ≤  .  Fuzzy rules can be 

developed at each tier and then fused based on a weighting factor for each of the 

defuzzified value for each sensor.  Defuzzified values at each tier gives an estimate of 

severity score d for a region defined within the boundary x,y.  

 

dt:  Severity score obtained from temperature sensory information. 

Number of sensors reporting fire (low, medium, high) 

⊕  

Temperature range (low, medium, high) 

= 

dt (low, medium, high) 

 

di: Severity score obtained from Infra-red camera. 

Intensity (yellow, orange, red) 

⊕  

Area covered (small, moderate, large) 

= 

di (low, medium, high) 

 

dc: Severity score obtained from camera. 

Fire presence (none, low, medium, high) 

= 

dc (zero, low, medium, high) 
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⊕ represents the fuzzy t-conorm and low, medium, high are fuzzy linguistic variables. 

 

Total severity score is then calculated based on the defuzzified value of dc, di, and dt by 

weighted averaging the values: 
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where wk is the weighting factor for each sensor. An important contribution of our 

approach is how these weights can be updated based on the environmental changes 

observed. That is, based on the condition of fire, the weights should be changed 

adaptively. For example, fuzzy inference can again be applied to evaluate the weight for 

each sensor (say, camera) in the following fashion:  

 
if smoke is high and range is far,  w3 (weight for camera) is low 
if smoke is high and range is near, w3 is med 
if smoke is low and range is far, w3 is med 
if smoke is low and range is near, w3 is high 
 
 
 

3.2.8  Protocol Design for Multi-Sensor Nodes 

In order to realize an implementation of such a monitoring method for sensor network, 

it is necessary to develop a protocol. Such a protocol aids in message passing of critical 

parameters from the sensor field to the base station. In this section, we describe in detail 

the high-level communication message structure and a protocol to communicate and 

interpret the message to and from the sensor network. 

We consider two types of messages - beacon message and a report message. Beacon 

(5) 
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message is a broadcast type message sent by the base station. Beacon messages acts like 

stimuli for the sensor nodes to report their current operational status back to the cluster-

heads. In order to save on the costly communication to and from the sensor network, the 

cluster-heads can make simple but effective analysis of the sensor node reported 

information. 

If there is no substantial change in the information reported or there is no adverse 

conditions (say high congestion, low battery, etc.) reported, the cluster-head does not 

report back the information to the base station. This reduces considerable amount of 

packets in the network, thereby reducing communication cost as well as congestion and 

latency within the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 A Sample Tree Structure for Distributed Sensor Routing 
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Header                   Sensor Data 

   NodeID           GroupID     Request/Reply bit    Congestion bit     power level indicator   queue length   

Each beacon message is sent at pre-determined time interval from the base station. 

These beacon messages traverse from the base station to sink nodes to cluster-heads and 

finally to the sensor nodes. A sample illustration of such a tree structure is seen in figure 

3.5. Cluster-heads are generally sensor nodes with higher functional capabilities than 

simply sensing the environment.  Once beacon message is received, each sensor node 

sends a message to its cluster-head. This message consists of current sensor reading of 

interest, along with important header information. The message structure is as shown in 

figure 3.6.  

 

 

 

 

 

 

 

Figure 3.6 Message Structure 

NodeID uniquely identifies each of the sensor nodes in the network. GroupID uniquely 

identifies the cluster to which the sensor node belongs.  Request/Reply bit can take the 

value 0 or 1.  0 signifies a beacon or cluster-head request and 1 signifies a reply to a 

request from the sensor nodes. The congestion bit is set to 1 if the sensor node is 

overloaded. If the sensor node is acting like a message router involved is message 

hopping, then there is high likelihood that the sensor node can be overloaded. Power 

level indicator identifies the power at which the sensor node is working. It could be 

simply a battery voltage level or power usage represented as percentage of total power 

available to the sensor node. Finally, the queue length signifies the messages that occupy 
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the queue and waiting to be transmitted. This message header can be implemented 

without much difficulty in real-world sensor nodes that provide high level programming 

capabilities (such as TinyOS running on Crossbow motes [41]).  

The beacon request sent from the base station is forwarded down the routing tree to the 

sensor nodes. Each of the sensor nodes reply back to the cluster-head (or their parent in 

the routing tree) with the message which contains the sensed data and appropriately 

setting the header. The number of sensor nodes deployed varies, depending on the given 

application. The fuzzy inference engine can be run either on the base-station, if there is a 

single cluster of sensor nodes or run hierarchically on the cluster-heads. If there are 

several clustered sensor nodes, each cluster-head can run fuzzy rules based on the header 

information in the message, and send their recommendations to the base-station. The 

base-station in turn runs fuzzy logic controller for the recommendations received from all 

the cluster-heads in order to determine best possible parameter estimate for the entire 

sensor network.  This is critical since a recommendation from one cluster might be 

varying or conflicting with its neighboring cluster.  

 

3.3 Application-specific Example 

In the last section we considered fuzzy based inference for each cluster so as to optimize 

the performance of the whole network. In this section, we present another fuzzy based 

approach for clustering deployed sensor nodes. Such clustering mechanism can be highly 

applicable for applications such as object tracking. We will give a detailed explanation of 
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how such clustering mechanism can be used for “intelligently” tracking a moving object 

without having to know the underlying dynamics of the moving object.  

The concept of object tracking has been studied extensively in mobile robotics [42-44]. 

Object tracking is usually combined with other processes such as object detection and 

object classification. Based on the type of sensor used, object detection can be either 

visual (using camera) or motion based (using motion detectors). Object classification 

involves comparing the detected object with a known object, generally using pattern 

recognition/image processing techniques. The principle of object tracking relies on the 

sensory feedback in order to calculate the new position (or state) of the moving object. 

Thus, the process of object tracking is an estimation process. Several estimation 

techniques such as Kalman filters [45], Bayesian estimation [46], and Kernel particle 

filtering [47] have been studied for object detection and tracking.  

Target or object tracking in sensor networks has been proposed in [48-50]. Our method 

of object tracking is based on the topology of the sensor nodes deployed in order to 

estimate the object feature (speed or position) without the underlying knowledge of the 

dynamics of the object. We use the principle of overlapping clustering and data-driven 

techniques [51] to predict the motion of a given object.  

Randomly deployed sensor nodes are grouped into several clusters based on some 

metrics (say, distance). Clustering can be organized in a hierarchical fashion, with 

sensing nodes at the lowest level in the hierarchy. The sensor information is passed on to 

cluster heads which, in turn, pass information to the base station. The criteria for 

clustering could also be the number of hops from the sensor nodes to the cluster head. 
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The main advantage of clustering is to divide the problem space into several sub-

problems and solve each sub-problem for estimation; a divide-and-conquer approach.  

As note in chapter 1, although there are several proposed clustering algorithms for 

sensor networks, to the best of our knowledge, there is no literature which utilizes 

overlapping (fuzzy) clustering mechanism in sensor networks. Such an overlapping 

clustering topology has several advantages when seen from a routing point of view. 

A hierarchical routing tree structure based on non-overlapping clustering is presented 

in figure 3.7(a). In this type of routing, sensing nodes (lowest level of hierarchy) pass 

information to their respective parent nodes (cluster-heads). A routing tree structure 

based on overlapping clustering is presented in figure 3.7(b). As seen from figure 3.7(b), 

when routing information, node-A sends data packets to both cluster heads and 

eventually to the base station. At the base station we have redundant information from 

two cluster heads. Since the packet header of the communicated data contains the node 

identification (nodeID), base station knows from which node it is receiving the data and 

therefore can simply ignore the data or use it based on data fusion algorithms, if there is 

any redundant or duplication of information. 
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(b) Routing Tree with Single Path 

 

Figure 3.7 Hierarchical Routing Tree Structure 

 

We see that there is redundant query and information passed from and to the sensor 

nodes. This will incur more communication cost than normal hierarchical routing, as in 

figure 3.7(a). However, with overlapping clustering, even if one of the cluster head fails, 

the information is still passed on to the base station.  

Another advantage of overlapping clustering is in object tracking. If the nodes belong 

to different clusters to some degree, then this degree can be used as the probability of 

detection of the moving object in that particular cluster. Therefore, clustering based 

distributed computation helps in predicting the object feature (speed, position) without 

having to know the dynamics of the object being tracked.  

An important design consideration in overlapping clustering is to find the minimal 

(threshold) number of sensor nodes that belong to two or more clusters. Sharing more 

nodes among clusters increases the network traffic which could overload the routing 

nodes (in multi-hop scenarios) and can cause network congestion. On the other hand, 

        Base station 

Routing Info to 

Base station 
A 



 

 58 

fewer nodes in the overlapping region reduce redundancy.  

3.3.1 Clustering mechanism 

If the deployment of the sensor nodes is known a priori, then the base station can run a 

clustering algorithm to identify cluster-heads and assign each sensor node the degree to 

which it belongs to multiple clusters. One such clustering algorithm to generate 

overlapping clusters is Fuzzy c-means (FCM) clustering [52]. FCM which is commonly 

used in pattern recognition is based on the principle of minimizing the objective function 

given by: 

2

1 1

N C
m

m ij i j

i j

J u x c
= =

= −∑∑  

 

where uij is the degree of membership of xi in cluster j, cj is the center of the j-th cluster 

and m (m>1) is the fuzziness measure. FCM is an iterative algorithm which starts by 

randomly selecting cluster-heads for the given dataset. By iteratively updating the cluster 

centers (minimizing the objective function), FCM moves the cluster-head to the right 

location within a given dataset. Such an algorithm can be used for partitioning deployed 

sensor nodes. 

Another alternative is to probabilistically select a cluster-head [53]. A chosen sensor 

node broadcasts a message as a cluster-head. All the neighboring sensor nodes reply with 

an acknowledgement message. Based on the signal strength of the received message, the 

cluster-head can assign degree of membership for each of the sensor nodes and thus 

forms a cluster. A single sensor node could potentially receive more than one broadcast 

message from multiple cluster-heads. In these situations, the sensor node has the 

(6) 
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possibility that it will belong to two or more clusters. The degree of membership to a 

cluster, however, depends on how far the sensor node is from the cluster-heads.  

3.3.2 Object Tracking 

With overlapping clustering, each node belongs to two or more clusters with a certain 

degree of presence (µ) in each.  

Hypothesis 1: A high weighted average of aggregated information from the cluster 

center CHi implies the object is in that cluster.  

As stated above, for densely deployed sensor nodes where some of the sensors belong 

to two or more clusters, if the sensor nodes in cluster i are close to the cluster head CHi, 

then µi will be high compared to their µj with neighboring cluster head CHj. With this we 

can average out the sensor reading (si) for k sensor nodes which have detected an object, 

thus giving us the aggregated value: 

1:

i i

i k

s

k

μ×
=
∑

 

 

In figure 3.8, an object (represented as star) is sensed by neighboring sensors and the 

information (sensed value – binary or real) is sent to the cluster heads. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Object Detection by Multiple Sensors 
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  The aggregated value given by (7) will be high for cluster head where the object is 

located at present, since the µi for the sensors in that cluster head is high. 

Different scenarios are analyzed in order to evaluate the performance of our algorithm. 

We define common nodes as those sensor nodes that belong to two or more clusters. 

Independent nodes are sensor nodes whose degree of membership to cluster is 1, i.e., they 

always report information to one cluster head.  Also, the sensor reading si is normalized 

to read between 0 and 1.  

Consider the following three scenarios in object tracking: 

Case 1:  A moving object is detected by group of k independent sensor nodes inside the 

region of a specific cluster. Since the independent nodes have degree of membership 

equal to 1, the aggregated value from equation (7) is nothing but the aggregated value of 

all the sensor reading. 

Case 2: A moving object is detected by a group of sensor nodes common to two 

clusters. This is a situation, where the target object is in the overlapping region of the two 

clusters. The sensing devices in this region report to both cluster heads. The aggregated 

value then depends on the degree of membership for each of the sensors in the 

overlapping region.  

Supporting example:  Consider k=4, the number of sensors in the overlapped region 

that detect an object at a given time instance t. Let µi={0.1,0.8.0.5,0.4} and µj = 

{0.1,0.2.0.5,0.6} are degree of membership of sensors to two clusters i and j and 

normalized sensed values is s={0.1, 0.2, 0.4, 0.4}. The sensed values could be set based 

on the voltage levels in case of analog sensors. From our hypothesis, we estimate the 



 

 61 

chances of object entering a cluster by finding the aggregated value given in equation (7). 

The aggregated value for cluster i is high, indicating that the object is entering cluster i. 

Case 3: A moving object is detected by group of independent as well as common 

nodes. If the number of independent nodes detecting the object is higher than the 

common nodes, the aggregated value in equation (7) will be higher than aggregated value 

obtained from Case 2, because of the high degree of membership for independent nodes. 

The base station will be able to determine the delayed trajectory response of the moving 

object by comparing the aggregated values from different cluster head in the region of 

event.  

Supporting example:  Consider k=4, the number of common nodes that detect an object 

at a given time instance t. Let µi={0.1,0.8,0.5,0.4} and µj = {0.1,0.2.0.5,0.6} are degree 

of membership of sensors to two clusters i and j and normalized sensed values is s={0.1, 

0.2, 0.4, 0.4}. We will also assume that some independent nodes (m=3) within cluster i 

has detected the object. From equation (7), the aggregated value for obtained in cluster i 

is high compared to aggregated value generated at cluster j. From the time series (looking 

at object’s location at time t-1) and the aggregated value at the given time instance t, the 

base station can estimate the course of action of the moving object. Since this algorithm 

is online and data-driven, even if the object changes its trajectory, the base-station can 

quickly estimate the new changed trajectory comparing the aggregated value generated at 

the cluster-heads.  

3.3.3 Protocol and Algorithmic Design 

In order to realize an implementation of such a tracking method for sensor network, it 
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is necessary to develop a protocol. Such a protocol aids in message passing from the 

sensor nodes to the cluster-head. In this subsection, we describe in detail the high-level 

communication message structure and an algorithmic design to interpret the message to 

and from a node.  

Each sensor node sends sensor reading in a message packet with header information 

containing its identification (node-id) as shown in figure 3.9. 

   

 

Figure 3.9  Simulation Snapshot 

Upon receiving such message, each cluster-head (CH) looks up for the degree of 

membership for each node based on the node-id. A simple look-up table mechanism can 

help in retrieving stored degree of membership for each node within the cluster.  Each 

cluster-head then computes the aggregated value (see equation (2)) and sends the result to 

the base-station (sink node) with its identification. The detailed algorithms at sensor 

node, cluster head and base station are given below.  

Algorithm 1: Running on each sensor node 

If (events detected) 
{ 

Send message with node-id and object info 
} 

Algorithm 2: Running on each cluster-head (CH) 

If (message received) 
{ 
Start timer 

While (timeout) 
{ 
Store messages received 
} 

node-id       sensor reading   
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For (each node_id in the received messages) 
Retrieve membership degree  
Perform aggregation based on equation (2) 

} 

Algorithm 3: Running on base-station (sink node) 

For (each message received from CHs) 
{ 
Generate timestamp t 
Compare the aggregated values from other CHs 
Based on previous timestamps t-1, t-2,…t-n, from the time 
series aggregated data received from different CH 
calculate the speed of moving object.  
} 

 

3.3.4 Limitations 

The proposed algorithm relies heavily on the clustering of the deployed network. 

Although the algorithm can track a moving object, the exact positioning of the moving 

object can only be known if position of the cluster-heads is known (either through GPS 

or relative positioning).  

In case of multiple objects being tracked, having relatively high number of clusters 

helps in determining high number of aggregates (equation 2) and thus helping in 

efficiently tracking each objects separately. 

 

3.4 Simulation Benchmarking 

Part(a): In this part, we develop the fuzzy rules using fuzzy logic toolbox in MatLab. 

Figure 3.10a and 3.10b shows the control surface for rules 1 through 7 and rules 8 

through 11 respectively. 
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In this section, we develop a conceptual simulation of subset of the problem described 

in this chapter. Specifically, we run a fuzzy logic controller with rules 8-11 for 

optimizing node density based on the battery power levels and activities/events in the 

given cluster or region of interest. 

 

 
(a)  

 

 

  
(b) 

 

Figure 3.9 Control Surface from Fuzzy Rules 

 

We define two important variables – α as minimum number of nodes necessary to 

guarantee coverage and β as probability of failure of event detection. Here α is chosen 

appropriately for a given application.  The number α can also be determined by using 
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optimization schemes that guarantee optimal coverage for a given application. Finding an 

optimal α depends on the current state of the network including operating power level 

(battery voltage) of the sensors within the cluster, number of events in the network, 

criticality of data, etc.   

 

 
Figure 3.11 Simulation Design for Fuzzy Inference with Power and Event Levels 

 

Figure 3.11 shows the conceptual simulation developed in MatLab Simulink. The input 

parameters to fuzzy controller are the power level and events detected (normalized to 1) 

at discrete-time steps. The output of the fuzzy controller is the estimate for number of 

nodes based on the input parameters. The density error ε is used to evaluate β. If error is 

positive, then β= ε/α, gives the probability of failure to detect an event in next time step. 

If error is negative, then the region of interest or cluster region has sufficient nodes to 

meet the coverage criteria.   
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Figure 3.12a shows the simulation results for density estimates for different power 

levels (figure 3.12b) and event levels (figure 3.12c). We can see a clear raise in the 

estimates for node density during the final simulation time steps, due to the decrease in 

power level and an increase in events in the region.  

 

 
(a) 

 
 

 
(b) 
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(c) 

Figure 3.11 (a): Density (b):Power and (c):Event levels at different time steps 

Part(b):  In this part, we will simulate the object tracking algorithm based on the 

principles of overlapping clustering. We simulate different scenarios when the moving 

object has entered the sensor field (region deployed with sensor nodes). For practical 

implementation we can assume that each sensor node is equipped with motion detectors 

(such as Passive Infrared (PIR) sensors) along with processor-radio board for limited 

computation and communications (for example, sensor nodes such as Crossbow motes). 

Scenario 1: In this scenario, we consider a moving object which moves from one 

clustered region to another without changing direction (trajectory) as seen from figure 

3.13 (moving object is represented as a circle). At each step, the aggregated value is 

calculated based on the number of sensors sensing the object. By comparing the 

aggregated value from multiple cluster-heads, the base-station can estimate the trajectory. 

Note that, since the object’s trajectory is constant, the base station can also perform 

temporal correlation. Based on the aggregated values (spatial correlation) and time series 

data, the base-station can generate the trajectory of the moving object (for example, as 

Time 

Event 

Level 
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given by dotted line in figure 3.13). The actual orientation of the object might be 

different from the estimation, which will constitute the miss rate. Since the algorithm is 

online, at the next iteration, based on the current location of the object, the aggregation is 

again computed giving a new estimation of the object’s orientation thus minimizing the 

overall miss rate.  

 

 

 

 

 

 

 

Figure 3.13  Overlapping Clustering Intuition 

Scenario 2: In this scenario, we consider a moving object which moves randomly 

(without a constant trajectory) in the sensor field. 

In order to simulate both scenarios, we consider a path traced by a moving object as 

show in figure 3.14.  

 

 

 

 

Figure 3.14 Trajectory of a Moving Object 
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We simulated both the scenarios with our proposed hypothesis, in a discrete-event 

structure. DEVS-Java [54] a discrete-event simulation environment developed in Java 

and based on DEVS formalism was used to simulate the object tracking scenario.  We 

run our fuzzy clustering and get cluster centers for the sensors deployed. The simulation 

shows an object entering the cluster field and detected by sensors. The snap-shot of the 

simulation is presented in figure 3.15.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Simulation Snapshot 

As seen from figure 3.15, the algorithm does well in predicting the trajectory of the 

object. However, when the object suddenly changes its trajectory (as seen at time t+n), 

there is an overshoot in the prediction. This overshoot results from the base station 

looking at the motion of the object at previous time intervals (t-Δt) and the current 

aggregated value.  

Since the initial movement of the object has constant trajectory, the prediction relies on 

temporal correlation. As the object changes it course, the algorithm has to rely on the 

t      t+1   …                              t+n  

Actual Trajectory 

Predicted Trajectory 
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aggregated value sent by the cluster-heads. 

 

3.5 Chapter Summary 

Conventional feedback mechanism (such as PD or PID) and iterative formulation of 

dynamics (such as Newton-Euler formulation) could be prohibitively time consuming. 

The basic idea for probing the given sensor network (system in this case) is to mimic 

human mind to deal with complex systems. Human mind maintains a modular perception 

with relatively simple nonlinearities [55]. Our approach was to use human reasoning (by 

designing common sense rules) to deal with complex multi-parametric systems such as 

network of sensors. Fuzzy based reasoning is not new in the area of controls and decision 

making. The use of fuzzy controller for estimation has been proven to be easier to handle 

multiple variables/parameters for large-scale systems.  System identification of sensor 

network is generally difficult due to uncertainty in the system (sensor network) variables. 

We exploit the nature of fuzzy logic controller which efficiently handles uncertainty and 

nonlinearity in the system. It should be noted that our approach is to provide a simplistic 

rather than accurate reasoning about the working condition of the network (diagnose) and 

eventually use this reasoning to update the operating parameters (such as sleep time, 

power level, etc.) of each or group of sensor nodes so as to improve the performance of 

the entire network. The real-world experimentation for node criticality based on fuzzy 

logic approach is presented in Chapter 6.  
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CHAPTER 4 

MULTICRITERIA DECISION MAKING  

 

4.1 Decision Making Process 

The process of decision making is to simply choose an action among set of alternatives 

based on some criterion. For example, consider the systems diagnostics using Fuzzy 

logic discussed in chapter 3. The number of sensor nodes deployed generally varies, 

depending on the given application. The fuzzy inference engine can be run either on the 

base-station, if there is a single cluster of sensor nodes or run hierarchically on the 

cluster-heads. If there are several clustered sensor nodes, each cluster-head can run fuzzy 

rules and send its recommendations to the base-station. In some cases, the 

recommendations sent to the base-station from each one of the cluster-heads are 

conflicting in nature. When such conflicting recommendations exist, it is generally 

desirable to automate the decision making process, for example, to select the right cluster 

for managing the critical operating parameters. There are several decision making models 

available [56] and such models have been extensively used in the field of economics.  

 

4.2 Multi-Criteria Decision Making 

The problem of selecting an action among set of alternatives becomes harder when the 

decision making process involves several criteria rather than a single criterion. Such 

problems are referred to as Multi-Criteria Decision Making (MCDM) [57] problems. 

MCDM is the study of discrete decision making involving two or more criteria 
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(sometimes conflicting) or objectives. In MCDM problems, the goal is to select an 

alternative (choice or a system) from a set of relevant alternatives by evaluating a set of 

criteria. For example, consider the problem of selecting a car from a given set of three 

cars S={A, B, C}. This set S, represents out set of alternatives. Selecting a car of our 

choice is the action. The sample set of criteria to be evaluated can be C
S
={Fuel 

efficiency, Luxury, Price}. A conventional methodology to select a car is based on 

prioritizing the criteria for selection. Such priorities are generally user-dependent. A 

simple weighting factor for each criterion can prioritize the selection process.  

Let us now generalize the problem of MCDM by taking finite number of actions and 

criteria. Let Ω = {s1,s2,…sm} and X = {x1,x2,…xn} be set of alternatives and set of criteria 

respectively. The decision making process proceeds by formulating a matrix A with set 

of criteria and set of alternatives given by: 

 

 

 

 

Each entry aij denotes the degree to which the criterion xj is satisfied by the alternative 

si. The idea is to now reduce the multi-criteria problem into a single global criterion 

problem by aggregating all the elements of matrix A, given by a =H(a1j, a2j…amj), where 

H is the aggregation operator. Most common aggregation operator is the weighted 

arithmetic mean. In this chapter, we will investigate the necessity of MCDM in sensor 

networks, the pitfalls of common aggregation operators (such as weighted mean) and 

       s1              a11  a12  …     a1n    

 A =     s2              a21  a22  …     a2n 

              

                

sm         am1  am2 …     amn  
                  

      x1    x2   …     xn 

(8) 
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provide a counter-measure for aggregating criteria without using common aggregators.  

4.2.1 Motivating Examples in Sensor Networks 

Consider an application of monitoring a large structure such as a bridge, using sensor 

networks. Ideally, we would want to sustain the lifetime of the deployed sensors for a 

long time, since the redeployment generally can be difficult, both in terms of ease and 

cost of deployment. In this case, network lifetime is more important criterion than 

accuracy of data, and hence we assign network lifetime a higher weighting factor. 

Consider another instance, application such as habitat monitoring. High network lifetime 

is desired but not a required behavior. However, more importance or priority needs to be 

given to efficient communication from the habitat to a command center. Consider yet 

another application of monitoring chemical or nuclear spill in a region. Such applications 

have high demands for larger node deployment in order to capture and localize all critical 

events in the region. Each application thus has varying demands or requirements that 

need to be satisfied by properly prioritizing the behavior or properties of sensor networks.  

In order to prioritize the system behavior, we will need to establish criteria for 

prioritizing. This system behavior can be thought of as action to be selected from set of 

alternatives. For example, if there were three different tasks that needed to be completed, 

a human might prioritize them based on time, cost or importance. Therefore, the problem 

of assigning behavior to a given system then becomes a MCDM problem. 

 

4.2.2 Interacting Criteria 

A common method as discussed earlier to evaluate set of criteria is to use aggregator 
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operator to reduce the multi-criteria problem into a single global criterion problem by 

aggregating all the elements of matrix A. A tradition method is to use weight sum (or 

weighted mean) on the row of matrix A given by: 

1
1

n

i i
i

w a
=

×∑  

This is a simple approach; however, despite its simplicity it has drawback in that it 

assumes that the criteria are independent. The criteria can interact with each other which 

requires the replacement of weighting factor w by a more comprehensive non-additive set 

function on set X (set of criteria) which not only considers weighting factor on each 

criterion but also weighting on each subset of criteria. [58] gives an overview of different 

types of interaction among criteria that could exist in the decision making problem. Three 

kinds of interaction defined and described in [58] are as follows: correlation, 

complementary, and preferential dependency.   

Correlation can be further divided into positive correlation and negative correlation. 

Positive correlation is existent two or more criteria present some form of redundancy. For 

example, consider again the problem of evaluating a given car based on three criteria 

{fuel efficiency, luxury, price}. A highly luxurious car generally comes with a higher 

cost. In this case, luxury and price form positive correlating criteria, and the evaluation 

will be an overestimate. As discussed before, this problem can be overcome by using 

weighting factor on subset of criteria, such that w(ij) < w(i) + w(j), where i and j  are two 

criteria and sub-additive feature overcomes the overestimate during the criteria 

evaluation. In the reverse case (negative correlation), weighting factor w(ij) will be super-

additive given by w(ij)>w(i) + w(j). 

(9) 
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In complementary type of interaction, one criterion can replace the effect of multiple 

criteria. This means that importance of criteria pair (ij) is close to the importance of 

having single criterion i or j. Clearly, when such criteria pair exists, a weighted sum 

cannot be helpful during the evaluation process. A more complex weighting factor needs 

to be considered.  

The third type of interaction is the preferential dependence. In this type of interaction, 

the decision maker’s preference for selecting an alternative is simply given by a logical 

comparison, i.e., if there exists a function M such that, for any two alternatives a1 and a2, 

then the decision maker selects one of the alternatives (say a1) if M(a1)>M(a2). 

Clearly, when such complex interactions exist among criteria, it is necessary to use a 

well-defined weighting function on subset of criteria rather than a single criterion during 

global evaluation. One such methodology for evaluation is Choquet integral with the use 

of fuzzy measure [57] as weighting function.  

 

4.3 Fuzzy Measure and Choquet Integral 

A fuzzy measure [59] on a set of criteria (X) is defined as a mapping function µ: 2
X
 

[0,1], where 2
X
 is the power set of X. Additionally, µ should satisfy the following 

properties: 

 1.  µ(Ø) = 0  and µ(X) = 1, where Ø represents the null-set 

 2.  If A is a subset of B, then µ(A) ≤ µ(B) 

For example, consider a set X = { x1, x2 }.  Power set of X is given by, P(X) = { Ø, 

{x1}, {x2},{x1,x2}}. The fuzzy measure on the elements of set P, for example, can be 
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defined as:  µ(Ø) = 0, µ({x1}) = 0.4, µ({x2}) = 0.5  and µ({x1,x2}) = 1. If µ is the fuzzy 

measure on X (set of criteria), then Choquet integral [60] of a function f : X  [0,1] with 

respect to µ is defined as:  

n

µ 1 n (i) (i-1) (i)

i=1

C  (f(x )...f(x )) = (f(x ) - f(x )) µ(Y )×∑  

 

where x(i) indicates that the indices have been permuted such that f(x(1)) < f(x(2)) <…. < 

f(x(n)) and Y(i) = {x(i), …, x(n)}. If the fuzzy measure µ is additive (i.e. µ(xy)= µ(x)+ µ(y)), 

then Cµ represents discrete Lebesgue integral [61].  The above equation (10) for discrete 

Choquet integral can also be given as: 

n

µ 1 n (i) (i) (i+1)

i=1

C  (f(x )...f(x )) = f(x ) (µ(Y )-µ(Y ))×∑  

A graphical representation of Choquet integral as compared to other aggregation 

operators in the interaction space is given in figure 4.1 [62]. 

 

 

 

 

 

 

 

Figure 4.1 Graphical Representation of Choquet Integral 

4.3.1    Sample Example 

We propose a case study for multi-criteria decision making in mobile robot path 
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planning in an environment deployed with sensor nodes. We can generalize such a 

decision making process to a more complex system management. We develop an 

efficient data collection and sensor node replacement scheme for sensor network in a 

cluttered environment.  The autonomous sensor nodes embedded in the environment are 

generally low powered devices.  High events in the environment usually require constant 

monitoring and dense deployment for precisely localizing the threat events. In order to 

capture all important events, we would ideally want more nodes deployed in the region of 

event compared to other regions in the environment.  Any dying nodes would also require 

a replacement (redeployment) in order to sustain the lifetime of entire network. This is a 

novel methodology for a mobile robot to collect data, replace any dying node and to 

deploy more nodes in the region of higher events.  

 

 

 

 

 

 

 
 

 

 

Figure 4.2 Basic Robot-Sensor Architecture 

 

Our initial premise to use radio frequency (RF) signal strength alone to determine 

distance to node was inadequate in providing high data integrity for the following 

reasons:  

Consider an analog test signal being transmitted from the robot to a node as show in 

figure 4.2. The amplitude (signal strength) of the returned signal detected may be true or 

Signal strength 



 

 78 

may be the result of weak battery power. If multiple analog signals are being transmitted 

from mobile robot to several nodes, the algebraic addition of these signals may provide 

an erroneous reading. Hence signal strength or amplitude detection by itself can only be 

used as supplementary information in determining the distance to node. An easier 

implementation is to send out a synchronized pulse from the robot and receive the 

returned pulse from the sensor node and determine the travel time of pulse. In essence, 

this is similar to the functionality of a sonar rangefinder.  Another way of determining 

distance is to send out a predetermined beacon signal with node ID. The robot can 

determine the distance by looking at any two consecutive beacon signals. These signals 

can be directly generated by the battery. This is an added advantage since the beacon 

signal in addition to providing distance-to-node information also provides a relative 

reading of the battery power of the node.  

The decision making problem for the robot is to efficiently navigate through the sensor 

field to reach all the nodes. In the event of multiple paths available to the robot, the robot 

path planning algorithm would intelligently decide which node to reach first. The robot is 

challenged with equally “important” paths to navigate in order to fulfill its goal. The goal 

is to collect data and/or to deploy a node. With advanced technology, robots maybe able 

to even recharge the battery on the sensor node. However, due to low cost in sensor node 

construction, we assume it is economical to redeploy a node instead of recharging the 

battery. The importance of a given path is based on several parameters relating to the 

sensor nodes in the field. Given a deployed embedded network of sensors, the task of the 

robot is to reach the sensor nodes based on several competing criteria. For example, a 
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sensor could have critical data that needs to be collected. At the same time, another 

sensor node may be dying due to low battery power, requiring immediate attention.  

We formulate the above problem by defining the set of criteria, alternatives and the 

goal as follows: 

Criteria: X = {x1,x2,…xn} – set of criteria 

  X = {distance, battery power, event level, data criticality} 

Alternatives: Ω = {s1,s2,…sm} – set of systems on which criteria is to be evaluated 

 Ω = set of sensor nodes 

Goal: Evaluate the set of systems/alternatives {s1,s2,…sm} based on set of criteria 

{x1,x2,…xn}. 

G = Select a sensor node to be reached first. 

The criteria and alternatives are organized in a tabular fashion as shown in table 4.1. 

Distance represents how far the node is to the base-station or the robot. Battery power 

represents the voltage remaining in the sensor node’s battery. Event level signifies the 

number of events captured over a small period of time. A simple way to represent 

criticality is to look at the threshold of the sensed value. Generally, if the sensed value is 

beyond the set threshold, the criticality will be high.  
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Table 4.1 Evaluation of Alternatives 

 

C-1…C-m in Table 4.1, are evaluation results based on the current criteria and 

interaction among the criteria. The methodology used to obtain C-1…C-m is by using 

Choquet integral. A simple pair-wise comparison between two evaluation items can help 

to determine the preference for selecting a particular system (sensor node). For example, 

if C-1 > C-2, then sensor s1 is preferred over s2. 

Consider a mobile robot traversing in an environment that is covered with embedded 

sensors. At each predetermined discrete time interval, the robot evaluates which sensor 

node to reach first, based on set of criteria X. We identify two different cases for efficient 

evaluation of three sensor nodes. 

Case 1: Criteria are fuzzy variables without interaction  

The goal of the decision maker is to select a node that is nearest (low distance value), 

has low battery power, and has high events registered. The alternatives are three nodes 

(s1, s2 and s3) to be evaluated. We define the following fuzzy membership function for 

each criterion: 

Criteria 
                    x 

Sensors   s 

 

Distance 

 

Battery 

Power 

 

Event 

Level 

Data 

Criticality 

 
Evaluation 

sensor 1 (s1) d-1 b-1 e-1 cr-1 C-1 

sensor 2 (s2) d-2 b-2 e-2 cr-2 C-2 

sensor 3 (s3) d-3 b-3 e-3 cr-3 C-3 

… 

 

… 

 

… … … … 

sensor m (sm) d-m b-m e-m cr-m C-m 
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(c) 

Figure 4.3 Fuzzy Membership Functions for Criteria (a) Distance, (b) Battery Power and 

(c) Number of Events  

C1, C2 and C3 are the fuzzy sets obtained which expresses goal and conditions in terms 
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of available systems s1, s2 and s3.   

The decision maker’s solution (D) is obtained by max-min inference [63] on the three 

sets C1, C2 and C3.  D is obtained from min of each system and represents a fuzzy 

characterization of the concept of desired system. Using max, we can obtain a preference 

of a given system over another system. In this case, sensor node s2 is the most desired 

system to be reached first by the robot.  

D = 0.1/s1 + 0.25/s2 + 0/s3 

 

Case 2: Criteria are crisp variables with interaction  

As discussed before there are three types of interaction among criteria identified - 

correlation, complementary and preference dependency as three different forms of 

interaction among criteria. In our case study on sensor network, criteria such as power 

level and capturing events are correlated and complementary. For example, in order to 

capture critical environmental events, a deployed sensor should ideally have a low sleep-

time and high sampling frequency. This means that power consumed by the sensor is 

high, suggesting that power consumption and events are correlated and complementary.  

Recall that Choquet integral is defined over the function f : X [0,1]. This function f is 

often called the utility function or score [64]. The utility function is required to make the 

criteria comparable, since criteria generally are not measured on a common scale. By 

using utility function we map the criteria to a common scale, making them 

commensurable criteria as shown in figure 4.4. 

 

(12) 
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Figure 4.4 Mapping Criteria 

Given the three criteria/attributes related to a sensor node – distance, events registered, 

and battery power, we can generate the utility function based on the defined goal as 

follows: 
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(c) 

Figure 4.5 Generating Utility Functions for Distance, Events and Battery 

From figure 4.5, for example, a shorter distance to a given node, generates a high score 

or utility function. For example, a distance of 1m, will generate a score f(d)=0.9. 

Similarly, if the number of events generated is high (say 40), then the score is high 

(f(e)=0.8). The overall evaluation of different alternatives (sensor nodes) is obtained by 

aggregating the utility functions using Choquet integral with appropriate fuzzy measure 

(which acts like a weighting factor). The weights, fuzzy measure and resultant Choquet 

integral for three sensor nodes at varying distances, battery level and event (activity) 

level are tabulated as given below: 

Table 4.2 Fuzzy Measures for Subset of Criteria 

Sets Fuzzy Measure 

{} 0 

{Distance} 0.854756 

{Battery} 0.515547 

{Distance,Battery} 0.978599 

{Events} 0.164453 

{Distance,Events} 0.89426 

{Battery,Events} 0.604638 

{Distance,Battery,Events} 1 
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Table 4.3 Input and their Corresponding Choquet Integrated Values 

 

A working example for the real-world experiments conducted is presented in chapter 6.  

4.4 Chapter Summary 

The problem of sensor behavior assignment is defined as an efficient planning process 

for determining the sensor functions and usage according to changing situations. Two 

important processes involved in the behavior assignment are, 1) decision about set of 

tasks that sensors need to accomplish and 2) scheduling of actions for the sensors. We 

believe that decision making process is the hardest and important step in behavior 

assignment. This is because, once the decision is made on what tasks that sensor needs to 

be doing, scheduling actions for that decision can be implemented simply as a look-up 

table. The decision making process on what tasks the sensor needs to accomplish 

depending on the mission plan and situation generally depends on the various criteria 

involved. Once the behavior pattern for a given application is identified, the state of the 

sensor network and its performance can be used as feedback for creating training set for 

learning algorithms such as neural networks.  

The above mentioned decision making process for mobile robot can be adapted to 

cluster of sensor nodes rather than individual sensor node. For example, based on activity 

level, number of sensor nodes and importance of activity, preference can be given to a 

No. Distance Battery Events Choquet Integrated Values 

1 0.9 0.5 0.1 C-1 =  0.833342 

2 0.5 0.9 0.1 C-2 =  0.697658 

3 0.1 0.1 0.9 C-3 =  0.231562 
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particular cluster for management (power management, node density management, etc.). 

If the number of nodes is critical for the given application, then it gets a high weighting 

factor.  This means that we would require some nodes to be put to sleep. We are thus 

changing the behavior of the network by tuning one of the parameters (increasing sleep 

time) based on the needs of the application. We are intelligently analyzing the 

characteristic of the deployed sensor network for a given application and adaptively 

changing its operational behavior to suit the changing demands.  From decision-theoretic 

viewpoint, appropriate sensor action needs to be scheduled in order to achieve maximum 

utility. 
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CHAPTER 5 

DYNAMIC POWER MANAGEMENT 

An important consideration when dealing with sensor networks is power consumption. 

Generally, the sensor nodes are driven by a limited power supply on-board the node (i.e., 

the network has distributed power supply). The impact of conserving power on each 

sensor node can have tremendous effects on the lifetime of the entire network.  

There are two main categories that can be identified to sustain the lifetime of sensor 

network [65]: 

Global level or system-wide:  Increase the number of redundant sensor nodes. These 

redundant nodes act as back-up nodes and can take over the task of sensing and signal 

communication from any dying nodes in order to sustain overall network lifetime. 

Local level: Scheduling and low power operation of each individual sensor node.   

By adjusting either network parameter (increase in number of nodes) or node parameter 

(power scheduling), we can sustain the lifetime of the given sensor network. Whenever 

such a parameter adjustment is performed, the behavior of the network changes and a 

sensitivity analysis can be performed to evaluate the behavioral changes. At the sensor 

node level, in order to conserve battery power, the sensors can be scheduled to sense the 

environment at different samples or time intervals. Although, some information might be 

lost, this is an effective way to optimize energy consumption. Figure 6 shows the 

ON/OFF (sleep mode) scheduling of the sensors. 
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Figure 5.1 Typical Time Scheduling 

 

The energy consumed Ec by each sensor is given by: 
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where Ti is the time period and Pi is the power at which the sensor operators in the 

given time period Ti. This is a simplified energy consumption model [66]. The network 

lifetime is the reciprocal of the energy consumed. Let the sensor work in full power, i.e., 

Pi = Pf without any scheduling and TL1 be the network lifetime based on the energy 

consumption Ec1. If the sensor is scheduled (changing input parameter), then the energy 

consumed after scheduling Ec2 will be less than Ec1, suggesting that lifetime TL2 will be 

greater than TL1. The sensitivity measure is given by: 
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During the Toff period, the sensor could be completely put to sleep (meaning zero 

power consumption) or it could work at a lower power. Commercially available sensor 

nodes such as Crossbow motes generally operate through a cycle of modes in order to 

(13) 

(14) 
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reduce the energy consumption – 1. Sleep 2.Wake-up 3. Sample sensor reading (read 

ADC port) 4. Communicate 5. Go back to sleep mode. This is an in-built power 

scheduling mechanism depicted in figure 5.2. 

 

 

 

 

 

 

 

 

 

Figure 5.2 Sensor Node Operation Cycle 

5.1 Motivation 

One of the objectives of a sensor network with on-board batteries is to survive as long 

as possible and derive meaningful feature level information from the environment. The 

overall effectiveness of the sensor network depends on how well the mutually 

contradicting objectives of conserving the limited on-board battery power and keeping 

the sensors awake for stimuli, are managed. The sensor nodes should ideally sleep as 

much as possible; however, it should be able to capture high number of events. “Sleep” 

here means that the sensor node’s radio, sensors and EEPROM (memory) are turned off 

and the processor is in an idle state. The processor can wake-up after the timer expires 
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and acquires data from the ADC (Analog-to-Digital Converter) ports of the sensors. In 

order to sleep as much as possible but still able to capture events, we will need an 

adaptive technique that not only depends on the change in sensed value but also on the 

degradation of the battery power. The node should be “smart” enough to adaptively 

adjust its sleep time based on these two conditions – temporal difference in sensed value 

and current battery state of the node.  

 In order to build such “smart” sensor node, a rigorous learning process should guide 

the node to evaluate multi-objective decision making. Due to the high spatial distribution, 

low computation and energy capabilities, WSNs often pose a challenge to classical 

machine learning. The concept of supervised learning has been extensively used in 

object/target tracking and detection in sensor networks. Reference [67] and references 

therein, provide an excellent survey of existing supervisory learning methods and provide 

models for nonparametric approach to distributed inference in WSN. Although, these 

literature reveal a great insight into distributed learning, and in specific to distributed 

inference in energy and bandwidth challenged environment, very few directed research 

have implemented reinforcement learning in sensor networks. The application of 

reinforcement learning specific to sensor networks have only been researched mostly for 

routing information from sensors back to a base-station [68-69]. [70] gives basic concepts 

of learning theory approach in sensor networks based on several specific sensor network 

applications. Other discussions on learning (such as in [71]) have been specific to 

detection and classification using sensor networks. In this chapter, we will present an 

implementation of a multi-objective critic based autonomous decision making 
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mechanism that takes both the temporal state transition of the sensor and that of the 

environment into account. Although, the temporal based reinforcement scheme proposed 

can be used to adaptively change several behaviors of a given sensor, for experimental 

purposes, we consider only one such behavior (sleep time) for power management. This 

experimentation will not mask the generality of the theory proposed. Specifically, we 

propose an actor-critic based reinforcement learning mechanism that can be practically 

implemented on an embedded sensor. The key to such reinforcement learning mechanism 

is the development of the value function (or critic/reinforcement function) that is 

implemented on each sensor node which aids in dynamic power scheduling based on 

different situations. In the next section, we introduce the concept of reinforcement 

learning, the need for reinforcement learning and our approach to solve adaptive power 

scheduling scheme problem with such learning mechanism.  

 

5.2 Reinforcement Learning 

Reinforcement learning is different form of supervisory learning [72]. Reinforcement 

based learning is adopted when there is no feedback available in the action space of the 

learning agent. For instance, in the case of a neural network [73] that maps a given 

function; supervised learning can be applied if the input and output data pairs are 

available, so that the estimated output of the neural network can be compared against the 

desired output. In situations where the desired output is not available, the network can be 

trained using reinforcement based learning if the output of the network can be evaluated 

in terms of a reward or a penalty.  Neural networks and other regression model [74] are 
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computationally too intensive to be implemented on low cost sensors.  

In the case of a sensor learning to make internal decisions based on proprioceptive 

information, there is no set goal against which the decisions can be compared. Therefore, 

an error cannot be calculated in the decision space. Alternatively, the decisions can be 

evaluated in a contextual sense to derive a scalar reward. The internal decision making 

policy can be improved by making it pursue a strategy to maximize total expected 

rewards. 

Reinforcement learning deals with how to map the situation to actions. The learner 

does not have the knowledge of what actions to take, but instead selects an action that 

will yield maximum reward (or minimum penalty). For example, a mobile robot is 

required to map a given building. It should decide whether to enter a new room for 

mapping or go back to docking station for battery re-charge.  

There are three critical elements in reinforcement learning – a policy, a reward function 

and a value or critic function. A policy defines the learner’s behavior at a given time. 

Simply, policy maps the observation into actions. Policies can be stochastic or 

deterministic in nature. Reward function maps the action into a scalar value. The learner 

either gets a reward or a penalty for taking a certain action. It is the learner’s 

responsibility to maximize the reward. Value or critic function what is good for the 

learning agent in a long run. Critic (V) at a given time k, is the total expected reward 

given by: 

V(k) = r(k) + γr(k+1) + γ2r(k+2)… 

 

where, r is the instantaneous reward function defined by the user and γ is the 

(15) 
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discounting factor. In conventional reinforcement based algorithms, a critic learns to 

estimate V(t) as shown in figure 5.3.  

 

 

Figure 5.3 Relationship between Rewards and Critic 

 

A major class of reinforcement learning is the Temporal Difference (TD) learning 

scheme. Like Monte Carlo methods [72], TD learning can directly learn from experience 

without having to know the underlying model of the environment. In TD approach, the 

learning agent passively observes a temporal sequence of inputs that eventually lead to 

final reward [75]. The learning agent’s main task is to then predict expected reward. One 

such TD reinforcement method is actor-critic learning [76]. Figure 5.4 shows the 

architecture of the actor-critic method. 
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Figure 5.4 Actor-Critic Architecture 

The policy structure is known as the actor, because it is used to select actions, and the 

estimated value function is known as the critic, because it criticizes the actions made by 

the actor. Learning is always on-policy: the critic must learn about and critique whatever 

policy is currently being followed by the actor. The actual critic is a state-value function 

which gives the total discounted sum of future rewards given by: 

6.0,)()(
6

0

=+=∑
=

γγ
m

m mkrkV  

We restrict the polynomial to 6, since (0.6)
6
 is a small number.  

5.2.1 Our Approach 

The computational burden involved rules out the possibility to implement the 

estimation algorithm (V(k)) on a commercially available embedded sensor. In this case 

we reduced the computational burden by directly designing or estimating a critic function 

given by: 
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where, )(ˆ kV  is the estimated discounted sum of future 

rewards, [ ]TNkrkrkrk )1()1()()( +−−=φ  is a vector of past rewards, )(kθ  is a 

vector of scalar parameters of the same size as )(kφ . Here, we assume that the non-linear 

dynamic behavior of the sensor and the environment can be approximated by a non-linear 

static reward function given in (18) and a linear dynamic regression function given in 

(17). The advantage of this method is that any number of non-linear evaluation criteria 

can be integrated into the reward function in (18).  The simplified linear dynamic 

regression function can be easily implemented on an embedded sensor with limited 

processing and memory capacity. A more comprehensive approach where the 

nonlinearities are modeled is by a neural network or a nonlinear regression model. 

However, this would be computationally intensive to be implemented for low cost 

sensors. 

 

The instantaneous reward function r is given by: 
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where, )(kb  and maxb  are battery voltage at time k  and that at full charge respectively, 

Scurrent and Savg are sleep time at time k  and a scalar value representing a mean sleep time 

(17) 

(18) 
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respectively, τ  is a scalar, and )(kT  is environment temperature at time k . The design 

of this reward function is based on the fact that, the sensor should sleep less to capture 

events (change in temperature). However, when the battery voltage is running low, the 

sensor should sleep more but still be able to capture the changes in temperature.  

Our approach to reinforcement learning method is in two phase as follows: 

1. Offline critic function estimation:  Based on data set obtained with varying 

temperature and sleep times, we evaluate our instantaneous reward function (given in 

(18)). In order to estimate )(ˆ kV , we will need to first estimate the parameter 

vector )(kθ . A recursive least squares algorithm given in (19) was used to optimize 

the parameter vector.  
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For a polynomial of order 4, the estimated critic given in equation (16) was optimized 

using the recursive least squares algorithm given in equation (19). The resulting vector of 

polynomial parameters obtained was: [ ]T3464.02688.03052.01.4768* =θ . Figure 5.5 

shows the difference between estimated critic and the actual critic. This is first attempt to 

estimate the critic using a linear polynomial function. Figure 5.6 shows that polynomial 

order 4 gives the minimum average estimation error ( )∑
=

−=
T

k

kVkV
1

)(ˆ)(ε , where T  is 

the total time span. 

(19) 
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Figure 5.5 Comparison of approximated critic with the actual discounted sum of future 

rewards 

 

Figure 5.6 Estimation of Polynomial Order 

The offline batch learning (or critic estimation) was conducted with varying sleep times 

and with changes to temperature reading. Instantaneous reward, critic, sleep time and 

temperature reading from real-world sensors are as shown in figure 5.7 
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Figure 5.7 Evaluation of Reward and Critic 

From figure 5.7, we see that there is an high reward when temperature changes and the 

sleep time is low. This means that the sensor is awake and is able to capture the events. 

Similarly, the reward is low with temperature changes when the battery voltage is low.  

2. The second phase of our algorithm is to program the sensor node with the estimated 

critic.  The estimated critic function is loaded on-board a sensor node. With varying 

temperatures, the sensor node adaptively changes the sleep time. For each reading, 
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we calculate the reward function given in equation (4). We store up to four reward 

values in a circular buffer. After every fourth reading, we estimate the critic value and 

compare it with the older critic estimate. If the present critic estimate is greater, we 

adaptively change the sleep time and calculate the next reward value.  

Detailed experimentation and results are shown in chapter 6 of this thesis. 

 

5.3 Chapter Summary 

In this chapter, we have presented a novel approach in designing a critic function that 

will guide the sensor to adaptively sleep so as to reduce the network packets as well as 

conserve on-board battery power. The node sleeps as much as possible but at the same 

time should handle the stimuli from the environment. This complex contradicting 

requirement is embedded in a reward function that is developed and implemented as 

shown in this chapter. Moreover, this is first attempt to use a polynomial type critic 

function which approximates non-linear regression model and that can be implemented 

on a low power (computation/memory) platforms.  

 

 

 

 

 

 

 



 

 100 

CHAPTER 6 

DESIGN AND IMPLEMENTATION  

 

In this chapter, we will study in detail the complete design to deal with multi space 

problem domains in sensor networks. Specifically, we consider implementation details of 

the design for each sub-problem – data aggregation, critical monitoring and control and 

power scheduling that has been discussed in previous chapters. The solutions proposed 

for each of the sub-problems in the previous chapters can be considered as an overall 

architecture for fault-detection and performance improvement in sensor networks. A 

block diagram illustrated in figure 6.1 shows the concept of such architectural design.  

The architecture presented in figure 6.1 is generic in nature and can be applied to any 

sensor acquisition system that requires some degree of fault-tolerance and performance 

improvement. In chapter 2, we proposed a detailed theory on efficiently handling large 

data sets through hierarchical aggregation. The concept of spatial correlation is used to 

validate the aggregation process against intermittent faults. Chapter 2 also described 

built-in test methods adaptively calibrate the sensors to alleviate faults. These processes 

which are usually performed in-network are incorporated into the complete solution suite 

described in figure 6.1. Often times, the quality or the process itself might have to be 

compromised against several parameters such as battery lifetime, node storage capacity, 

bandwidth, etc. in order to achieve high performance throughput. These algorithms that 

trade the execution of the process or its quality are often referred to as adaptive fidelity 

algorithms. The decision to run a process (such as for example - aggregation, built-in 
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test) depends on the parameters (criticality, battery, etc) and extensive decision making. 

These decision making process (discussed in chapter 3 and 4) running on base station as 

shown in figure 6.1, helps us to fine-tune the operational characteristics of each sensor 

node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Architecture for Performance Improvement in Sensor Networks  
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6.1 Detailed Description 

 

The block diagram shows the flow of data and control for ensuring complete network 

integrity. In order to provide such integrity, both node and data integrity should be 

ensured. We can distribute the functionality shown in the architectural design onto nodes 

as well as to the base station. Extensive computation load should be handled by base-

station which is assumed to have higher computation, power and storage capabilities 

compared to sensor nodes. Critical, faster, and less expensive computations should be 

handled at a node or cluster-head level. Generally, data integrity issues are very critical 

that needs to be handled at the node level. For example, consider a scenario that requires 

continuous sensor data acquisition. This will generate large amounts of data, thereby 

affecting the performance of post-processing of data.  If the sensor node filters out any 

redundant (or unwanted) data at acquisition phase, this will greatly influence the 

performance of data post processing. In fact, a robust method is to aggregate data or 

compress data (as discussed in chapter 2) rather than throwing the data away. Therefore, 

in our proposed method, we perform in-network data level integrity (at a given sensor 

node or cluster-head) 

In simple terms, data integrity means ensuring that the data acquired is complete. Also, 

the aspects that influence data integrity are correctness, accuracy and validity. These 

aspects suggest that the data acquired and processed should have minimal faults (or 

ideally, be fault-free). Thus, the theory proposed in chapters 2 will enable us to provide a 

complete fault-tolerant data acquisition with validation from neighboring sensor nodes.  

Feature extraction, pattern classification and other decision theoretic approaches often 
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require high computation power. This would be ideal at a base-station level. This data 

also reveals important information on the operation status of the node. The decisions 

taken based on some parameter (in this case, criticality of node) at the base-station are 

propagated to cluster-heads and eventually to all the sensor nodes.  Based on the 

information received, necessary changes are made to the operating parameters of the 

sensor nodes. In order to achieve such decision propagation, an efficient protocol and 

message structure needs to be designed. This chapter will give a detail explanation of the 

design and implementation of such protocol, the hardware platforms used and the 

implementation of high-level interface for post-processing the acquired data.  

 

6.2 Hardware Platform 

In order to implement the design proposed in the previous section, we use off-the-shelf 

multi-sensor board (MTS420) from Crossbow Inc. running TinyOS. For this thesis, we 

have used TinyOS version 1.1. Each of these sensor boards is equipped with different 

sensors – temperature, humidity, pressure, light, and 2-axis accelerometer. The multi-

sensor board is housed on a platform (MICA2) that has a processor-radio board 

(MPR400) and other accessories (such as antenna and connectors for sensor board). 

Processor on-board MPR400 is an Atmel ATMega128L 8-bit ARM processor with 

7.37MHz clock speed. It has a 128KB program memory and 4KB EEPROM for data.  

The combination of multi-sensor board and the platform (MICA2) is usually termed as 

motes. Motes are modular in nature, i.e., a platform can house different but compatible 

multi-sensor boards. We used a 433MHz multi-channel transceiver for our motes, since it 
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provided a very good range (distance). We use temperature sensor (Sensirion SHT11 

temperature/humidity sensor) onboard the MTS420 sensor board to collect data for 

experimentation. Operating temperature range is -40
o
C to +125

o
C. Experiments were 

conducted both in a laboratory setting as well as in outdoors.  The sensed information 

(temperature in this case) is sent wirelessly to the gateway node, which is just another 

mote that is housed on a programming board (MIB520). The programming board 

connects to a PC (base-station) using a serial or Universal Serial Bus (USB) interface 

using Universal Asynchronous Receiver Transmitter (UART) packets. As specified in the 

user manual [77], in TinyOS 1.x, UART packet format is platform-specific (say 

MPR400), which requires complex protocol handling and PC-side tools to decipher and 

handle the messages to and from the motes. Since this is true in our case (since we are 

using TinyOS 1.1), we had to develop interface tool at the PC-side to decipher the packet. 

The interface not only handles packets from serial (or USB) interface, but also allows the 

user to inject packet back into the gateway node, which then broadcasts the message 

wirelessly to all the deployed sensor nodes. We discuss the details of protocol design for 

message passing from PC to gateway node and vice versa in section 6.3 of this chapter.  
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Figure 6.2 Sensor Nodes Deployed Outdoors and in Laboratory Settings 

 

 

 

Each of these sensor nodes support an event-driven operating system called TinyOS. A 
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Figure 6.3 Simplified Architecture of a Mote 

 

6.3 High Level Interface Design 

The architecture proposed in figure 6.1 is divided horizontally – node-level 

implementation and base-station level implementation. This presents hybrid architecture, 

a combination of centralized and decentralized (or distributed) implementation. As stated 

before, extensive computation load should be handled by base-station which is assumed 

to have higher computation, power and storage capabilities compared to sensor nodes. 

This is our centralized implementation. Critical, faster, and less expensive computations 

should be handled at a node or cluster-head level, which is distributed in nature. At the 

base-station level, in order to visualize data from different sensors as well as to propagate 

decision from base-station to all the nodes it is necessary to have a user-level 

visualization tool. Such visualization tool should also enable the user to control or pass 
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messages (to control) to the deployed sensors. This forms a sensing-decision-actuation 

loop. We developed the visualization tool in National Instruments’ LabView® [78]. The 

choice for such development tool was the vast suit of tools LabView provides such as – 

interface to serial port, fuzzy control block, easy to use conversion tools (string to 

integer), etc.  

Figure 6.4 gives a snapshot of the interface developed in LabView. A spread-sheet type 

interface (figure 6.5) is also developed for multiple sensor data acquisition. 

 

Figure 6.4 Interface for Data Acquisition and Decision Propagation 



 

 108 

 

Figure 6.5 Spread-Sheet Type Interface for Data Acquisition 

 

6.3.1  Packet Format (Protocol Design) 

In order for the user to control the parameters on a remote sensor through the interface 

it is necessary to devise a protocol (and a message format). The message or packet format 

will be understood by the remotely deployed sensor and takes specific action based on 

the action type in the message. The message structure is as shown figure 6.6. 
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Figure 6.6 Message Structure for Over the Air Programming 

The description of fields (8-bit) in the message structure is as follows: 

 

len: Length of the payload 

node: node-id to send the message 

action: action to be performed on the node 

 action type:  01 – Aggregate data 

   02 – Disable aggregation 

   03 – Enable Built-in Test 

   04 – Disable Built-in Test 

   05 – High Sleep Time 

   06 – Low Sleep Time 

   07 – Reset Sleep Time 

   08 – High Transmission Power (adjust potentiometer) 

   09 – Reset Transmission Power  

rsvd: reserved field for future use. 

CRC: cyclic redundancy check (16-bit). 

 

CRC provides better corruption detection mechanism than a regular checksum or parity 

bit. CRC used in TinyOS is CRC-CCITT [79]. Any packet that does not have a correct 

CRC for the payload sent will be dropped at the gateway node. Therefore, we developed 

the CRC in LabView interface and each time the payload changes, CRC is automatically 

calculated and appended at the end of the packet. A LabView implementation of CRC is 

given in figure 6.7 

        header                   len      node  action   rsvd         CRC 

payload
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Figure 6.7 CRC for TinyOS Packets 

The interface injects our custom message from the PC to the gateway node. The 

gateway node deciphers this packet and checks to see if the node-id in the message is set 

to its address. If not, it broadcasts the message over radio to all the sensor nodes. The 

sensor nodes check if the message belongs to it and take the action based on the action 

type in the message. In traditional Over-the-Air-Programming (OTAP), entire program is 

sent over radio to the node to be reprogrammed. The node is stopped, reloaded with new 

program and restarted. In our approach, we just send a specific action type for the sensor 

to react and change its behavior rather than complete reprogramming.  

6.3.2 Engineering Conversion  

The digital data from sensors (either from ADC of the processor or in-built ADC on 
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sensor) is stored as 16-bit data in TinyOS. For example, Sensirion SHT11 temperature 

sensor on the sensor node (MTS420) that we used has an internal 14-bit ADC. The 16-bit 

data value for each sensor is the raw reading from the sensor which needs to be converted 

to engineering units. We implemented the conversion algorithms given in [80] in 

LabView. A snapshot for engineering conversion for battery voltage, temperature and 

humidity is given in figure 6.8.  

 

 

Figure 6.8 Engineering Conversion 

We should also note that the packets that arrive from the sensor over radio are in big-

endian format that needs to be converted to little-endian format.  
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6.4 Middleware Design and Development 

For the remotely deployed sensor nodes to understand the commands from the PC, 

nodes need to decipher the packet (as shown in figure 6.6). So the action selection at the 

sensor nodes is based on the action type in the message.  Therefore, there is a necessity 

for a middleware or service layer software component that is embedded in these sensor 

nodes that can decipher the message. Such middleware are often termed as Message 

Oriented Middleware (MOM) [81]. The term middleware is often used to loosely 

describe a software component that connects other software components or application. 

However, very specifically some definitions have stated that a middleware is a layer that 

lies between operating system and applications. In order to avoid controversy in 

definition, we call our software component that can understand our custom protocol as a 

message oriented service layer. Thus, the simplified architecture of the mote as shown in 

figure 6.3 is extended as shown in figure 6.9. 

 

 

 

 

 

 

 

 

Figure 6.9 Modified Mote Architecture 
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Service layer developed is efficient in terms of processor, memory and power usage. 

Based on the general architecture given in figure 6.9, we have two main implementation 

of this service – one at the sensing level and other at the cluster-head (or aggregating 

node) level.  

At the cluster-head level, the service layer performs fault-tolerance aggregation of data 

from different sensors. For experimental purposes, as stated before, we used three sensor 

nodes that are closely deployed to each other to report temperature. Based on the action 

type within the message packet, aggregation can be enable or disabled. This represents 

decision-based aggregation architecture.  

At sensing level, service layer first checks to see if the packet from the gateway node 

belongs to it. This is done by comparing the node-id in the packet to 

TOS_LOCAL_ADDRESS, a constant defined while programming the sensor node. If the 

packet belongs to it, then the sensor node looks into the action field to take appropriate 

action. Also, based on the critic evaluation, the sleep time of the node is adaptively 

increased or decreased.   

6.5 Experimental Results and Discussions 

Part 1:  Data Aggregation 

As shown in figure 6.2, three temperature sensors deployed closed to each other in a 

laboratory setting is used to collect data and aggregate on a cluster head (gateway node in 

this case). We first perform aggregation (simple averaging) of the three temperature 

readings on the cluster head. We then introduce a uniform noise in one of the sensors 

(sensor-3) and compare the performance of our proposed algorithm (aggregation with 

spatial correlation), and averaging without correlation against ground truth.  
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Figure 6.10 Comparison of Aggregation under Faulty Conditions 

The temperature reading for three sensors are plotted at various time samples.  Fault 

(noise) is introduced in one of sensors (sensor-3). The actual aggregation before the any 

fault is introduced represents our ground truth. As seen from figure 6.10, the aggregated 

temperature drastically reduces when the fault/noise is seen in any or all of the sensors. 

Our proposed weighted aggregation method compensates the faulty behavior by 

appropriately adjusting the weights. Therefore, the aggregated value steadily approaches 

the ground truth as seen from figure 6.10 and figure 6.11. As the aggregated value 

approaches ground truth (actual aggregated value), the error in the algorithm performance 

decreases and eventually becomes zero (see figure 6.12).   
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Figure 6.11 Aggregation with and without Spatial Correlation 
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Figure 6.12 Error Between Ground Truth and Proposed Approach 

The weight updates in figure 6.13 shows the decrease in weight for faulty sensor-3 
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thereby reducing its contribution in the aggregation process.  
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Figure 6.13 Weight Updates 

Part 2: Fuzzy Inference and Decision Making 

We develop fuzzy rule-base to determine the data criticality depending on two input 

parameters of the sensor nodes - temperature and battery voltage. This criticality 

quantifies as to whether the data needs to be aggregated or not. The fuzzy inference 

engine evaluates simple common-sense rules such as "If activity (temperature) is high 

and battery power is low, then criticality is high". A high data criticality signifies a low 

chances to perform data aggregation so as to ensure "data freshness". The fuzzy 

controller is implemented on the PC with the high level interface.  

Based on the operating battery voltage of the sensors and the room temperature, fuzzy 

membership functions are designed as shown in figure 6.14. 



 

 117 

 
(a) Battery Voltage as an Antecedent (input) to the Fuzzy System 

 

 
(b) Room Temperature (in Deg C) as an Antecedent (input) to the Fuzzy System 

 

 
(c) Criticality as a Consequent (output) of the Fuzzy System 

 

Figure 6.14 Fuzzy Membership Functions 

The control surface for the fuzzy rules developed is as shown in figure 6.15. 
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Figure 6.15 Control Surface 

The output of the fuzzy system (in this case, criticality) can be now fed into automated 

decision making process such as MCDM using Choquet integral discussed in chapter 4.  

We use criticality, distance from node to base-station, and sleep time (scheduling) as 

three inputs to the Choquet integral decision comparator. We set λ-fuzzy measure to -0.9 

suggesting a positive interaction. A positive interaction or positive synergy (refer chapter 

4) between two criteria i and j represents some degree of opposition between two criteria 

and the fuzzy measure then becomes sub-additive, i.e., µ(ij) < µ(i) + µ(j). µ(ij) is 

calculated using the formula: µ(ij)= µ(i)+ µ(j)+ λµ(i)µ(j). Therefore, if λ =0.0, then fuzzy 

measure is just additive, µ(ij) = µ(i) + µ(j), and the Choquet integral reduces to weighted 

average with fuzzy measures acting as weighting factors. Table 6.1 gives the fuzzy 

measure on each criterion and fuzzy measure on subset of criteria calculated using λ-

fuzzy measure. 
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Table 6.1 Fuzzy Measures for Criteria 

{ } 0 

{distance} 0.7 

{criticality} 0.8 

{scheduling} 0.6 

{d,c} 0.996 

{d,s} 0.922 

{s,c} 0.968 

{d,s,c} 1 

 

Given input values for distance, criticality and scheduling as 0.9, 0.6 and 0.5 

respectively, we obtain Choquet integral value of 0.8096 (refer figure 6.16 for 

computation).  

 

Figure 6.16 Computing Choquet Integral 
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Moreover, such decision making process based on the state of the sensor node (battery) 

and the environment (temperature) can be used in our reinforcement learning, so that the 

sensor node learns to adaptively manage the energy consumption (as discussed in chapter 

5). We implement the critic function developed in chapter 5 on the sensor node and vary 

outside temperature (by blowing hot air) to see the varying sleep time of the sensor node. 

We compare the performance of sensor node with and without critic. With critic loaded 

on the sensor node, we attained a reduction in number of packets transmitted by almost 

10 times with a very few misses in registering the events. The number of transmitted 

packets with and without critic running on sensor node is as shown in figure 6.17. 
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Figure 6.17 Packet Transmission Comparison 

The events registered (i.e., temperature reading captured) with and without critic is 

given in 6.18. As seen from the figure, there are only few temperature differences not 

captured by using adaptive sleep time. Major missed events are circled in red.  Figure 
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6.19 shows the performance of our critic function. Whenever there is a change in 

temperature registered, the sleep time is automatically decreased so as to capture the 

change with a finer resolution. In a general case, this can be thought of as sensor 

adaptively waking up based on the environmental changes in order to localize the events.  
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Figure 6.18 Temperature Changes Captured 
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Figure 6.19 Variations in Sleep Time  
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CHAPTER 7 

CONCLUDING REMARKS  

7.1 Summary  

The techniques and concepts provided in this thesis are generic in nature and are 

applicable to any multi-sensor application. There are several research problems that still 

exist in sensor networks. We have made a decent attempt to address only a handful of 

problems by providing theory, design and implementation of the solution. The vast 

majority of ongoing research in sensor networks is engaged in network routing, power 

management, protocol development, and/or application-specific. Alternatively, this 

research is focused on a sensor abstraction layer and utilizes the underlying attributes that 

are present in sensor networks (such as high node density, ad-hoc behavior, etc.) in 

designing our solution. We will summarize the important concepts or techniques 

provided in this thesis. 

In chapter 2, we developed a weighted aggregation method that when implemented 

hierarchically reduced the number of network packets transmitted by an order of the 

number of nodes transmitting the packets. Exploiting the spatial correlation that is often 

seen in sensor networks, weight adaptation mechanism helped to address the issue of soft 

faults (in-range and slow-drift failure). Soft faults are often seen when the sensors work 

within the given range of operation.  Such technique when augmented with Built-in Test 

(BIT) provides robust mechanism to process and acquire large amounts of fault-tolerant 

data. BIT methods help to determine hard-faults (when sensor reading is outside the 

operating range). BIT together with spatial correlated weighted adaptation method help to 
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determine hard as well as soft faults. To demonstrate the effectiveness of the aggregation 

and the BIT schemes proposed, we developed a middleware at the cluster-head node that 

implemented the timeout mechanism and aggregation of temperature sensor data.   

Chapter 3 and 4 summarized important concepts relating to monitoring and decision 

making in sensor networks. The basic idea underlying monitoring and probing the given 

network is to improve upon the performance of the system (in this case given network of 

sensing devices). Our approach was to use human-like reasoning to deal with complex 

multi-parameter network to characterize the behavior. By exploiting the nature of fuzzy 

logic controller which efficiently handles uncertainty and nonlinearity in the system, we 

developed simple rule-base to monitor and thereby update the operating parameters (such 

as sleep time, power level, etc.) of the network. By doing so, we improved the 

performance (either in terms of lifetime or node integrity) of the deployed network. 

Choquet integral introduced in chapter 4 provides a mathematical basis for decision 

making with multiple interacting criteria. Such decision making is often helpful in 

planning process to determine the sensor function or usage according to changing 

situations. The decision making process on what tasks the sensor needs to accomplish 

depending on the mission plan and situation generally depends on the various criteria 

involved. Once the behavior pattern for a given application is identified, the state of the 

sensor network and its performance can be used as feedback for creating training set for 

learning algorithms such as neural networks.  

We also presented a novel approach in designing a reinforcement learning scheme that 

will guide the sensor to adaptively sleep so as to reduce the network packets as well as 
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conserve on-board battery power. The node sleeps as much as possible but at the same 

time should handle the stimuli (capture events) from the environment. This complex 

contradicting requirement is embedded in a reward function that is developed and 

implemented as chapter 5. The decision making rules (either through fuzzy rule-base or 

Choquet integral) can be adaptively changed by such reinforcement learning algorithms.  

 

7.2 Suggested Follow-on Work 

Solutions were proposed in this thesis with the main aim for practical implementation 

on available sensor platforms. Several extensions to the proposed work in this thesis can 

be thought of. Specifically, we have identified the following future work: 

1. In the area of data aggregation, a robust mechanism to fuse the data from 

heterogeneous sensors to a meaningful decision information. 

2. Built-in Test methods provide node-level (micro) calibration. A more 

comprehensive approach is needed to utilize this micro calibration and extend 

it to network level (macro) calibration. Although, there is some work done on 

macro-calibration [82], it is generally hard to calibrate when there are 

functionally heterogeneous network of sensing devices and is an interesting 

research topic to pursue. 

3. Very few directed research has been done in the area of machine learning in 

sensor networks. Our proposed learning methodology is at node-level. At a 

network level, an interested learning topic would be to analyze the adaptive 

behavior of each node by looking into the behavior of neighboring sensor 

nodes. 
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4. Resource optimization can be another approach as a continuation of this thesis 

in the area of sensor network management. Optimization techniques such as 

Particle Swarm Optimization (PSO) [83] are simple and implementable on 

sensor platforms.   

5. The user interface can be extended to handle message from sensors from 

different manufacturers, thus providing a unified platform for analyzing pure 

network of heterogeneous sensing devices.  
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APPENDIX – A 

Source Code 

/* Program that runs on each sensor node that is deployed in the  
environment 
*/ 
  
module TestSensor{ 
  provides interface StdControl; 
  uses { 
    
   //communication 
 interface StdControl as CommControl; 
 interface SendMsg as Send; 
 interface ReceiveMsg as Receive; 
 
// Battery     
    interface ADC as ADCBATT; 
    interface StdControl as BattControl; 
     
//Accels 
    interface StdControl as AccelControl; 
    interface I2CSwitchCmds as AccelCmd; 
    interface ADC as AccelX; 
    interface ADC as AccelY; 
 
//Intersema 
    interface SplitControl as PressureControl; 
    //interface StdControl as PressureControl; 
    interface ADC as IntersemaTemp; 
    interface ADC as IntersemaPressure; 
    interface Calibration as IntersemaCal; 
     
//Sensirion 
    interface SplitControl as TempHumControl; 
    interface ADC as Humidity; 
    interface ADC as Temperature; 
    interface ADCError as HumidityError; 
    interface ADCError as TemperatureError; 
//Taos 
    interface SplitControl as TaosControl; 
    interface ADC as TaosCh0; 
    interface ADC as TaosCh1; 
 
    interface Timer; 
    interface Leds; 
     
   
  } 
 
} 
 
 
implementation 
{ 
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#define TIMER_PERIOD 2000           // timer period in msec 
#define TIMER_INC_PERIOD 6000 
#define TIMER_DEC_PERIOD 500 
 
 
#define SAMPLE_SIZE 5 
#define TEMP_SAMPLE 2 
   
  char count; 
   
  uint16_t calibration[4];           //intersema calibration words 
  norace uint8_t  state;                    // 
  uint8_t  sensor_state;             //debug only 
   
  
     
  TOS_Msg msg_buf; 
  TOS_MsgPtr msg_ptr; 
 
   
 norace uint8_t valueFrmUART; //Added Prasanna 
 bool built_in_test; 
 
/****************************************************/ 
/*  For Temporal Difference Learning  ******/ 
 
uint16_t calib_batt; 
uint16_t temperature[TEMP_SAMPLE]; 
 
uint16_t sleepTime=1000; 
 
 
uint8_t cnt=0; 
float epsilon = 0.05; 
float reward[4]; 
float V1[2]; 
float theta[4];  
   
/***********************************************************************
***** 
 * Task to send uart and rf message 
 
************************************************************************
****/ 
 
task void setSleepTime() 
{ 
  
 call Timer.stop(); 
      call Timer.start(TIMER_REPEAT, sleepTime); 
 
return; 
} 
    task void send_msg(){ 
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  if (sending_packet) return; 
  atomic sending_packet = TRUE; 
 pack->xSensorHeader.board_id  = SENSOR_BOARD_ID; 
// pack->xSensorHeader.packet_id = iNextPacketID;     
 pack->xSensorHeader.packet_id = valueFrmUART;  //added prasanna 
 pack->xSensorHeader.node_id   = TOS_LOCAL_ADDRESS; 
// pack->xSensorHeader.rsvd    = 0; 
 
  call Leds.yellowOn(); 
  if (IsUART) { 
   if(call Send.send(TOS_UART_ADDR,sizeof(XDataMsg)-
1,msg_ptr)!=SUCCESS)  
    {   
     atomic sending_packet = FALSE; 
     call Leds.greenToggle(); 
    } 
  } 
  else { 
   if(call Send.send(TOS_BCAST_ADDR,sizeof(XDataMsg)-
1,msg_ptr)!=SUCCESS) 
    { 
     atomic sending_packet = FALSE; 
     call Leds.greenToggle(); 
    } 
   } 
  return; 
    } 
   
  
/*********************************/ 
 
task void evalCritic() 
{ 
  
 uint8_t i; 
 
 
 // V1[0] will hold the new value at each iteration 
 
 V1[1] = V1[0]; 
 V1[0] = 0.0; 
 
 for(i=0;i<4;i++) 
 { 
  V1[0] = V1[0] + (reward[i]*theta[i]); 
 } 
  
 if((V1[0]-V1[1]) > 0.0) 
 { 
  sleepTime = sleepTime-200;   //if newer V is greater than 
old V, we need to sleep less to capture more 
 } 
 else 
 { 
  sleepTime = sleepTime+500; 
 } 



 

 137 

 if(sleepTime > 10000 || sleepTime < 200) 
  sleepTime = 1000; 
 
 pack->xData.data1.cal_wrod1 = reward[3]; 
 pack->xData.data1.cal_wrod2 = sleepTime; 
 
return; 
} 
 
task void evalReward() 
{ 
 
 reward[cnt] = 
(calib_batt/3.0)*(pow((sleepTime/1000),(epsilon*abs(temperature[0]-
temperature[1])))); 
      cnt++; 
  
 if(cnt == 4) 
  { 
   cnt=0; 
   post evalCritic(); 
  } 
return; 
} 
 
task void populateBattery() 
{ 
 calib_batt = (1252352/pack->xData.data1.vref)/1000; 
 return; 
} 
 
task void populateTemp() 
{ 
 uint16_t calib_temperature; 
 uint8_t front,tail,i; 
 
 front = 0; 
 tail = TEMP_SAMPLE-1; 
 for(i=tail;i>front;i--) 
   temperature[i] = temperature[i-1]; 
 
 calib_temperature = -38.4 + (0.0098 * pack-
>xData.data1.temperature); 
 temperature[front] = calib_temperature; 
 
  
return; 
} 
 
task void caliberateTempBIT() 
{ 
 uint16_t calib_temp; 
 uint16_t return_temp; 
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 calib_temp = -38.4 + (0.0098 * pack->xData.data1.temperature); 
 if(calib_temp>30) 
 { 
  calib_temp = calib_temp * pow(2,(-1*calib_temp*0.01)); 
  return_temp = (calib_temp+38.4)/0.0098; 
  pack->xData.data1.temperature = return_temp; 
 } 
return; 
} 
 
 
 
/*********************************/ 
   
  command result_t StdControl.init() { 
   uint8_t i; 
  
     atomic { 
        msg_ptr = &msg_buf; 
    
        sending_packet = FALSE; 
        WaitingForSend = FALSE; 
  built_in_test = FALSE;     //added Prasanna 
       headptr = 0;               //added Prasanna 
  head = 0;    //added Prasanna 
      }     
      pack = (XDataMsg *)msg_ptr->data;   
     
      // usart1 is also connected to external serial flash 
      // set usart1 lines to correct state 
      TOSH_MAKE_FLASH_OUT_OUTPUT();             //tx output 
      TOSH_MAKE_FLASH_CLK_OUTPUT();             //usart clk 
       
      call BattControl.init();     
      call CommControl.init(); 
      call Leds.init(); 
       
      call TaosControl.init(); 
      call AccelControl.init();      //initialize accelerometer  
      call TempHumControl.init();    //init Sensirion 
      call PressureControl.init();   // init Intersema 
       
 for(i=0;i<SAMPLE_SIZE;i++) 
  battery[i] = 3; 
 
 for(i=0;i<TEMP_SAMPLE;i++) 
  temperature[i] = 0; 
      return SUCCESS; 
  } 
   
  command result_t StdControl.start() { 
      call HumidityError.enable();                 //in case Sensirion 
doesn't respond 
      call TemperatureError.enable();              // same as above 
       
      call CommControl.start(); 
      call BattControl.start();   
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      atomic state = START; 
      atomic sensor_state= SENSOR_NONE; 
   
      IsUART = TRUE; 
      call Timer.start(TIMER_REPEAT, TIMER_PERIOD);    //start up sensor 
measurements 
       
     
 
      return SUCCESS; 
  } 
   
  command result_t StdControl.stop() { 
      call BattControl.stop(); 
 
      call Timer.stop(); 
      call CommControl.stop();       
      return SUCCESS; 
  } 
 
     
/***********************************************************************
***** 
 * Battery Ref  or thermistor data ready  
 
************************************************************************
****/ 
  async event result_t ADCBATT.dataReady(uint16_t data) { 
      pack->xData.data1.vref = data ; 
 post populateBattery(); 
       
      atomic state = BATT_DONE; 
      return SUCCESS; 
  } 
   
      return SUCCESS; 
  } 
  async event result_t Temperature.dataReady(uint16_t data) { 
      pack->xData.data1.temperature = data ; 
  
 post populateTemp(); 
 
 if(built_in_test==TRUE) 
  post caliberateTempBIT();             // Added Prasanna 
 
      post stopTempHumControl(); 
      return SUCCESS; 
  } 
   
 event result_t Send.sendDone(TOS_MsgPtr msg, result_t success) { 
 
    call Leds.yellowOff(); 
 
 if(IsUART){ 
  msg_ptr = msg; 
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  IsUART = !IsUART;        // change to radio send    
  WaitingForSend = TRUE;   // uart sent, issue radio send 
  sending_packet = FALSE; 
 } 
 else 
 { 
  IsUART = !IsUART;  // change to uart send 
     atomic { 
        WaitingForSend = FALSE;  // both uart and radio sent, 
done for current msg 
           sending_packet = FALSE; 
       }    
    } 
//post setSleepTime();    
 
   return SUCCESS; 
  } 
   
 
task void receive_task() 
{ 
 //Increase Sleep Time to 6 seconds 
 if(valueFrmUART==0x05) 
 { 
  call Timer.stop(); 
  call Timer.start(TIMER_REPEAT, TIMER_INC_PERIOD); 
 } 
 
 //Decrease Sleep Time to 0.5 seconds 
 if(valueFrmUART==0x06) 
 { 
  call Timer.stop(); 
  call Timer.start(TIMER_REPEAT, TIMER_DEC_PERIOD); 
 } 
 
 
 // Reset Sleep Time to 1 second 
 if(valueFrmUART==0x07) 
 { 
  call Timer.stop(); 
  call Timer.start(TIMER_REPEAT, TIMER_PERIOD); 
 } 
 
 // Enable/Disable Built In Test for Sensors 
 if(valueFrmUART==0x03) 
 { 
  atomic built_in_test = TRUE; 
 } 
 if(valueFrmUART==0x04) 
 { 
  atomic built_in_test = FALSE; 
 } 
 
 
 return; 
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} 
 
 
  
/***********************************************************************
***** 
* Process packets recived from UART 
************************************************************************
****/ 
  event TOS_MsgPtr Receive.receive(TOS_MsgPtr data) { 
 /*************** Additions *****************/ 
 TOS_MsgPtr pBuf=NULL; 
 XUARTDataMsg *pack_uart; 
 
 pBuf = data;     // Update the pointer, same as saying 
copying the received data onto 'mess' 
 pack_uart = (XUARTDataMsg *)pBuf;    
 if(pBuf) 
 {  
   //Does this packet belong to me? 
   if(pack_uart->uartData[5]==TOS_LOCAL_ADDRESS) 
   { 

valueFrmUART = pack_uart->uartData[6];  //Action 
type set by our protocol 

   post receive_task(); 
   } 
 } 
 
 /*******************************************/ 
      return data; 
  } 
 
} 
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/* Matlab Code for Simulating Built-In Test and Data aggregation on simulated data set 

*/ 

 
clear all; clc; 
 
gWinMin =  20;  
gWinMax =  120; 
 
uWinMin =  10; 
uWinMax =  150; 
 
 
s1 = [20 30 80 100 18 15 12 10 120 123 125 130 135 138 140 145 147 155]; 
 
[sr sc] = size(s1); 
r1 = zeros(1,sc); 
Pr = ones(1,sc); 
time = 1:sc; 
 
for i=1:sc 
    if s1(i) >= gWinMin & s1(i) <= gWinMax 
        w1(i) = 1; 
        b1(i) = 1; 
    else        
      if s1(i) < uWinMin | s1(i) > uWinMax 
        w1(i) = 0; 
        b1(i) = 0; 
      else  
        w1(i) = exp(-(0.01*s1(i)/2)); 
 
        b1(i) = 0; 
      end 
   end 
  Pr(i) = 1-w1(i); 
  r1(i) = w1(i) * s1(i); 
  rb(i) = b1(i) * s1(i); 
end     
w1 
plot(time,s1,'ko-'); 
hold on; 
plot(time,r1,'r*-'); 
hold on; 
plot(time,rb,'g+-'); 
figure; 
plot(time,Pr) 
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clear all; clc; 
 
gWinMin =  20;  
gWinMax =  120; 
 
uWinMin =  10; 
uWinMax =  150; 
 
 
s1 = [20 30 80 100 18 15 12 10 120 123 125 130 135 138 140 145 147 155]; 
s2 = [120 140 150 180 180 180 180 180 180 180 180 180 180  180 180 180 
180 180]; 
s3 = [20 25 30 40 40 40 40 40 40 40 50 40 50 40 40 40 50 40]; 
 
[sr sc] = size(s1); 
r1 = zeros(1,sc); 
Pr = ones(1,sc); 
time = 1:sc; 
 
for i=1:sc 
    if s1(i) >= gWinMin & s1(i) <= gWinMax 
        w1(i) = 1; 
        b1(i) = 1; 
    else        
      if s1(i) < uWinMin | s1(i) > uWinMax 
        w1(i) = 0; 
        b1(i) = 0; 
      else  
        w1(i) = exp(-(0.01*s1(i)/2)); 
 
        b1(i) = 0; 
      end 
   end 
  Pr(i) = 1-w1(i); 
  r1(i) = w1(i) * s1(i); 
  rb(i) = b1(i) * s1(i); 
end     
 
for i=1:sc 
    if s2(i) >= gWinMin & s2(i) <= gWinMax 
        w2(i) = 1; 
    else        
      if s2(i) < uWinMin | s2(i) > uWinMax 
        w2(i) = 0; 
      else  
        w2(i) = exp(-(0.01*s2(i)/2)); 
      end 
   end 
  r2(i) = w2(i) * s2(i); 
end     
 
for i=1:sc 
    if s3(i) >= gWinMin & s3(i) <= gWinMax 
        w3(i) = 1; 
 
    else        
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      if s3(i) < uWinMin | s3(i) > uWinMax 
        w3(i) = 0; 
 
      else  
        w3(i) = exp(-(0.01*s3(i)/2)); 
      end 
   end 
 
  r3(i) = w3(i) * s3(i); 
end     
plot(time,s1,'k+--'); 
hold on; 
plot(time,s2,'k*--'); 
hold on; 
plot(time,s3,'kx--'); 
hold on; 
avg = (s1 + s2 + s3)/3; 
plot(time,avg,'r*-'); 
savg = (r1 + r2 +r3)/3; 
hold on; 
 
plot(time,savg,'go-'); 
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clear all; clc; 
 
load H11; 
 
r1 = H11(1:100,2);     %2,3 and 7th sensors are closely deployed 
r2 = H11(1:100,3); 
r3 = H11(1:100,7); 
 
 
w1(1) = 1; 
w2(1) = 1; 
w3(1) = 1; 
 
[r c] = size(r1); 
k = 2;                  % num of neighboring sensors 
eps = 1;             % Epsilon 
 
for i=1:r 
 
    agg(i) = (r1(i)*w1(i) + r2(i)*w2(i) + r3(i)*w3(i))/3; 
     
    t1(i) = ((r2(i) + r3(i))/k) - r1(i); 
    t2(i) = ((r1(i) + r3(i))/k) - r2(i); 
    t3(i) = ((r1(i) + r2(i))/k) - r3(i); 
     
    dw1(i) = abs(t1(i)) * eps; 
    dw2(i) = abs(t2(i)) * eps; 
    dw3(i) = abs(t3(i)) * eps; 
     
    max = dw1(i); 
    flag = 1; 
    if (dw2(i) > max) 
            max = dw2(i); 
            flag = 2; 
    end 
    if (dw3(i) > max) 
            max = dw3(i); 
            flag = 3; 
    end 
     
    if(flag == 1) 
        w1(i+1) = w1(i) - dw1(i); 
        w2(i+1) = w2(i) + dw2(i); 
        w3(i+1) = w3(i) + dw3(i); 
    end 
    if (flag == 2) 
        w1(i+1) = w1(i) + dw1(i); 
        w2(i+1) = w2(i) - dw2(i); 
        w3(i+1) = w3(i) + dw3(i); 
    end  
    if (flag == 3) 
        w1(i+1) = w1(i) + dw1(i); 
        w2(i+1) = w2(i) + dw2(i); 
        w3(i+1) = w3(i) - dw3(i); 
    end  
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end 
 
plot(w1(1:70),'b-*'); 
hold on; 
plot(w2(1:70),'r-+'); 
hold on; 
plot(w3(1:70),'g-o'); 
 
magg = (r1+r2+r3)/3; 
%plot(agg,'b*-') 
% hold on; 
% plot(magg,'ro-') 
 
 
e = abs(agg' - magg); 
 
%plot(e) 
polyfit(r1) 
x = 1..70 
x = [1:70] 
polyfit(x,r1) 
polyfit(x',r1(1:70)) 
polyfit(x',r1(1:70),70) 
x 
x = x' 
y = r1(1:70) 
plot(x,y,'0:') 
plot(x,y,'O:') 
pcoeff = polyfit(x,y,1) 
xp = 0:1:70 
xp = 1:1:70 
yp = polyval(pcoeff,xp) 
plot(x,y,'O',xp,yp,'m') 
plot(xp,yp,'m') 
plot(x,y,'O',xp,yp,'m') 
plot(x,y,'O-',xp,yp,'m') 
pc2 = polyfit(x,r2(1:70),1) 
yp2 = polyval(pc2,xp) 
plot(xp,yp2) 
figure 
plot(xp,yp2) 
hold on 
plot(xp,yp) 
pc3 = polyval(x,r3(1:70)) 
clear pc3 
pc3 = polyfit(x,r3(1:70)) 
pc3 = polyfit(x,r3(1:70),1) 
yp3 = polyval(pc3,xp) 
hold on; 
plot(xp,yp3) 
figure 
plot(xp,yp,'b*-') 
hold on; 
plot(xp,yp,'r*-') 
hold on; 
plot(xp,yp2,'bo-') 
hold on; 
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plot(xp,yp3,'k+-') 
plot(xp,yp,'r*-') 
hold on; 
plot(xp,yp2,'bo-') 
hold on; 
plot(xp,yp3,'k+-') 
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/* C code for reading packets from gateway node through serial interface – read and write 

to serial port*/ 

 

 
#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <termios.h> 
 
 
#ifdef __CYGWIN__ 
#include <windows.h> 
#include <io.h> 
#endif 
 
static const char *g_device= "COM4"; 
static unsigned g_baudrate = B57600; 
 
 
 
unsigned char buffer[39]; 
unsigned int write_flag = 0; 
 
 
int port_open()  
{ 
    /* open serline for read/write */  
    int serline; 
    const char *name = g_device; 
    unsigned long baudrate = g_baudrate; 
     
    serline = open(name, O_RDWR | O_NOCTTY); 
    if (serline == -1) { 
        fprintf(stderr, "Failed to open %s\n", name); 
        perror(""); 
        fprintf(stderr, "Verify that user has permission to open 
device.\n"); 
        exit(2); 
    } 
    printf("%s input stream opened\n", name); 
 
#ifdef __CYGWIN__ 
    /* Cygwin requires some specific initialization. */ 
    HANDLE handle = (HANDLE)get_osfhandle(serline); 
    DCB dcb; 
    if (!(GetCommState(handle, &dcb) && 
   SetCommState(handle, &dcb))) { 
 fprintf(stderr, "serial port initialisation problem\n"); 
 exit(2); 
    } 
#endif 
     
    /* Serial port setting */ 
    struct termios newtio; 
    bzero(&newtio, sizeof(newtio)); 
    newtio.c_cc[VMIN] = 1; 
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    newtio.c_cflag = CS8 | CLOCAL | CREAD; 
    newtio.c_iflag = IGNBRK | IGNPAR; 
    cfsetispeed(&newtio, baudrate); 
    cfsetospeed(&newtio, baudrate); 
    tcflush(serline, TCIFLUSH); 
    tcsetattr(serline, TCSANOW, &newtio); 
 
    return serline; 
} 
 
void read_port(int serline)  
{ 
    int cnt; 
    int i,count; 
     
 
 
    
    tcflush(serline,TCIOFLUSH);  
    
    printf("Reading buffer ****\n"); 
    while(i<39) {  
 unsigned char c; 
 cnt = read(serline, &c, 1); 
 if (cnt < 0) { 
            perror("error reading from serial port"); 
     exit(2); 
 } 
        if (cnt == 1) { 
 
       buffer[i] = c; 
  i++; 
  printf("%02x", c); 
        } 
    } 
 printf("\n");  
} 
 
void write_port(int line) 
{ 
 int flag; 
 int k; 
  
 
 flag = write(line,&buff,sizeof(buff)); 
 if(flag < 0) 
  printf("Write Fail"); 
 printf("\n"); 
 
} 
   
 
 
 
int main() 
{ 
 int k,serline; 
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    setlinebuf(stdout); 
    setlinebuf(stderr); 
  
     serline = port_open(); 
 
 while(1) 
 { 
  read_port(serline); 
  write_port(serline); 
   
 } 
 
  
}  
 
 

/* Reward Function and Critic function evaluation for Reinforcement Learning in 

Matlab*/ 

 

 
clear all; 
clc; 
% col1  volt  temp col4 col5 sleep  
 
a = load('write.txt'); 
voltage = a(:,2)/1000; 
temperature = a(:,3); 
sleep = a(:,6); 
epsilon = 0.05; 
 
data = []; 
for i=1:length(a) - 1 
    r = (voltage(i)/3.0)* 
((sleep(i)/1000)^(epsilon*abs(temperature(i+1)-temperature(i)))); 
    data = [data; [i r voltage(i) sleep(i) abs(temperature(i+1)-
temperature(i))]]; 
end 
 
 
gamma = 0.6; 
reward = data(:,2); 
 
q = 1; 
AIC = []; 
savedata.theta = 1; 
savedata.error_hist = 1; 
savedata.P = 1; 
for m = 2:7 
    theta = randn(m,1); 
    k = 1; 
    P = 5*eye(m); 
    old_error_hist = []; 
    for j = 1:500 
        critic = []; 
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        error_hist = []; 
         
        for i = 10:400 
            c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2) 
+ gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) + 
gamma^6*reward(i+6); 
            critic = [critic;[i c_val]]; 
            psi = [reward(i)]; 
            for n = 1:m-1 
                psi = [psi; reward(i - n)]; 
            end 
            c_val_est = psi'*theta; 
            error = c_val - c_val_est; 
            error_hist = [error_hist;error^2]; 
            m_factor = P*psi*error; 
            theta = theta + m_factor; 
            P = P - P*psi*inv(1+psi'*P*psi)*psi'*P; 
            k = k + 1; 
        end 
        old_error_hist = [old_error_hist;error_hist']; 
    end 
    error_hist = [sum(old_error_hist)/500]'; 
    er = log(sum(error_hist)) 
    AIC = [AIC;[m er]]; 
    %AIC = log(sum(error_hist(:,2))/5); 
     
    savedata(q).theta = theta; 
    savedata(q).error_hist = error_hist; 
    savedata(q).P = P; 
    q = q + 1; 
end 
 
save savedata; 
save AIC; 
 
figure; 
plot(error_hist); 
title('Error history'); 
 
critic = []; 
for i = 1:length(data) - 6 
    c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2) + 
gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) + 
gamma^6*reward(i+6); 
    critic = [critic;[i c_val]]; 
end 
figure; 
subplot(4,1,1),plot(data(:,1),data(:,2)); title('Reward'); 
subplot(4,1,2),plot(critic(:,1),critic(:,2)); title('Critic'); 
subplot(4,1,3),plot(data(:,1),data(:,3));title('Voltage'); 
subplot(4,1,4),plot(data(:,1),data(:,4));title('Sleep'); 
 
% subplot(4,1,1), plot(r,'g.-') 
% subplot(4,1,2), plot(t,'m.') 
% subplot(4,1,3), plot(v,'b.') 
% subplot(4,1,4), plot(s_time,'k.') 
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clear all; 
clc; 
% col1  volt  temp col4 col5 sleep  
 
a = load('write.txt'); 
voltage = a(:,2)/1000; 
temperature = a(:,3); 
sleep = a(:,6); 
epsilon = 0.05; 
 
data = []; 
for i=1:length(a) - 1 
r = (voltage(i)/3.0)* ((sleep(i)/1000)^(epsilon*abs(temperature(i+1)-
temperature(i)))); 
data = [data; [i r voltage(i) sleep(i) abs(temperature(i+1)-
temperature(i))]]; 
end 
 
critic_data = []; 
gamma = 0.6; 
reward = data(:,2); 
load savedata; 
load AIC; 
[min_val ind] = min(AIC(:,2)); 
 
theta = savedata(ind).theta; 
 
m = length(theta); 
    for i = 7:400 
        c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2) + 
gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) + 
gamma^6*reward(i+6); 
       psi = [reward(i)]; 
            for n = 1:m-1 
                psi = [psi; reward(i - n)]; 
            end 
            c_val_est = psi'*theta; 
            error = c_val - c_val_est; 
        c_val 
        c_val_est 
        error 
        critic_data = [critic_data; [i c_val c_val_est error]]; 
    end 
 
 
figure; 
plot(critic_data(:,1),critic_data(:,2),'-
',critic_data(:,1),critic_data(:,3),'--
',critic_data(:,1),critic_data(:,4),'.'); 
legend('Total expected reward','Critic','Error'); 
 
% subplot(4,1,1), plot(r,'g.-') 
% subplot(4,1,2), plot(t,'m.') 
% subplot(4,1,3), plot(v,'b.') 
% subplot(4,1,4), plot(s_time,'k.') 
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/*   Sample program to implement CRC so that packets can be sent from PC to gateway 

node using serial interface (UART)*/ 

 

 

#include<stdio.h> 

 

 

char buffer[37]; 

int length; 

int crc; 

 

 

calByte(char b) 

{ 

        int i; 

        crc = crc^(int)b<<8; 

        for(i=0;i<8;i++) 

        { 

                if((crc & 0x8000)== 0x8000) 

                        crc = crc << 1 ^ 0x1021; 

                else 

                        crc = crc << 1; 

        } 

} 

 

 

 

calc() 

{ 

        int k=0; 

        while(length>0) 

        { 

                calByte(buffer[k]); 

                length--;k++; 

        } 

        crc = crc & 0xffff; 

        printf("%x",crc); 

} 

 

main() 

{ 

buffer[0] = 0x7e; 

buffer[1] = 0x42; 

buffer[2] = 0xff; 
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buffer[3] = 0xff; 

buffer[4] = 0x00; 

buffer[5] = 0x7d; 

buffer[6] = 0x5d; 

buffer[7] = 0x1d; 

buffer[8] = 0x85; 

buffer[9] = 0x01; 

buffer[10] = 0x03; 

buffer[11] = 0x01; 

buffer[12] = 0xa6; 

buffer[13] = 0x01; 

buffer[14] = 0x1d; 

buffer[15] = 0x03; 

buffer[16] = 0x53; 

buffer[17] = 0x19; 

buffer[18] = 0x80; 

buffer[19] = 0xb0; 

buffer[20] = 0x18; 

buffer[21] = 0xb3; 

buffer[22] = 0xe3; 

buffer[23] = 0x99; 

buffer[24] = 0x9d; 

buffer[25] = 0xb4; 

buffer[26] = 0xf2; 

buffer[27] = 0x67; 

buffer[28] = 0x7a; 

buffer[29] = 0x47; 

buffer[30] = 0xfb; 

buffer[31] = 0x00; 

buffer[32] = 0x00; 

buffer[33] = 0x00; 

buffer[34] = 0x15; 

buffer[35] = 0x00; 

buffer[36] = 0xf0; 

 

length=35; 

 

 

calc(); 

 

} 
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/* Middleware Design */ 

 

TOSBaseM.nc  (program on Gateway/Base-station node) 

 

 1. RECEIVE: 

   

  Radio:  - Recieve From other motes 

  When packets arrive, the TOS_Msg is encapsulated in a Frame. 

  So p->data[9] p->data[8] for example represents Temperature reading 

  p->data[26] p->data[27]  represents Accel_X  value.  

  The array structure is represented in TestMTS400M.nc 

 

 

  UART:   - Will recieve from Computer 

  - Need for CRC in each packet, otherwise, the gateway node rejects packet 

 

 2. SEND: 

   

  UART:   - Send UART message to Computer. 

   - Any radio packet received is forwarded to computer. 

   - Takes TOS_Msg and encapsulates it inside Frame and sends it. 

   - At the computer end, read COM port to buffer. 

   - 39 bytes of data is read. 

   - buffer[34] = p->data[27] 

 

   

  Radio:  - Broadcast any UART packet to all motes 

   - Transmit TOS_Msg 

 

MTS400M.nc (program on each sensor node) 

   

 1. RECEIVE: 

  UART:   - No UART receive 

 

  Radio:  - Receive TOS_Msg 

   - pack_uart->uartData[0] = buffer[3]  ===> unframe the packet 

      

 2. SEND: 

  UART:   - No UART send 

   

  Radio:  - Send all sensor values broadcast  

Sample packet: 

7e42ffff007d5d1d8501030125021f04ca19ffff18ffffffffb4ff7f6547ff0000001400f603 
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