
University of New Mexico

UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-9-2007

Hierarchical aggregation and intelligent monitoring
and control in fault-tolerant wireless sensor
networks
Prasanna Sridhar

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in

Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact

disc@unm.edu.

Recommended Citation
Sridhar, Prasanna. "Hierarchical aggregation and intelligent monitoring and control in fault-tolerant wireless sensor networks." (2007).
https://digitalrepository.unm.edu/ece_etds/243

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/243?utm_source=digitalrepository.unm.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Prasanna Sridhar

 Candidate

 Electrical and Computer Engineering

 Department

 This dissertation is approved, and it is acceptable in quality

and form for publication on microfilm:

 Approved by the Dissertation Committee:

 , Chairperson

 Dr. Mo Jamshidi

 Dr. Asad M. Madni

 Dr. Chouki Abdallah

 Dr. Mahmoud Reda-Taha

 Dr. Nader Vadiee

 Accepted:

 Dean, Graduate School

 Date

 Hierarchical Aggregation and Intelligent Monitoring and
Control in Fault-Tolerant Wireless Sensor Networks

 BY

 PRASANNA SRIDHAR

 B.E., Computer Science, Bangalore University, 2000

 M. S., Computer Science, University of New Mexico, 2003

 DISSERTATION

 Submitted in Partial Fulfillment of the

 Requirements for the Degree of

 Doctor of Philosophy

 Engineering

 The University of New Mexico

 Albuquerque, New Mexico

 July, 2007

 iii

©2007, Prasanna Sridhar

 iv

DEDICATION

Dedicated to Lord Ganesha, my family, friends and well-wishers

 v

ACKNOWLEDGMENTS

I heartily acknowledge Dr. Mo Jamshidi, my advisor and committee chair, for

continuing to encourage, support, guide and mentor me in my research work and career. I

am indebted to him for his help both in my professional and personal life.

I would like to extend my utmost and deepest gratitude to Dr. Asad M. Madni, my

co-advisor and external expert, without him this thesis would not have been possible. The

wealth of knowledge, guidance, and technical ideas that he has brought into this thesis is

invaluable. His professional approach, mentoring and style will remain with me forever

as I continue my career.

I would like to thank my other committee members Dr. Chaouki Abdallah, Dr.

Mahmoud Reda-Taha, and Dr. Nader Vadiee for their valuable inputs for this thesis. I

would also like to thank Dr. Thrishantha Nanayakkara for his suggestions and inputs.

Gratitude is extended to the Electrical and Computer Engineering Department at the

University of New Mexico and at the University of Texas San Antonio for their support.

Lastly, but most importantly, I thank my parents, family, friends, and colleagues,

for their immense love and support.

 Hierarchical Aggregation and Intelligent Monitoring and Control
in Fault-Tolerant Wireless Sensor Networks

 BY

 PRASANNA SRIDHAR

 ABSTRACT OF DISSERTATION

 Submitted in Partial Fulfillment of the

 Requirements for the Degree of

 Doctor of Philosophy

 Engineering

 The University of New Mexico

 Albuquerque, New Mexico

 July, 2007

 vii

Hierarchical Aggregation and Intelligent Monitoring and Control in
Fault-Tolerant Wireless Sensor Networks

by

PRASANNA SRIDHAR

B.E., Computer Science and Engineering, Bangalore University, 2000

M.S., Computer Science, University of New Mexico, 2003

Ph.D., Engineering, University of New Mexico, 2007

ABSTRACT

The primary idea behind deploying sensor networks is to utilize the distributed sensing

capability provided by tiny, low powered and low cost devices. Multiple sensing devices

can be used cooperatively and collaboratively to capture events or monitor space more

effectively than a single sensing device. The realm of applications envisioned for sensor

networks is diverse including military, aerospace, industrial, commercial, environmental

and health monitoring. Typical examples include: traffic monitoring of vehicles, cross-

border infiltration-detection and assessment, military reconnaissance and surveillance,

target tracking, habitat monitoring and structure monitoring, to name a few.

Most of the applications envisioned with sensor networks demand highly reliable,

accurate and fault-tolerant data acquisition process. The integrity of data alone can have

tremendous effects on the performance of any data acquisition system. Due to the low

manufacturing cost, the sensors lend themselves to be deployed in large numbers with a

high spatial distribution. Such a large deployment scheme often generates enormous

amount of data that needs to be efficiently summarized and delivered for analysis and

 viii

processing. In-network data compression, data aggregation/fusion, and decision

propagation are some of the processes that deal with huge data issues. A hierarchical data

aggregation scheme developed in this thesis is a highly effective and energy efficient

means (by reducing communication packets) to deliver decision milestones to the end-

user. The sensing devices are also prone to failure due to the inherent characteristics such

as construction and deployment. It is thus necessary to devise a fault-tolerant mechanism

with a low computation overhead to validate the integrity of the data obtained from the

sensors. Moreover, a robust diagnostics and decision making process should aid in

monitoring and control of critical parameters to efficiently manage the operational

behavior of a deployed sensor network. Specifically, this research will focus on

innovative approaches to deal with multi-variable multi-space problem domains (data

integrity, energy-efficiency and fault-tolerant framework) in wireless sensor networks.

We present three information-based methods for improving the performance (fault-

tolerance and efficiency) of wireless sensor networks (WSNs). The first is a method for

time varying weight adaptation in a mixture model for sensor data aggregation. The

second technique applies fuzzy inference methods to solve a multi-criteria decision

problem, specifically the efficient management of data collection in a WSN. The third

method presented proposes the use of spatially variant weights to reduce the significance

of sensor readings taken near the boundary of the sensor range, in order to minimize

potential corruption of aggregated data. The solutions proposed in this thesis have

practical implementation in developing power-aware software components for designing

robust networks of sensing devices.

 ix

TABLE OF CONTENTS

LIST OF FIGURES ...XII

LIST OF TABLES ...XV

CHAPTER 1 INTRODUCTION ..1

1.1 Background – Sensors and Sensor Networks ..1

1.1.1 Glossary of Terms...2

1.2 Problem Statement and Motivation ...2

1.3 Research Challenges and Contributions of this Thesis3

1.3.1 Research Challenges ...3

1.3.2 Research Objectives..4

1.3.3 Specific Contributions ..6

1.3.4 Related Research Areas ..7

1.3.5 Preliminary Assumptions..8

1.4 Summary of Chapters ...9

CHAPTER 2 DATA ACQUISITION AND PROCESSING..10

2.1 Fault-Tolerant Techniques in Sensor Networks ...10

2.2 Fault-Tolerant Data Acquisition ..12

2.2.1 Built-In Test Method ..12

2.3 Protocol Design for Weighted Method...17

2.4 Limitation of Built-In Test Methods ..19

2.5 Approaches to Support Built-In Tests ...19

2.6 Simulation Benchmarking ..21

2.7 Effect of Built-in Test on Data Aggregation ..23

2.8 Common Aggregation Operators and Aggregation Process............................26

 x

2.9 Importance of Data Aggregation in Sensor Networks28

2.10 Sensor Network Protocols for Data Aggregation..28

2.11 Proposed Aggregation Mechanism...29

2.12 Simulation Benchmarking ..34

2.13 Advantages of the proposed approach ...36

2.14 Data Compression Techniques ...37

2.14.1 Data Aggregation and Compression ..39

2.15 Chapter Summary ...40

CHAPTER 3 INTELLIGENT DIAGONOSTICS IN SENSOR NETWORKS.........41

3.1 Uncertainty, Fuzzy Logic and Approximate Reasoning41

3.2 Fuzzy Logic Based Controller...42

3.2.1 Performance Degradation and Network Integrity...42

3.2.2 Need for State Feedback and Fuzzy Logic Based Control43

3.2.3 System Design ..43

3.2.4 Detailed design ...44

3.2.5 Fuzzy Inference Engine ..46

3.2.6 Advantages of the approach..48

3.2.7 Hierarchical Fuzzy Scheme ..48

3.2.8 Protocol Design for Multi-Sensor Nodes...51

3.3 Application-specific Example ...54

3.3.1 Clustering mechanism...58

3.3.2 Object Tracking ..59

3.3.3 Protocol and Algorithmic Design ...61

3.3.4 Limitations ..63

3.4 Simulation Benchmarking ..63

 xi

3.5 Chapter Summary ...70

CHAPTER 4 MULTICRITERIA DECISION MAKING ...71

4.1 Decision Making Process...71

4.2 Multi-Criteria Decision Making ...71

4.2.1 Motivating Examples in Sensor Networks ...73

4.2.2 Interacting Criteria..73

4.3 Fuzzy Measure and Choquet Integral..75

4.3.1 Sample Example ..76

4.4 Chapter Summary ...85

CHAPTER 5 DYNAMIC POWER MANAGEMENT...87

5.1 Motivation...89

5.2 Reinforcement Learning ...91

5.2.1 Our Approach..94

5.3 Chapter Summary ...99

CHAPTER 6 DESIGN AND IMPLEMENTATION..100

6.1 Detailed Description ..102

6.2 Hardware Platform..103

6.3 High Level Interface Design..106

6.3.1 Packet Format (Protocol Design)...108

6.3.2 Engineering Conversion ...110

6.4 Middleware Design and Development ...112

6.5 Experimental Results and Discussions...113

CHAPTER 7 CONCLUDING REMARKS...123

7.1 Summary...123

 xii

7.2 Suggested Follow-on Work ...125

REFERENCES...127

APPENDIX – A ..134

LIST OF FIGURES

Figure 1.1 Research Areas Identified In Sensor Networks...4

Figure 2.1. Message Structure ..13

Figure 2.2 Overlapping Clustering Zone ..14

Figure 2.3 Modified Message Structure..14

Figure 2.4 Weighted Method as Built-In Test ..16

Figure 2.5 Modified Message Structure for Weighted Method..18

Figure 2.7 Aggregated Data and Weighted Method ...24

Figure 2.8 Hierarchical Data Aggregation from Difference Sources27

Figure 2.9 Event Region Data Aggregation with Three Sensor Nodes30

Figure 2.10 Data Aggregation Benchmarking Results ...36

Figure 3.1 Study of Uncertainties in Systems. Image Courtesy of [34]41

Figure 3.2 Conceptual Design of Intelligent Monitor...44

Figure 3.3 Inside a Fuzzy Controller/Monitor ..45

Figure 3.4 Hierarchical Rule Base ..48

Figure 3.5 A Sample Tree Structure for Distributed Sensor Routing...............................52

Figure 3.6 Message Structure ...53

Figure 3.7 Hierarchical Routing Tree Structure ...57

Figure 3.8 Object Detection by Multiple Sensors...59

 xiii

Figure 3.9 Simulation Snapshot ...62

Figure 3.9 Control Surface from Fuzzy Rules ..64

Figure 3.11 Simulation Design for Fuzzy Inference with Power and Event Levels.........65

Figure 3.11 (a): Density (b):Power and (c):Event levels at different time steps67

Figure 3.13 Overlapping Clustering Intuition..68

Figure 3.14 Trajectory of a Moving Object ..68

Figure 3.15 Simulation Snapshot ..69

Figure 4.1 Graphical Representation of Choquet Integral ..76

Figure 4.2 Basic Robot-Sensor Architecture ..77

Figure 4.3 Fuzzy Membership Functions for Criteria (a) Distance, (b) Battery Power and

(c) Number of Events...81

Figure 4.4 Mapping Criteria ...83

Figure 4.5 Generating Utility Functions for Distance, Events and Battery84

Figure 5.1 Typical Time Scheduling ..88

Figure 5.2 Sensor Node Operation Cycle ...89

Figure 5.3 Relationship between Rewards and Critic...93

Figure 5.4 Actor-Critic Architecture...94

Figure 5.5 Comparison of approximated critic with the actual discounted sum of future

rewards...97

Figure 5.6 Estimation of Polynomial Order..97

Figure 5.7 Evaluation of Reward and Critic ...98

Figure 6.1 Architecture for Performance Improvement in Sensor Networks101

Figure 6.2 Sensor Nodes Deployed Outdoors and in Laboratory Settings105

 xiv

Figure 6.3 Simplified Architecture of a Mote...106

Figure 6.4 Interface for Data Acquisition and Decision Propagation.............................107

Figure 6.5 Spread-Sheet Type Interface for Data Acquisition108

Figure 6.6 Message Structure for Over the Air Programming..109

Figure 6.7 CRC for TinyOS Packets...110

Figure 6.8 Engineering Conversion ..111

Figure 6.9 Modified Mote Architecture..112

Figure 6.10 Comparison of Aggregation under Faulty Conditions114

Figure 6.11 Aggregation with and without Spatial Correlation......................................115

Figure 6.12 Error Between Ground Truth and Proposed Approach115

Figure 6.13 Weight Updates ...116

Figure 6.14 Fuzzy Membership Functions ...117

Figure 6.15 Control Surface..118

Figure 6.16 Computing Choquet Integral ...119

Figure 6.17 Packet Transmission Comparison ...120

Figure 6.18 Temperature Changes Captured ..121

Figure 6.19 Variations in Sleep Time ...122

 xv

LIST OF TABLES

Table 4.1 Evaluation of Alternatives………………………………………………..….80

Table 4.2 Fuzzy Measures for Subset of Criteria………………………………............84

Table 4.3 Input and their Corresponding Choquet Integrated Values………………….85

Table 6.1 Fuzzy Measures for Criteria………………………………………………..119

 1

CHAPTER 1

INTRODUCTION

1.1 Background – Sensors and Sensor Networks

The concept of sensing physical phenomena has been inspired from biological living

creatures. Sensors have been in existence for few decades now and are being used in

everyday life. Applications of sensors include automobiles, machines, aerospace,

medicine, robotics, etc. With emerging technologies such as Microelectromechanical

Systems (MEMS), sensors are being manufactured at low cost and at microscopic level.

In most cases, these micro-sensors reach significantly higher speeds and higher

sensitivity compared to macro-sensors. Such emerging manufacturing technologies,

along with improvements in wireless communication and computation processes, sensor

research has undergone a revolution. The traditional single sensor system is replaced by

large array of tiny, self-powered sensors that can wirelessly communicate to the

“outside” world. Large numbers of sensors may be integrated into systems to improve

performance and lifetime, and decrease life-cycle costs. As with many technologies,

defense and military applications have driven the research and development of sensor

networks. The solution to use one expensive sensor to cover the whole area of interest is

too risky and expensive, with the related false alarms and single point of failure. Having

multiple sensors clearly alleviates the problem of single point of failure. For example,

swarm of Unmanned Aerial Vehicles (UAVs) can provide better situation awareness than

a single UAV used for reconnaissance and surveillance. Thus, traditional single sensing

 2

system is replaced by multiple spatially distributed sensors that not only sense but also

process and communicate critical information and decision milestones. This has been

facilitated by the integration of multiple sensors, processors, memory and RF

communication devices onto a single board.

1.1.1 Glossary of Terms

a. Sensor node: A multi-sensor platform that houses variety of MEMS based sensors

(such as temperature, humidity, accelerometer, light, pressure, etc) along with low

power microprocessor and radio. Generally, these nodes are powered by battery.

b. Ubiquitous computing: Also known as pervasive computing or calm computing. It

is a model of computing in which computer functions are integrated into everyday

life, often in an invisible way.

c. Data Aggregation: Meaningful summary of the given data.

d. Middleware: Software that connects other software applications often to support

complex distributed systems.

1.2 Problem Statement and Motivation

Sensor network applications often require minimal human intervention, thereby

exhibiting autonomous behavior. Once deployed, these sensor nodes often form an ad-

hoc network. The role of each sensor node is to acquire data samples from various

sensors on-board and communicate the acquired data and/or summary statistics rather

than raw data for further processing. For an autonomous system to operate normally, it is

necessary to monitor it continuously or at predetermined time intervals. To monitor the

 3

integrity and performance degradation in a cost-effective way, it is first necessary to

probe the integrity of data acquired from the sensors. Such probing methods are often

termed as system diagnostics. Thus the capability of a data acquisition system must have

a high degree of accuracy and efficiency in acquiring and interpreting data from multiple

information sources.

This research work is motivated by several problems that are still persistent in the real-

world network of sensors. Therefore, the primary aim of this research thesis is to provide

innovative solutions to each problem domain – efficient data acquisition, large data

processing, decision making and monitoring that all help in optimizing the performance

of the given sensor network in real-world deployment scenarios. Most of the solution

proposed herein is first of its kind in the area of sensor networks. In doing so, we hope

that this research work will provide an entry point to a larger body of literature in sensor

networks management.

1.3 Research Challenges and Contributions of this Thesis

1.3.1 Research Challenges

The research challenges identified in sensor networks fall into three broad categories -

Sensing, computing and communication as shown figure 1.1. Sensor networks generally

pose considerable technical problems in data processing, communication and sensor

management [1-2]. We have identified data processing and sensor network management

as the key challenges within this thesis and provide solution along with merits and

demerits of existing solutions for practical implementation.

 4

Figure 1.1 Research Areas Identified In Sensor Networks

Sensor networks must deal with resources – energy, bandwidth, processing power, etc.

– that are changing dynamically. Given such dynamic situation, the sensor nodes need to

operate autonomously. This requires research into issues such as number of nodes to keep

network alive, proper size of network with redundant nodes, effective means to optimize

on resources, increase network lifetime, etc. Such issues often fall into sensor network

management.

Processing data from large number of sensors requires more resources (bandwidth,

transmission power at intermediate nodes). More nodes on the other hand, results in

better performance. Therefore, it is necessary to communicate as much data as possible

but at the same time reduce the resource consumption. Since large data sets might also

get corrupted during communication or acquisition, there needs to be ways to handle

faulty data. Other data processing issues that are dependent on application are latency,

reliability and completeness of the data.

1.3.2 Research Objectives

This subsection discusses the objectives of this research work. Following are the major

Sensing
- Manufacturing

- Calibration

- Data acquisition

Computation
- Hardware

- OS, Middleware

- Application

development

Communication
- Network issues

 - Bandwidth

 - Latency

 - Routing

 - MAC

 5

objectives identified along with a brief problem description. These objectives are based

on the data processing and sensor network management challenges.

1. Fault-Tolerant Data Acquisition and Fusion

While there are several automated data fusion approaches, handling faulty information

contributing to fusion process still remains a challenging task. If the data from faulty

sensors are accommodated in the fusion process, the resultant fused decision/data still

remains faulty. This can pose a serious problem in situation awareness scenarios, such as

false information about a target. With multiple sensors, there is an increasing risk

involved in faulty information associated with the data.

2. System Monitoring

For systems such as networks of sensing devices, it is necessary to monitor

continuously or at pre-determined time interval. Such monitoring process becomes

complicated with the increase in system parameters. For example, generating a state-

space model for a sensor node or network would be a hard task. In such situations,

identifying, probing and tuning critical parameters are effective means to monitor and

diagnose the network. Such diagnostics will often help to maintain or improve the

integrity of the deployed sensor network.

3. Interpretation, Decision and Learning from Acquired Data

Data is everything. Data from the network provides important information on the state

of the network as well as the environment being sensed. Interpreting data will help to

diagnose the network for reliability and integrity. For example, one of the objectives of a

sensor network with on-board batteries is to survive as long as possible and derive

 6

meaningful feature level information from the environment. Therefore, such networks are

generally faced with the management of conflicting objectives such as conserving limited

on-board energy and keeping the sensor awake to pick up stimuli from the environment.

We have identified automated decision making with multiple objectives/criteria and

learning to take such actions based on the varying situations.

1.3.3 Specific Contributions

The contributions of this research thesis are as follows:

1. Development of theory for meaningful aggregation of acquired data from

sensors with tolerance to faults.

2. Development of middleware for implementing the theory proposed for data

aggregation.

3. Theory and application of multi-criteria decision making in sensor networks.

4. Theory and application of approximate reasoning and rule-based approaches for

sensor node integrity.

5. Network protocol design and implementation for message passing among

sensor nodes, cluster-head and base-station.

6. Development of an extensive graphical user-interface (GUI) for interpreting

and analyzing the acquired data from sensor network.

7. Implementation of reinforcement function or critic on a sensor node.

The presentation of material from conceptual ideas to focused research has resulted in

following technical papers:

1. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Hierarchical Aggregation and

 7

Intelligent Monitoring and Control in Fault-Tolerant Wireless Sensor Networks”,

Inaugural Issue of the IEEE Systems Journal, to be published in 2007

2. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Multicriteria

Decision Making in Robot Path Planning using Sensor Networks”, First IEEE

Systems Conference, Hawaii, 2007

3. Madni, Asad M., Sridhar, Prasanna, Jamshidi, Mo, “Fault-Tolerant Data

Acquisition in Sensor Networks”, IEEE System of Systems Engineering

Conference, San Antonio, 2007.

4. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Object-Tracking

using Sensor Networks”, IEEE Co-sponsored Sensor Applications Symposium

(SAS), San Diego, 2007.

5. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Hierarchical Data

Aggregation in Spatially Correlated Distributed Sensor Network”, IEEE Co-

sponsored World Automation Congress, 2006

6. Sridhar, Prasanna, Madni, Asad M., Jamshidi, Mo, “Intelligent Monitoring of

Sensor Networks using Fuzzy Logic Based Control”, IEEE Conf. on Systems,

Man and Cybernetics, 2006

7. Azarnoush, Hamed, Horan, Ben, Sridhar Prasanna, Madni, Asad M., Jamshidi,

Mo, “Towards Optimization of a Real-World Robotic-Sensor System of

Systems”, IEEE Co-sponsored World Automation Congress, 2006

8. Sridhar, Prasanna, “Optimal Node Density Estimation in Sensor Networks”,

Workshop on Systems and Intelligent Control, October 2005

9. Sridhar, Prasanna, Jamshidi, Mo, “Discrete-event modeling and simulation:

Application to wireless sensor networks”, IEEE Conf. on Systems, Man and

Cybernetics, 2004.

1.3.4 Related Research Areas

The research area in sensor networks is relatively broad and interdisciplinary;

predominantly dealing with computation and communication. Most of the challenges and

bottlenecks in sensor network research deal with energy efficient design and

development of software and/or hardware components [3]. The focus of this research

 8

work is to present novel ideas that have practical implementation in developing power-

aware software components for designing robust networks of sensing devices.

We identify at least four major research areas – data acquisition and information

processing, fault-tolerant algorithms, decision making, and diagnostics that directly relate

to the proposed approach presented in this paper. Each chapter will discuss in detail the

existing literature and how our method deviates or improves on the existing work.

1.3.5 Preliminary Assumptions

We consider multiple heterogeneous sensors (such as temperature, pressure, humidity,

etc.) on a single sensor board. We consider static sensors for our experimentation

assuming that the drift is very negligible. Such a multi-sensor platform, often referred to

as a sensor node, has limited computation and communication capabilities. These nodes

when densely deployed in a region of interest, offer a spatially distributed sensing

capability. The resultant network of these nodes is often clustered in order to efficiently

manage and implement information routing, data aggregation, event localization, etc., – a

divide and conquer strategy. Several different clustering algorithms for sensor networks

have been proposed [4-6]. An important feature of clustering is that it enables a

hierarchical organization of sensor nodes, with different functional capabilities at each

level. Sensing can be done at the lowest level of hierarchy and decision making at higher

levels, such as at a cluster-head level, gateway level or base-station level. A base-station

is assumed to have higher processing and communication capabilities compared to sensor

nodes.

A cluster-head can represent the information and operational characteristic for a cluster

 9

of sensor nodes. By information characteristic we mean that, information generated from

several sensor nodes can be fused at the cluster-head to obtain an aggregated data or a

decision milestone. By operational characteristic we mean that the operation of each

sensor in that particular cluster is validated by examining the quality or integrity of data.

We assume that the sensor nodes are grouped into different clusters.

1.4 Summary of Chapters

This section will present the preview of all the chapters that follow. In total there are

seven chapters, the first being the introduction. The second chapter deals with efficient

data acquisition and processing in sensor networks. The problem of handling large data

sets, simple yet effective fault-tolerant data acquisition methods and decision propagation

techniques in sensor networks are introduced in this chapter. Whereas chapter 2 discusses

data integrity in sensor networks, chapter 3 outlines innovative methods to ensure

network integrity by intelligently monitoring and diagnosing the given network of

sensors. Chapter 4 introduces the concept of multi-criteria decision making to further

enhance the integrity of the network. Learning and optimization techniques specifically

related to real-world sensor networks are introduced in chapter 5. Chapter 6 provides the

design, implementation and results of the concepts portrayed in previous chapters on

commercially available hardware platforms. Chapter 7 concludes by opening the stage to

possible future work and extensions to the ideas and algorithms proposed in this research

work. Each chapter concludes with summary with any related work being discussed

within the context of the chapter. Moreover, any simulation results to validate the

approach illustrated are given in the same chapter.

 10

CHAPTER 2

DATA ACQUISITION AND PROCESSING

Data acquisition is simply the process of acquiring raw data from different sources of

interest for data analysis and processing. In large distributed systems, there is an

enormous amount of data delivered to the central processing unit. Particularly, in sensor

networks, due to the low manufacturing cost, the sensors lend themselves to be deployed

in large numbers with a high spatial distribution, generating huge data that needs to be

efficiently delivered for data processing. Efficient data acquisition process for

information processing is the foremost priority for analyzing or diagnosing the status of a

deployed sensor network. Efficiency is the key issue in terms of energy consumption,

fault-tolerance and relevancy of the sensor data. In this chapter, we propose an innovative

way to acquire fault-tolerant data from distributed embedded sensors and then summarize

the acquired data hierarchically in an energy efficient manner to optimize the

performance of the data acquisition and delivery process.

2.1 Fault-Tolerant Techniques in Sensor Networks

Fault tolerant techniques have been studied in the field of computers for over a half

century now. Such techniques are either specific to a given application or have a desired

reference for comparing the output. The principle idea behind fault tolerance is the

system’s ability to perform or operate correctly even in the presence of faults. The

problem of fault identification and isolation is generally a hard task in sensor networks

 11

due to the very nature of their construction and deployment. In this chapter, we will relate

our proposed approach of fault-tolerance in sensor networks to some of the already

existing methods sensors and embedded systems. Built-in Self Test (BIST) or Continuous

Built-In Test (CBIT) has been studied extensively for combinational and sequential logic,

memories and other embedded logic blocks. BIST technique involves embedding

additional hardware logic which can be used to test the operation of the primary circuit

logic [7]. Few researches have addressed the concept of software based built-in test [8].

In [9], a fault-tolerant approach for sensor network is proposed by using back-up sensors

for faulty ones. Elnahrawy et al. [10] proposed a Bayesian approach to reduce noise and

uncertainty in sensor networks. This, however, assumes prior knowledge of true sensor

reading. Hereford [11], proposed an Evolvable Hardware (EHW) design to reprogram the

circuit in case of any faults occurring in the sensors. In order to detect faults in the

sensors, the paper proposed to use spatial correlation and Kalman Filter (to estimate

actual output).

Thus, most of the fault-tolerant techniques in sensor networks [8-11] either assume

prior knowledge of the sensor reading or have a desired reference to compute the error of

the sensor reading. Our proposed approach in this chapter is similar to the one proposed

in [11], however, we use weighted function to reduce the “contribution” of faulty sensors

instead of reprogramming the circuit. The advantage of our proposed fault tolerant

mechanism is that, in general, it does not rely on the sensors to be geographically

deployed close to each other. The geographic proximity of sensors can be used to

complement the proposed fault identification process.

 12

2.2 Fault-Tolerant Data Acquisition

The integrity of data has tremendous effects on the performance of any data acquisition

system. Noise and other disturbances can often degrade the information or data acquired

from these systems. Devising a fault-tolerant mechanism in wireless sensor networks is

very important due to the construction and deployment characteristics of these low

powered sensing devices. Moreover, due to the low computation and communication

capabilities of the sensor nodes, the fault-tolerant mechanism should have a very low

computation overhead.

2.2.1 Built-In Test Method

Each sensor within a node is assumed to work within a usable threshold window

[min,max]. A built-in test is said to have passed if the sensor reading r is within this

window. That is, reading r should follow the equation min<r<max, where min and max

are chosen appropriately for a given sensor and given application, which constitutes the

operational behavior of the sensor. Every sensor is guaranteed to work “correctly” within

a given operating range specified by the manufacturer. For example, a manufacturer

could specify an operating range for a temperature sensor as -25 to 125
o
C. Similarly, a

chemical sensor (such as carbon monoxide sensor) can have an operating range from 0 to

500 ppm (parts per million). We call this operating range as guaranteed window. This

window is usually obtained from the sensor manufacturer. The usable threshold window

[min,max] will incorporate the guaranteed window for a given sensor. That is, min of the

usable threshold window will be lesser than the minimum range of operation defined by

 13

the guaranteed window and max will be greater than the maximum operating range of the

sensor. For example, we can define -40 to +150
o
C as usable threshold window for a

temperature sensor that is guaranteed to sense temperature within the range -25 to

+125
o
C with a specified accuracy. The sensor might still work outside this guaranteed

window, however, with a much lesser accuracy. By using the concept of an added usable

window versus a guaranteed window alone, we are trading off the performance

optimization of the individual sensor versus optimizing (maximizing) the performance of

the sensor network. In order to uniquely identify the sensor, each cluster head assigns

even numbered binary code for each of the sensors within its cluster. A binary addition of

the unique binary code at the cluster-head is used to exactly determine the faulty

sensor(s). For example, consider four sensors in one of the cluster. If they are assigned

binary code of 0001, 0010, 0100, 1000, then cluster-head simply computes a bit parity

check. In case one of the sensors has failed the built-in test, it resets the binary code

before sending it. By checking the parity of the binary sum, we can uniquely identify the

sensor which has failed the built-in test. A possible message structure for implementing

such protocol is as shown in figure 2.1.

Figure 2.1. Message Structure

The major limitation of the above mentioned approach is the way the cluster head

differentiates a common node that belongs to two or more clusters. If we have a closed

000100 011110101000010000001000

Binary code Sensor reading r

 14

overlapping clustering, few nodes belong to two or more clusters. Consider a scenario (as

show in figure 2.2) where a sensor node has same node identification 0010 and belongs

to two clusters. The checksum for parity check will be wrong in this case, since there are

two nodes which transmit 0010 as a unique binary code.

Figure 2.2 Overlapping Clustering Zone

Also, the number of bits used increases with the increase in the number of nodes in the

cluster. The problem of time synchronization at the summing node could also pose a

problem. In order to resolve these problems, we use node identification as integers.

Operating system such as TinyOS [12] running on sensor nodes often allows users to

program the nodes with identification numbers (node-id’s). The modified message

structure is as show in figure 2.3.

Figure 2.3 Modified Message Structure

We consider two different test methods to utilize the windowing effect to detect faulty

behavior of a sensor.

1. Boolean Test: The built-in test can be a simple pass or fail test for each sensor on a

0010

0001

0100

1010

0010

4 0/1 01111010100001000000

Sensor-id

Sensor reading r
BIT result

 15

sensor node. Such tests can often be run on a sensor node since each node offers limited

computation. The base station sends out a beacon message, possibly carrying a query to

the cluster heads. The cluster heads in turn send out their respective beacon messages to

all the nodes within their cluster. The node, when interrogated, transmits an encoded

message that contains sensed information r for each of the sensors on-board. This

hierarchical structure distributes the computation burden of decoding the messages from

the sensors on to local cluster heads.

Two possible scenarios can be considered for the sensor to respond to such message.

One method is that the sensor does not transmit any data if it fails the built-in test,

thereby conserving communication cost and bandwidth of the network. However, this

does not guarantee that the sensor has actually received a query. Packets might have been

dropped due to network congestion. In order to alleviate this problem, our second

approach is to send the result of the built-in test along with the sensor-id (node-id) in the

header of the message, as shown in figure 2.3.

Although the above mentioned approach provides a simple solution to track faulty

sensors, it does not capture the graceful degradation of a given sensor or a sensor node.

For example, consider a scenario where a sensor reading r for a given sensor node, is

closer to either min or max of the usable threshold window. For this situation, the sensor

passes the built-test, even though its performance is degrading. One might argue that the

sensor reading is still correct. For example, a temperature sensor used in environmental

monitoring can read a sudden drastically high value in case of fire. This can cause the

reading r to approach max within the defined window. However, the designer would have

 16

ensured that the operational behavior of the sensor is captured in the built-in test. There is

thus an important aspect in designing such a built-in test, to choose the window

appropriately for a given application and a given sensor.

Figure 2.4 Weighted Method as Built-In Test

2. Weighted Method: A robust built-in test mechanism is to determine the performance

degradation of a sensor based on how close the reading r gets to min or max of the usable

window. This will help the decision making process to evaluate the likelihood of the

sensor failure. It should be noted that, as a preventive measure for sensor failure (or a

complete node failure), redundant sensors (or nodes) can be deployed in the region. This

is, however, an expensive solution. The idea behind this second method is to assign a

weighting factor to each of the sensors in a sensor node based on the reading r.

Depending on how close the reading is to the usable window boundaries, the weight can

be adaptively decreased. As described earlier, each sensor can operate within a

min max
Guaranteed

Window

 17

guaranteed window and the weight is set to 1, if the output of the sensor is within this

window, i.e., wij= 1, where i =(1..m) signifies the sensor node number and j= (1..n)

signifies the sensors on-board the i-th sensor node. If the sensor reading goes beyond the

guaranteed window and approaches the usable window boundary, the weights are

decreased. A simple methodology is to use a bell-function as shown in figure 2.4, where

the weight exponentially decreases as the reading deviates from the guaranteed window.

Since such a method imposes a heavy computation burden on the sensor node, the built-

in test is performed for each sensor in a given node on the cluster-head or at higher level

in the cluster hierarchy.

2.3 Protocol Design for Weighted Method

For the weighted method, we appropriately change the message structure as shown in

figure 2.5. The message header now contains the sensor-id (or node-id), a difference

value indicating how far the sensor output has deviated from the guaranteed window

threshold. In order to realize such a design, we consider a sample working scenario with

three sensors and a parent node. When the parent node interrogates the three sensors,

each sensor replies with a message carrying its identification, a computed difference

value and sensed value r. We assume that the parent node has the knowledge of

guaranteed window and usable window for each of the sensors. Upon receiving the

sensor reading, the parent node computes the difference value and compares it with the

received difference value. This is similar to checksum. This will ensure that the message

was correctly received without any communication errors. Once this test is passed, an

 18

appropriate weighting factor is assigned based on how far the value has deviated from the

guaranteed working window.

Figure 2.5 Modified Message Structure for Weighted Method

Algorithmic Design

Input: define min and max as threshold window. α and β as guaranteed window.

Output: wij, weighting factor for each sensor within the given cluster. Pri(j), likelihood

of failure of senor j in the given sensor node i. Final sensor reading rij

The computational complexity of the above mentioned algorithm is O(m*n). However,

n, number of sensors on-board a sensor node is usually small (<= 4). So the overall

complexity is O(k*m), where k is the number of clusters and m is the number of sensor

4 5 01111010100001000000

Sensor-id

Sensor reading r
Difference

value

for each node i = 1 to m
 for each sensor j = 1 to n
 Initialize min, max, α, β for the given application

set wij= 1
 end for
end for
for each node i = 1 to m
 for each sensor j = 1 to n

if α<rij<β then
 set wij= 1
 else

 set
2

(/)i j
i j

r
w e

ε−= // where ε is chosen such that 0<w<1
 Pri(j) = 1- wij
 end if

rij = wij x rij

 end for
end for

 19

nodes within each cluster.

2.4 Limitation of Built-In Test Methods

Both Boolean Test and Weighted Method can prove to be useful in determining sensors

that are operating outside their specified guaranteed window. In the case of Boolean Test,

a sensor is said to have failed if the sensor reading is outside the guaranteed window. In

Weighted Method, if the sensor reading is outside the guaranteed window, then an

appropriate weighting factor is applied to the sensor reading in order to compensate for

the degradation in accuracy of the sensor. It should be noted, however, that under certain

circumstances, even when the sensor is working within a specified guaranteed window,

the sensor precision and accuracy might be compromised due to the presence of external

noise, environmental disturbances, etc. For example, consider a scenario, where a

temperature sensor is transmitting erroneous/noisy data (say, temperature as -1
o
C instead

of +10
o
C). However, if the sensor reading is still within the guaranteed window (-20

o
C to

+120
o
C) then sensor is still deemed to be working good according to the Built-in Tests,

even though in reality it is reporting a faulty reading.

2.5 Approaches to Support Built-In Tests

In situations where sensor linearity and sensor reading are critical, a redundancy

feature helps to determine the accuracy of the sensor reading. Redundant nodes can be

deployed in order to validate the true sensor reading. Applications involving sensor

networks require dense deployment of sensors [12]. The sensors deployed in large

numbers are spatially correlated within the region of events, that is, the sensor i reads the

same event value (with minimal variation) as the neighboring k sensors which are closely

 20

deployed. Validation mechanism can be performed as follows. Consider three sensor

readings a,b, and c from three redundant sensors. Two sensor readings are averaged

((a+b)/2, (a+c)/2, and (b+c)/2) at each predetermined time interval. The actual reading is

set to the value at which the majority of the three averaged values agree upon – a

majority voting principle. This helps to eliminate the faulty sensor in the group of the

three sensors under consideration.

Depending on the type of sensor and the application, there might be a high degree of

correlation between each consecutive sensor reading over time. This suggests the sensor

readings are temporally correlated. Consider a temperature sensor reporting a steady

increase or decrease in the temperature over time. The readings are thus correlated over

time. If there is a drastic change (large fluctuations) in the temperature over a small

period of time, there is a high likelihood that the sensor is faulty. However, temporal

correlation does not guarantee necessary and sufficient condition to claim that the sensor

has failed. It vastly depends on the physical phenomenon being sensed.

If there is a drastic change in the reading of a given sensor, either due to environmental

effects or sensor failure, then an interrogation signal can be sent to the sensor (with its

associated signal conditioning circuit) for validating its operation. Interrogation could be

in the form of a specific code, upon receiving which, the sensor responds with a unique

code that identifies whether the sensor has failed or not. This interrogation can be done

periodically or when there is an unusual reading reported by the sensor.

 21

2.6 Simulation Benchmarking

We experiment both Boolean Test and Weighted Method for a temperature sensor

using simulated data set. Guaranteed window is set to [+20
o
C, +120

o
C] and usable

window to [+10
o
C, +150

o
C].

Discussion: Figure 2.6 (a) shows simulated sensor data reading and the corresponding

compensated reading obtained from Boolean Test and Weighted method. In the

Weighted method, when the temperature reading is within the guaranteed window, the

weighting factor is set to 1. As the temperature crosses the limits of the guaranteed

window and approaches the limits of usable window, weighting factor is adaptively

decreased (as shown in figure 2.6(b)) and the corresponding sensor reading also

decreases (figure 2.6 (a)). An interesting factor to analyze is that the slope of weighting

factor (w), as shown in figure 2.6 (b), helps in failure prediction of the given sensor.

However, the slope decrease could also be a result of sudden increase or decrease in the

sensor reading. Figure 2.6 (c) shows the how likely the sensor will fail over time

indicating the performance degradation of the given sensor. As seen from the above

results, at time interval 8-9, the sensor reading jumps from very low (+10
o
C) to a high

value (+120
o
C). There is thus an uncertainty as to whether the sensor has actually

recorded a high event or has failed. This uncertainty is well demonstrated in probability

of failure (refer figure 2.6c).

 22

(a) Comparison of Built-In Test Methods

(b) Weighting Factor

 23

(c) Performance Degradation of the Sensor

Figure 2.6 Experimental Benchmarking

2.7 Effect of Built-in Test on Data Aggregation

Faulty data acquisition can have effects on decision making and sensor data fusion [13-

15]. In the second benchmarking scenario, we consider three homogenous sensors (say

all temperature sensors) with guaranteed window set to [+20
o
C, +120

o
C] and usable

window to [+10
o
C, +150

o
C]. We aggregate the data obtained from all the three sensors

and compare the actual aggregated value with the aggregated value obtained from

Weighed Method. As the temperature reading from any one of the sensors approaches

the usable window, the corresponding sensor value is decreased by an appropriate

weighting factor. Hence, the aggregated value obtained from the Weighted Method

decreases, thus indicating the decrease in the “contribution” of the faulty sensor to the

fusion (aggregation) process. This scenario is demonstrated in figure 2.7. We see that

sensor-1 consistently reports a high temperature value (+180
o
C) outside the usable

 24

window. Reading from sensor-2 gradually approaches the usable window, thereby

suggesting that there degradation of the sensor. Our proposed Weighed Method

incorporates the degradation of sensor-2 and failure of sensor-1 during the aggregation

process, and thus has a lower aggregated value compared to aggregating the actual sensor

readings.

Figure 2.7 Aggregated Data and Weighted Method

The built-in test methods discussed help to answer the likelihood of component failure

in any fault-tolerant design technique. Although built-in test methods such as Boolean

test do not provide a fool-proof mechanism to validate the accuracy of a given sensor,

they provide a mechanism to capture any intermittent faults. Weighted Method helps

achieve failure prediction (or likelihood to failure) and provides gradual performance

 25

degradation between usable and guaranteed windows, thereby extending the performance

characteristics of a given sensor in a multi-sensor network environment.

In case of criticality, having redundant nodes and performing built-in test provides a

robust feature in the design for fault tolerance. We focus on the summarization and in-

network aggregation of data in order to achieve energy efficient and cost effective

scheme for optimizing data transmission. Specifically, we use the concept of spatial

correlation of the distributed sensors to aggregate the “built-in tested” (fault-tolerant)

data.

Multi-sensor data aggregation is an important application in data acquisition systems

with low communication power. Parallel fused data from multiple sensors can represent

decision milestones which will incur less communication cost than serially processing

raw data acquired by individual sensors. It is an intractable problem to actually detect if a

sensor is faulty by looking at the raw data acquired from the sensors [16]. However,

because of faulty sensors, the fused data will deviate from the actual physical value being

sensed. In order to reduce the impact of faulty information prior to fusing, we propose a

novel method to aggregate the data from the distributed sensors.

We will first identify different aggregation operators and aggregation process. We then

analyze the necessity and impact of data aggregation in sensor networks. Following

which we will propose a methodology for aggregating data and finally discuss other

competing power-aware data transmission techniques.

 26

2.8 Common Aggregation Operators and Aggregation Process

Definition: Data aggregation is a process in which data or information from different

sources is expressed in a summary form.

Data aggregation and data fusion are often interrelated and interchangeable. The

importance of data aggregation arises from the fact that there is need for reducing

redundant data and number of transmissions (network packets) in sensor networks. Data

fusion is a broad area which could include aggregation as a sub-process and focuses on

information rather than data with the use of several interdisciplinary techniques such as

signal processing, statistical analysis, machine learning, and probability. Reference [17]

including references therein, provide detailed information on data fusion architectures

and methods.

Common aggregation operators found in literature are max, min, median, quasi-

arithmetic mean, weighted min, weighted max, weighted average and ordered weighted

average [18]. Although most of these aggregation methods offer reduction in data, they

generally incur data loss and do not represent the actual physical phenomenon being

sensed by the sensors. For example, max and min operators do not perform well when the

standard deviation of the given data set is large. Operators such as quasi-arithmetic

means are not stable under positive linear transformation [19], i.e., it does not satisfy the

equation:

H(αx1+t, αx2+t, αx3+t…., αxn+t) = α H(x1, x2, x3 …., xn) + t

where H is the aggregation operator.

However, with aggregation process such as weighted average, the user can set weights

(1)

 27

and thus can control the aggregation process. In fact, more advanced aggregation

operators such as Choquet and Sugeno Integrals [20] are special cases of weighted

average method. Since weighted average is stable and not computationally intensive, it is

very well suited for data aggregation in sensor networks.

Data aggregation process can be either flat or hierarchical. In a flat structure, all the

sensory information is fused to produce a global estimate of the sensor data. However,

this fusion or aggregation method has higher computation overhead on the aggregation or

fusion node. In a hierarchical structure, sensor information is fused in each cluster to

produce a local estimate which is then fused to obtain a global estimate of the sensed

information. Several fusion steps are needed in each cluster; however, each of these local

estimates can be performed in parallel as shown conceptually in figure 2.8. Weighted

adaptation can be easily managed resulting in more reliable information from each

sensor/cluster heads.

Figure 2.8 Hierarchical Data Aggregation from Difference Sources

Global estimate

Fusion node

Local estimate

 28

2.9 Importance of Data Aggregation in Sensor Networks

We stress on the issue of energy conservation as the major factor while designing

computational or communication intensive operations in sensor networks. Most of the

energy is consumed in communication – transmitting sensed information from sensors to

the gateway or base station for information processing.

Sensor networks are primarily used where focus is on aggregated query. For example, a

query such as “what is the chemical concentration in that area?” is common compared to

a query such as “what is the chemical concentration reported by a single sensor?” Such

queries causes several sensors to report information from the area of interest causing a

large flow of data from distributed sensing devices thereby causing increased

communication cost, congestion and high battery usage. Therefore, there is a very high

need to summarize information from different sensors. Such in-network aggregation

helps in reducing redundant information, minimizing number of transmission (or packets)

and thus conserving energy [21].

With in-network data aggregation, there is always an energy-latency tradeoff. Data

aggregation incurs end-to-end latency in data delivery to the processing station.

However, by reducing the number of transmissions, we achieve better performance

optimization and increased lifetime through aggregation.

2.10 Sensor Network Protocols for Data Aggregation

An important issue for data aggregation in sensor network is time synchronization. To

this end, several protocols are developed to reduce communication cost and also achieve

 29

synchronization during the aggregation process. Directed diffusion [22], SPIN [23], TAG

[24], Time Synchronization in Sensor networks [25] and cascading timeouts [26]

protocols have been proposed to achieve either explicit time synchronization or simple

timeout to guarantee “data freshness” [26-27]. The timeout mechanism best suits our

aggregation process.

2.11 Proposed Aggregation Mechanism

Our proposed algorithm for data aggregation can be broadly divided into two phases.

The first phase is the fault-tolerant data acquisition process using test methods described

in Section 2.2.1. The second phase of our approach is how well the acquired data can be

aggregated inducing more fault-tolerance before transmitting data to the command center.

We use the concept of hierarchical aggregation scheme with weighted average

aggregation operator for information fusion. Our innovation lies in the fact on how we

dynamically update the weights during the aggregation process based on the spatial event

correlation and likelihood of sensor failure.

Consider three overlapping sensing regions. The region of interest is the aggregated

data obtained around the region of the intersection of these sensing regions. For a large

deployment scenario, these sensing regions can be extended to cluster regions. The idea

here is to parallel process rather than serial process data from each sensor node. Data

aggregation can be either flat or hierarchical. In a flat structure, all the sensor information

is fused to produce a global estimate of the sensor data. This fusion or aggregation

method has higher computation overhead on the aggregation or fusion node. In a

 30

hierarchical structure, sensor information is fused in each cluster to produce a local

estimate which is then fused to obtain a global estimate of the sensed information.

Several fusion steps are needed in each cluster, however, each of these local estimates

can be done in parallel. Weighted adaptation can be easily managed resulting in more

reliable information from each sensor/cluster heads.

Figure 2.9 Event Region Data Aggregation with Three Sensor Nodes

In Figure 2.9, we investigate our weighted average data aggregation method. Each

sensor node has a weighting factor at any instance of time t, given by wi(t). In the event

of sensor failure, the proposed algorithm adaptively decreases the weight for sensors

which have failed or demonstrate likelihood to fail. At the same time, weighting factors

for the neighboring sensor nodes is increased. Hence, every reading from each sensor is

weighted at each predetermined time interval t, and weight updates are computed as

follows:

(+1) = () ()i i iw t w t w t± Δ

A fusion node (cluster-head or base station) can simply query the nodes for sensor

 Sensor node

 Sensing region

Fusion node

Event region

(2)

 31

reading in the event region. Based on a specific timeout, the fusion node performs

weighted average aggregation based on the data it has received currently from the

sensors.

In traditional neural networks, the change in weights ∆wi(t) is a function of the error

estimate, which is based on the difference between the expected reading and the actual

reading. However, in sensor nodes, we do not know the expected or desired reading a

priori. In order to estimate ∆wi(t), we use the concept of spatial correlation.

Sensor i reads the same event value (with minimal variation) as the neighboring k

sensors which are closely deployed. In order to estimate ∆wi(t), we propose the

following model:

∆wi(t)= |τi|*ε

where, τ, the adaptation parameter is given by,

1 2 1 1.... 1... i i k
i i

r r r r r
r

k
τ − + ++ +
= −

ri is the reading from the i-th sensor, k is the number of neighboring sensors and ε, the

scaling factor, is a small value 0< ε<1 and is chosen appropriately for a given

application. The scaling factor ensures that 0<∆wi(t)<1. An algorithm to update such

weights based on equation (3) and (4) is given below:

Algorithm for Weight Updates

1. Initialize all weights at t=0, wi(0)=1

2. At time t+1, calculate τ i for all sensor readings within the region of event.

3. Calculate ∆wi(t)= |τi|*ε. Choose ε appropriately.

(3)

(4)

 32

4. For i=1 to k,

a. if ∆wi is minimum for all i, then wi(t+1) = wi(t) + ∆ wi(t)

b. if ∆wi is not minimum for all i, then wi(t+1) = wi(t) - ∆ wi(t)

5. Repeat step 2-4 for next time interval

We provide a theoretical proof to validate the above algorithm in various working

conditions of the sensors.

Theorem 1: The weighting factor is increased only if the sensor reading is correlated

with the k-neighboring sensor readings.

Proof: In other words, we need to prove that wi(t+1) = wi(t) + ∆wi(t) for the ith sensor

when its reading agrees with the majority of the neighboring sensors in the given event

region. Alternatively, we prove that if ∆w (and in turn, τ given in equation (4)) is

minimum for all k sensors, then we increase the weighting factor (proving 4a of the

algorithm).

Case 1: Consider the case when the reading of the i-th sensor perfectly correlates with

the k-neighboring sensors, i.e., r = x for all sensors. τ evaluates to () /k x k x× − = 0, and

thus ∆w= 0, which means that w(t+1) does not change.

Case 2: In the second case, we consider a situation where majority of sensors (say p

sensors) in the set of k sensors are reporting same sensor reading (say r=x) as the i-th

sensor. This means that the sensor i is correlated with sensors in subset p.

x,x,x,x,x,x,x,x,x,x y,y,y,y,y

 p k-p

 33

 It should be noted that τ in equation (4) simply represents the difference between a

desired output and an actual output. This absolute value of the difference (desired output-

actual output) will be a value that is closer to zero (but not necessarily zero) and thus

minimum in the set of τi and ∆wi. Therefore, when the sensor reading correlates with

majority of sensors in the event region, its corresponding adaptation parameter is

minimum in the set and thus we increase the weighting factor.

Case 3: In this case, we consider a situation where m sensors in the set k are reporting

same sensor reading (say r=x) as the i-th sensor. This subset of m sensors is much smaller

than the remaining sensors in the set k, i.e., m<k-m. This means, sensor i is uncorrelated

with majority of sensors in the event region. The difference value (from equation (4))

evaluates to value that is maximum in the set of τi. Therefore, the weighting factor is

reduced as the sensor reading does not correlate with the majority of the neighboring

sensors.

Corollary 1: In spatially correlated sensor networks, the adaptation parameter τ, is

proportional to the posterior probability of nearest neighbor rule.

Proof: Consider k neighboring sensors. Let ki be the sensors report same sensor

reading in a given event as sensor node i. Let p be the subset of sensors that are

uncorrelated, and remaining (k-p) sensors report a value x, then equation (4) evaluates to:

() /

() /

k p x k

k p k

τ
τ
∝ −
∝ −

According to k-nearest neighbor rule, the posterior-probability estimate that a reading

ri is equal to value x is given by P(ri |x) = ki /k. (k-p)/k gives the posterior probability

estimate that (k-p) nodes read the sensor reading x, in the groups of k sensors.

 34

2.12 Simulation Benchmarking

Case 1: Consider three sensors. If all the three sensors are reading different physical

value with large variations, then we trigger built-in test. We determine the likelihood of

failure of a sensor by looking into how close the value is to the usable threshold window.

Case 2: Given 3 sensors deployed geographically close to each other. If two of the

sensors are reading same value (say, temperature) and the third sensor reads a high value,

then we can say that third sensor has a likelihood of failure. The weighted average

ensures that the weight for the third sensor is reduced. We demonstrate this case by

deploying accelerometer sensors to sense vibration on a dummy structural bridge. The

weight updates for three sensors are as shown in figure 2.10(b). It is clear from the figure

that sensor-2 and 3 are more correlated than sensor-1 and this can be observed from the

data obtained from the sensors. Also, from the experimental set up, it is evident from the

fact that sensor-1 is deployed in an area where there is more vibration in the structure

compared to sensor-2 and sensor-3. In this experimental setup, we collect the data for

period of 0.2 seconds sampled at 500Hz (sampling time of 0.002 seconds). We run the

algorithm offline on stand-alone computer rather then online computation on a sensor

node.

 35

(c) Raw Sensor Readings

(b) Weight Updates for Three Sensors

Samples

G
-f

o
rc

e

 36

(c) Absolute Error Variations

Figure 2.10 Data Aggregation Benchmarking Results

Figure 2.10(c) gives the error obtained from the difference between the aggregating

data with our proposed algorithm and aggregating reading samples from three sensors

without spatial correlation.

Case 3: If three sensors are reading the same value (with minimal variations), then

they are spatially correlated and we have ∆w=0.

2.13 Advantages of the proposed approach

The proposed model considers spatial correlation while computing the adaptation

parameter τ. By using adaptation parameter, we increase or decrease the weights on the

sensor reading dynamically. The model does not zero on the faulty sensors, but decreases

 37

the weight on the reading, which decreases the “contribution” of the faulty sensor to the

aggregation. This helps in identifying any intermittent faults or communication faults that

might occur for only small interval of time. If the sensor reading gets correlated with the

neighboring sensors in the next time interval, then the weights are dynamically increased

due to the adaptation parameter. This approach can be easily extended to all sensors

within a cluster and the cluster-head acting as the fusion node to aggregate the data.

Data aggregation in sensor networks in general helps to reduce communication cost.

However, a faulty reading by a sensor can represent a false estimate for the aggregated

data. In this chapter, we proposed a robust mechanism to aggregate data from different

sensors with some tolerance to faults.

In Section 2.2 and Section 2.11 we have proposed a methodology to identify and deal

with faults and summarize the fault-tolerant data in sensor networks. In the next section,

we identify other competing data reduction methods such as in-network data

compression.

2.14 Data Compression Techniques

Data compression techniques can be broadly classified into two groups – general

purpose and special purpose data compression. Special purpose data compression

algorithms are focused on audio, video or image compression. General purpose data

compression algorithms are generally applied to data buffers and text files. In both these

categories, we can have lossless or lossy data compression [28]. In lossy data

compression technique, decompressing the compressed output (upon retrieval) will not

 38

yield original data, but is close enough to be useful. This is most commonly seen in

compressing multimedia data (audio, video, and image). Lossless compression technique

allows exact original data to be reconstructed from the compressed data.

Generally, in sensor networks, it is desirable to have lossless data compression.

However, depending on application where sensors are deployed, a tolerance is admissible

for lossy data. We will see some of the lossless data compression techniques and their

application and/or limitations in sensor networks. Although data compression is a vast

research area by itself, we will identify common techniques and do a theoretical study on

their application in sensor networks

Lossless compression techniques can be further be divided into:

1. Entropy methods:

a. Huffman coding [29]: The basic idea in Huffman coding is to replace

each symbol by code based on a known input probability distribution.

The inputs are symbols and its corresponding weights (usually

probabilities). This is not known a priori in many live applications

including readings from sensors.

b. Arithmetic coding [30]: Similar to Huffman coding, however, the

symbols are replaced by real numbers in the range [0,1]. Arithmetic

coding is expensive both in terms of computation and space (memory)

requirements.

2. Encoding methods:

a. Run-length encoding [31]: Very simple compression technique where

 39

repeated data value are stored as single data value and corresponding

count. Example, WWWWWBBBBACD can be replaced by 5W4BACD.

Such compression techniques computationally less expensive.

3. Dictionary methods:

a. LZ77 [32]: This is a generalization of Run-length encoding method.

Instead of looking at the whole data buffer at a time, LZ77 uses

windowing method to replace repeated symbol by a single symbol.

Therefore, LZ77 algorithm is sometimes referred to as sliding window

data compression technique. This algorithm is highly suitable for sensor

network data compression due to its simplicity and low computation

overhead. We programmed our sensor node with an available open

source implementation of LZ77 algorithm [33].

2.14.1 Data Aggregation and Compression

An important feature of our proposed data aggregation scheme is the adaptive weight

change to deal with faulty information. Compression techniques such as LZ77 does not

take into account such fault detection or recovery mechanism.

 LZ77 implementation for sensor node (on TinyOS) looks into repeating 16-bit

sensor reading (for example 0x17A8) within a given sliding window. From empirical

analysis with temperature sensors, we found out that such repeating values rarely occur.

Also, LZ77 uses buffer to temporarily hold the data before being compressed and

therefore, there is an end-to-end delay in delivery of data to the base-station from the

time a sensor reading was taken. Data aggregation scheme can be supplemented with data

 40

compression schemes to reduce communication costs in network. But such schemes

would have high computation overhead.

2.15 Chapter Summary

In this chapter, we developed a data aggregation scheme that when implemented

hierarchically will reduce the number of network transmission by an order of number of

nodes transmitting. Moreover, such aggregation scheme also exploits the spatial

distribution and correlation often seen in sensor networks to generate a weight adaptation

scheme for fault tolerance. Such technique when augmented with Built-in Test (BIT)

provides robust mechanism to process and acquire large amounts of data. To demonstrate

the effectiveness of the aggregation scheme proposed in this chapter, we developed a

middleware at the cluster-head node that implemented the timeout mechanism and

aggregation of temperature sensor data. The detailed description of the design and

implementation of the middleware as well as the experimental results and discussions are

given chapter 6 of this thesis.

 41

CHAPTER 3

INTELLIGENT DIAGONOSTICS IN SENSOR NETWORKS

3.1 Uncertainty, Fuzzy Logic and Approximate Reasoning

In most of the complex large-scale systems, uncertainty can be found both in

information received as well as the operational state of the system. A comparative

description of different systems and their uncertainties is shown in figure 3.1. As seen

from figure 3.1, in sensor networks, there is a high uncertainty both in terms of data

acquired and system operations.

Figure 3.1 Study of Uncertainties in Systems. Image Courtesy of [34]

Uncertainty generally takes the form of vagueness or ambiguity in the context of

information [35]. Vagueness in information is characterized by fuzziness, unclearness,

cloudiness, etc. The level of uncertainty in both data and the state in sensor networks

demands a simplistic approach to handle such uncertainties rather than designing a state-

cat

Word

Squid

TCP
OS Kernels

Robotics
Distributed

Robotics Sensor

Networks

MPI

Real-World

Sensor Inputs

Time-

Dependent

Data

Text

Single

Threaded
Multi-Threaded Distributed,

Time-dependent

System Uncertainty

D
a

ta
 U

n
ce

rt
a

in
ty

 42

space model. Even designing a state-space model for a multi-parameter sensor networks

is generally hard. Often times solutions for characterizing behavior (for control) of such

complex parameter space problems is to use simple rule based techniques with expert

knowledge. Also, due to the fact that uncertainties in these systems are common, a fuzzy

rule based approach is an effective solution for characterizing the behavior of the given

system (sensor networks). Fuzzy rule-based approach provides a simplified approach to

multi-parameter problem that is persistent in sensor network. Even though fuzzy

inference is not new in control/decision making, its application is a significant

contribution to provide an approximate reasoning in sensor networks.

3.2 Fuzzy Logic Based Controller

3.2.1 Performance Degradation and Network Integrity

With fault-tolerant hierarchical data aggregation, we can ensure high data integrity and

energy-efficient data delivery process. Our next key issue is to focus on a cost-effective

way of prioritizing critical parameters of a given sensor network while maintaining high

data integrity. With in-network data aggregation, there is always an energy-latency

tradeoff. Data aggregation incurs end-to-end latency in data delivery to the processing

station. By carefully analyzing the network and node parameters, we can control the

process of data aggregation. For example, consider a decision making problem in which a

cluster is to be selected to aggregate data based on critical parameters such as level of

network congestion, power level of the aggregating node, data criticality, event levels,

etc. In such situations, a feedback mechanism, often used in control theory can help to

 43

efficiently monitor the current state of a given cluster and to determine appropriate

actions (say, to aggregate or not) to improve the operational performance. By

dynamically changing the operations of the nodes based on a changing environment, we

can extend the performance (for example network lifetime) of a given network.

Specifically, we represent the ideal state of each cluster as a reference input to our

controller. The ideal state for a sensor cluster would depend on the threshold limit on the

operating values for parameters such as, bandwidth usage, network congestion, number

of dead nodes, activity in the region, and overall energy (power) consumption. These

parameters depend on the application for which the sensor nodes are deployed.

3.2.2 Need for State Feedback and Fuzzy Logic Based Control

Designing a state-space model for managing the parameters for sensor networks is

difficult, simply because of unpredictable state and uncertainties in the operation of the

network. One such way to handle uncertainties in the system and to characterize the

behavior of the system (sensor network) using human knowledge and experience is by

fuzzy logic. Fuzzy logic provides an alternative solution to non-linear control; non-

linearity handled by rules, membership functions and inference process. Conventional

controller such as PD or PID relies heavily on understanding the physical system (full

knowledge of a mathematical model), and being able to define its transfer function

mathematically [36].

3.2.3 System Design

We consider four parameters – network congestion, data burst due to activity in the

 44

Sensor Field

Controller

+

-

Estimates
Error

Critical Parameters

Battery, activity…

Reference

Parameters

region, data criticality, and battery power, as critical parameters that evaluate the state of

the given network of unattended sensors. These parameters are fed to a fuzzy logic

controller running on a base station as shown in figure 3.2, which gives an estimate based

on the expertise or knowledge of the current state of the dynamic system. For instance,

fuzzy rules can be designed to adaptively change the routing of the query based on the

traffic (or congestion) in the network. Simple common-sense rules can be devised, such

as “IF traffic is HIGH and battery is LOW, then delayQuery is HIGH”. The controller

makes intelligent analysis of the state of each cluster by considering the parameters and

also their combinatorial effect, so as to idealistically distribute the information to all the

nodes.

Figure 3.2 Conceptual Design of Intelligent Monitor

3.2.4 Detailed design

Typical fuzzy logic system consists of fuzzification, inference and defuzzification

process [37]. Fuzzification creates fuzzy variables from crisp inputs that are then fed into

the inference system. Fuzzy rule base drive the inference system to produce fuzzy

 45

outputs, which are defuzzified to get system outputs. The fuzzy rule base consists of

fuzzy rules (IF antecedent THEN consequent) that are devised by an expert knowledge

base or through system input-output learning. The core of fuzzy system is this rule base

which mimics human reasoning [38].

Figure 3.3 Inside a Fuzzy Controller/Monitor

The reference inputs to the fuzzy system helps in designing the membership functions

for fuzzification as shown in figure 3.3. The crisp inputs to the fuzzy systems are the

critical parameters – level of congestion, battery level, data criticality and burst.

Level of congestion plays an important role in routing our query from base station to

the sensor nodes in the event region. We borrow the definition of depth of congestion

from [39], to define level of congestion as the level in the routing hierarchical tree at

which the backpressure message has traversed before a non-congested node is

encountered. Whenever congestion occurs, the source node simply sets the congestion bit

and sends the message back to the parent node (in the routing tree) as a backpressure

message.

In our proposed approach, fuzzy rules have multiple consequents to achieve the

Reference

Parameters

from sensor

field

Estimates

for cluster

head

 46

following goals:

1. Minimizing congestion - Avoid overloading of a given node or cluster of nodes

2. Optimizing density - Optimal number of sensor nodes in a given cluster without

loss of information quality.

3. Optimizing power - Optimal use of sensor nodes by conserving battery power.

3.2.5 Fuzzy Inference Engine

We define following rules for different functionality of our estimator.

For Congestion mitigation:

 Define Q as queue length and DQ as rate of change of queue

R1: IF Q is empty and DQ is zero THEN congestion_alert is zero
R2: IF Q is empty and DQ is increasing THEN congestion_alert is low
R3: IF Q is moderate and DQ is zero THEN congestion_alert is medium
R4: IF Q is moderate and DQ is decreasing THEN congestion_alert is low
R5: IF Q is moderate and DQ is increasing THEN congestion_alert is high
R6: IF Q is full and DQ is zero THEN congestion_alert is high
R7: IF Q is full and DQ is decreasing THEN congestion_alert is medium

For power control:

 Define P as battery power, E as events detected in the region, delay_query as

delaying the query from base station to event region (caching the query/data) and

Decrease_nodes as putting the nodes to sleep so as to sustain the lifetime of network (or

decrease the sleep time of the nodes). Here, we assume that sensor nodes are not powered

by a central power unit, but each sensor node is driven by their own power, thereby

having a distributed power supply for the entire network.

R8: IF P is low and E is high THEN delay_query is high and
Decrease_nodes is zero
R9: IF P is high and E is high THEN delay_query is low and
Decrease_nodes is zero

 47

R10: IF P is low and E is low THEN delay_query is medium and
Decrease_nodes is zero
R11: IF P is high and E is low THEN delay_query is zero and
Decrease_nodes is high

For Congestion Control:

 Define LC as level of congestion, P as battery power

R12: IF LC is zero and P is low then delay_query is zero and
Decrease_nodes is zero

R13: IF LC is medium and P is low then delay_query is medium and
Decrease_nodes is zero
R14: IF LC is high and P is low then delay_query is high and
Decrease_nodes is zero
R15: IF LC is zero and P is high then delay_query is zero and
Decrease_nodes is high
R16: IF LC is medium and P is high then delay_query is medium and
Decrease_nodes is high
R17: IF LC is high and P is high then delay_query is high and
Decrease_nodes is high

We define burst rate as data transmission mode in which large amount of data appears

for a small interval of time in the network. In sensor network, burst can occur during high

events or when data is requested (periodic or aperiodic intervals). During burst, important

sensed information needs to be delivered to the base station. Burst usually causes high

traffic rates (high channel capacity/bandwidth utilization) which will need more

intermediate nodes to transmit data. There is thus a higher requirement of resources -

number of nodes.

Define BR as burst rate and decrease_node as putting some of the nodes to sleep (or

decrease the sleep time of the nodes)

R18: If BR is high then Decrease_node is zero
R19: If BR is medium then Decrease_node is medium
R20: If BR is low then Decrease_node is high

 48

3.2.6 Advantages of the approach

The controller can be easily adapted to varying application scenarios by changing the

fuzzy rules. Having a continuous monitoring system such as the one proposed here, helps

in sustaining a longer network lifetime by appropriately balancing critical parameters

thereby ensuring survivability of the network. Efficient routing decisions can be

adaptively made based on the congestion, power level and activity level in the region of

interest.

3.2.7 Hierarchical Fuzzy Scheme

In section 3.2.5 we organize the fuzzy rules based on the functionality. However, a

more efficient scheme to organize the fuzzy rules is in hierarchical fashion based on the

criticality; top-level being highly critical to the system as shown in figure 3.4.

Figure 3.4 Hierarchical Rule Base

In addition to the hierarchical organization of fuzzy rules for criticality, we can design

fuzzy rules to ensure data reliability and quality. These fuzzy rules are applied to fuse the

Optimal number of

nodes

Cache Query Congestion

Alert

Power Control

Fire rules

R12-R20

Fire R8-R17 Fire R1-R7 Fire R8-R11

 49

data from different sensors which are organized in a tiered architecture. Thus, we not

only ensure the quality and survivability of the sensor network, but also guarantee the

quality of data delivered by the network.

As a case study, we consider the tiered sensory fusion approach [40] in an

environmental monitoring application. Specifically, we consider inputs from three

different sensory sources - temperature, visual, and heat-sensing IR camera. Single

sensory information, such as from temperature, alone can not accurately determine the

presence or absence of fire. However, with multiple sensors, detection, severity and

localization of fire can be determined with lower false positives.

Consider group of low powered sensing devices capable of sensing temperature,

distributed spatially to monitor environment (such as forest) for potential fire threats. A

break-out fire produces enough thermal radiation for the temperature sensors to signal a

presence of fire. In order to backup the information received from these sensors, a camera

can provide visual aid to validate the presence of fire. However, smoke generated from

fire can hinder the visualization of fire and therefore becomes harder to determine the

severity of fire and hence difficult to isolate the hazard. We also note that camera alone

cannot provide full information about the fire but relies initially on temperature sensors.

An aerial information (such as from an UAV) can provide a thermal camera (heat-sensing

IR camera) to determine location and spread (severity) of the fire. All three sensors

compliment each other in monitoring, detecting and isolation of fire. A tiered approach

helps to detect feature of the threat in each tier as shown below:

 50

Tier Problem

1 Detection

2 Detection, Validation

3 Detection, Validation, Severity

In tier 1, group of in-situ sensing devices provides the initial detection of fire based on

temperature readings. In tier 2, validation of the initial detection is done by camera. The

severity of the threat (fire) is estimated using an IR camera based on the validation and

detection from camera and temperature sensors respectively.

We develop a multi-level danger or severity score for each small region of the

environment. This score d, can take the value 0 (,) 1d x y≤ ≤ . Fuzzy rules can be

developed at each tier and then fused based on a weighting factor for each of the

defuzzified value for each sensor. Defuzzified values at each tier gives an estimate of

severity score d for a region defined within the boundary x,y.

dt: Severity score obtained from temperature sensory information.

Number of sensors reporting fire (low, medium, high)

⊕

Temperature range (low, medium, high)

=

dt (low, medium, high)

di: Severity score obtained from Infra-red camera.

Intensity (yellow, orange, red)

⊕

Area covered (small, moderate, large)

=

di (low, medium, high)

dc: Severity score obtained from camera.

Fire presence (none, low, medium, high)

=

dc (zero, low, medium, high)

 51

⊕ represents the fuzzy t-conorm and low, medium, high are fuzzy linguistic variables.

Total severity score is then calculated based on the defuzzified value of dc, di, and dt by

weighted averaging the values:

d(x,y) =
1 2 3

3

1

t i c

k

k

w d w d w d

w
=

+ +

∑

where wk is the weighting factor for each sensor. An important contribution of our

approach is how these weights can be updated based on the environmental changes

observed. That is, based on the condition of fire, the weights should be changed

adaptively. For example, fuzzy inference can again be applied to evaluate the weight for

each sensor (say, camera) in the following fashion:

if smoke is high and range is far, w3 (weight for camera) is low
if smoke is high and range is near, w3 is med
if smoke is low and range is far, w3 is med
if smoke is low and range is near, w3 is high

3.2.8 Protocol Design for Multi-Sensor Nodes

In order to realize an implementation of such a monitoring method for sensor network,

it is necessary to develop a protocol. Such a protocol aids in message passing of critical

parameters from the sensor field to the base station. In this section, we describe in detail

the high-level communication message structure and a protocol to communicate and

interpret the message to and from the sensor network.

We consider two types of messages - beacon message and a report message. Beacon

(5)

 52

message is a broadcast type message sent by the base station. Beacon messages acts like

stimuli for the sensor nodes to report their current operational status back to the cluster-

heads. In order to save on the costly communication to and from the sensor network, the

cluster-heads can make simple but effective analysis of the sensor node reported

information.

If there is no substantial change in the information reported or there is no adverse

conditions (say high congestion, low battery, etc.) reported, the cluster-head does not

report back the information to the base station. This reduces considerable amount of

packets in the network, thereby reducing communication cost as well as congestion and

latency within the network.

Figure 3.5 A Sample Tree Structure for Distributed Sensor Routing

Base Station

Leaf node – active sensing

Cluster head

Sink nodes

(gateways)

Query to the leaf

nodes

 53

Header Sensor Data

 NodeID GroupID Request/Reply bit Congestion bit power level indicator queue length

Each beacon message is sent at pre-determined time interval from the base station.

These beacon messages traverse from the base station to sink nodes to cluster-heads and

finally to the sensor nodes. A sample illustration of such a tree structure is seen in figure

3.5. Cluster-heads are generally sensor nodes with higher functional capabilities than

simply sensing the environment. Once beacon message is received, each sensor node

sends a message to its cluster-head. This message consists of current sensor reading of

interest, along with important header information. The message structure is as shown in

figure 3.6.

Figure 3.6 Message Structure

NodeID uniquely identifies each of the sensor nodes in the network. GroupID uniquely

identifies the cluster to which the sensor node belongs. Request/Reply bit can take the

value 0 or 1. 0 signifies a beacon or cluster-head request and 1 signifies a reply to a

request from the sensor nodes. The congestion bit is set to 1 if the sensor node is

overloaded. If the sensor node is acting like a message router involved is message

hopping, then there is high likelihood that the sensor node can be overloaded. Power

level indicator identifies the power at which the sensor node is working. It could be

simply a battery voltage level or power usage represented as percentage of total power

available to the sensor node. Finally, the queue length signifies the messages that occupy

 54

the queue and waiting to be transmitted. This message header can be implemented

without much difficulty in real-world sensor nodes that provide high level programming

capabilities (such as TinyOS running on Crossbow motes [41]).

The beacon request sent from the base station is forwarded down the routing tree to the

sensor nodes. Each of the sensor nodes reply back to the cluster-head (or their parent in

the routing tree) with the message which contains the sensed data and appropriately

setting the header. The number of sensor nodes deployed varies, depending on the given

application. The fuzzy inference engine can be run either on the base-station, if there is a

single cluster of sensor nodes or run hierarchically on the cluster-heads. If there are

several clustered sensor nodes, each cluster-head can run fuzzy rules based on the header

information in the message, and send their recommendations to the base-station. The

base-station in turn runs fuzzy logic controller for the recommendations received from all

the cluster-heads in order to determine best possible parameter estimate for the entire

sensor network. This is critical since a recommendation from one cluster might be

varying or conflicting with its neighboring cluster.

3.3 Application-specific Example

In the last section we considered fuzzy based inference for each cluster so as to optimize

the performance of the whole network. In this section, we present another fuzzy based

approach for clustering deployed sensor nodes. Such clustering mechanism can be highly

applicable for applications such as object tracking. We will give a detailed explanation of

 55

how such clustering mechanism can be used for “intelligently” tracking a moving object

without having to know the underlying dynamics of the moving object.

The concept of object tracking has been studied extensively in mobile robotics [42-44].

Object tracking is usually combined with other processes such as object detection and

object classification. Based on the type of sensor used, object detection can be either

visual (using camera) or motion based (using motion detectors). Object classification

involves comparing the detected object with a known object, generally using pattern

recognition/image processing techniques. The principle of object tracking relies on the

sensory feedback in order to calculate the new position (or state) of the moving object.

Thus, the process of object tracking is an estimation process. Several estimation

techniques such as Kalman filters [45], Bayesian estimation [46], and Kernel particle

filtering [47] have been studied for object detection and tracking.

Target or object tracking in sensor networks has been proposed in [48-50]. Our method

of object tracking is based on the topology of the sensor nodes deployed in order to

estimate the object feature (speed or position) without the underlying knowledge of the

dynamics of the object. We use the principle of overlapping clustering and data-driven

techniques [51] to predict the motion of a given object.

Randomly deployed sensor nodes are grouped into several clusters based on some

metrics (say, distance). Clustering can be organized in a hierarchical fashion, with

sensing nodes at the lowest level in the hierarchy. The sensor information is passed on to

cluster heads which, in turn, pass information to the base station. The criteria for

clustering could also be the number of hops from the sensor nodes to the cluster head.

 56

The main advantage of clustering is to divide the problem space into several sub-

problems and solve each sub-problem for estimation; a divide-and-conquer approach.

As note in chapter 1, although there are several proposed clustering algorithms for

sensor networks, to the best of our knowledge, there is no literature which utilizes

overlapping (fuzzy) clustering mechanism in sensor networks. Such an overlapping

clustering topology has several advantages when seen from a routing point of view.

A hierarchical routing tree structure based on non-overlapping clustering is presented

in figure 3.7(a). In this type of routing, sensing nodes (lowest level of hierarchy) pass

information to their respective parent nodes (cluster-heads). A routing tree structure

based on overlapping clustering is presented in figure 3.7(b). As seen from figure 3.7(b),

when routing information, node-A sends data packets to both cluster heads and

eventually to the base station. At the base station we have redundant information from

two cluster heads. Since the packet header of the communicated data contains the node

identification (nodeID), base station knows from which node it is receiving the data and

therefore can simply ignore the data or use it based on data fusion algorithms, if there is

any redundant or duplication of information.

(a) Routing Tree with Single Path

Routing Info to

Base station

Base station Query to the

leaf nodes

Gateway node

Cluster head

Sensing node

 57

(b) Routing Tree with Single Path

Figure 3.7 Hierarchical Routing Tree Structure

We see that there is redundant query and information passed from and to the sensor

nodes. This will incur more communication cost than normal hierarchical routing, as in

figure 3.7(a). However, with overlapping clustering, even if one of the cluster head fails,

the information is still passed on to the base station.

Another advantage of overlapping clustering is in object tracking. If the nodes belong

to different clusters to some degree, then this degree can be used as the probability of

detection of the moving object in that particular cluster. Therefore, clustering based

distributed computation helps in predicting the object feature (speed, position) without

having to know the dynamics of the object being tracked.

An important design consideration in overlapping clustering is to find the minimal

(threshold) number of sensor nodes that belong to two or more clusters. Sharing more

nodes among clusters increases the network traffic which could overload the routing

nodes (in multi-hop scenarios) and can cause network congestion. On the other hand,

 Base station

Routing Info to

Base station
A

 58

fewer nodes in the overlapping region reduce redundancy.

3.3.1 Clustering mechanism

If the deployment of the sensor nodes is known a priori, then the base station can run a

clustering algorithm to identify cluster-heads and assign each sensor node the degree to

which it belongs to multiple clusters. One such clustering algorithm to generate

overlapping clusters is Fuzzy c-means (FCM) clustering [52]. FCM which is commonly

used in pattern recognition is based on the principle of minimizing the objective function

given by:

2

1 1

N C
m

m ij i j

i j

J u x c
= =

= −∑∑

where uij is the degree of membership of xi in cluster j, cj is the center of the j-th cluster

and m (m>1) is the fuzziness measure. FCM is an iterative algorithm which starts by

randomly selecting cluster-heads for the given dataset. By iteratively updating the cluster

centers (minimizing the objective function), FCM moves the cluster-head to the right

location within a given dataset. Such an algorithm can be used for partitioning deployed

sensor nodes.

Another alternative is to probabilistically select a cluster-head [53]. A chosen sensor

node broadcasts a message as a cluster-head. All the neighboring sensor nodes reply with

an acknowledgement message. Based on the signal strength of the received message, the

cluster-head can assign degree of membership for each of the sensor nodes and thus

forms a cluster. A single sensor node could potentially receive more than one broadcast

message from multiple cluster-heads. In these situations, the sensor node has the

(6)

 59

possibility that it will belong to two or more clusters. The degree of membership to a

cluster, however, depends on how far the sensor node is from the cluster-heads.

3.3.2 Object Tracking

With overlapping clustering, each node belongs to two or more clusters with a certain

degree of presence (µ) in each.

Hypothesis 1: A high weighted average of aggregated information from the cluster

center CHi implies the object is in that cluster.

As stated above, for densely deployed sensor nodes where some of the sensors belong

to two or more clusters, if the sensor nodes in cluster i are close to the cluster head CHi,

then µi will be high compared to their µj with neighboring cluster head CHj. With this we

can average out the sensor reading (si) for k sensor nodes which have detected an object,

thus giving us the aggregated value:

1:

i i

i k

s

k

μ×
=
∑

In figure 3.8, an object (represented as star) is sensed by neighboring sensors and the

information (sensed value – binary or real) is sent to the cluster heads.

Figure 3.8 Object Detection by Multiple Sensors

> ∑ si µi/k
i=1:k

∑ sj µj/k
j=1:k

Cluster head

(7)

 60

 The aggregated value given by (7) will be high for cluster head where the object is

located at present, since the µi for the sensors in that cluster head is high.

Different scenarios are analyzed in order to evaluate the performance of our algorithm.

We define common nodes as those sensor nodes that belong to two or more clusters.

Independent nodes are sensor nodes whose degree of membership to cluster is 1, i.e., they

always report information to one cluster head. Also, the sensor reading si is normalized

to read between 0 and 1.

Consider the following three scenarios in object tracking:

Case 1: A moving object is detected by group of k independent sensor nodes inside the

region of a specific cluster. Since the independent nodes have degree of membership

equal to 1, the aggregated value from equation (7) is nothing but the aggregated value of

all the sensor reading.

Case 2: A moving object is detected by a group of sensor nodes common to two

clusters. This is a situation, where the target object is in the overlapping region of the two

clusters. The sensing devices in this region report to both cluster heads. The aggregated

value then depends on the degree of membership for each of the sensors in the

overlapping region.

Supporting example: Consider k=4, the number of sensors in the overlapped region

that detect an object at a given time instance t. Let µi={0.1,0.8.0.5,0.4} and µj =

{0.1,0.2.0.5,0.6} are degree of membership of sensors to two clusters i and j and

normalized sensed values is s={0.1, 0.2, 0.4, 0.4}. The sensed values could be set based

on the voltage levels in case of analog sensors. From our hypothesis, we estimate the

 61

chances of object entering a cluster by finding the aggregated value given in equation (7).

The aggregated value for cluster i is high, indicating that the object is entering cluster i.

Case 3: A moving object is detected by group of independent as well as common

nodes. If the number of independent nodes detecting the object is higher than the

common nodes, the aggregated value in equation (7) will be higher than aggregated value

obtained from Case 2, because of the high degree of membership for independent nodes.

The base station will be able to determine the delayed trajectory response of the moving

object by comparing the aggregated values from different cluster head in the region of

event.

Supporting example: Consider k=4, the number of common nodes that detect an object

at a given time instance t. Let µi={0.1,0.8,0.5,0.4} and µj = {0.1,0.2.0.5,0.6} are degree

of membership of sensors to two clusters i and j and normalized sensed values is s={0.1,

0.2, 0.4, 0.4}. We will also assume that some independent nodes (m=3) within cluster i

has detected the object. From equation (7), the aggregated value for obtained in cluster i

is high compared to aggregated value generated at cluster j. From the time series (looking

at object’s location at time t-1) and the aggregated value at the given time instance t, the

base station can estimate the course of action of the moving object. Since this algorithm

is online and data-driven, even if the object changes its trajectory, the base-station can

quickly estimate the new changed trajectory comparing the aggregated value generated at

the cluster-heads.

3.3.3 Protocol and Algorithmic Design

In order to realize an implementation of such a tracking method for sensor network, it

 62

is necessary to develop a protocol. Such a protocol aids in message passing from the

sensor nodes to the cluster-head. In this subsection, we describe in detail the high-level

communication message structure and an algorithmic design to interpret the message to

and from a node.

Each sensor node sends sensor reading in a message packet with header information

containing its identification (node-id) as shown in figure 3.9.

Figure 3.9 Simulation Snapshot

Upon receiving such message, each cluster-head (CH) looks up for the degree of

membership for each node based on the node-id. A simple look-up table mechanism can

help in retrieving stored degree of membership for each node within the cluster. Each

cluster-head then computes the aggregated value (see equation (2)) and sends the result to

the base-station (sink node) with its identification. The detailed algorithms at sensor

node, cluster head and base station are given below.

Algorithm 1: Running on each sensor node

If (events detected)
{

Send message with node-id and object info
}

Algorithm 2: Running on each cluster-head (CH)

If (message received)
{
Start timer

While (timeout)
{
Store messages received
}

node-id sensor reading

 63

For (each node_id in the received messages)
Retrieve membership degree
Perform aggregation based on equation (2)

}

Algorithm 3: Running on base-station (sink node)

For (each message received from CHs)
{
Generate timestamp t
Compare the aggregated values from other CHs
Based on previous timestamps t-1, t-2,…t-n, from the time
series aggregated data received from different CH
calculate the speed of moving object.
}

3.3.4 Limitations

The proposed algorithm relies heavily on the clustering of the deployed network.

Although the algorithm can track a moving object, the exact positioning of the moving

object can only be known if position of the cluster-heads is known (either through GPS

or relative positioning).

In case of multiple objects being tracked, having relatively high number of clusters

helps in determining high number of aggregates (equation 2) and thus helping in

efficiently tracking each objects separately.

3.4 Simulation Benchmarking

Part(a): In this part, we develop the fuzzy rules using fuzzy logic toolbox in MatLab.

Figure 3.10a and 3.10b shows the control surface for rules 1 through 7 and rules 8

through 11 respectively.

 64

In this section, we develop a conceptual simulation of subset of the problem described

in this chapter. Specifically, we run a fuzzy logic controller with rules 8-11 for

optimizing node density based on the battery power levels and activities/events in the

given cluster or region of interest.

(a)

(b)

Figure 3.9 Control Surface from Fuzzy Rules

We define two important variables – α as minimum number of nodes necessary to

guarantee coverage and β as probability of failure of event detection. Here α is chosen

appropriately for a given application. The number α can also be determined by using

 65

optimization schemes that guarantee optimal coverage for a given application. Finding an

optimal α depends on the current state of the network including operating power level

(battery voltage) of the sensors within the cluster, number of events in the network,

criticality of data, etc.

Figure 3.11 Simulation Design for Fuzzy Inference with Power and Event Levels

Figure 3.11 shows the conceptual simulation developed in MatLab Simulink. The input

parameters to fuzzy controller are the power level and events detected (normalized to 1)

at discrete-time steps. The output of the fuzzy controller is the estimate for number of

nodes based on the input parameters. The density error ε is used to evaluate β. If error is

positive, then β= ε/α, gives the probability of failure to detect an event in next time step.

If error is negative, then the region of interest or cluster region has sufficient nodes to

meet the coverage criteria.

 66

Figure 3.12a shows the simulation results for density estimates for different power

levels (figure 3.12b) and event levels (figure 3.12c). We can see a clear raise in the

estimates for node density during the final simulation time steps, due to the decrease in

power level and an increase in events in the region.

(a)

(b)

Time

Time

Node

Density

Power

Level

 67

(c)

Figure 3.11 (a): Density (b):Power and (c):Event levels at different time steps

Part(b): In this part, we will simulate the object tracking algorithm based on the

principles of overlapping clustering. We simulate different scenarios when the moving

object has entered the sensor field (region deployed with sensor nodes). For practical

implementation we can assume that each sensor node is equipped with motion detectors

(such as Passive Infrared (PIR) sensors) along with processor-radio board for limited

computation and communications (for example, sensor nodes such as Crossbow motes).

Scenario 1: In this scenario, we consider a moving object which moves from one

clustered region to another without changing direction (trajectory) as seen from figure

3.13 (moving object is represented as a circle). At each step, the aggregated value is

calculated based on the number of sensors sensing the object. By comparing the

aggregated value from multiple cluster-heads, the base-station can estimate the trajectory.

Note that, since the object’s trajectory is constant, the base station can also perform

temporal correlation. Based on the aggregated values (spatial correlation) and time series

data, the base-station can generate the trajectory of the moving object (for example, as

Time

Event

Level

 68

given by dotted line in figure 3.13). The actual orientation of the object might be

different from the estimation, which will constitute the miss rate. Since the algorithm is

online, at the next iteration, based on the current location of the object, the aggregation is

again computed giving a new estimation of the object’s orientation thus minimizing the

overall miss rate.

Figure 3.13 Overlapping Clustering Intuition

Scenario 2: In this scenario, we consider a moving object which moves randomly

(without a constant trajectory) in the sensor field.

In order to simulate both scenarios, we consider a path traced by a moving object as

show in figure 3.14.

Figure 3.14 Trajectory of a Moving Object

Object

Trajectory

Predicted trajectory

Actual trajectory

 69

We simulated both the scenarios with our proposed hypothesis, in a discrete-event

structure. DEVS-Java [54] a discrete-event simulation environment developed in Java

and based on DEVS formalism was used to simulate the object tracking scenario. We

run our fuzzy clustering and get cluster centers for the sensors deployed. The simulation

shows an object entering the cluster field and detected by sensors. The snap-shot of the

simulation is presented in figure 3.15.

Figure 3.15 Simulation Snapshot

As seen from figure 3.15, the algorithm does well in predicting the trajectory of the

object. However, when the object suddenly changes its trajectory (as seen at time t+n),

there is an overshoot in the prediction. This overshoot results from the base station

looking at the motion of the object at previous time intervals (t-Δt) and the current

aggregated value.

Since the initial movement of the object has constant trajectory, the prediction relies on

temporal correlation. As the object changes it course, the algorithm has to rely on the

t t+1 … t+n

Actual Trajectory

Predicted Trajectory

 70

aggregated value sent by the cluster-heads.

3.5 Chapter Summary

Conventional feedback mechanism (such as PD or PID) and iterative formulation of

dynamics (such as Newton-Euler formulation) could be prohibitively time consuming.

The basic idea for probing the given sensor network (system in this case) is to mimic

human mind to deal with complex systems. Human mind maintains a modular perception

with relatively simple nonlinearities [55]. Our approach was to use human reasoning (by

designing common sense rules) to deal with complex multi-parametric systems such as

network of sensors. Fuzzy based reasoning is not new in the area of controls and decision

making. The use of fuzzy controller for estimation has been proven to be easier to handle

multiple variables/parameters for large-scale systems. System identification of sensor

network is generally difficult due to uncertainty in the system (sensor network) variables.

We exploit the nature of fuzzy logic controller which efficiently handles uncertainty and

nonlinearity in the system. It should be noted that our approach is to provide a simplistic

rather than accurate reasoning about the working condition of the network (diagnose) and

eventually use this reasoning to update the operating parameters (such as sleep time,

power level, etc.) of each or group of sensor nodes so as to improve the performance of

the entire network. The real-world experimentation for node criticality based on fuzzy

logic approach is presented in Chapter 6.

 71

CHAPTER 4

MULTICRITERIA DECISION MAKING

4.1 Decision Making Process

The process of decision making is to simply choose an action among set of alternatives

based on some criterion. For example, consider the systems diagnostics using Fuzzy

logic discussed in chapter 3. The number of sensor nodes deployed generally varies,

depending on the given application. The fuzzy inference engine can be run either on the

base-station, if there is a single cluster of sensor nodes or run hierarchically on the

cluster-heads. If there are several clustered sensor nodes, each cluster-head can run fuzzy

rules and send its recommendations to the base-station. In some cases, the

recommendations sent to the base-station from each one of the cluster-heads are

conflicting in nature. When such conflicting recommendations exist, it is generally

desirable to automate the decision making process, for example, to select the right cluster

for managing the critical operating parameters. There are several decision making models

available [56] and such models have been extensively used in the field of economics.

4.2 Multi-Criteria Decision Making

The problem of selecting an action among set of alternatives becomes harder when the

decision making process involves several criteria rather than a single criterion. Such

problems are referred to as Multi-Criteria Decision Making (MCDM) [57] problems.

MCDM is the study of discrete decision making involving two or more criteria

 72

(sometimes conflicting) or objectives. In MCDM problems, the goal is to select an

alternative (choice or a system) from a set of relevant alternatives by evaluating a set of

criteria. For example, consider the problem of selecting a car from a given set of three

cars S={A, B, C}. This set S, represents out set of alternatives. Selecting a car of our

choice is the action. The sample set of criteria to be evaluated can be C
S
={Fuel

efficiency, Luxury, Price}. A conventional methodology to select a car is based on

prioritizing the criteria for selection. Such priorities are generally user-dependent. A

simple weighting factor for each criterion can prioritize the selection process.

Let us now generalize the problem of MCDM by taking finite number of actions and

criteria. Let Ω = {s1,s2,…sm} and X = {x1,x2,…xn} be set of alternatives and set of criteria

respectively. The decision making process proceeds by formulating a matrix A with set

of criteria and set of alternatives given by:

Each entry aij denotes the degree to which the criterion xj is satisfied by the alternative

si. The idea is to now reduce the multi-criteria problem into a single global criterion

problem by aggregating all the elements of matrix A, given by a =H(a1j, a2j…amj), where

H is the aggregation operator. Most common aggregation operator is the weighted

arithmetic mean. In this chapter, we will investigate the necessity of MCDM in sensor

networks, the pitfalls of common aggregation operators (such as weighted mean) and

 s1 a11 a12 … a1n

 A = s2 a21 a22 … a2n

sm am1 am2 … amn

 x1 x2 … xn

(8)

 73

provide a counter-measure for aggregating criteria without using common aggregators.

4.2.1 Motivating Examples in Sensor Networks

Consider an application of monitoring a large structure such as a bridge, using sensor

networks. Ideally, we would want to sustain the lifetime of the deployed sensors for a

long time, since the redeployment generally can be difficult, both in terms of ease and

cost of deployment. In this case, network lifetime is more important criterion than

accuracy of data, and hence we assign network lifetime a higher weighting factor.

Consider another instance, application such as habitat monitoring. High network lifetime

is desired but not a required behavior. However, more importance or priority needs to be

given to efficient communication from the habitat to a command center. Consider yet

another application of monitoring chemical or nuclear spill in a region. Such applications

have high demands for larger node deployment in order to capture and localize all critical

events in the region. Each application thus has varying demands or requirements that

need to be satisfied by properly prioritizing the behavior or properties of sensor networks.

In order to prioritize the system behavior, we will need to establish criteria for

prioritizing. This system behavior can be thought of as action to be selected from set of

alternatives. For example, if there were three different tasks that needed to be completed,

a human might prioritize them based on time, cost or importance. Therefore, the problem

of assigning behavior to a given system then becomes a MCDM problem.

4.2.2 Interacting Criteria

A common method as discussed earlier to evaluate set of criteria is to use aggregator

 74

operator to reduce the multi-criteria problem into a single global criterion problem by

aggregating all the elements of matrix A. A tradition method is to use weight sum (or

weighted mean) on the row of matrix A given by:

1
1

n

i i
i

w a
=

×∑

This is a simple approach; however, despite its simplicity it has drawback in that it

assumes that the criteria are independent. The criteria can interact with each other which

requires the replacement of weighting factor w by a more comprehensive non-additive set

function on set X (set of criteria) which not only considers weighting factor on each

criterion but also weighting on each subset of criteria. [58] gives an overview of different

types of interaction among criteria that could exist in the decision making problem. Three

kinds of interaction defined and described in [58] are as follows: correlation,

complementary, and preferential dependency.

Correlation can be further divided into positive correlation and negative correlation.

Positive correlation is existent two or more criteria present some form of redundancy. For

example, consider again the problem of evaluating a given car based on three criteria

{fuel efficiency, luxury, price}. A highly luxurious car generally comes with a higher

cost. In this case, luxury and price form positive correlating criteria, and the evaluation

will be an overestimate. As discussed before, this problem can be overcome by using

weighting factor on subset of criteria, such that w(ij) < w(i) + w(j), where i and j are two

criteria and sub-additive feature overcomes the overestimate during the criteria

evaluation. In the reverse case (negative correlation), weighting factor w(ij) will be super-

additive given by w(ij)>w(i) + w(j).

(9)

 75

In complementary type of interaction, one criterion can replace the effect of multiple

criteria. This means that importance of criteria pair (ij) is close to the importance of

having single criterion i or j. Clearly, when such criteria pair exists, a weighted sum

cannot be helpful during the evaluation process. A more complex weighting factor needs

to be considered.

The third type of interaction is the preferential dependence. In this type of interaction,

the decision maker’s preference for selecting an alternative is simply given by a logical

comparison, i.e., if there exists a function M such that, for any two alternatives a1 and a2,

then the decision maker selects one of the alternatives (say a1) if M(a1)>M(a2).

Clearly, when such complex interactions exist among criteria, it is necessary to use a

well-defined weighting function on subset of criteria rather than a single criterion during

global evaluation. One such methodology for evaluation is Choquet integral with the use

of fuzzy measure [57] as weighting function.

4.3 Fuzzy Measure and Choquet Integral

A fuzzy measure [59] on a set of criteria (X) is defined as a mapping function µ: 2
X

[0,1], where 2
X
 is the power set of X. Additionally, µ should satisfy the following

properties:

 1. µ(Ø) = 0 and µ(X) = 1, where Ø represents the null-set

 2. If A is a subset of B, then µ(A) ≤ µ(B)

For example, consider a set X = { x1, x2 }. Power set of X is given by, P(X) = { Ø,

{x1}, {x2},{x1,x2}}. The fuzzy measure on the elements of set P, for example, can be

 76

defined as: µ(Ø) = 0, µ({x1}) = 0.4, µ({x2}) = 0.5 and µ({x1,x2}) = 1. If µ is the fuzzy

measure on X (set of criteria), then Choquet integral [60] of a function f : X [0,1] with

respect to µ is defined as:

n

µ 1 n (i) (i-1) (i)

i=1

C (f(x)...f(x)) = (f(x) - f(x)) µ(Y)×∑

where x(i) indicates that the indices have been permuted such that f(x(1)) < f(x(2)) <…. <

f(x(n)) and Y(i) = {x(i), …, x(n)}. If the fuzzy measure µ is additive (i.e. µ(xy)= µ(x)+ µ(y)),

then Cµ represents discrete Lebesgue integral [61]. The above equation (10) for discrete

Choquet integral can also be given as:

n

µ 1 n (i) (i) (i+1)

i=1

C (f(x)...f(x)) = f(x) (µ(Y)-µ(Y))×∑

A graphical representation of Choquet integral as compared to other aggregation

operators in the interaction space is given in figure 4.1 [62].

Figure 4.1 Graphical Representation of Choquet Integral

4.3.1 Sample Example

We propose a case study for multi-criteria decision making in mobile robot path

(10)

(11)

Alternative

a1

Alternative

a2

Average

(a1+a2)/2

Ordered Weighted

Average (OWA)

Weighted Average

Choquet

Integral

 77

planning in an environment deployed with sensor nodes. We can generalize such a

decision making process to a more complex system management. We develop an

efficient data collection and sensor node replacement scheme for sensor network in a

cluttered environment. The autonomous sensor nodes embedded in the environment are

generally low powered devices. High events in the environment usually require constant

monitoring and dense deployment for precisely localizing the threat events. In order to

capture all important events, we would ideally want more nodes deployed in the region of

event compared to other regions in the environment. Any dying nodes would also require

a replacement (redeployment) in order to sustain the lifetime of entire network. This is a

novel methodology for a mobile robot to collect data, replace any dying node and to

deploy more nodes in the region of higher events.

Figure 4.2 Basic Robot-Sensor Architecture

Our initial premise to use radio frequency (RF) signal strength alone to determine

distance to node was inadequate in providing high data integrity for the following

reasons:

Consider an analog test signal being transmitted from the robot to a node as show in

figure 4.2. The amplitude (signal strength) of the returned signal detected may be true or

Signal strength

 78

may be the result of weak battery power. If multiple analog signals are being transmitted

from mobile robot to several nodes, the algebraic addition of these signals may provide

an erroneous reading. Hence signal strength or amplitude detection by itself can only be

used as supplementary information in determining the distance to node. An easier

implementation is to send out a synchronized pulse from the robot and receive the

returned pulse from the sensor node and determine the travel time of pulse. In essence,

this is similar to the functionality of a sonar rangefinder. Another way of determining

distance is to send out a predetermined beacon signal with node ID. The robot can

determine the distance by looking at any two consecutive beacon signals. These signals

can be directly generated by the battery. This is an added advantage since the beacon

signal in addition to providing distance-to-node information also provides a relative

reading of the battery power of the node.

The decision making problem for the robot is to efficiently navigate through the sensor

field to reach all the nodes. In the event of multiple paths available to the robot, the robot

path planning algorithm would intelligently decide which node to reach first. The robot is

challenged with equally “important” paths to navigate in order to fulfill its goal. The goal

is to collect data and/or to deploy a node. With advanced technology, robots maybe able

to even recharge the battery on the sensor node. However, due to low cost in sensor node

construction, we assume it is economical to redeploy a node instead of recharging the

battery. The importance of a given path is based on several parameters relating to the

sensor nodes in the field. Given a deployed embedded network of sensors, the task of the

robot is to reach the sensor nodes based on several competing criteria. For example, a

 79

sensor could have critical data that needs to be collected. At the same time, another

sensor node may be dying due to low battery power, requiring immediate attention.

We formulate the above problem by defining the set of criteria, alternatives and the

goal as follows:

Criteria: X = {x1,x2,…xn} – set of criteria

 X = {distance, battery power, event level, data criticality}

Alternatives: Ω = {s1,s2,…sm} – set of systems on which criteria is to be evaluated

 Ω = set of sensor nodes

Goal: Evaluate the set of systems/alternatives {s1,s2,…sm} based on set of criteria

{x1,x2,…xn}.

G = Select a sensor node to be reached first.

The criteria and alternatives are organized in a tabular fashion as shown in table 4.1.

Distance represents how far the node is to the base-station or the robot. Battery power

represents the voltage remaining in the sensor node’s battery. Event level signifies the

number of events captured over a small period of time. A simple way to represent

criticality is to look at the threshold of the sensed value. Generally, if the sensed value is

beyond the set threshold, the criticality will be high.

 80

Table 4.1 Evaluation of Alternatives

C-1…C-m in Table 4.1, are evaluation results based on the current criteria and

interaction among the criteria. The methodology used to obtain C-1…C-m is by using

Choquet integral. A simple pair-wise comparison between two evaluation items can help

to determine the preference for selecting a particular system (sensor node). For example,

if C-1 > C-2, then sensor s1 is preferred over s2.

Consider a mobile robot traversing in an environment that is covered with embedded

sensors. At each predetermined discrete time interval, the robot evaluates which sensor

node to reach first, based on set of criteria X. We identify two different cases for efficient

evaluation of three sensor nodes.

Case 1: Criteria are fuzzy variables without interaction

The goal of the decision maker is to select a node that is nearest (low distance value),

has low battery power, and has high events registered. The alternatives are three nodes

(s1, s2 and s3) to be evaluated. We define the following fuzzy membership function for

each criterion:

Criteria
 x

Sensors s

Distance

Battery

Power

Event

Level

Data

Criticality

Evaluation

sensor 1 (s1) d-1 b-1 e-1 cr-1 C-1

sensor 2 (s2) d-2 b-2 e-2 cr-2 C-2

sensor 3 (s3) d-3 b-3 e-3 cr-3 C-3

…

…

… … … …

sensor m (sm) d-m b-m e-m cr-m C-m

 81

(a)

(b)

(c)

Figure 4.3 Fuzzy Membership Functions for Criteria (a) Distance, (b) Battery Power and

(c) Number of Events

C1, C2 and C3 are the fuzzy sets obtained which expresses goal and conditions in terms

Condition- High Events

C3= 0/s1 + 0.25/s2+ 1/s3

Low Medium High

1

0
No. of

Events

10 25 50

s1 s2 s3

µ

0.25

E
v

en
ts

R
eg

is
te

re
d

Condition- Low battery

C2= 1/s1 + 0.25/s2+ 0.8/s3

0.5e6

s1 s2 s3

Low Medium High

1

0
Battery
(Joules)

2.5e5 1e6

µ

0.8

0.2 B
at

te
ry

 P
o

w
er

Condition – nearest distance

C1= 0.1/s1 + 0.25/s2+ 1/s3

µ
Near Close Far

1

0 Distance

(Meters)

2.5 5 10

s3 s2 s1

0.25 D
is

ta
n
ce

0.10

 82

of available systems s1, s2 and s3.

The decision maker’s solution (D) is obtained by max-min inference [63] on the three

sets C1, C2 and C3. D is obtained from min of each system and represents a fuzzy

characterization of the concept of desired system. Using max, we can obtain a preference

of a given system over another system. In this case, sensor node s2 is the most desired

system to be reached first by the robot.

D = 0.1/s1 + 0.25/s2 + 0/s3

Case 2: Criteria are crisp variables with interaction

As discussed before there are three types of interaction among criteria identified -

correlation, complementary and preference dependency as three different forms of

interaction among criteria. In our case study on sensor network, criteria such as power

level and capturing events are correlated and complementary. For example, in order to

capture critical environmental events, a deployed sensor should ideally have a low sleep-

time and high sampling frequency. This means that power consumed by the sensor is

high, suggesting that power consumption and events are correlated and complementary.

Recall that Choquet integral is defined over the function f : X [0,1]. This function f is

often called the utility function or score [64]. The utility function is required to make the

criteria comparable, since criteria generally are not measured on a common scale. By

using utility function we map the criteria to a common scale, making them

commensurable criteria as shown in figure 4.4.

(12)

 83

Figure 4.4 Mapping Criteria

Given the three criteria/attributes related to a sensor node – distance, events registered,

and battery power, we can generate the utility function based on the defined goal as

follows:

(a)

(b)

1

0

2.5 5 10

f(d)

d

0.9

1

0

Events (e)
10 25 50

f(e)

0.8

x1 x2

 1

 f

Common scale

Criteria Criteria

0

 84

(c)

Figure 4.5 Generating Utility Functions for Distance, Events and Battery

From figure 4.5, for example, a shorter distance to a given node, generates a high score

or utility function. For example, a distance of 1m, will generate a score f(d)=0.9.

Similarly, if the number of events generated is high (say 40), then the score is high

(f(e)=0.8). The overall evaluation of different alternatives (sensor nodes) is obtained by

aggregating the utility functions using Choquet integral with appropriate fuzzy measure

(which acts like a weighting factor). The weights, fuzzy measure and resultant Choquet

integral for three sensor nodes at varying distances, battery level and event (activity)

level are tabulated as given below:

Table 4.2 Fuzzy Measures for Subset of Criteria

Sets Fuzzy Measure

{} 0

{Distance} 0.854756

{Battery} 0.515547

{Distance,Battery} 0.978599

{Events} 0.164453

{Distance,Events} 0.89426

{Battery,Events} 0.604638

{Distance,Battery,Events} 1

1

0

f(b)

b
2.5e5 1e6

0.5

 5e5

 85

Table 4.3 Input and their Corresponding Choquet Integrated Values

A working example for the real-world experiments conducted is presented in chapter 6.

4.4 Chapter Summary

The problem of sensor behavior assignment is defined as an efficient planning process

for determining the sensor functions and usage according to changing situations. Two

important processes involved in the behavior assignment are, 1) decision about set of

tasks that sensors need to accomplish and 2) scheduling of actions for the sensors. We

believe that decision making process is the hardest and important step in behavior

assignment. This is because, once the decision is made on what tasks that sensor needs to

be doing, scheduling actions for that decision can be implemented simply as a look-up

table. The decision making process on what tasks the sensor needs to accomplish

depending on the mission plan and situation generally depends on the various criteria

involved. Once the behavior pattern for a given application is identified, the state of the

sensor network and its performance can be used as feedback for creating training set for

learning algorithms such as neural networks.

The above mentioned decision making process for mobile robot can be adapted to

cluster of sensor nodes rather than individual sensor node. For example, based on activity

level, number of sensor nodes and importance of activity, preference can be given to a

No. Distance Battery Events Choquet Integrated Values

1 0.9 0.5 0.1 C-1 = 0.833342

2 0.5 0.9 0.1 C-2 = 0.697658

3 0.1 0.1 0.9 C-3 = 0.231562

 86

particular cluster for management (power management, node density management, etc.).

If the number of nodes is critical for the given application, then it gets a high weighting

factor. This means that we would require some nodes to be put to sleep. We are thus

changing the behavior of the network by tuning one of the parameters (increasing sleep

time) based on the needs of the application. We are intelligently analyzing the

characteristic of the deployed sensor network for a given application and adaptively

changing its operational behavior to suit the changing demands. From decision-theoretic

viewpoint, appropriate sensor action needs to be scheduled in order to achieve maximum

utility.

 87

CHAPTER 5

DYNAMIC POWER MANAGEMENT

An important consideration when dealing with sensor networks is power consumption.

Generally, the sensor nodes are driven by a limited power supply on-board the node (i.e.,

the network has distributed power supply). The impact of conserving power on each

sensor node can have tremendous effects on the lifetime of the entire network.

There are two main categories that can be identified to sustain the lifetime of sensor

network [65]:

Global level or system-wide: Increase the number of redundant sensor nodes. These

redundant nodes act as back-up nodes and can take over the task of sensing and signal

communication from any dying nodes in order to sustain overall network lifetime.

Local level: Scheduling and low power operation of each individual sensor node.

By adjusting either network parameter (increase in number of nodes) or node parameter

(power scheduling), we can sustain the lifetime of the given sensor network. Whenever

such a parameter adjustment is performed, the behavior of the network changes and a

sensitivity analysis can be performed to evaluate the behavioral changes. At the sensor

node level, in order to conserve battery power, the sensors can be scheduled to sense the

environment at different samples or time intervals. Although, some information might be

lost, this is an effective way to optimize energy consumption. Figure 6 shows the

ON/OFF (sleep mode) scheduling of the sensors.

 88

Figure 5.1 Typical Time Scheduling

The energy consumed Ec by each sensor is given by:

1

n

c i i

i

E T P
=

=∑

where Ti is the time period and Pi is the power at which the sensor operators in the

given time period Ti. This is a simplified energy consumption model [66]. The network

lifetime is the reciprocal of the energy consumed. Let the sensor work in full power, i.e.,

Pi = Pf without any scheduling and TL1 be the network lifetime based on the energy

consumption Ec1. If the sensor is scheduled (changing input parameter), then the energy

consumed after scheduling Ec2 will be less than Ec1, suggesting that lifetime TL2 will be

greater than TL1. The sensitivity measure is given by:

c cE
j

P
j

E
T

P
S

∂
= =
∂

During the Toff period, the sensor could be completely put to sleep (meaning zero

power consumption) or it could work at a lower power. Commercially available sensor

nodes such as Crossbow motes generally operate through a cycle of modes in order to

(13)

(14)

 89

reduce the energy consumption – 1. Sleep 2.Wake-up 3. Sample sensor reading (read

ADC port) 4. Communicate 5. Go back to sleep mode. This is an in-built power

scheduling mechanism depicted in figure 5.2.

Figure 5.2 Sensor Node Operation Cycle

5.1 Motivation

One of the objectives of a sensor network with on-board batteries is to survive as long

as possible and derive meaningful feature level information from the environment. The

overall effectiveness of the sensor network depends on how well the mutually

contradicting objectives of conserving the limited on-board battery power and keeping

the sensors awake for stimuli, are managed. The sensor nodes should ideally sleep as

much as possible; however, it should be able to capture high number of events. “Sleep”

here means that the sensor node’s radio, sensors and EEPROM (memory) are turned off

and the processor is in an idle state. The processor can wake-up after the timer expires

sleep

wakeup

- Data acquisition

- Communication

P
o

w
er

Time

 90

and acquires data from the ADC (Analog-to-Digital Converter) ports of the sensors. In

order to sleep as much as possible but still able to capture events, we will need an

adaptive technique that not only depends on the change in sensed value but also on the

degradation of the battery power. The node should be “smart” enough to adaptively

adjust its sleep time based on these two conditions – temporal difference in sensed value

and current battery state of the node.

 In order to build such “smart” sensor node, a rigorous learning process should guide

the node to evaluate multi-objective decision making. Due to the high spatial distribution,

low computation and energy capabilities, WSNs often pose a challenge to classical

machine learning. The concept of supervised learning has been extensively used in

object/target tracking and detection in sensor networks. Reference [67] and references

therein, provide an excellent survey of existing supervisory learning methods and provide

models for nonparametric approach to distributed inference in WSN. Although, these

literature reveal a great insight into distributed learning, and in specific to distributed

inference in energy and bandwidth challenged environment, very few directed research

have implemented reinforcement learning in sensor networks. The application of

reinforcement learning specific to sensor networks have only been researched mostly for

routing information from sensors back to a base-station [68-69]. [70] gives basic concepts

of learning theory approach in sensor networks based on several specific sensor network

applications. Other discussions on learning (such as in [71]) have been specific to

detection and classification using sensor networks. In this chapter, we will present an

implementation of a multi-objective critic based autonomous decision making

 91

mechanism that takes both the temporal state transition of the sensor and that of the

environment into account. Although, the temporal based reinforcement scheme proposed

can be used to adaptively change several behaviors of a given sensor, for experimental

purposes, we consider only one such behavior (sleep time) for power management. This

experimentation will not mask the generality of the theory proposed. Specifically, we

propose an actor-critic based reinforcement learning mechanism that can be practically

implemented on an embedded sensor. The key to such reinforcement learning mechanism

is the development of the value function (or critic/reinforcement function) that is

implemented on each sensor node which aids in dynamic power scheduling based on

different situations. In the next section, we introduce the concept of reinforcement

learning, the need for reinforcement learning and our approach to solve adaptive power

scheduling scheme problem with such learning mechanism.

5.2 Reinforcement Learning

Reinforcement learning is different form of supervisory learning [72]. Reinforcement

based learning is adopted when there is no feedback available in the action space of the

learning agent. For instance, in the case of a neural network [73] that maps a given

function; supervised learning can be applied if the input and output data pairs are

available, so that the estimated output of the neural network can be compared against the

desired output. In situations where the desired output is not available, the network can be

trained using reinforcement based learning if the output of the network can be evaluated

in terms of a reward or a penalty. Neural networks and other regression model [74] are

 92

computationally too intensive to be implemented on low cost sensors.

In the case of a sensor learning to make internal decisions based on proprioceptive

information, there is no set goal against which the decisions can be compared. Therefore,

an error cannot be calculated in the decision space. Alternatively, the decisions can be

evaluated in a contextual sense to derive a scalar reward. The internal decision making

policy can be improved by making it pursue a strategy to maximize total expected

rewards.

Reinforcement learning deals with how to map the situation to actions. The learner

does not have the knowledge of what actions to take, but instead selects an action that

will yield maximum reward (or minimum penalty). For example, a mobile robot is

required to map a given building. It should decide whether to enter a new room for

mapping or go back to docking station for battery re-charge.

There are three critical elements in reinforcement learning – a policy, a reward function

and a value or critic function. A policy defines the learner’s behavior at a given time.

Simply, policy maps the observation into actions. Policies can be stochastic or

deterministic in nature. Reward function maps the action into a scalar value. The learner

either gets a reward or a penalty for taking a certain action. It is the learner’s

responsibility to maximize the reward. Value or critic function what is good for the

learning agent in a long run. Critic (V) at a given time k, is the total expected reward

given by:

V(k) = r(k) + γr(k+1) + γ2r(k+2)…

where, r is the instantaneous reward function defined by the user and γ is the

(15)

 93

discounting factor. In conventional reinforcement based algorithms, a critic learns to

estimate V(t) as shown in figure 5.3.

Figure 5.3 Relationship between Rewards and Critic

A major class of reinforcement learning is the Temporal Difference (TD) learning

scheme. Like Monte Carlo methods [72], TD learning can directly learn from experience

without having to know the underlying model of the environment. In TD approach, the

learning agent passively observes a temporal sequence of inputs that eventually lead to

final reward [75]. The learning agent’s main task is to then predict expected reward. One

such TD reinforcement method is actor-critic learning [76]. Figure 5.4 shows the

architecture of the actor-critic method.

V(t+1)

V(t)

r(t) r(t+1) r(t+2) r(t+3)

 94

Figure 5.4 Actor-Critic Architecture

The policy structure is known as the actor, because it is used to select actions, and the

estimated value function is known as the critic, because it criticizes the actions made by

the actor. Learning is always on-policy: the critic must learn about and critique whatever

policy is currently being followed by the actor. The actual critic is a state-value function

which gives the total discounted sum of future rewards given by:

6.0,)()(
6

0

=+=∑
=

γγ
m

m mkrkV

We restrict the polynomial to 6, since (0.6)
6
 is a small number.

5.2.1 Our Approach

The computational burden involved rules out the possibility to implement the

estimation algorithm (V(k)) on a commercially available embedded sensor. In this case

we reduced the computational burden by directly designing or estimating a critic function

given by:

Policy

Critic

Environment

State

- Battery voltage

- Temperature

TD Error

Actor

Actions

- Sleep time

(16)

 95

N

T

kVkV

kkkV

ℜ∈

−=

=

φθ

ε

θφ

,

)(ˆ)(

)()()(ˆ

where,)(ˆ kV is the estimated discounted sum of future

rewards, []TNkrkrkrk)1()1()()(+−−=φ is a vector of past rewards,)(kθ is a

vector of scalar parameters of the same size as)(kφ . Here, we assume that the non-linear

dynamic behavior of the sensor and the environment can be approximated by a non-linear

static reward function given in (18) and a linear dynamic regression function given in

(17). The advantage of this method is that any number of non-linear evaluation criteria

can be integrated into the reward function in (18). The simplified linear dynamic

regression function can be easily implemented on an embedded sensor with limited

processing and memory capacity. A more comprehensive approach where the

nonlinearities are modeled is by a neural network or a nonlinear regression model.

However, this would be computationally intensive to be implemented for low cost

sensors.

The instantaneous reward function r is given by:

|((1) ())|

max

()
()

T k T k

current

avg

sb k
r k

b s

τ× + −
⎛ ⎞⎛ ⎞

= ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

where,)(kb and maxb are battery voltage at time k and that at full charge respectively,

Scurrent and Savg are sleep time at time k and a scalar value representing a mean sleep time

(17)

(18)

 96

respectively, τ is a scalar, and)(kT is environment temperature at time k . The design

of this reward function is based on the fact that, the sensor should sleep less to capture

events (change in temperature). However, when the battery voltage is running low, the

sensor should sleep more but still be able to capture the changes in temperature.

Our approach to reinforcement learning method is in two phase as follows:

1. Offline critic function estimation: Based on data set obtained with varying

temperature and sleep times, we evaluate our instantaneous reward function (given in

(18)). In order to estimate)(ˆ kV , we will need to first estimate the parameter

vector)(kθ . A recursive least squares algorithm given in (19) was used to optimize

the parameter vector.

[]
[]

NN

TT

T

kP

kPkkkPkkkPkPkP

kkkVkkPkk

×

−

ℜ∈

−−−−−+−−−−=

−−−−+−=

)(

)1()1()1()1()1(1)1()1()1()(

)1()1()()1()()1()(

1φφφφ

θφφθθ

For a polynomial of order 4, the estimated critic given in equation (16) was optimized

using the recursive least squares algorithm given in equation (19). The resulting vector of

polynomial parameters obtained was: []T3464.02688.03052.01.4768* =θ . Figure 5.5

shows the difference between estimated critic and the actual critic. This is first attempt to

estimate the critic using a linear polynomial function. Figure 5.6 shows that polynomial

order 4 gives the minimum average estimation error ()∑
=

−=
T

k

kVkV
1

)(ˆ)(ε , where T is

the total time span.

(19)

 97

Figure 5.5 Comparison of approximated critic with the actual discounted sum of future

rewards

Figure 5.6 Estimation of Polynomial Order

The offline batch learning (or critic estimation) was conducted with varying sleep times

and with changes to temperature reading. Instantaneous reward, critic, sleep time and

temperature reading from real-world sensors are as shown in figure 5.7

 98

Figure 5.7 Evaluation of Reward and Critic

From figure 5.7, we see that there is an high reward when temperature changes and the

sleep time is low. This means that the sensor is awake and is able to capture the events.

Similarly, the reward is low with temperature changes when the battery voltage is low.

2. The second phase of our algorithm is to program the sensor node with the estimated

critic. The estimated critic function is loaded on-board a sensor node. With varying

temperatures, the sensor node adaptively changes the sleep time. For each reading,

(V)

(ms)

(
o
C)

 99

we calculate the reward function given in equation (4). We store up to four reward

values in a circular buffer. After every fourth reading, we estimate the critic value and

compare it with the older critic estimate. If the present critic estimate is greater, we

adaptively change the sleep time and calculate the next reward value.

Detailed experimentation and results are shown in chapter 6 of this thesis.

5.3 Chapter Summary

In this chapter, we have presented a novel approach in designing a critic function that

will guide the sensor to adaptively sleep so as to reduce the network packets as well as

conserve on-board battery power. The node sleeps as much as possible but at the same

time should handle the stimuli from the environment. This complex contradicting

requirement is embedded in a reward function that is developed and implemented as

shown in this chapter. Moreover, this is first attempt to use a polynomial type critic

function which approximates non-linear regression model and that can be implemented

on a low power (computation/memory) platforms.

 100

CHAPTER 6

DESIGN AND IMPLEMENTATION

In this chapter, we will study in detail the complete design to deal with multi space

problem domains in sensor networks. Specifically, we consider implementation details of

the design for each sub-problem – data aggregation, critical monitoring and control and

power scheduling that has been discussed in previous chapters. The solutions proposed

for each of the sub-problems in the previous chapters can be considered as an overall

architecture for fault-detection and performance improvement in sensor networks. A

block diagram illustrated in figure 6.1 shows the concept of such architectural design.

The architecture presented in figure 6.1 is generic in nature and can be applied to any

sensor acquisition system that requires some degree of fault-tolerance and performance

improvement. In chapter 2, we proposed a detailed theory on efficiently handling large

data sets through hierarchical aggregation. The concept of spatial correlation is used to

validate the aggregation process against intermittent faults. Chapter 2 also described

built-in test methods adaptively calibrate the sensors to alleviate faults. These processes

which are usually performed in-network are incorporated into the complete solution suite

described in figure 6.1. Often times, the quality or the process itself might have to be

compromised against several parameters such as battery lifetime, node storage capacity,

bandwidth, etc. in order to achieve high performance throughput. These algorithms that

trade the execution of the process or its quality are often referred to as adaptive fidelity

algorithms. The decision to run a process (such as for example - aggregation, built-in

 101

test) depends on the parameters (criticality, battery, etc) and extensive decision making.

These decision making process (discussed in chapter 3 and 4) running on base station as

shown in figure 6.1, helps us to fine-tune the operational characteristics of each sensor

node.

Figure 6.1 Architecture for Performance Improvement in Sensor Networks

s1

s2

sn

Spatial

Correlation
(Majority Voting)

Temporal

Correlation
Steady

increase/decrease?

w1* s1 w2* s2 w3 * sn

w1 w2 wn Weight updates

Oscillations in

reading?

- Enable BIT

- Update weights

Fuzzy inference

Criticality

Nodes

critical?

Generate

Preference
(Choquet Integral)

Yes

Yes

Aggregate

data on

cluster-head

No

Generate message.

Send wireless payload to

each node

In-network

computation
- Ensures data integrity

Base-station

Level

- Ensures node integrity

Updates on each

node:

- Transmission power

- Sleep time

 102

6.1 Detailed Description

The block diagram shows the flow of data and control for ensuring complete network

integrity. In order to provide such integrity, both node and data integrity should be

ensured. We can distribute the functionality shown in the architectural design onto nodes

as well as to the base station. Extensive computation load should be handled by base-

station which is assumed to have higher computation, power and storage capabilities

compared to sensor nodes. Critical, faster, and less expensive computations should be

handled at a node or cluster-head level. Generally, data integrity issues are very critical

that needs to be handled at the node level. For example, consider a scenario that requires

continuous sensor data acquisition. This will generate large amounts of data, thereby

affecting the performance of post-processing of data. If the sensor node filters out any

redundant (or unwanted) data at acquisition phase, this will greatly influence the

performance of data post processing. In fact, a robust method is to aggregate data or

compress data (as discussed in chapter 2) rather than throwing the data away. Therefore,

in our proposed method, we perform in-network data level integrity (at a given sensor

node or cluster-head)

In simple terms, data integrity means ensuring that the data acquired is complete. Also,

the aspects that influence data integrity are correctness, accuracy and validity. These

aspects suggest that the data acquired and processed should have minimal faults (or

ideally, be fault-free). Thus, the theory proposed in chapters 2 will enable us to provide a

complete fault-tolerant data acquisition with validation from neighboring sensor nodes.

Feature extraction, pattern classification and other decision theoretic approaches often

 103

require high computation power. This would be ideal at a base-station level. This data

also reveals important information on the operation status of the node. The decisions

taken based on some parameter (in this case, criticality of node) at the base-station are

propagated to cluster-heads and eventually to all the sensor nodes. Based on the

information received, necessary changes are made to the operating parameters of the

sensor nodes. In order to achieve such decision propagation, an efficient protocol and

message structure needs to be designed. This chapter will give a detail explanation of the

design and implementation of such protocol, the hardware platforms used and the

implementation of high-level interface for post-processing the acquired data.

6.2 Hardware Platform

In order to implement the design proposed in the previous section, we use off-the-shelf

multi-sensor board (MTS420) from Crossbow Inc. running TinyOS. For this thesis, we

have used TinyOS version 1.1. Each of these sensor boards is equipped with different

sensors – temperature, humidity, pressure, light, and 2-axis accelerometer. The multi-

sensor board is housed on a platform (MICA2) that has a processor-radio board

(MPR400) and other accessories (such as antenna and connectors for sensor board).

Processor on-board MPR400 is an Atmel ATMega128L 8-bit ARM processor with

7.37MHz clock speed. It has a 128KB program memory and 4KB EEPROM for data.

The combination of multi-sensor board and the platform (MICA2) is usually termed as

motes. Motes are modular in nature, i.e., a platform can house different but compatible

multi-sensor boards. We used a 433MHz multi-channel transceiver for our motes, since it

 104

provided a very good range (distance). We use temperature sensor (Sensirion SHT11

temperature/humidity sensor) onboard the MTS420 sensor board to collect data for

experimentation. Operating temperature range is -40
o
C to +125

o
C. Experiments were

conducted both in a laboratory setting as well as in outdoors. The sensed information

(temperature in this case) is sent wirelessly to the gateway node, which is just another

mote that is housed on a programming board (MIB520). The programming board

connects to a PC (base-station) using a serial or Universal Serial Bus (USB) interface

using Universal Asynchronous Receiver Transmitter (UART) packets. As specified in the

user manual [77], in TinyOS 1.x, UART packet format is platform-specific (say

MPR400), which requires complex protocol handling and PC-side tools to decipher and

handle the messages to and from the motes. Since this is true in our case (since we are

using TinyOS 1.1), we had to develop interface tool at the PC-side to decipher the packet.

The interface not only handles packets from serial (or USB) interface, but also allows the

user to inject packet back into the gateway node, which then broadcasts the message

wirelessly to all the deployed sensor nodes. We discuss the details of protocol design for

message passing from PC to gateway node and vice versa in section 6.3 of this chapter.

 105

Figure 6.2 Sensor Nodes Deployed Outdoors and in Laboratory Settings

Each of these sensor nodes support an event-driven operating system called TinyOS. A

simplified architecture for a sensor node is given in figure 6.3.

Sensor node

(MICA2

mote)

Gateway node

(Programming

Board housing

a Mica2Dot)

Serial interface

to PC

 106

Figure 6.3 Simplified Architecture of a Mote

6.3 High Level Interface Design

The architecture proposed in figure 6.1 is divided horizontally – node-level

implementation and base-station level implementation. This presents hybrid architecture,

a combination of centralized and decentralized (or distributed) implementation. As stated

before, extensive computation load should be handled by base-station which is assumed

to have higher computation, power and storage capabilities compared to sensor nodes.

This is our centralized implementation. Critical, faster, and less expensive computations

should be handled at a node or cluster-head level, which is distributed in nature. At the

base-station level, in order to visualize data from different sensors as well as to propagate

decision from base-station to all the nodes it is necessary to have a user-level

visualization tool. Such visualization tool should also enable the user to control or pass

HW

SW

sensing application

RFM

Radio

i2
c

Temp photo

Messaging Layer

ClocksBi

Byt

Packet Radio Packet

Routing
Layer

Application

ADC

Messagin

Routin

UART Packet

UART byte

 107

messages (to control) to the deployed sensors. This forms a sensing-decision-actuation

loop. We developed the visualization tool in National Instruments’ LabView® [78]. The

choice for such development tool was the vast suit of tools LabView provides such as –

interface to serial port, fuzzy control block, easy to use conversion tools (string to

integer), etc.

Figure 6.4 gives a snapshot of the interface developed in LabView. A spread-sheet type

interface (figure 6.5) is also developed for multiple sensor data acquisition.

Figure 6.4 Interface for Data Acquisition and Decision Propagation

 108

Figure 6.5 Spread-Sheet Type Interface for Data Acquisition

6.3.1 Packet Format (Protocol Design)

In order for the user to control the parameters on a remote sensor through the interface

it is necessary to devise a protocol (and a message format). The message or packet format

will be understood by the remotely deployed sensor and takes specific action based on

the action type in the message. The message structure is as shown figure 6.6.

 109

Figure 6.6 Message Structure for Over the Air Programming

The description of fields (8-bit) in the message structure is as follows:

len: Length of the payload

node: node-id to send the message

action: action to be performed on the node

 action type: 01 – Aggregate data

 02 – Disable aggregation

 03 – Enable Built-in Test

 04 – Disable Built-in Test

 05 – High Sleep Time

 06 – Low Sleep Time

 07 – Reset Sleep Time

 08 – High Transmission Power (adjust potentiometer)

 09 – Reset Transmission Power

rsvd: reserved field for future use.

CRC: cyclic redundancy check (16-bit).

CRC provides better corruption detection mechanism than a regular checksum or parity

bit. CRC used in TinyOS is CRC-CCITT [79]. Any packet that does not have a correct

CRC for the payload sent will be dropped at the gateway node. Therefore, we developed

the CRC in LabView interface and each time the payload changes, CRC is automatically

calculated and appended at the end of the packet. A LabView implementation of CRC is

given in figure 6.7

 header len node action rsvd CRC

payload

 110

Figure 6.7 CRC for TinyOS Packets

The interface injects our custom message from the PC to the gateway node. The

gateway node deciphers this packet and checks to see if the node-id in the message is set

to its address. If not, it broadcasts the message over radio to all the sensor nodes. The

sensor nodes check if the message belongs to it and take the action based on the action

type in the message. In traditional Over-the-Air-Programming (OTAP), entire program is

sent over radio to the node to be reprogrammed. The node is stopped, reloaded with new

program and restarted. In our approach, we just send a specific action type for the sensor

to react and change its behavior rather than complete reprogramming.

6.3.2 Engineering Conversion

The digital data from sensors (either from ADC of the processor or in-built ADC on

 111

sensor) is stored as 16-bit data in TinyOS. For example, Sensirion SHT11 temperature

sensor on the sensor node (MTS420) that we used has an internal 14-bit ADC. The 16-bit

data value for each sensor is the raw reading from the sensor which needs to be converted

to engineering units. We implemented the conversion algorithms given in [80] in

LabView. A snapshot for engineering conversion for battery voltage, temperature and

humidity is given in figure 6.8.

Figure 6.8 Engineering Conversion

We should also note that the packets that arrive from the sensor over radio are in big-

endian format that needs to be converted to little-endian format.

 112

6.4 Middleware Design and Development

For the remotely deployed sensor nodes to understand the commands from the PC,

nodes need to decipher the packet (as shown in figure 6.6). So the action selection at the

sensor nodes is based on the action type in the message. Therefore, there is a necessity

for a middleware or service layer software component that is embedded in these sensor

nodes that can decipher the message. Such middleware are often termed as Message

Oriented Middleware (MOM) [81]. The term middleware is often used to loosely

describe a software component that connects other software components or application.

However, very specifically some definitions have stated that a middleware is a layer that

lies between operating system and applications. In order to avoid controversy in

definition, we call our software component that can understand our custom protocol as a

message oriented service layer. Thus, the simplified architecture of the mote as shown in

figure 6.3 is extended as shown in figure 6.9.

Figure 6.9 Modified Mote Architecture

AD HW

SW

sensing application

Radio Temp photo

Messaging Layer

Bi

Byte

Packet Radio

Routing

Application

Messaging

Routing

UART

UART

Service layer

ClockRF i2

 113

Service layer developed is efficient in terms of processor, memory and power usage.

Based on the general architecture given in figure 6.9, we have two main implementation

of this service – one at the sensing level and other at the cluster-head (or aggregating

node) level.

At the cluster-head level, the service layer performs fault-tolerance aggregation of data

from different sensors. For experimental purposes, as stated before, we used three sensor

nodes that are closely deployed to each other to report temperature. Based on the action

type within the message packet, aggregation can be enable or disabled. This represents

decision-based aggregation architecture.

At sensing level, service layer first checks to see if the packet from the gateway node

belongs to it. This is done by comparing the node-id in the packet to

TOS_LOCAL_ADDRESS, a constant defined while programming the sensor node. If the

packet belongs to it, then the sensor node looks into the action field to take appropriate

action. Also, based on the critic evaluation, the sleep time of the node is adaptively

increased or decreased.

6.5 Experimental Results and Discussions

Part 1: Data Aggregation

As shown in figure 6.2, three temperature sensors deployed closed to each other in a

laboratory setting is used to collect data and aggregate on a cluster head (gateway node in

this case). We first perform aggregation (simple averaging) of the three temperature

readings on the cluster head. We then introduce a uniform noise in one of the sensors

(sensor-3) and compare the performance of our proposed algorithm (aggregation with

spatial correlation), and averaging without correlation against ground truth.

 114

0 5 10 15 20 25 30
20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

Samples

T
e
m

p
e
ra

tu
re

 R
e
a
d
in

g
 (

d
e
g
 C

)

sensor -1

sensor -2

sensor -3

sensor -3 (faulty)

Aggregation (actual)

Aggregation (faulty)

Aggregation (proposed)

Figure 6.10 Comparison of Aggregation under Faulty Conditions

The temperature reading for three sensors are plotted at various time samples. Fault

(noise) is introduced in one of sensors (sensor-3). The actual aggregation before the any

fault is introduced represents our ground truth. As seen from figure 6.10, the aggregated

temperature drastically reduces when the fault/noise is seen in any or all of the sensors.

Our proposed weighted aggregation method compensates the faulty behavior by

appropriately adjusting the weights. Therefore, the aggregated value steadily approaches

the ground truth as seen from figure 6.10 and figure 6.11. As the aggregated value

approaches ground truth (actual aggregated value), the error in the algorithm performance

decreases and eventually becomes zero (see figure 6.12).

 115

0 5 10 15 20 25 30
22.5

23

23.5

24

24.5

25

Samples

A
g
g
re

g
a
te

d
 T

e
m

p
e
ra

tu
re

 R
e
a
d
in

g

Aggregation without spatial

correlation

Aggregation with spatial correlation

Actual Aggregated Value

Figure 6.11 Aggregation with and without Spatial Correlation

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Samples

E
rr

o
r

Figure 6.12 Error Between Ground Truth and Proposed Approach

The weight updates in figure 6.13 shows the decrease in weight for faulty sensor-3

 116

thereby reducing its contribution in the aggregation process.

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15

Samples

W
e
ig

h
t

U
p
d
a
te

s

weight for sensor 1

weight for sensor 2

weight for sensor 3

Figure 6.13 Weight Updates

Part 2: Fuzzy Inference and Decision Making

We develop fuzzy rule-base to determine the data criticality depending on two input

parameters of the sensor nodes - temperature and battery voltage. This criticality

quantifies as to whether the data needs to be aggregated or not. The fuzzy inference

engine evaluates simple common-sense rules such as "If activity (temperature) is high

and battery power is low, then criticality is high". A high data criticality signifies a low

chances to perform data aggregation so as to ensure "data freshness". The fuzzy

controller is implemented on the PC with the high level interface.

Based on the operating battery voltage of the sensors and the room temperature, fuzzy

membership functions are designed as shown in figure 6.14.

 117

(a) Battery Voltage as an Antecedent (input) to the Fuzzy System

(b) Room Temperature (in Deg C) as an Antecedent (input) to the Fuzzy System

(c) Criticality as a Consequent (output) of the Fuzzy System

Figure 6.14 Fuzzy Membership Functions

The control surface for the fuzzy rules developed is as shown in figure 6.15.

 118

Figure 6.15 Control Surface

The output of the fuzzy system (in this case, criticality) can be now fed into automated

decision making process such as MCDM using Choquet integral discussed in chapter 4.

We use criticality, distance from node to base-station, and sleep time (scheduling) as

three inputs to the Choquet integral decision comparator. We set λ-fuzzy measure to -0.9

suggesting a positive interaction. A positive interaction or positive synergy (refer chapter

4) between two criteria i and j represents some degree of opposition between two criteria

and the fuzzy measure then becomes sub-additive, i.e., µ(ij) < µ(i) + µ(j). µ(ij) is

calculated using the formula: µ(ij)= µ(i)+ µ(j)+ λµ(i)µ(j). Therefore, if λ =0.0, then fuzzy

measure is just additive, µ(ij) = µ(i) + µ(j), and the Choquet integral reduces to weighted

average with fuzzy measures acting as weighting factors. Table 6.1 gives the fuzzy

measure on each criterion and fuzzy measure on subset of criteria calculated using λ-

fuzzy measure.

 119

Table 6.1 Fuzzy Measures for Criteria

{ } 0

{distance} 0.7

{criticality} 0.8

{scheduling} 0.6

{d,c} 0.996

{d,s} 0.922

{s,c} 0.968

{d,s,c} 1

Given input values for distance, criticality and scheduling as 0.9, 0.6 and 0.5

respectively, we obtain Choquet integral value of 0.8096 (refer figure 6.16 for

computation).

Figure 6.16 Computing Choquet Integral

 120

Moreover, such decision making process based on the state of the sensor node (battery)

and the environment (temperature) can be used in our reinforcement learning, so that the

sensor node learns to adaptively manage the energy consumption (as discussed in chapter

5). We implement the critic function developed in chapter 5 on the sensor node and vary

outside temperature (by blowing hot air) to see the varying sleep time of the sensor node.

We compare the performance of sensor node with and without critic. With critic loaded

on the sensor node, we attained a reduction in number of packets transmitted by almost

10 times with a very few misses in registering the events. The number of transmitted

packets with and without critic running on sensor node is as shown in figure 6.17.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

Time (in minutes)

P
a
c
k
e
ts

T
ra

n
s
m

it
te

d

without critic

with critic

Figure 6.17 Packet Transmission Comparison

The events registered (i.e., temperature reading captured) with and without critic is

given in 6.18. As seen from the figure, there are only few temperature differences not

captured by using adaptive sleep time. Major missed events are circled in red. Figure

 121

6.19 shows the performance of our critic function. Whenever there is a change in

temperature registered, the sleep time is automatically decreased so as to capture the

change with a finer resolution. In a general case, this can be thought of as sensor

adaptively waking up based on the environmental changes in order to localize the events.

0 50 100 150 200 250 300 350
20

25

30

35

40

45

0 50 100 150 200 250 300 350
20

25

30

35

40

45

Time (in minutes)

T
e
m

p
e
ra

tu
re

(i
n
 d

e
g
C

) without critic

with critic

Figure 6.18 Temperature Changes Captured

 122

0 50 100 150 200 250 300 350
20

25

30

35

40

T
e
m

p
e
ra

tu
re

(i
n
 d

e
g
C

)

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

Experiement Time (in minutes)

S
le

e
p
 T

im
e

(i
n
 m

ill
is

e
c
o
n
d
s
)

Figure 6.19 Variations in Sleep Time

 123

CHAPTER 7

CONCLUDING REMARKS

7.1 Summary

The techniques and concepts provided in this thesis are generic in nature and are

applicable to any multi-sensor application. There are several research problems that still

exist in sensor networks. We have made a decent attempt to address only a handful of

problems by providing theory, design and implementation of the solution. The vast

majority of ongoing research in sensor networks is engaged in network routing, power

management, protocol development, and/or application-specific. Alternatively, this

research is focused on a sensor abstraction layer and utilizes the underlying attributes that

are present in sensor networks (such as high node density, ad-hoc behavior, etc.) in

designing our solution. We will summarize the important concepts or techniques

provided in this thesis.

In chapter 2, we developed a weighted aggregation method that when implemented

hierarchically reduced the number of network packets transmitted by an order of the

number of nodes transmitting the packets. Exploiting the spatial correlation that is often

seen in sensor networks, weight adaptation mechanism helped to address the issue of soft

faults (in-range and slow-drift failure). Soft faults are often seen when the sensors work

within the given range of operation. Such technique when augmented with Built-in Test

(BIT) provides robust mechanism to process and acquire large amounts of fault-tolerant

data. BIT methods help to determine hard-faults (when sensor reading is outside the

operating range). BIT together with spatial correlated weighted adaptation method help to

 124

determine hard as well as soft faults. To demonstrate the effectiveness of the aggregation

and the BIT schemes proposed, we developed a middleware at the cluster-head node that

implemented the timeout mechanism and aggregation of temperature sensor data.

Chapter 3 and 4 summarized important concepts relating to monitoring and decision

making in sensor networks. The basic idea underlying monitoring and probing the given

network is to improve upon the performance of the system (in this case given network of

sensing devices). Our approach was to use human-like reasoning to deal with complex

multi-parameter network to characterize the behavior. By exploiting the nature of fuzzy

logic controller which efficiently handles uncertainty and nonlinearity in the system, we

developed simple rule-base to monitor and thereby update the operating parameters (such

as sleep time, power level, etc.) of the network. By doing so, we improved the

performance (either in terms of lifetime or node integrity) of the deployed network.

Choquet integral introduced in chapter 4 provides a mathematical basis for decision

making with multiple interacting criteria. Such decision making is often helpful in

planning process to determine the sensor function or usage according to changing

situations. The decision making process on what tasks the sensor needs to accomplish

depending on the mission plan and situation generally depends on the various criteria

involved. Once the behavior pattern for a given application is identified, the state of the

sensor network and its performance can be used as feedback for creating training set for

learning algorithms such as neural networks.

We also presented a novel approach in designing a reinforcement learning scheme that

will guide the sensor to adaptively sleep so as to reduce the network packets as well as

 125

conserve on-board battery power. The node sleeps as much as possible but at the same

time should handle the stimuli (capture events) from the environment. This complex

contradicting requirement is embedded in a reward function that is developed and

implemented as chapter 5. The decision making rules (either through fuzzy rule-base or

Choquet integral) can be adaptively changed by such reinforcement learning algorithms.

7.2 Suggested Follow-on Work

Solutions were proposed in this thesis with the main aim for practical implementation

on available sensor platforms. Several extensions to the proposed work in this thesis can

be thought of. Specifically, we have identified the following future work:

1. In the area of data aggregation, a robust mechanism to fuse the data from

heterogeneous sensors to a meaningful decision information.

2. Built-in Test methods provide node-level (micro) calibration. A more

comprehensive approach is needed to utilize this micro calibration and extend

it to network level (macro) calibration. Although, there is some work done on

macro-calibration [82], it is generally hard to calibrate when there are

functionally heterogeneous network of sensing devices and is an interesting

research topic to pursue.

3. Very few directed research has been done in the area of machine learning in

sensor networks. Our proposed learning methodology is at node-level. At a

network level, an interested learning topic would be to analyze the adaptive

behavior of each node by looking into the behavior of neighboring sensor

nodes.

 126

4. Resource optimization can be another approach as a continuation of this thesis

in the area of sensor network management. Optimization techniques such as

Particle Swarm Optimization (PSO) [83] are simple and implementable on

sensor platforms.

5. The user interface can be extended to handle message from sensors from

different manufacturers, thus providing a unified platform for analyzing pure

network of heterogeneous sensing devices.

 127

REFERENCES

[1] Chong, C., Kumar, S., “Sensor Networks: Evolution, Opportunities, and

Challenges”, Proc. of the IEEE, Vol. 91, No. 8, 2003

[2] Estrin, D., Govindan, R., Heidemann, J., Kumar, S. , “Next Century Challenges:

Scalable Coordination in Sensor Networks”, Proc. of the ACM/IEEE Conference on

Mobile Computing and Networking, pp. 263-270, 1999

[3] Raghunathan, V., Schurgers, C., Park, S., Srivastava, M., "Energy Efficient

Design of Wireless Sensor Nodes", Wireless Sensor Networks, pp. 51-69, Kluwer

Academic Publishers, 2004

[4] Heinzelman,W., Chandrakasan,A., and Balakrishnan,H., "Energy-Efficient

Communication Protocol for Wireless Microsensor Networks", Proc. of the 33rd

Hawaii International Conference on System Sciences (HICSS '00), 2000

[5] Bandyopadhyay, S., Colye, E., “An Energy Efficient Hierarchical Clustering

Algorithm for Wireless Sensor Networks”, Proc. of IEEE Infocom, pp. 1713-1723,

2003

[6] Chan, Perrig, “ACE: An Emergent Algorithm for Highly Uniform Cluster

Formation”, Proc. of the First European Workshop on Sensor Networks (EWSN),

Germany, 2004

[7] Madni, Asad M., Costlow, Lynn E., “Common Design Techniques for BEI

GyroChip® Quartz Rate Sensors for both Automotive and Aerospace/Defense

Markets”, IEEE Transactions on Sensors Journal, Vol 3 No. 5, pp. 569-578, October

2003

[8] Chen, L., Dey, S., Sanchez, P., Sekar, K., Chen, Y., “Embedded Hardware and

Software Self-Testing Methodologies for Processor Cores”, 37th Design Automation

Conference, pp. 625 - 630, 2000

[9] F. Koushanfar, M. Potkonjak, A. Vincentelli, “Fault Tolerance Techniques for

Wireless Ad hoc Sensor Networks”, IEEE Sensors Journal, Vol 2., pp. 1491- 1496,

2002

[10] Elnahrawy, E., Nath, B., “Cleaning and Querying Noisy Sensors”, Proc. of the

Workshop on wireless sensor networks and applications, pp. 78 – 87, 2003

 128

[11] Hereford, J., “Fault-Tolerant Sensor Systems Using Evolvable Hardware”, IEEE

Transactions on Instrumentation and Measurement, Vol. 55, No. 3, pp. 846-853, June

2006

[12] Culler,D., Estrin,D., Srivastava,M., “Overview of Sensor Networks”, IEEE

Magazine – Computers, Vol 37, No. 8, pp. 41-49, 2004

[13] R. R. Brooks, S. S. Iyengar, “Multi-Sensor Fusion: Fundamentals and

Applications With Software”, Prentice Hall PTR, 1997

[14] Cohen, O., Edan, Y. , “Adaptive Fuzzy Logic Algorithms for Sensor Fusion

Mapping”, Proc. of the IEEE International Conference on Systems, Man and

Cybernetics, pp. 2326- 2331, 2004

[15] Kahler, O., Denzler, J., Triesch, J., “Hierarchical Sensor Data Fusion by

Probabilistic Cue Integration for Robust 3D Object Tracking”, Proc. of the 6th IEEE

Southwest Symposium on Image Analysis and Interpretation, pp. 216-220, 2004

[16] Krishnamachari, B., and S. S. Iyengar, “Distributed Bayesian Algorithms for

Fault-tolerant Event Region Detection in Wireless Sensor Networks”, IEEE

Transaction on Computers, Vol. 53, No. 3, pp. 241-250, 2004

[17] Hall, D., Llinas, J., "Ab Introduction to Multisensor Data Fusion", Proceeding of

the IEEE, Vol. 85, No. 1, 1997

[18] Yager, R.R., “On Ordered Weighted Averaging Aggregation Operators in Multi-

Criteria Decision Making”, IEEE Trans. On Systems, Man and Cybernetics, Vol. 18,

No. 1, pp. 183-190, 1988

[19] Detyniecki, M., "Mathematical Aggregation Operators and Their Application to

Video Querying", Doctoral thesis - research report 2001-002, Laboratoire

d'Informatique de Paris 6, 2000

[20] Torra, V., “On Integration of Numerical Information: From Arithmetic Mean to

Fuzzy Integrals”, Information fusion in data mining, PhysiinVerlag, 2001

[21] Zhao, J., Govindan, R., Estrin, D., “Residual Energy Scan for Monitoring Sensor

Networks”, Proc. of the IEEE Wireless Communication and Networking Conference

(WCNC), pp 356-362, 2002

[22] Intanagonwiwat, C., Govindan, R., and Estrin, D., “Directed Diffusion for Sensor

Networks", IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pp. 2-16, 2003

 129

[23] Heinzelman, W., Kulik, J., Balakrishnan, H., “Adaptive Protocols for Information

Dissemination in Wireless Sensor Networks”, Proc. of the 5
th

 Annual ACM/IEEE

Conference on Mobile Computing and Networking, pp. 174-185, 1999

[24] Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W., “TAG: A Tiny

Aggregation Service for Ad-hoc Sensor Networks”, Proc. of the Symposium on

Operating Systems Design and Implementation, (OSDI), 2002

[25] Elson, J., Girod, L., Estrin, D., “Fine-grained Network Time Synchronization

using Reference Broadcasts”, Proc. of the 5
th

 Symposium on Operating Systems

design and Implmentation (OSDI), 2002

[26] Solis, I., Obraczka, K., “The Impact of Timing in Data Aggregation for Sensor

Networks”, Proc. of the IEEE Conference on Communication, pp. 3640-3645, 2004

[27] Boulis, A., Ganeriwal, S., Srivastava, M., “Aggregation in Sensor Networks: An

Energy-Accuracy Trade-off”, Proc. of the First IEEE International Workshop on

Sensor Network Protocols and Applications, 2003

[28] Nelson, M., Gailly, J-L., “The Data Compression Book”, MIS Press, NY, 1995

[29] Knuth, D., “Dynamic Huffman Coding”, Journal of Algorithms, Vol. 6, pp. 163-

180, 1985

[30] Witten, I., Neal, R., Cleary, J., “Arithmetic Coding for Data Compression”,

Communications of the ACM, Vol. 30, pp. 520-540, 1987

[31] Hauck, E., “Data Compression using Run Length Encoding and Statistical

Encoding”, U.S. Patent No. 4626829, 1985

[32] Ziv, J., Lempel, A., “A Universal Algorithm for Sequential Data Compression”,

IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343, 1977

[33] Ning Xu, “Implementation of Data Compression and FFT on TinyOS”,

Embedded Networks laboratory, Computer Science Dept. USC, Los Angeles,

http://enl.usc.edu/ningxu/papers/lzfft.pdf

[34] Elson, J., "Sensor Network Software Challenges", The 4th International

Conference on Information Processing in Sensor Networks, Tutorial-B, Los Angeles,

CA, 2005

[35] Klir, G., Yuan, B., “Fuzzy Sets and Fuzzy Logic: Theory and Applications”,

Chapter 15: Fuzzy Decision Making, Prentice Hall NJ, 1995

 130

[36] Jamshidi, M., “Large Scale Systems: Modelling and Control”, North Holland,

New York, 1983

[37] Zilouchian, A., Jamshidi, M., “Intelligent Control Systems using Soft Computing

Methodologies”, CRC Press, 2001

[38] Madni, Asad M., Wan, L. A., Hansen, R. K., and Vuong,J. B., “Adaptive Fuzzy

Logic Based Control System for Rifle Stabilization”, Proc. of the World Automation

Congress, Paper No. ISSCI 96, 1998

[39] Wan, C-Y., Eisenman, S., Campbell, A., “CODA: Congestion Detection and

Aviodance in Sensor networks”, Proc. ACM Conference on Embedded Network

Sensor Systems (SenSys), pp. 266 - 279, 2003

[40] Sridhar, P., Madni, Asad M., Jamshidi, M., “Intelligent Monitoring of Sensor

Networks using Fuzzy Logic Based Control”, Proc. of the IEEE International

Conference on Systems, Man and Cybernetics, 2006

[41] Crossbow Inc., www.xbow.com

[42] Dixon, W.E., Zergeroglu, E., Fang, Y., Dawson, D.M. , “Object Tracking by a

Robot Manipulator: A Robust Cooperative Visual Servoing Approach”, IEEE

Conference on Robotics and Automation, 2002

[43] Luo, R.C., “Target Tracking using Hierarchical Grey-fuzzy Motion Decision-

Making Methods”, IEEE transactions on SMC – Part A: Systems and Humans, vol.

31, no.3, 2001

[44] Xiao-Rong Li and Vesselin P. Jilkov, “A Survey of Maneuvering Target Tracking

III: Measurement Models”, Proc. of SPIE- Signal and Data Processing of Small

Targets, 2001

[45] Tan, J., Kyriakopoulos, N., “Implementation of a Tracking Kalman Filter on a

Digital Signal Processor”, IEEE Transaction on Industrial Electronics, Vol. 35, 1988

[46] Tao, H,Sawhney, H.S.,Kumar, R., “Object Tracking with Bayesian Estimation of

Dynamic Layer Representations”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2002

[47] Chang, C., Ansari, R. Khokhar, A., “Multiple Object Tracking with Kernel

Particle Filter”, Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, 2005

 131

[48] Kung, H.T., Vlah, D., “Efficient Location Tracking using Sensor Networks”,

IEEE Wireless Communications and Networking, Vol. 3, 2003

[49] Yang, H., Sikdar, B., “A Protocol for Tracking Mobile Targets using Sensor

Networks”, Proc. of the IEEE International Workshop on Sensor Network Protocols

and Applications, 11 May 2003

[50] Viswanathan, R., Varshney, P.K., “Distributed Detection with Multiple Sensors:

Part I – Fundamentals”, Proc. of IEEE, Vol. 85, No. 1, 1997

[51] Liu, P.X., Meng, M., Hu, C., “On-Line Data-Driven Fuzzy Clustering with

Applications to Real-Time Robotic Tracking”, Proc. of the IEEE Conference on

Robotics and Automation, 2005

[52] Pal, N., Pal, K., Keller, J., Bezdek, J.,"A Possibilistic Fuzzy c-Means Clustering

Algorithm", IEEE Transactions on Fuzzy Systems, Vol. 13, No. 4., pp. 517-530, Aug

2005

[53] Younis, O., Fahmy, S.,"HEED: A Hybrid, Energy-Efficient, Distributed

Clustering Approach for Ad Hoc Sensor Networks", IEEE Transactions on Mobile

Computing, pp. 366-379, Dec 2004

[54] Ziegler, B., Sarjoughian, H., “Creating distributed simulation using DEVS M&S

environments”, Proc. of the 2000 winter simulation conference, 2000

[55] Thrishantha Nanayakkara, Keigo Watanabe, Kazuo Kiguchi and Kiyotaka Izumi,

"Fuzzy Self-Adaptive RBF Neural Network Based Control of a Seven-Link Industrial

Robot Manipulator," in Advanced Robotics, Vol. 15, No. 1, pp. 17-43, 2001

[56] Decision Making Models - web.mit.edu/ist/about/decisionmaking/models.pdf

[57] Belton,V., Steward, T.J., “Multiple Criteria Decision Analysis-An Integrated

Approach”, Kluwer Academic Publishers, 2002

[58] Marichal., J-L., “An Axiomatic Approach of the Discrete Choquet Integral as a

Tool to Aggregate Interacting Criteria”, IEEE Transactions on Fuzzy Systems, Vol 8,

No. 6, pp. 800-807, Dec 2000

[59] Grabisch, M., “The Application of Fuzzy Integral in Multicriteria Decision

Making”, European journal of operational research, Vol. 89, pp. 445-456, 1995

[60] Denguir-Rekik,A., Mauris,G., Montmain,J.,"Propagation of Uncertainty by the

Possibility Theory in Choquet Integral-Based Decision Making: Application to an E-

 132

Commerce Website Choice Support", IEEE Transactions on Instrumentation and

Measurement, VOL. 55, NO. 3, June 2006

[61] Wang Z., Klir, G.J., Wang, W., “Determining Fuzzy Measures by Choquet

Integral”, Proc. of the 3rd International Symposium on Uncertainty Modeling and

Analysis, pp. 724, 1995

[62] Grabisch, M., “A Graphical Interpretation of the Choquet Integral”, IEEE

Transactions on Fuzzy Systems, Vol 8, No. 5, pp 627-631, 2000

[63] Klir, G., Yuan, B., “Fuzzy Sets and Fuzzy Logic: Theory and Applications”,

Chapter 15: Fuzzy Decision Making, Prentice Hall NJ, 1995

[64] Huédé, F., Grabisch, M., Labreuche, C., Savéant, P., “Integration and Propagation

of a Multi-criteria Decision Making Model in Constraint Programming”, Journal of

Heuristics, Vol 12 ,Issue 4-5, pp. 329 – 346, 2006

[65] Azarnoush, H., Horan, B., Sridhar P., Madni, A M., Jamshidi, M., “Towards

Optimization of a Real-World Robotic-Sensor System of Systems”, World

Automation Congress, Budapest, Hungary, 2006

[66] Margi, C., Obraczka, K., Manduchi, R., “Energy Consumption Trade-offs in

Sensor Networks”, Poster - Internetworking Research Group, UC Santa Cruz,

http://inrg.cse.ucsc.edu/posters/citris-energy.pdf

[67] Predd, J., Kulkarni, S., Poor, V., “Distributed Learning in Wireless Sensor

Networks”, IEEE Signal Processing Magazine, pp. 56-69, July 2006

[68] Wang, P., Wang, T., "Adaptive Routing for Sensor Networks using

Reinforcement Learning", Proc. of the Sixth IEEE conference on Computer and

Information Technology, pp 219, 2006

[69] Martyna, J., "Fuzzy Reinforcement Learning for Routing in Wireless Sensor

Networks", Computational Intelligence, Theory and Applications, Part 23, pp. 637-

645, 2006

[70] Simic, S., “A Learning-theory Approach to Sensor Networks”, Proc. of the IEEE

Pervasive Computing, Vol. 2, pp. 44-49, 2003

[71] Nguyen, X., Wainwright, M., Jordan, M., “Decentralized Detection and

Classification using Kernel Methods”, Proc. of the International Conference on

Machine Learning, 2004

 133

[72] Sutton, R., Barto, A., “Reinforcement Learning: An Introduction”, MIT Press,

1998

[73] Haykin, S., “Neural Networks: A Comprehensive Foundation”, Macmillan, 1994

[74] Alpaydin, E., “Introduction to Machine Learning”, chapter 1, MIT Press, 2004

[75] Mustapha, S., Lachiver, G., “A Modified Actor-Critic Reinforcement Learning

Algorithm”, Proc. of the Canadian Conference on Electrical and Computer

Engineering, Vol. 2, pp. 605-609, 2000

[76] Barto, A., Sutton, R., Anderson, C., “Neuronlike Adaptive Elements that can

Solve Difficult Learning Control Problems” , IEEE Transactions on Systems, Man,

and Cybernetics, Vol. 13, No. 5, pp. 834-846, 1983

[77] Greenstein, B., Levis, P., “TEP 113: Serial Communication”, in TinyOS

Extension Proposals, http://www.tinyos.net/tinyos-2.x/doc/txt/tep113.txt

[78] National Instruments, www.ni.com

[79] Stallings, W., “Wireless Communications and Networking”, chapter 8, Pearson

Education, 2002

[80] Sensirion SHT11 temperature/humidity sensor data sheet, www.sensirion.com

[81] Rao, B.R., “Making the Most of Middleware” Proc. of the Data Communications

International 24,pp. 89-96, 1995

[82] Whitehouse, K., Culler, D., “Macro-calibration in Sensor/actuator Networks”,

Mobile Networks and Applications, Kluwer Academic Publishers, pp. 463-472, 2003

[83] Eberhart, R. C., Kennedy, J., “A New Optimizer using Particle Swarm Theory”,

Proc. of the Sixth International Symposium on Micromachine and Human Science,

pp. 39-43, 1995

 134

APPENDIX – A

Source Code

/* Program that runs on each sensor node that is deployed in the
environment
*/

module TestSensor{
 provides interface StdControl;
 uses {

 //communication
 interface StdControl as CommControl;
 interface SendMsg as Send;
 interface ReceiveMsg as Receive;

// Battery
 interface ADC as ADCBATT;
 interface StdControl as BattControl;

//Accels
 interface StdControl as AccelControl;
 interface I2CSwitchCmds as AccelCmd;
 interface ADC as AccelX;
 interface ADC as AccelY;

//Intersema
 interface SplitControl as PressureControl;
 //interface StdControl as PressureControl;
 interface ADC as IntersemaTemp;
 interface ADC as IntersemaPressure;
 interface Calibration as IntersemaCal;

//Sensirion
 interface SplitControl as TempHumControl;
 interface ADC as Humidity;
 interface ADC as Temperature;
 interface ADCError as HumidityError;
 interface ADCError as TemperatureError;
//Taos
 interface SplitControl as TaosControl;
 interface ADC as TaosCh0;
 interface ADC as TaosCh1;

 interface Timer;
 interface Leds;

 }

}

implementation
{

 135

#define TIMER_PERIOD 2000 // timer period in msec
#define TIMER_INC_PERIOD 6000
#define TIMER_DEC_PERIOD 500

#define SAMPLE_SIZE 5
#define TEMP_SAMPLE 2

 char count;

 uint16_t calibration[4]; //intersema calibration words
 norace uint8_t state; //
 uint8_t sensor_state; //debug only

 TOS_Msg msg_buf;
 TOS_MsgPtr msg_ptr;

 norace uint8_t valueFrmUART; //Added Prasanna
 bool built_in_test;

/**/
/* For Temporal Difference Learning ******/

uint16_t calib_batt;
uint16_t temperature[TEMP_SAMPLE];

uint16_t sleepTime=1000;

uint8_t cnt=0;
float epsilon = 0.05;
float reward[4];
float V1[2];
float theta[4];

/***

 * Task to send uart and rf message

**
****/

task void setSleepTime()
{

 call Timer.stop();
 call Timer.start(TIMER_REPEAT, sleepTime);

return;
}
 task void send_msg(){

 136

 if (sending_packet) return;
 atomic sending_packet = TRUE;
 pack->xSensorHeader.board_id = SENSOR_BOARD_ID;
// pack->xSensorHeader.packet_id = iNextPacketID;
 pack->xSensorHeader.packet_id = valueFrmUART; //added prasanna
 pack->xSensorHeader.node_id = TOS_LOCAL_ADDRESS;
// pack->xSensorHeader.rsvd = 0;

 call Leds.yellowOn();
 if (IsUART) {
 if(call Send.send(TOS_UART_ADDR,sizeof(XDataMsg)-
1,msg_ptr)!=SUCCESS)
 {
 atomic sending_packet = FALSE;
 call Leds.greenToggle();
 }
 }
 else {
 if(call Send.send(TOS_BCAST_ADDR,sizeof(XDataMsg)-
1,msg_ptr)!=SUCCESS)
 {
 atomic sending_packet = FALSE;
 call Leds.greenToggle();
 }
 }
 return;
 }

/*********************************/

task void evalCritic()
{

 uint8_t i;

 // V1[0] will hold the new value at each iteration

 V1[1] = V1[0];
 V1[0] = 0.0;

 for(i=0;i<4;i++)
 {
 V1[0] = V1[0] + (reward[i]*theta[i]);
 }

 if((V1[0]-V1[1]) > 0.0)
 {
 sleepTime = sleepTime-200; //if newer V is greater than
old V, we need to sleep less to capture more
 }
 else
 {
 sleepTime = sleepTime+500;
 }

 137

 if(sleepTime > 10000 || sleepTime < 200)
 sleepTime = 1000;

 pack->xData.data1.cal_wrod1 = reward[3];
 pack->xData.data1.cal_wrod2 = sleepTime;

return;
}

task void evalReward()
{

 reward[cnt] =
(calib_batt/3.0)*(pow((sleepTime/1000),(epsilon*abs(temperature[0]-
temperature[1]))));
 cnt++;

 if(cnt == 4)
 {
 cnt=0;
 post evalCritic();
 }
return;
}

task void populateBattery()
{
 calib_batt = (1252352/pack->xData.data1.vref)/1000;
 return;
}

task void populateTemp()
{
 uint16_t calib_temperature;
 uint8_t front,tail,i;

 front = 0;
 tail = TEMP_SAMPLE-1;
 for(i=tail;i>front;i--)
 temperature[i] = temperature[i-1];

 calib_temperature = -38.4 + (0.0098 * pack-
>xData.data1.temperature);
 temperature[front] = calib_temperature;

return;
}

task void caliberateTempBIT()
{
 uint16_t calib_temp;
 uint16_t return_temp;

 138

 calib_temp = -38.4 + (0.0098 * pack->xData.data1.temperature);
 if(calib_temp>30)
 {
 calib_temp = calib_temp * pow(2,(-1*calib_temp*0.01));
 return_temp = (calib_temp+38.4)/0.0098;
 pack->xData.data1.temperature = return_temp;
 }
return;
}

/*********************************/

 command result_t StdControl.init() {
 uint8_t i;

 atomic {
 msg_ptr = &msg_buf;

 sending_packet = FALSE;
 WaitingForSend = FALSE;
 built_in_test = FALSE; //added Prasanna
 headptr = 0; //added Prasanna
 head = 0; //added Prasanna
 }
 pack = (XDataMsg *)msg_ptr->data;

 // usart1 is also connected to external serial flash
 // set usart1 lines to correct state
 TOSH_MAKE_FLASH_OUT_OUTPUT(); //tx output
 TOSH_MAKE_FLASH_CLK_OUTPUT(); //usart clk

 call BattControl.init();
 call CommControl.init();
 call Leds.init();

 call TaosControl.init();
 call AccelControl.init(); //initialize accelerometer
 call TempHumControl.init(); //init Sensirion
 call PressureControl.init(); // init Intersema

 for(i=0;i<SAMPLE_SIZE;i++)
 battery[i] = 3;

 for(i=0;i<TEMP_SAMPLE;i++)
 temperature[i] = 0;
 return SUCCESS;
 }

 command result_t StdControl.start() {
 call HumidityError.enable(); //in case Sensirion
doesn't respond
 call TemperatureError.enable(); // same as above

 call CommControl.start();
 call BattControl.start();

 139

 atomic state = START;
 atomic sensor_state= SENSOR_NONE;

 IsUART = TRUE;
 call Timer.start(TIMER_REPEAT, TIMER_PERIOD); //start up sensor
measurements

 return SUCCESS;
 }

 command result_t StdControl.stop() {
 call BattControl.stop();

 call Timer.stop();
 call CommControl.stop();
 return SUCCESS;
 }

/***

 * Battery Ref or thermistor data ready

**
****/
 async event result_t ADCBATT.dataReady(uint16_t data) {
 pack->xData.data1.vref = data ;
 post populateBattery();

 atomic state = BATT_DONE;
 return SUCCESS;
 }

 return SUCCESS;
 }
 async event result_t Temperature.dataReady(uint16_t data) {
 pack->xData.data1.temperature = data ;

 post populateTemp();

 if(built_in_test==TRUE)
 post caliberateTempBIT(); // Added Prasanna

 post stopTempHumControl();
 return SUCCESS;
 }

 event result_t Send.sendDone(TOS_MsgPtr msg, result_t success) {

 call Leds.yellowOff();

 if(IsUART){
 msg_ptr = msg;

 140

 IsUART = !IsUART; // change to radio send
 WaitingForSend = TRUE; // uart sent, issue radio send
 sending_packet = FALSE;
 }
 else
 {
 IsUART = !IsUART; // change to uart send
 atomic {
 WaitingForSend = FALSE; // both uart and radio sent,
done for current msg
 sending_packet = FALSE;
 }
 }
//post setSleepTime();

 return SUCCESS;
 }

task void receive_task()
{
 //Increase Sleep Time to 6 seconds
 if(valueFrmUART==0x05)
 {
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, TIMER_INC_PERIOD);
 }

 //Decrease Sleep Time to 0.5 seconds
 if(valueFrmUART==0x06)
 {
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, TIMER_DEC_PERIOD);
 }

 // Reset Sleep Time to 1 second
 if(valueFrmUART==0x07)
 {
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, TIMER_PERIOD);
 }

 // Enable/Disable Built In Test for Sensors
 if(valueFrmUART==0x03)
 {
 atomic built_in_test = TRUE;
 }
 if(valueFrmUART==0x04)
 {
 atomic built_in_test = FALSE;
 }

 return;

 141

}

/***

* Process packets recived from UART
**
****/
 event TOS_MsgPtr Receive.receive(TOS_MsgPtr data) {
 /*************** Additions *****************/
 TOS_MsgPtr pBuf=NULL;
 XUARTDataMsg *pack_uart;

 pBuf = data; // Update the pointer, same as saying
copying the received data onto 'mess'
 pack_uart = (XUARTDataMsg *)pBuf;
 if(pBuf)
 {
 //Does this packet belong to me?
 if(pack_uart->uartData[5]==TOS_LOCAL_ADDRESS)
 {

valueFrmUART = pack_uart->uartData[6]; //Action
type set by our protocol

 post receive_task();
 }
 }

 /***/
 return data;
 }

}

 142

/* Matlab Code for Simulating Built-In Test and Data aggregation on simulated data set

*/

clear all; clc;

gWinMin = 20;
gWinMax = 120;

uWinMin = 10;
uWinMax = 150;

s1 = [20 30 80 100 18 15 12 10 120 123 125 130 135 138 140 145 147 155];

[sr sc] = size(s1);
r1 = zeros(1,sc);
Pr = ones(1,sc);
time = 1:sc;

for i=1:sc
 if s1(i) >= gWinMin & s1(i) <= gWinMax
 w1(i) = 1;
 b1(i) = 1;
 else
 if s1(i) < uWinMin | s1(i) > uWinMax
 w1(i) = 0;
 b1(i) = 0;
 else
 w1(i) = exp(-(0.01*s1(i)/2));

 b1(i) = 0;
 end
 end
 Pr(i) = 1-w1(i);
 r1(i) = w1(i) * s1(i);
 rb(i) = b1(i) * s1(i);
end
w1
plot(time,s1,'ko-');
hold on;
plot(time,r1,'r*-');
hold on;
plot(time,rb,'g+-');
figure;
plot(time,Pr)

 143

clear all; clc;

gWinMin = 20;
gWinMax = 120;

uWinMin = 10;
uWinMax = 150;

s1 = [20 30 80 100 18 15 12 10 120 123 125 130 135 138 140 145 147 155];
s2 = [120 140 150 180 180 180 180 180 180 180 180 180 180 180 180 180
180 180];
s3 = [20 25 30 40 40 40 40 40 40 40 50 40 50 40 40 40 50 40];

[sr sc] = size(s1);
r1 = zeros(1,sc);
Pr = ones(1,sc);
time = 1:sc;

for i=1:sc
 if s1(i) >= gWinMin & s1(i) <= gWinMax
 w1(i) = 1;
 b1(i) = 1;
 else
 if s1(i) < uWinMin | s1(i) > uWinMax
 w1(i) = 0;
 b1(i) = 0;
 else
 w1(i) = exp(-(0.01*s1(i)/2));

 b1(i) = 0;
 end
 end
 Pr(i) = 1-w1(i);
 r1(i) = w1(i) * s1(i);
 rb(i) = b1(i) * s1(i);
end

for i=1:sc
 if s2(i) >= gWinMin & s2(i) <= gWinMax
 w2(i) = 1;
 else
 if s2(i) < uWinMin | s2(i) > uWinMax
 w2(i) = 0;
 else
 w2(i) = exp(-(0.01*s2(i)/2));
 end
 end
 r2(i) = w2(i) * s2(i);
end

for i=1:sc
 if s3(i) >= gWinMin & s3(i) <= gWinMax
 w3(i) = 1;

 else

 144

 if s3(i) < uWinMin | s3(i) > uWinMax
 w3(i) = 0;

 else
 w3(i) = exp(-(0.01*s3(i)/2));
 end
 end

 r3(i) = w3(i) * s3(i);
end
plot(time,s1,'k+--');
hold on;
plot(time,s2,'k*--');
hold on;
plot(time,s3,'kx--');
hold on;
avg = (s1 + s2 + s3)/3;
plot(time,avg,'r*-');
savg = (r1 + r2 +r3)/3;
hold on;

plot(time,savg,'go-');

 145

clear all; clc;

load H11;

r1 = H11(1:100,2); %2,3 and 7th sensors are closely deployed
r2 = H11(1:100,3);
r3 = H11(1:100,7);

w1(1) = 1;
w2(1) = 1;
w3(1) = 1;

[r c] = size(r1);
k = 2; % num of neighboring sensors
eps = 1; % Epsilon

for i=1:r

 agg(i) = (r1(i)*w1(i) + r2(i)*w2(i) + r3(i)*w3(i))/3;

 t1(i) = ((r2(i) + r3(i))/k) - r1(i);
 t2(i) = ((r1(i) + r3(i))/k) - r2(i);
 t3(i) = ((r1(i) + r2(i))/k) - r3(i);

 dw1(i) = abs(t1(i)) * eps;
 dw2(i) = abs(t2(i)) * eps;
 dw3(i) = abs(t3(i)) * eps;

 max = dw1(i);
 flag = 1;
 if (dw2(i) > max)
 max = dw2(i);
 flag = 2;
 end
 if (dw3(i) > max)
 max = dw3(i);
 flag = 3;
 end

 if(flag == 1)
 w1(i+1) = w1(i) - dw1(i);
 w2(i+1) = w2(i) + dw2(i);
 w3(i+1) = w3(i) + dw3(i);
 end
 if (flag == 2)
 w1(i+1) = w1(i) + dw1(i);
 w2(i+1) = w2(i) - dw2(i);
 w3(i+1) = w3(i) + dw3(i);
 end
 if (flag == 3)
 w1(i+1) = w1(i) + dw1(i);
 w2(i+1) = w2(i) + dw2(i);
 w3(i+1) = w3(i) - dw3(i);
 end

 146

end

plot(w1(1:70),'b-*');
hold on;
plot(w2(1:70),'r-+');
hold on;
plot(w3(1:70),'g-o');

magg = (r1+r2+r3)/3;
%plot(agg,'b*-')
% hold on;
% plot(magg,'ro-')

e = abs(agg' - magg);

%plot(e)
polyfit(r1)
x = 1..70
x = [1:70]
polyfit(x,r1)
polyfit(x',r1(1:70))
polyfit(x',r1(1:70),70)
x
x = x'
y = r1(1:70)
plot(x,y,'0:')
plot(x,y,'O:')
pcoeff = polyfit(x,y,1)
xp = 0:1:70
xp = 1:1:70
yp = polyval(pcoeff,xp)
plot(x,y,'O',xp,yp,'m')
plot(xp,yp,'m')
plot(x,y,'O',xp,yp,'m')
plot(x,y,'O-',xp,yp,'m')
pc2 = polyfit(x,r2(1:70),1)
yp2 = polyval(pc2,xp)
plot(xp,yp2)
figure
plot(xp,yp2)
hold on
plot(xp,yp)
pc3 = polyval(x,r3(1:70))
clear pc3
pc3 = polyfit(x,r3(1:70))
pc3 = polyfit(x,r3(1:70),1)
yp3 = polyval(pc3,xp)
hold on;
plot(xp,yp3)
figure
plot(xp,yp,'b*-')
hold on;
plot(xp,yp,'r*-')
hold on;
plot(xp,yp2,'bo-')
hold on;

 147

plot(xp,yp3,'k+-')
plot(xp,yp,'r*-')
hold on;
plot(xp,yp2,'bo-')
hold on;
plot(xp,yp3,'k+-')

 148

/* C code for reading packets from gateway node through serial interface – read and write

to serial port*/

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <termios.h>

#ifdef __CYGWIN__
#include <windows.h>
#include <io.h>
#endif

static const char *g_device= "COM4";
static unsigned g_baudrate = B57600;

unsigned char buffer[39];
unsigned int write_flag = 0;

int port_open()
{
 /* open serline for read/write */
 int serline;
 const char *name = g_device;
 unsigned long baudrate = g_baudrate;

 serline = open(name, O_RDWR | O_NOCTTY);
 if (serline == -1) {
 fprintf(stderr, "Failed to open %s\n", name);
 perror("");
 fprintf(stderr, "Verify that user has permission to open
device.\n");
 exit(2);
 }
 printf("%s input stream opened\n", name);

#ifdef __CYGWIN__
 /* Cygwin requires some specific initialization. */
 HANDLE handle = (HANDLE)get_osfhandle(serline);
 DCB dcb;
 if (!(GetCommState(handle, &dcb) &&
 SetCommState(handle, &dcb))) {
 fprintf(stderr, "serial port initialisation problem\n");
 exit(2);
 }
#endif

 /* Serial port setting */
 struct termios newtio;
 bzero(&newtio, sizeof(newtio));
 newtio.c_cc[VMIN] = 1;

 149

 newtio.c_cflag = CS8 | CLOCAL | CREAD;
 newtio.c_iflag = IGNBRK | IGNPAR;
 cfsetispeed(&newtio, baudrate);
 cfsetospeed(&newtio, baudrate);
 tcflush(serline, TCIFLUSH);
 tcsetattr(serline, TCSANOW, &newtio);

 return serline;
}

void read_port(int serline)
{
 int cnt;
 int i,count;

 tcflush(serline,TCIOFLUSH);

 printf("Reading buffer ****\n");
 while(i<39) {
 unsigned char c;
 cnt = read(serline, &c, 1);
 if (cnt < 0) {
 perror("error reading from serial port");
 exit(2);
 }
 if (cnt == 1) {

 buffer[i] = c;
 i++;
 printf("%02x", c);
 }
 }
 printf("\n");
}

void write_port(int line)
{
 int flag;
 int k;

 flag = write(line,&buff,sizeof(buff));
 if(flag < 0)
 printf("Write Fail");
 printf("\n");

}

int main()
{
 int k,serline;

 150

 setlinebuf(stdout);
 setlinebuf(stderr);

 serline = port_open();

 while(1)
 {
 read_port(serline);
 write_port(serline);

 }

}

/* Reward Function and Critic function evaluation for Reinforcement Learning in

Matlab*/

clear all;
clc;
% col1 volt temp col4 col5 sleep

a = load('write.txt');
voltage = a(:,2)/1000;
temperature = a(:,3);
sleep = a(:,6);
epsilon = 0.05;

data = [];
for i=1:length(a) - 1
 r = (voltage(i)/3.0)*
((sleep(i)/1000)^(epsilon*abs(temperature(i+1)-temperature(i))));
 data = [data; [i r voltage(i) sleep(i) abs(temperature(i+1)-
temperature(i))]];
end

gamma = 0.6;
reward = data(:,2);

q = 1;
AIC = [];
savedata.theta = 1;
savedata.error_hist = 1;
savedata.P = 1;
for m = 2:7
 theta = randn(m,1);
 k = 1;
 P = 5*eye(m);
 old_error_hist = [];
 for j = 1:500
 critic = [];

 151

 error_hist = [];

 for i = 10:400
 c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2)
+ gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) +
gamma^6*reward(i+6);
 critic = [critic;[i c_val]];
 psi = [reward(i)];
 for n = 1:m-1
 psi = [psi; reward(i - n)];
 end
 c_val_est = psi'*theta;
 error = c_val - c_val_est;
 error_hist = [error_hist;error^2];
 m_factor = P*psi*error;
 theta = theta + m_factor;
 P = P - P*psi*inv(1+psi'*P*psi)*psi'*P;
 k = k + 1;
 end
 old_error_hist = [old_error_hist;error_hist'];
 end
 error_hist = [sum(old_error_hist)/500]';
 er = log(sum(error_hist))
 AIC = [AIC;[m er]];
 %AIC = log(sum(error_hist(:,2))/5);

 savedata(q).theta = theta;
 savedata(q).error_hist = error_hist;
 savedata(q).P = P;
 q = q + 1;
end

save savedata;
save AIC;

figure;
plot(error_hist);
title('Error history');

critic = [];
for i = 1:length(data) - 6
 c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2) +
gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) +
gamma^6*reward(i+6);
 critic = [critic;[i c_val]];
end
figure;
subplot(4,1,1),plot(data(:,1),data(:,2)); title('Reward');
subplot(4,1,2),plot(critic(:,1),critic(:,2)); title('Critic');
subplot(4,1,3),plot(data(:,1),data(:,3));title('Voltage');
subplot(4,1,4),plot(data(:,1),data(:,4));title('Sleep');

% subplot(4,1,1), plot(r,'g.-')
% subplot(4,1,2), plot(t,'m.')
% subplot(4,1,3), plot(v,'b.')
% subplot(4,1,4), plot(s_time,'k.')

 152

clear all;
clc;
% col1 volt temp col4 col5 sleep

a = load('write.txt');
voltage = a(:,2)/1000;
temperature = a(:,3);
sleep = a(:,6);
epsilon = 0.05;

data = [];
for i=1:length(a) - 1
r = (voltage(i)/3.0)* ((sleep(i)/1000)^(epsilon*abs(temperature(i+1)-
temperature(i))));
data = [data; [i r voltage(i) sleep(i) abs(temperature(i+1)-
temperature(i))]];
end

critic_data = [];
gamma = 0.6;
reward = data(:,2);
load savedata;
load AIC;
[min_val ind] = min(AIC(:,2));

theta = savedata(ind).theta;

m = length(theta);
 for i = 7:400
 c_val = reward(i) + gamma*reward(i+1) + gamma^2*reward(i+2) +
gamma^3*reward(i+3) + gamma^4*reward(i+4) + gamma^5*reward(i+5) +
gamma^6*reward(i+6);
 psi = [reward(i)];
 for n = 1:m-1
 psi = [psi; reward(i - n)];
 end
 c_val_est = psi'*theta;
 error = c_val - c_val_est;
 c_val
 c_val_est
 error
 critic_data = [critic_data; [i c_val c_val_est error]];
 end

figure;
plot(critic_data(:,1),critic_data(:,2),'-
',critic_data(:,1),critic_data(:,3),'--
',critic_data(:,1),critic_data(:,4),'.');
legend('Total expected reward','Critic','Error');

% subplot(4,1,1), plot(r,'g.-')
% subplot(4,1,2), plot(t,'m.')
% subplot(4,1,3), plot(v,'b.')
% subplot(4,1,4), plot(s_time,'k.')

 153

/* Sample program to implement CRC so that packets can be sent from PC to gateway

node using serial interface (UART)*/

#include<stdio.h>

char buffer[37];

int length;

int crc;

calByte(char b)

{

 int i;

 crc = crc^(int)b<<8;

 for(i=0;i<8;i++)

 {

 if((crc & 0x8000)== 0x8000)

 crc = crc << 1 ^ 0x1021;

 else

 crc = crc << 1;

 }

}

calc()

{

 int k=0;

 while(length>0)

 {

 calByte(buffer[k]);

 length--;k++;

 }

 crc = crc & 0xffff;

 printf("%x",crc);

}

main()

{

buffer[0] = 0x7e;

buffer[1] = 0x42;

buffer[2] = 0xff;

 154

buffer[3] = 0xff;

buffer[4] = 0x00;

buffer[5] = 0x7d;

buffer[6] = 0x5d;

buffer[7] = 0x1d;

buffer[8] = 0x85;

buffer[9] = 0x01;

buffer[10] = 0x03;

buffer[11] = 0x01;

buffer[12] = 0xa6;

buffer[13] = 0x01;

buffer[14] = 0x1d;

buffer[15] = 0x03;

buffer[16] = 0x53;

buffer[17] = 0x19;

buffer[18] = 0x80;

buffer[19] = 0xb0;

buffer[20] = 0x18;

buffer[21] = 0xb3;

buffer[22] = 0xe3;

buffer[23] = 0x99;

buffer[24] = 0x9d;

buffer[25] = 0xb4;

buffer[26] = 0xf2;

buffer[27] = 0x67;

buffer[28] = 0x7a;

buffer[29] = 0x47;

buffer[30] = 0xfb;

buffer[31] = 0x00;

buffer[32] = 0x00;

buffer[33] = 0x00;

buffer[34] = 0x15;

buffer[35] = 0x00;

buffer[36] = 0xf0;

length=35;

calc();

}

 155

/* Middleware Design */

TOSBaseM.nc (program on Gateway/Base-station node)

 1. RECEIVE:

 Radio: - Recieve From other motes

 When packets arrive, the TOS_Msg is encapsulated in a Frame.

 So p->data[9] p->data[8] for example represents Temperature reading

 p->data[26] p->data[27] represents Accel_X value.

 The array structure is represented in TestMTS400M.nc

 UART: - Will recieve from Computer

 - Need for CRC in each packet, otherwise, the gateway node rejects packet

 2. SEND:

 UART: - Send UART message to Computer.

 - Any radio packet received is forwarded to computer.

 - Takes TOS_Msg and encapsulates it inside Frame and sends it.

 - At the computer end, read COM port to buffer.

 - 39 bytes of data is read.

 - buffer[34] = p->data[27]

 Radio: - Broadcast any UART packet to all motes

 - Transmit TOS_Msg

MTS400M.nc (program on each sensor node)

 1. RECEIVE:

 UART: - No UART receive

 Radio: - Receive TOS_Msg

 - pack_uart->uartData[0] = buffer[3] ===> unframe the packet

 2. SEND:

 UART: - No UART send

 Radio: - Send all sensor values broadcast

Sample packet:

7e42ffff007d5d1d8501030125021f04ca19ffff18ffffffffb4ff7f6547ff0000001400f603

	University of New Mexico
	UNM Digital Repository
	9-9-2007

	Hierarchical aggregation and intelligent monitoring and control in fault-tolerant wireless sensor networks
	Prasanna Sridhar
	Recommended Citation

	Microsoft Word - front_matter_6_02.doc

