
Hierarchical Aligned Cluster Analysis
for Temporal Clustering of Human Motion

Feng Zhou, Student Member, IEEE, Fernando De la Torre, and Jessica K. Hodgins

Abstract—Temporal segmentation of human motion into plausible motion primitives is central to understanding and building

computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential

nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of

representing articulated motion. We pose the problem of learning motion primitives as a temporal clustering one, and derive an

unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given

multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel

k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to

find a low-dimensional embedding for the time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic

programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex

motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on

data of a honey bee dance. The HACA code is available online.

Index Terms—Temporal segmentation, time series clustering, time series visualization, human motion analysis, Kernel k-means,

spectral clustering, dynamic programming

Ç

1 INTRODUCTION

SYSTEMS that can detect, recognize, and synthesize human
motion are of interest in both research and industry due

to the large number of potential applications in virtual
reality, smart surveillance systems for advanced user
interfaces, and motion analysis (see [1], [2], [3] for a review).
The quality of the detection, recognition, or synthesis in
these applications greatly depends on the spatial and
temporal resolution of motion databases, as well as the
complexity of the models. Unsupervised techniques to learn
motion primitives from training data have recently attracted
the interest of many scientists in computer vision [4], [5], [6],
[7], [8], [9], [10], [11], [12] and computer graphics [13], [14],
[15], [16], [17], [18], [19], [20]. Fig. 1 illustrates the problem
addressed in this paper: Given a sequence of a person
walking and running, the first level of the hierarchy
provided by our algorithm (HACA) is able to group the
frames into two classes: running and walking. In a finer
level of the hierarchy, HACA decomposes each of the
actions (e.g., running, walking) into motion primitives of
smaller temporal scale. However, some temporal compo-
nents might not necessarily have a physical meaning.

The inherent difficulty of temporally decomposing hu-
man motion stems from the large number of possible
movement combinations, a relatively large range of temporal
scales for different behaviors, the irregularity in the
periodicity of human actions, and the intraperson motion

variability. To address these challenges, this paper frames the
problem of hierarchical temporal decomposition of human
motion as an unsupervised learning problem, and proposes a
hierarchical aligned cluster analysis (HACA). HACA is a
generalization of kernel k-means (KKM) and spectral
clustering (SC) for time series clustering and embedding.

Over the last few years, several approaches for unsuper-
vised segmentation of activities have been proposed (see, for
example, [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18]). HACA presents several advantages:

. The temporal clustering problem is posed as an
energy minimization.

. HACA provides a natural embedding for clustering
and visualizing time series data.

. HACA provides a hierarchical decomposition at
several temporal scales (see Fig. 1). The time granu-
larity of the motion primitives is specified manually.

. Minimizing HACA is an NP problem. This paper
proposes an efficient coordinate descent minimiza-
tion algorithm to find a solution for HACA via
dynamic programming.

2 PREVIOUS WORK

We build on prior research in human motion analysis and
temporal clustering.

2.1 Human Motion Analysis

Extensive literature in graphics and computer vision
addresses the problem of grouping human actions. In the
computer graphics literature, Barbic et al. [15] proposed an
algorithm to decompose human motion into distinct actions
based on probabilistic principal component analysis, which
places a cut when the distribution of human poses changes.
Jenkins et al. [13], [14] used the zero-velocity crossing points

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013 1

. The authors are with the Robotics Institute, Carnegie Mellon University,
Smith Hall, 5000 Forbes Ave, Pittsburgh, PA 15232.
E-mail: zhfe99@gmail.com, {ftorre, jkh}@cs.cmu.edu.

Manuscript received 27 Apr. 2011; revised 19 Apr. 2012; accepted 12 May
2012; published online 14 June 2012.
Recommended for acceptance by C. Sminchisescu.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-04-0268.
Digital Object Identifier no. 10.1109/TPAMI.2012.137.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

of the angular velocity to segment the stream of motion
capture data into short sequences. Jenkins and Matari�c [21]
further extended thework by finding a nonlinear embedding
using Isomap [22] that reveals the temporal structure of
segmented motion. Beaudoin et al. [20] developed a string-
based motif-finding algorithm to decompose motion into
action primitives and interpret actions as a composition on
the alphabet of these action primitives.

In the computer vision literature, Zhong et al. [23] used a
bipartite graph co-clustering algorithm to segment and
detect unusual activities in video. Zelnik-Manor and Irani
[5] extracted spatiotemporal features at multiple temporal
scales to isolate and cluster events. An outcome of the
clustering process is the temporal segmentation of long
video sequences into event subsequences. De la Torre et al.
[9] proposed a geometric-invariant clustering algorithm to
decompose a stream of facial behavior into facial gestures.
Unusual facial expressions can be detected through the
analysis of outlying temporal patterns. De la Torre and Agell
[24] decomposed a multimodal stream of human behavior
into several activities using semi-supervised temporal
clustering. Recently, Guerra-Filho and Aloimonos [8], [25]
presented a linguistic framework for modeling and learning
human activity representations from video. To obtain a low-
level representation, they segmented the movement by
estimating the velocity and acceleration of the actuator
attached to the joint. Minnen et al. [26] discovered motifs in
real-valued, multivariate time series data by locating regions
of high density in the space of all time series subsequences.

2.2 Temporal Clustering

Segmentation and clustering of time series data is a topic
that has been explored in fields other than computer vision
and graphics. In particular, there is a substantial amount of
work in the field of data mining [27], [28], speech processing
[29], [30], animal behavior analysis [12], [31], and signal
processing [32], [33].

Two of the most popular approaches are change-point
detection and switching linear dynamical system (SLDS).
The goal of change-point detection [32], [33], [34] is to
identify changes at unknown times and estimate the location
of changes in stochastic processes. Unlike previous work on
change-point detection, HACA finds the change points that
minimize the error across several segments (not only two)
that belong to one of k clusters.

SLDSs describe the dynamics of the time series by
switching several linear dynamical systems over time. The
switching states in SLDS inference implicitly provide the
segmentation of an input sequence. Because the exact
inference in SLDS is intractable, Pavlovi�c et al. [35] proposed
approximate inference algorithms by casting the SLDS
model as a dynamic Bayesian network (DBN). Oh et al.
[12] introduced a data-driven MCMC (DD-MCMC) infer-
ence method to identify the exact posterior of SLDSs in the
presence of intractability. In their framework [12], the
standard SLDS has been improved by incorporating a
duration model, thereby yielding a more accurate result in
segmentation. To address the problem of learning SLDSs
with an unknown number of modes, Fox et al. [31] proposed
a nonparametric Bayesian method that utilizes the hier-
archical Dirichlet process (HDP) as a prior on the para-
meters of SLDSs. Recently, Fox et al. [36] further extended
this work by adding the beta process prior to discover and
model dynamical behaviors that are shared among multiple
related time series.

3 ALIGNED CLUSTER ANALYSIS (ACA)

This section describes ACA and hierarchical ACA (HACA),
an extension of kernel k-means and spectral clustering for
clustering time series. Section 3.1 reviews the matrix
formulation for k-means, KKM and SC. Section 3.2 describes
the properties of the frame kernel matrix that are key to
understanding ACA and HACA. Section 3.3 reviews the
dynamic time alignment kernel (DTAK) that is used as a
similarity measure between segments. Section 3.4 proposes
the ACA energy function and its matrix formulation is
discussed in Section 3.5. Section 3.6 describes a coordinate-
descent strategy for optimizing ACA. Section 3.7 presents an
efficient optimization strategy for ACA. Section 3.8 de-
scribes HACA.

3.1 k-Means, KKM and SC

Clustering refers to the partition of n data points into
k disjointed clusters. Among various approaches to un-
supervised clustering, k-means [37] is favored for its
simplicity. k-means clustering splits a set of n samples into
k groups by minimizing the within-cluster variation.
k-means clustering finds the partition of the data that is a
local optima of the following energy function [38], [39]:

JkmðZ;GÞ ¼
Xk

c¼1

Xn

i¼1
gcikxi � zck2 ¼ kX� ZGk2F ;

s:t: GT1k ¼ 1n;

ð1Þ

where xi 2 IRd (see notation1) is a vector representing the
ith data point and zc 2 IRd is the geometric centroid of the
data points for class c. G 2 f0; 1gk�n is a binary indicator

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 1. Hierarchical decomposition of human motion. Each level of the
figure corresponds to one hierarchy found by HACA at different temporal
resolutions. The top row shows some samples of motion capture data of
a person walking and then running (7.2 seconds). The second row
shows the first level of the decomposition found by HACA. Each
temporal pattern contains samples for walking or running. The bottom
row shows the lower level, which contains subcycles of running and
walking.

1. Bold capital letters denote a matrixX, bold lower-case letters a column
vector x. xi represents the ith column of the matrix X. xij denotes the scalar
in the ith row and jth column of the matrix X. All nonbold letters represent
scalars. 1m�n;0m�n 2 IRm�n are matrices of ones and zeros. In 2 IRn�n is an
identity matrix. kxk ¼

ffiffiffiffiffiffiffiffiffi

xTx
p

denotes the euclidean distance. kXk2F ¼
trðXTXÞ ¼ trðXXT Þ designates the Frobenious norm of a matrix. X �Y is
the Hadamard product of matrices. diagðxÞ is a diagonal matrix whose
diagonal elements are x. ½i; j� and ½i; jÞ list the integers fi; iþ 1; . . . ; j� 1; jg
and fi; iþ 1; . . . ; j� 1g, respectively. X½i;j� ¼ ½xi;xiþ1; . . . ;xj� is composed
by the columns ofX indexed by the integers in ½i; j�. _X denotes the previous
value of X in an updating scheme.

matrix such that gci ¼ 1 if the sample xi belongs to cluster c
and zero otherwise. The k-means algorithm performs
coordinate descent in the energy function JkmðZ;GÞ. Given
the actual value of the means _Z 2 IRd�n, the first step finds
gi 2 f0; 1gk for each data point xi such that one of the rows
is one and the others are zero, while minimizing (1). The
second step computes Z ¼ XGT ðGGT Þ�1, which is equiva-
lent to calculating the mean of each cluster. These
alternating steps are guaranteed to converge to a local
minimum of JkmðZ;GÞ [40].

A major limitation of the k-means algorithm is that it is
only optimal for spherical clusters. To overcome this
limitation, kernel k-means [41] implicitly maps the data to a
higher dimensional space using kernels. KKM [41], [38]
minimizes

JkkmðGÞ ¼
Xk

c¼1

Xn

i¼1
gci k�ðxiÞ � zck2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

dist2
�
ðxi;zcÞ

¼ k�ðXÞ � ZGk2F ;

s:t: GT1k ¼ 1n;

ð2Þ

where dist2�ðxi; zcÞ is the squared distance between the
ith sample and the center of class c in the feature space, that is:

dist2�ðxi; zcÞ ¼ �ii �
2

nc

Xn

j¼1
gcj�ij þ

1

n2c

Xn

j1;j2¼1
gcj1gcj2�j1j2 ; (3)

where nc ¼
Pn

j¼1 gcj is the number of samples that belong to
class c. The kernel function � is defined as �ij ¼ �ðxiÞT�ðxjÞ.

Similarly to the first step in the k-means algorithm, KKM
assigns the sample to the closest cluster mean (_Z) computed
in the previous step:

gc�
i
i ¼ 1; where c�i ¼ arg min

c
dist2�

�
xi; _zc

�
: ð4Þ

In KKM, in general, the mean cannot be computed explicitly.
However, there is no need to compute the mean because
dist2�ðxi; _zcÞ can be calculated from the kernel matrix.

Spectral clustering also minimizes a weighted version of
(2), but G is relaxed to be continuous. See [41] and [38] for a
more detailed explanation of the relation between SC and
KKM. In this paper, we will extend KKM and SC to cluster
and find a low-dimensional embedding of the time series.

3.2 Frame Kernel Matrix

This section describes some properties of the frame kernel

matrix,K ¼ �ðXÞT�ðXÞ 2 IRn�n, whereX 2 IRd�n is a multi-

dimensional time series of length n. Each entry, �ij, defines

the similarity between two frames, xi and xj, by means of a

kernel function �ðxiÞT�ðxjÞ. The linear kernel, �ij ¼ xTi xj,

and theGaussian kernel,�ij ¼ expð� kxi�xjk
2

2�2 Þ, are perhaps the
most commonly used kernels. In the literature of dynamical

systems, the frame kernel matrix (K) is alternatively called

the recurrence matrix [42], [43], and its structure reveals

important information about the dynamics.
To illustrate the properties of this matrix, consider the 1D

time series shown in Fig. 2a. In this case, we compute the
frame kernel matrix using the exponential kernel, �ij ¼
expð� kxi�xjk

2

2�2 Þ. We choose an infinitely small bandwidth
(�! 0) to make a binary frame kernel matrix (Fig. 2b). In the
following, we highlight one property, period ambiguity, that
is relevant to ACA. Fig. 2a (second and third row) plots two

different, but valid, decompositions of the same time series at
two different temporal scales. To avoid this ambiguity, we
introduce a parameter nmax to constrain the length of the
segments. In this case, we set nmax ¼ 2 and nmax ¼ 4 for the
second and third rows, respectively. Similarly, Fig. 2c shows
an example of a multidimensional time series of motion
capture data of a subject doing two activities. Fig. 2d
illustrates the corresponding frame kernel matrix at two
different temporal resolutions levels.

3.3 Dynamic Time Alignment Kernel

A temporal clustering algorithm needs to define a distance
between segments of different length. Ideally, this distance
should be invariant to the speed of the human action. This
section reviews the DTAK that extends dynamic time
warping (DTW) to satisfy the properties of a distance.

A frequent approach to aligning time series has been
DTW. A known drawback of using DTW as a distance is that
it fails to satisfy the triangle inequality [44]. To address this
issue, Shimodaira et al. [45] proposed the DTAK. Given two
sequences X ¼ ½x1; . . . ;xnx � 2 IRd�nx and Y ¼ ½y1; . . . ;yny � 2
IRd�ny DTAK computes the similarity using dynamic
programming. DTAKuses the cumulative kernel matrixU 2
IRnx�ny (as in DTW), computed in a recursive manner as

�ðX;YÞ ¼ unxny

nx þ ny
; uij ¼ max

ui�1;j þ �ij
ui�1;j�1 þ 2�ij
ui;j�1 þ �ij:

8

<

:
ð5Þ

U is initialized at the upper left, i.e., u11 ¼ 2�11.

�ij ¼ �ðxiÞT�ðyjÞ ¼ exp �
kxi � yjk2

2�2

 !

is the frame kernel that constitutes the kernel matrix
K 2 IRnx�ny . Fig. 3c illustrates the procedure to build U for
two short sequences (Fig. 3a). Fig. 3b shows the binary frame
kernel matrix K when �! 0. The final value of DTAK,
�ðX;YÞ ¼ 11

13 , is computed by normalizing the bottom right
of U with the sum of sequence lengths.

A more revealing mathematical expression to under-
stand DTAK can be obtained using matrix notation.
Observe that DTAK computes a monotonic trajectory (the
red curve in Fig. 3b) starting from the top-left corner to the
bottom-right corner of the frame kernel matrix K. This

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 3

Fig. 2. Decomposition of time series into two different temporal scales.
(a) Temporal clustering of 1D time series. Vertical black dotted lines
denote the segment’s boundaries. (b) Frame kernel matrix. Each
segment corresponds to a rectangular block (yellow line). (c) Temporal
clustering of motion capture data. (d) Frame kernel matrix.

monotonic trajectory can be mathematically parameterized
by two frame indexes vectors p 2 f1 : nxgl and q 2 f1 : nygl,
where l is the optimal number of steps that need to align X

andY by DTAK (e.g., l ¼ 8 in the case of Fig. 3). Using these
indexes, we can define a new normalized correspondence
matrix W ¼ ½wij�nx�ny 2 IRnx�ny , where wij ¼ 1

nxþny ðpc �
pc�1 þ qc � qc�1Þ if there exist pc ¼ i and qc ¼ j for some c
(i.e., for every one of the l steps we have two indexes that
encode the correspondence between the two time series).
Otherwise, wij ¼ 0. See Fig. 3d for an example of W. Using
this new matrix, DTAK can be rewritten in a more compact
way as follows:

�ðX;YÞ ¼ trðKTWÞ ¼ ðXÞT ðYÞ; ð6Þ

where ð�Þ denotes a mapping of the sequence into a feature
space. By the Mercer theorem [46] this mapping exists when
�ðX;YÞ is a positive definite kernel. Unfortunately, DTAK
is not necessarily a strictly positive definite kernel [47], [48],
and a regularization of the kernel matrix needs to be
performed (see Section 3.5).

3.4 Energy Function for ACA

Given a sequence X ¼ ½x1; . . . ;xn� 2 IRd�n with n samples,
ACA decomposes X into m disjointed segments, each of
which corresponds to one of k classes. The ith segment,
Yi¼:X½si;siþ1Þ ¼ ½xsi ; . . . ;xsiþ1�1� 2 IRd�ni , is composed of sam-
ples that begin at position si and end at siþ1 � 1. The length of
the segment is constrained as ni ¼ siþ1 � si � nmax, where
nmax is the maximum length of the segment and controls the
temporal granularity of the factorization.An indicatormatrix
G 2 f0; 1gk�m assigns each segment to a class; gci ¼ 1 if Yi

belongs to class c, otherwise gci ¼ 0. For instance (see Fig. 4),
the 1D sequence (Fig. 4a) with 23 frames has been segmented
into seven segments that belong to three clusters (Fig. 4b).

A major limitation of standard k-means clustering for

analysis of time series data [49] is that the temporal ordering

of the frames is not taken into account. This section combines

KKM and SC with the DTAK to achieve temporal clustering.

ACA extends previouswork onKKMand SC byminimizing:

JacaðG; sÞ ¼
Xk

c¼1

Xm

i¼1
gci k

�
X½si;siþ1Þ

�
� zck2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dist2

ðYi;zcÞ

¼ k½
�
Y1

�
; . . . ;

�
Ym

�
� � ZGk2F ;

s:t: GT1k ¼ 1m and siþ1 � si 2 ½1; nmax�;

ð7Þ

whereG 2 f0; 1gk�m is a class indicator matrix and s 2 IRmþ1

is the vector that contains the start and end of each segment.
Yi¼:X½si;siþ1Þ denotes a segment. Similar to KKM, dist2 ðYi; zcÞ
is the squared distance between the ith segment and the
center of class c in the feature space defined by the nonlinear
mapping ð�Þ, which is

dist2
�
Yi; zc

�
¼ �ii �

2

mc

Xm

j¼1
gcj�ij þ

1

m2
c

Xm

j1;j2¼1
gcj1gcj2�j1j2 ;

where mc ¼
Pm

j¼1 gcj is the number of segments that belong

to class c. The dynamic kernel function � is defined as �ij ¼
 ðYiÞT ðYjÞ ¼ trðWT

ijKijÞ based on (6).
The differences between ACA (7) and KKM (2) are worth

pointing out:

1. ACA clusters variable length features, that is, each
segment Yi might have a different number of
samples (columns of Yi), whereas standard KKM
has a fixed number of features (rows of xi).

2. A new variable, s, is introduced to represent the
starting and ending of each segment.

3. The distance used in ACA, dist ðYi; zcÞ, is based on
DTAK, which is robust to noise and invariant to
temporal scaling factors.

4. ADP-basedapproach isused to efficiently solveACA.

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 3. Computation of DTAK. (a) Alignment examples for two 1D
sequences. (b) Frame kernel matrix (K). (c) Cumulative kernel matrix
(U). (d) Normalized correspondence matrix (W).

Fig. 4. A synthetic example of temporal clustering. (a) An example of 1D time series. (b) Temporal clustering of the 1D time series. (c) Sample-
segment indicator matrix (H). (d) Normalized correspondence matrix (W). (e) Segment-cluster indicator matrix (G). (f) Frame kernel matrix (K).
(g) Segment kernel matrix (T). (h) 2D embedding computed using the top two eigenvectors of T.

3.5 Matrix Formulation for ACA

A more enlightening formulation for ACA is the matrix
form. Suppose that a sequence X 2 IRd�n of length n has
been segmented into m segments, fYi 2 IRd�nigmi¼1 and
Pm

i¼1 ni ¼ n. A key insight to understanding ACA is that we
can define two kernel matrices: T ¼ ½�ij�m�m 2 IRm�m, the
segment kernel matrix (kernel between segments), and
K ¼ ½�ij�n�n 2 IRn�n, the frame kernel matrix (kernel be-
tween frames). Each element of the segment kernel matrix
(T), �ij ¼ �ðYi;YjÞ ¼ trðKT

ijWijÞ, is the DTAK between the
ith and jth segments (Yi and Yj) computed using (6),
where Kij 2 IRni�nj and Wij 2 IRni�nj are the frame kernel
matrix and the normalized correspondence matrix between
segments Yi and Yj, respectively.

After some linear algebra, it can be shown thatT 2 IRm�m

can be expressed as the product of a global correspondence
matrix (W), a global kernel frame matrix (K), and a sample-
segment indicator matrix (H) as follows:

T ¼
�
tr
�
KT
ijWij

�
�m�m ¼ H

�
K �W

�
HT ; ð8Þ

whereW ¼ ½Wij�m�m 2 IRn�n andK ¼ ½Kij�m�m 2 IRn�n are
obtained by rearranging the m�m blocks of Wij and
Kij,respectively. H 2 f0; 1gm�n is a matrix that encodes the
correspondence between samples and segments such that
hij ¼ 1 if the jth sample belongs to the ith segment. See Fig. 4
for an example of these matrices.

Unfortunately, DTAK is not a strictly positive definite
kernel [47], [48]. Thus, we add a scaled identity matrix to K,
that is, K Kþ �In, where � is chosen to be the absolute
value of the smallest eigenvalue of T if it has negative
eigenvalues.2

After substituting the optimal value of

Z ¼ ½
�
Y1

�
; . . . ;

�
Ym

�
�GT

�
GGT

��1

in (7), a more understandable form of Jaca results in:

JacaðG;HÞ ¼ trððIm �GT ðGGT Þ�1GÞTÞ
¼ trððIm �GT ðGGT Þ�1GÞHðK �WÞHT Þ
¼ trððL �WÞKÞ;

where L ¼ In �HTGT
�
GGT

��1
GH:

ð10Þ

Recall H depends on s and G 2 f0; 1gk�m is the segment-
cluster indicator matrix such that gij ¼ 1 if the jth segment
belongs to the ith temporal cluster. See Fig. 4 for an example
of temporal clustering and the role of the matrices K;W;H.

Consider the special casewhen each segment is one frame,
i.e., m ¼ n and H ¼ In. The segment kernel matrix becomes
simply the frame kernel matrix, i.e., �ij ¼ �ij and W ¼ 1n�n.
In this case, the energy function of ACA is equivalent to the
function minimized by KKM [41], [50], [51]:

JkkmðGÞ ¼ trðLKÞ; where L ¼ In �GT ðGGT Þ�1G: ð11Þ

KKM finds the binary matrix G 2 f0; 1gk�n (i.e., the
indicator matrix between samples and clusters) which
makes GT ðGGT Þ�1G as correlated as possible with the
sample kernel matrix K. On the other hand, ACA has two
indicator matrices: G, the segment-cluster indicator matrix,
that solves for the correspondence between segments and
clusters, and H, the sample-segment indicator matrix that
encodes the correspondence between samples and seg-
ments. ACA finds the two binary matrices G and H that,
after applying DTAK between all pairwise segments, make
the matrixHTGT ðGGT Þ�1GH �W as correlated as possible
with the frame kernelK. Fig. 4 illustrates the role of different
matrices in a synthetic temporal clustering example. Notice
that once the matrices K;W;H are computed by ACA, the
eigenvectors of the matrix T (8) provide a natural embed-
ding for visualizing the seven segments of the time series in
a low-dimensional space (see Fig. 4h).

3.6 Coordinate-Descent Optimization for ACA

In a previous section, we have formulated the problem of
temporal clustering as an integer programming problem (7)
over two variables (G and s). Recall that G encodes the
segment-cluster correspondence and s (or, equivalently, H)
encodes the sample-segment correspondence. Optimizing
over G and s is NP-hard. This section proposes an efficient
coordinate-descent scheme that alternates between comput-
ing s using dynamic programming and G with a winner-
take-all strategy [52].

We solve the following subproblem at each iteration:

G; s ¼ arg min
G;s

JacaðG; sÞ ¼ arg min
G;s

Xk

c¼1

Xm

i¼1
gcidist

2

�
Yi; _zc

�
;

where _zc is the cluster mean implicitly computed from the
segmentation ð _G; _sÞ derived in the previous step. Given a
sequenceX of length n, however, the number of all possible
segmentations is exponential, i.e., Oð2nÞ, which makes a
brute-force search for s infeasible. We used a DP-based
algorithm to exhaustively examine all possible segmenta-
tions in polynomial time. Observe that the matrix H (see
Fig. 4c) has a monotonic structure and can be optimally
optimized using DP.

Recall that we could rewrite (7) as a sum of the following
distances:

JacaðG; sÞ ¼
Xk

c¼1

Xm

i¼1
gcidist

2

�
Yi; zc

�
:

To further leverage the relationship between G and s, we
introduce an auxiliary function, Jð�Þ : ½1; n� ! IR,

JðvÞ ¼ min
G;s

JacaðG; sÞjX½1; v� ; ð12Þ

to relate the minimum energy directly with the tail position v
of the subsequence X½1;v� ¼ ½x1;x2; . . . ;xv�. We can further
justify that Jð�Þ satisfies the principle of optimality [53], i.e.,

JðvÞ ¼ min
1<i�v

�

Jði� 1Þ þmin
G;s

JacaðG; sÞjX½i; v�
�

; ð13Þ

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 5

2. It can be proven that adding �In to K has the same effect as by adding
�Im on T, that is,

HððKþ �InÞ �WÞHT ¼ Tþ �H �WHT 	 Tþ �Im; ð9Þ

where �W ¼ In �W 2 IRn�n is a diagonal matrix. Notice that the diagonal of
W is composed of m blocks of Wii and that Wii ¼ 1

ni
Ini according to (5).

Therefore, we can conclude �W ¼ diagð 1
n1
1n1 ; . . . ;

1
nm

1nm Þ. In addition,
becauseH ¼ ½h1; . . . ;hm�T 2 f0; 1gm�n is binary and its rows are orthogonal,
we can conclude hiThi ¼ ni and hiThj ¼ 0; i 6¼ j. Combing these results for
�W and H, we prove that �H �WHT 	 �Im.

which implies that the optimal decomposition of the

subsequence X½1;v� is achieved only when the segmentations

on both sides ofX½1;i�1� andX½i;v� are optimal and their sum is

minimal. Although the number of possible ways to decom-

pose the sequence X is exponential in n, dynamic program-

ming [53] offers an efficient approach to minimize Jð�Þ by
using Bellman’s equation, which is

JðvÞ ¼ min
v�nmax<i�v

	

Jði� 1Þ þmin
g

Xk

c¼1
gcdist

2

�
X½i;v�; _zc

�

; ð14Þ

where dist2 ðX½i;v�; _zcÞ is the squared distance between the

segment X½i;v� and the center of class c:

dist2
�
X½i;v�; _zc

�
¼ �

�
X½i;v�;X½i;v�

�
� 2

_mc

X_m

j¼1
_gcj�
�
X½i;v�; _Yj

�

þ 1

_m2
c

X_m

j1;j2¼1
_gcj1 _gcj2�

�
_Yj1 ;

_Yj2

�
:

When v ¼ n, JðnÞ is the optimal cost of the segmentation that

we seek. The inner values, i�v, g
�
v ¼ arg mini;gJðvÞ, are the

head position and label for the last segment, respectively,

which lead to the minimum. Equation (14) unifies KKM and

segment-based ACA clustering based on the length con-

straint nmax. If nmax ¼ 1, each segment consists of a single

frame and (14) is equivalent to KKM.
Fig. 5 illustrates the procedure for optimizingACA.Given

ann-length sequenceXwith an initial segmentation (Fig. 5a),

ACA applies the following forward-backward algorithm to

cluster the sequence (Figs. 5b and 5c):

. Forward step. Scan from the beginning (v ¼ 1) of the
sequence to its end (v ¼ n). For each v, JðvÞ is
computed according to (14). That is, for every position
i� nmax < i < v� 1, we compute the DTAK between

the segment X½i; v� and each of the segments for each
of the classes, Yj, precomputed in the last iteration.
Fig. 4b illustrates this process. Recall that we cannot
compute explicitly the mean of each class. We store
the head position i�v, label g

�
v, and JðvÞ that has the

lowest error in table, see Fig. 4c.
. Backward step. Trace back from the end of sequence

(v ¼ n) and cut off the segment whose head s ¼ i�v.
The indication vector g ¼ g�v can be indexed from the
stored positions (see Fig. 5c for an example). Repeat
this operation on the left part of the sequence
(v ¼ i�v � 1).

These steps are repeated until JðnÞ converges (Fig. 5d).

3.7 Efficient Dynamic Programming for Kernel
Calculation

A straightforward implementation of (14) is prohibitively

expansive, i.e., Oðn2n2maxÞ, due to the bottleneck of comput-

ing �ðX½i;v�; _YjÞ for all i; v; j. This section describes an

efficient dynamic programming solution to solve J which

has the time complexity of Oðn2nmaxÞ.
The computation of �ðX½i;v�; _YjÞ involves the construc-

tion of the cumulative kernel matrix U 2 IRnv� _nj , where

nv ¼ v� iþ 1 and _nj ¼ _sjþ1 � _sj are segment lengths of

X½i;v� and _Yj, respectively. Observe that we do not need to

recompute the whole matrix U because some columns of U

have been previously calculated in the forward scan of JðvÞ.
The computation of �ðX½i;v�; _YjÞ is illustrated in Fig. 6.

�ðX½i;v�1�; _YjÞ has been previously calculated (the top-left

matrix in Fig. 6), and to compute �ðX½i;v�; _YjÞ DP has to be

computed the matrix U by adding a new column (the top-

right matrix in Fig. 6). Using this simple observation, we

can reduce the computational complexity to Oðn2nmaxÞ.
To make an efficient implementation, we maintain an

active cumulative kernel matrix U 2 IRnmax�nmax�n that is
used in the kernel calculation:

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 5. Coordinate-descent optimization for ACA. (a) Optimization of a 1D sequence that has converged in four steps. (b) Illustration of the DP-based
search between first step and second step. (c) Data structure used in DP-based search. (d) ACA error in each step.

�
�
X½i;v�; _Yj

�
¼ U

�
nv; v; _sjþ1 � 1

�

nv þ _nj
;

where U
�
nv; v; _s

�
¼ max

U
�
nv; v; _s� 1

�
þ �v _s

U
�
nv � 1; v� 1; _s� 1

�
þ 2�v _s

U
�
nv � 1; v� 1; _s

�
þ �v _s;

8

><

>:

ð15Þ
where _s 2 ½ _sj; _sjþ1Þ and U is initialized at Uð1; v; _sjÞ ¼ 2�v _sj
for each v 2 ½1; n� and j 2 ½1; _m�. We used v ¼ v ðmod nmaxÞ
instead of v to further reduce the cost in space fromOðn2nmaxÞ
toOðnn2maxÞ. Without any loss in accuracy, �ðX½i;v�; _YjÞ can be
calculated by filling with an _nj-by-1 vector rather than the
original _nj-by-nv matrix.

The algorithm to optimize ACA w.r.t. G and s is
summarized in DPSearch (see Algorithm 1). This algorithm
only requires two parameters: length constraint nmax and
the number of clusters k.

The computational cost in time is mainly determined by
the deepest nest of iterations, which in DPSearch corre-
sponds to the update ofU (line 8). Because the sum of all the
segments’ length equals the total number of frames, i.e.,
P _m

j¼1 _sjþ1 � _sj 	 n, we can estimate the time cost ofDPSearch

as Oðn2nmaxÞ. The overall time complexity is Oðn2nmaxtÞ,
where t is the number of iterations.

3.8 Hierarchical Aligned Cluster Analysis

This section describes hierarchical ACA, a hierarchical
extension of ACA. HACA reduces the computational
complexity of ACA and provides a hierarchical decomposi-
tion at different temporal scales.

As discussed in Section 3.7, ACA’s computational cost is
linear in the length constraint nmax and quadratic in the
length of the sequence n. Unlike ACA, HACA starts the
search with small temporal scales and propagates the result
to larger temporal scales. The computational complexity is
Oðn2nmaxÞ andHACA ismore efficient because it starts using
smaller temporal scales (i.e., nmax). For instance, if the length
constraint for ACA is nmax, the equal setting for a two-level
HACA involves two pairs, n

ð1Þ
max and n

ð2Þ
max, where n

ð1Þ
max and

n
ð2Þ
max denote the constraints used in the first and second level,

respectively. In the following, we show how to compute
HACA using the same algorithm as ACA, but replacing the
kernel DTAK with the generalized DTAK (GDTAK).

We extend the definition of DTAK to propagate the
solution at different levels (i.e., temporal scales). Previous
work by Keogh and Pazzani [54] used this strategy to speed
up the computation of DTW. Unlike [54], we used the
values from the lower level to compute the similarity in a
bottom-up way.

Given two sequences X 2 IRd�nx ;Y 2 IRd�ny and their
segmentations sx 2 IRmxþ1; sy 2 IRmyþ1, where nx; ny and
mx;my represent the number of frames and segments,
respectively. Our generalized dynamic time alignment
kernel is defined (at the second level) as

�
�
X;Y

�
¼ umxmy

nx þ ny
; uij ¼ max

ui�1;j þ nxi �ij
ui�1;j�1 þ

�
nxi þ n

y
j

�
�ij

ui;j�1 þ nyj�ij;

8

<

:

where nxi is the length of segment Xi ¼ X½sx
i
;sx
iþ1Þ (similarly

for nyj) and �ij is the DTAK defined (at the first level) for
segment Xi and Yj. Similarly to DTAK, the recursive
computation is initialized as u11 ¼ ðnx1 þ n

y
1Þ�11. Fig. 7 shows

two sequences, X and Y, aligned using GDTAK.
Fig. 8 shows the process of using HACA to learn motion

primitives from motion capture data. In the first level, the
input motion is represented as a sequence of frames. After
extracting the features and calculating the frame kernel
matrix (see Section 4), ACA is applied to obtain and refine the
temporal segmentation result. In the first iteration, we
usually set a small length constraint (n

ð1Þ
max) to extract short

primitives, such as bending a leg. To propagate the result to
the next level, we recalculate the frame kernel matrix in the

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 7

Fig. 6. Efficient DP-based calculation of the dynamic kernel, �ðX½i;v�; _YjÞ.

Fig. 7. Generalized time alignment kernel. (a) Segmented sequences
where black dotted lines indicate the GDTAK alignment. (b) Frame
kernel matrix (K). (c) Segment kernel matrix (T). (d) Cumulative kernel
matrix (U).

second iteration by performing GDTAK on the segmented
frames. After that, ACA is applied to obtain a new
segmentation with longer segments.

4 EXPERIMENTS

This section evaluates the performance of ACA and HACA
on synthetic time series, motion capture data, and video of
humans performing multiple actions. Additionally, we run
ACA on the honey bee dance data, and compare it with
state-of-the-art algorithms for temporal segmentation. The
HACA code is available online at http://humansensing.
cs.cmu.edu/aca.

4.1 Preprocessing and Evaluation Metric

In all experiments, we compared ACA and HACA with SC,
which has recently become one of the most popular
clustering algorithms [55]. In our implementation, we used
the version of NJW [56]. To temporally smooth the time
series, following [15] we remove short segments as follows:
Suppose that we are given a sequence X 2 IRd�n and its
associated frame kernel matrix K 2 IRn�n. We first run SC

on K to cluster the n frames into k clusters. We then merge
consecutive frames with the same label. Later, we remove
the segments that have less frames than 1

2nmax.
To evaluate the clustering accuracy, we compute the

confusion matrix between the segmentation (Galg;Halg)
provided by the algorithm (e.g., ACA, HACA, SC) and
the ground truth (Gtru;Htru), that is,

C ¼ GalgHalgH
T
truG

T
tru 2 IRk�k; ð16Þ

where Galg and Halg are, respectively, the segment-cluster
and sample-segment indicator matrices returned by ACA,
HACA, or SC. Each entry cc1;c2 in the confusion matrix
represents the total number of frames that belong to the
cluster segment c1 that are shared by the cluster segment c2 in
the ground truth. Once the confusionmatrix is computed,we
apply the Hungarian algorithm [57] to find the optimum
cluster correspondence, andcompute theaccuracyas follows:

acc ¼ max
P

tr
�
CP
�

tr
�
C1k�k

� ; ð17Þ

subject to the constraint that P 2 f0; 1gk�k is a permutation
matrix.

4.2 Synthetic Data

We generated two experiments on synthetic time series: a
synthetic time series without hierarchical structure (top row
of Fig. 9, single level) and one with hierarchical structure
(bottom row of Fig. 9, multiple levels). We run all our
synthetic experiments with different levels of temporal
random noise. A noise level of 0.1 indicates that, on average,
a noisy frame is inserted every 10 frames. The frame kernel
matrix is computed as �ij ¼ expð� kxi�xjk

2

2�2 Þ. � is set to be the
average distance from the 20 percent closest neighbors.

In the first case (top row of Fig. 9), each time series,
X 2 IR2�n, is generated by randomly sampling 10 2D
Gaussian distributions that have been grouped into three
temporal clusters. An example of synthetic time series of
length 96 without hierarchical structure is illustrated in
Fig. 9a. Fig. 9b shows the 10 Gaussians and the underlying

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 8. The main processing steps to learn motion primitives with HACA.

Fig. 9. Temporal clustering computed by ACA and HACA on synthetic sequences. (a) An example of 1D time series. (b) Ten Gaussians clusters
used to generate the 1D time series. (c) Frame kernel matrix (K). (d) Mean accuracy and one standard deviation as a function of noise. The length
constraint (nmax) is plotted in the legend. (e) An example of 1D time series with two-level hierarchical structure. (f) Ten Gaussians used to generate
the time series. (g) Frame kernel matrix (K). (h) Mean accuracy and one standard deviation.

transition between Gaussians. Each color for the arrows in
Fig. 9b indicates one temporal cluster. Fig. 9c shows its
frame kernel matrix K. We tested three different length
constraints on segments, nmax ¼ 9; 11; 13, for ACA. ACA is
initialized using a random segmentation.

In the second case (bottom row of Fig. 9), the sequences
have a two-level hierarchical structure. As in the first case,
each time series is generated by randomly sampling 10 2D
Gaussian distributions that have been grouped into seven
temporal clusters. The main difference from the first case is
that the seven clusters can be grouped into three clusters. For
instance, Fig. 9e illustrates a synthetic time series composed
by 103 frames sampled from 10 spatial Gaussian clusters
(Fig. 9f). Notice that the generated time series has a two-level
structure. In the first level (Fig. 9e top), the 103 frames can be
grouped into seven temporal clusters. And in the second
level (Fig. 9e bottom), the seven temporal clusters can be
further grouped into three larger temporal clusters. In this
case, we set the length constraint nmax ¼ 9 for ACA and
n
ð1Þ
max ¼ nð2Þmax ¼ 3 for the twoHACA levels, respectively. ACA

and HACA are initialized using a random segmentation.
Fig. 9d shows the accuracy of ACA and HACA on the

two synthetic datasets. For each case, we generated 100 time
series to evaluate the performance. We run SC, ACA, and
HACA 10 times with random initializations, and choose the
solution with minimum energy (7). In the first dataset (the
first row of Fig. 9), we investigated the performance of ACA
under different length constraints (i.e., nmax ¼ 9; 11; 13) for
the segments. The second row of Fig. 9 shows that HACA
outperforms ACA to discover a sequence that has a
hierarchical structure. Moreover, HACA is less computa-
tionally expensive than ACA. In contrast, the SC algorithm
designed for conventional clustering problems performed
much worse than ACA and HACA.

4.3 Motion Capture Data

We used the Carnegie Mellon University Motion Capture
database [58] to discover motion primitives. The human

motion data were captured with a Vicon optical motion
capture system of 12 MX-40 cameras at 120 Hz. The subjects
wore 41 markers, and the motion data include absolute root
position and orientation and the relative joint angles of
29 joints. In order to provide a continuous representation, the
3D Euler angles were transformed to 4D quaternions.

There are many possible distances between body config-
urations that can provide a good similarity to match human
motion (see [59], [60] for an extensive discussion). Similarly
to the method of Barbic et al. [15], we only considered the
14 most informative joints and computed the distance
between frames as

dist2ij ¼
X14

k¼1
k log

�
q�1jk qik

�
k2; ð18Þ

where qik 2 SS3 is the complex form of the quaternion for the
kth joint in the ith frame. k logðq�1jk qikÞk is the geodesic norm
which gives the shortest distance from qik to qjk on SS3.

The frame kernel matrix,

�ij ¼ exp �
dist2ij

2�2

 !

;

is shown in Fig. 10c. � is set to be the average distance from
the 20 percent closest neighbors, respectively.

It is not computationally practical to run HACA on large
amounts of motion capture data. Recent work [61], [62] has
shown that human motion is locally linear and we can
therefore assume human motion is typically smooth. It is
thus possible to reduce the number of frames without losing
information relevant to temporal segmentation. Following
previous work on temporal segmentation [9], [20], we first
apply a clustering step to group frames into kreduce classes.
Later, we reduce to one sample each set of nreduce consecutive
frames of the same class. Fig. 10a shows frames projected
onto two principal components for subject 86. Fig. 10b shows

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 9

Fig. 10. Temporal clustering computed by ACA on motion capture data (subject 86, trial 2). This sequence contains 9,939 frames of a subject
performing eight actions. (a) Embedding frames by PCA (different colors indicate clusters of actions). (b) Clustering frames into 20 clusters.
(c) Frame kernel matrix (K). (d) The matrix ðHTGT ðGGT Þ�1GHÞ �W computed by ACA. (e) Embedding segments by ACA. (f) Original sequence
with ground-truth segmentation. (g) Reduced sequence (nreduce ¼ 5) with segmentation obtained by ACA.

2D PCA projections of 20 clusters obtained by clustering
9,939 frames using k-means. Observe that there are some
overlapping Gaussians in the 2D PCA space; however, these
Gaussians do not necessarily overlap in the high-dimen-
sional space. After clustering, every five consecutive frames
that belong to the same class are reduced to one frame. The
original sequence had 9,939 frames (Fig. 10f) and was
compressed to 1,988 frames (Fig. 10g).

We selected 14 sequences performed by subject 86, each
of which is a combination of roughly 10 natural actions (e.g.,
walking, punching, drinking, running). Typically, each
sequence contains almost 8,000 frames (70 secs). Due to
the quadratic complexity of our algorithm with respect to
the number of frames, we reduce the length of each
sequence by a factor of five in order to make the
experiments scalable. Please refer to [63, Section 4] for the
details of temporal reduction. Quaternions are used as
features to group the frames into 20 clusters. The length for
each activity ranges from 160 and 300 frames. Therefore, we
set the length constraint on segments to nmax ¼ 60 for ACA
and n

ð1Þ
max ¼ 10 and n

ð2Þ
max ¼ 6 for the two HACA levels,

respectively. ACA and HACA are initialized with the
algorithm described in [63].

Fig. 11a shows the results of temporal clustering for
ACA, HACA, SC, and manual labeling (ground truth),
respectively, on the 14 sequences. Different actions are
marked with different colors. Given a segmentation, we
calculated its accuracy with the expression given in (17). We
run ACA and HACA five times and select the solution with
the minimum objective function (7). The clustering accuracy
is shown in Fig. 11b. ACA and HACA identify the distinct
actions by providing a segmentation closer to the one
provided by the human observer. The motions that are
almost cyclic were more clearly detected. Fig. 11c shows the
time (in seconds) spent by ACA and HACA.

Fig. 10e shows the 2D embedding provided by ACA.
There are 35 points that correspond to 35 segments grouped
into eight actions. The embedding is computed with the two
eigenvectors of the kernel segment matrix (T) defined in (8).
Common dimensionality reduction methods (e.g., PCA,
LDA, Isomap, LLE) find embeddings from a data sample in
the high-dimensional space to a point in the embedded
space. Unlike these methods, ACA finds an embedding for
time series such that each point in the embedding
corresponds to a segment of different length in the
sequence. Moreover, the embedding found by ACA in-
corporates information about the dynamics that are key to
defining actions. In the PCA embedding (Fig. 10a), the eight
actions are not clearly separated, but in the ACA embed-
ding (Fig. 10e) they are.

Additionally, we can derive a motion tree (Fig. 12)
consisting of segments based on the results given by HACA.
For instance, both walking and standing have an initial gait
with both feet on the ground (movement A in Fig. 12b).
What makes them different is that the double-support gait
within the walking motion should be followed by the leg
movement. In another example, this double-support gait
also appears as one phase in the duration of raising arms
(movement A in Fig. 12a).

4.4 Video Data

The third experiment shows how ACA and HACA can
robustly segment a video sequence of several subjects
performing different actions. We used two standard video
databases, Weizmann [64] and KTH [65].

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 11. Comparison of different temporal clustering methods on motion
capture data. (a) The 14 motions are performed by subject 86 from the
CMUMotion Capture Database. In the first row of each block, the frames
are expressed as one of 20 labels given by k-means. The next four rows
illustrate the human label and results given by ACA, HACA, and SC,
respectively. White lines indicate the boundaries of actions, while the
different colors correspond to distinct actions. (b) Accuracy. (c) Time.

The Weizmann dataset contains 90 videos of 10 indivi-
duals performing nine different actions (walking, siding,
skipping, running, performing jumping jacks, jumping,
jumping in place, one-hand waving, and two-hand waving).
The KTH dataset contains six types of human actions
(walking, jogging, running, boxing, hand-waving, and
hand-clapping) performed by 25 subjects in different
scenarios. In the experiment, we used the subset s1 that
contains 150 videos recorded outdoors.

We first describe two algorithms to extract dynamic
features from video. In the case of theWeizmann dataset, we
compute the silhouettewith background subtraction because
the background is provided. We represent the person as a
binary mask (Fig. 13b) which does not include color or
texture. The silhouette mask is scale-normalized, preserving
the aspect ratio. Additionally, we compute a second mask
that only contains the legs and hands to remove the torso
pixels from the similarity measure. In order to define a
meaningful similarity between two images of different sizes,
we used the measure proposed by Cutler and Davis [42], in
which the bounding box is shifted in an area to search for the
maximum overlap, that is,

distij ¼ min
jdx;dyj<r

X

ðx;yÞ2Bi

jOiðxþ dx; yþ dyÞ �Ojðx; yÞj; ð19Þ

whereBi is the bounding box for the ith frame, andOiðx; yÞ is
thebinaryvalueof themaskatposition ðx; yÞ.distij represents

the minimum number of pixels for frame i that are not

matchedby frame j (Fig. 13c). The final similarity (Fig. 13 d) is

defined as �ij ¼ expð� dist2
ij

2�2 Þ.
In the case of the KTH database [65], it is not easy to get a

goodestimateof thebackgroundor the silhouette. In this case,

optical flow can provide a more robust representation for

humanmotion. Similarly to themotion descriptors proposed

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 11

Fig. 12. Hierarchical decomposition of several motion capture sequences. The original sequence is plotted in the upper left corner, and it has been
retargeted to a line for easier visualization. Several actions, such as walking, jumping, and kicking (second row), share common components at the
lower temporal granularity (third row). (a) Subject 86, trial 3. (b) Subject 86, trial 6.

Fig. 13. Video features. Top row: Silhouette-based feature. (a) An image
of a person walking from the Weizmann database. (b) Binary silhouette
and the estimated torso mask (red). (c) Search for the best match
between two frames. (d) Frame kernel matrix (K). Bottom row: Flow-
based feature. (e) An image of a person boxing from the KTH database.
(f) Optical flow divided in 3� 3 blocks. (g) Spatial and directional
histogram. (h) Frame kernel matrix (K).

by Efros et al. [66], we used a normalized-correlation-based
tracker to estimate the subject’s location in each image. After
scaling thehuman-centric figure (Fig. 13f) to the samesize, the
velocity at each point (x; y) is calculated with the standard
Lucas-Kanade algorithm [67]. In order to deal with the noise
and uncertainty in pose, we represent the optical flowwith a
spatial (nrow � ncol) and directional (nbin) binning. Each bin
hbi;j is computed as

hbi;j ¼
X

x;y;�

wiðxÞwjðyÞwbð�Þmagðx; yÞ; ð20Þ

where wiðxÞ, wjðyÞ, and wbð�Þ are the weights for the point’s

position and orientation with respect to the bin. magðx; yÞ is
the magnitude of optical flow at position ðx; yÞ. The resulting
flow feature is a concatenated histogram of all the bins

(Fig. 13g). We used the �2 distance (Fig. 13 h), and the final

similarity is defined as �ij ¼ expð� �2

2�2Þ. � is set to be the

average distance from the 20 percent closest neighbors.
The set of testing videos is synthesized3 by concatenating

clips that are randomly selected from these two databases.
We generated 10 testing videos for the Weizmann dataset
and 10 videos for the KTH dataset. Each of the videos
contains 10-20 clips of different actions. The kernel matrix is
constructed by using the silhouette-based (for Weizmann)
and flow-based features (for KTH), respectively. After that,
we initialized ACA and HACA as described in Section [63],
and ran ACA, HACA, and SC 10 times, one for each
concatenated video. We set the length constraint of the
actions to nmax ¼ 16 for ACA, while setting n

ð1Þ
max ¼ 4 and

n
ð2Þ
max ¼ 4 for the first and second level of HACA, respec-

tively. Fig. 14c shows the average accuracy of each method.
As can be observed, ACA and HACA outperform SC in

the task of clustering actions in video. SC algorithms make
use of frame similarity, which allows distinguishingmotions
that are different. However, motions like walking and
running are only similar in certain phases. In contrast, both
ACA and HACA can discriminate walking from running by
integrating temporal information. Notice that HACA is
usually more efficient for temporal clustering than ACA.
Furthermore, HACA returns a hierarchical decomposition of
motion where different actions on the top levels (large
temporal scale) share the same component in the lower levels
(short temporal scale), see Fig. 15. In the past few years, KTH
and Weizmann have been extensively used as benchmark
datasets for evaluating supervised algorithm for action
recognition. Currently, the best supervised algorithms
achieve an accuracy of 0.90 percent for theWeizmann dataset

[68] and 0.94 percent for the KTH dataset [69] using
presegmented videos and classifying all the videos. Recently,
Hoai et al. [70] achieved 87.7 percent in the task of temporal
segmentation of human motion in the KTH dataset. Their
approach is supervised. Interestingly, algorithms such as
ACA and HACA are able to achieve competitive detection
performances (77 percent) for human actions in a completely
unsupervised fashion. Moreover, ACA and HACA allow a
temporal decomposition at different temporal scales.

4.5 Honey Bee Dance Data

We have applied ACA to segment a honey bee dance, which
is a classical example of animal behavior and communica-
tion. The dataset [12] consists of six video sequences with
1,058, 1,125, 1,054, 757, 609, and 814 frames, respectively. The
bee motion in each sequence can be classified into three
different regimes: waggle, left turn, and right turn.

The position of the bee (Fig. 16a) is provided by Oh et al.

[12]. Fig. 16b shows the time series of the position and angle

of the bee over time. pi ¼ ½xi; yi�T 2 IR2 denotes the 2D

coordinates and ai ¼ ½sin �i; cos �i�T 2 IR2 the heading angle

at the ith frame. To normalize the location of the bee in the

box, we computed the relative position, xi ¼ x0i � xmi and

yi ¼ y0i � ymi , where x0i ; y
0
i are the position in the box

coordinate frame and xmi ; y
m
i is the mean position averaged

over the last 50 frames. We normalized the position in the

range of ½�1; 1� and computed the frame kernel matrix as

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 15. Hierarchical decomposition of video sequences. This motion
tree is derived by HACA. Observe that several actions in the second row
(walk, jog) share components from lower levels (smaller temporal scale).
For instance, jog and walk share the B component. (a) Example from the
Weizmann dataset. (b) Example from the KTH dataset.

3. To the best of our knowledge, there are no publicly available labeled
video databases adequate to test the temporal clustering problem. By
randomly concatenating the clips into a long sequence, we can generate
ground-truth labels.

Fig. 14. Comparison of different temporal clustering methods on video data. (a) Example of the Weizmann dataset. (b) Example of the KTH dataset.
(c) Accuracy.

�ij ¼ exp �
kpi � pjk2

2�2p
� kai � ajk2

2�2a

 !

(Fig. 16c). �p and �a are set to be the average distance from
the 50 and 20 percent closest neighbors, respectively.

We compare ACA to SLDS with a hierarchical Dirichlet
process prior (HDP-SLDS) [31], switching vector autore-
gressive (VAR) process with a HDP prior using unsuper-
vised Gibbs sampling (HDP-VAR (I)) [31], partially
supervised Gibbs sampling (HDP-VAR (II)) [31], and
parametric segmental SLDS (PS-SLDS) [12]. In this experi-
ment, we set the length constraint to nmax ¼ 15 for ACA
because it corresponds to the average cycle of the bee dance.
In HACA, we set n

ð1Þ
max ¼ 5; n

ð2Þ
max ¼ 3 for the first and second

level, respectively. Fig. 17 shows the segmentation results
for the six sequences for ACA, HACA, PS-SLDS [12], and
SC. We used the results reported in [31] for HDP-SLDS,
HDP-VAR (I), and HDP-VAR (II), and the results in [12] for
PS-SLDS.

As observed in the table of Fig. 17b, ACA and HACA
outperform other unsupervised methods such as SC and
HDP-VAR (I), in all six sequences except for the fourth one.
In comparison with weakly supervised approaches, HDP-
VAR (II), ACA and HACA achieve higher accuracy in four
sequences (first, second, fourth, and sixth). Furthermore,
ACA and HACA outperform the supervised methods,
HDP-SLDS and PS-SLDS, in three sequences (first, second,
and sixth) and underperform in the other three (third,
fourth, and fifth). HDP-SLDS and PS-SLDS learn the
parameters of a mixture of linear dynamic systems using
a leave-one-out strategy, whereas ACA and HACA are
unsupervised techniques.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed ACA and HACA, an
extension of KKM and SC for hierarchical temporal cluster-
ing and embedding of time series. HACA combines standard
vector-space approaches for clustering with DTAK and
dynamic programming. We have shown how HACA can
robustly temporally cluster humanmotion inmotion capture
data and video. Additionally, we have compared the
performance of ACA and HACA to state-of-the-art algo-
rithms for supervised and weakly supervised temporal
clustering, achieving comparable performance using an
unsupervised technique.

AlthoughHACAhas shown promising results, there are a
number of limitations. First, the computational complexity of
ACA is Oðn2nmaxÞ, which limits its applicability to long
sequences. The HACA algorithm could be sped up by
pruning some DP solutions; however, the computational

complexity in space would remain Oðn2Þ due to the
computation and storage of the n-by-n frame kernel matrix
(K). We are currently extending HACA using subsampling
techniques to start the clustering using a decimated version
of the time series and propagate it to another layer with
higher temporal scales. This enhancement will improve the
computational complexity in space and time. On the other
hand, the success of ACA partially depends on the choice of
the kernel parameters and the functional form of the kernel.
Currently, we are exploring approaches to learning the
kernel matrix for temporal clustering from a set of manually
labeled sequences.

ACKNOWLEDGMENTS

This work was partially supported by the US National
Science Foundation (NSF) under Grant Nos. EEEC-0540865,
RI-1116583, and CPS-0931999. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] D. Gavrila, “The Visual Analysis of Human Movement: A
Survey,” Computer Vision and Image Understanding, vol. 73, no. 1,
pp. 82-98, 1999.

[2] T.B. Moeslund, H. Adrian, and V. Krüger, “A Survey of Advances
in Vision-Based Human Motion Capture and Analysis,” Computer
Vision and Image Understanding, vol. 104, nos. 2/3, pp. 90-126, 2006.

[3] R. Poppe, “Vision-Based Human Motion Analysis: An Overview,”
Computer Vision and Image Understanding, vol. 108, nos. 1/2, pp. 4-
18, 2007.

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 13

Fig. 16. (a) A frame showing the box to track the bee and the trajectory
(green). (b) 4D features including position (x, y) and head orientation
(sin �, cos �). (c) Frame kernel matrix (K).

Fig. 17. Comparison of different temporal clustering methods on the
honey bee dance data. (a) Segmentation on the six honey bee dance
sequences. Red, blue, and green indicate the regimes of waggling,
turning left, and turning right, respectively. (b) Clustering accuracy.

[4] Y. Rui and P. Anandan, “Segmenting Visual Actions Based on
Spatio-Temporal Motion Patterns,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2000.

[5] L. Zelnik-Manor and M. Irani, “Statistical Analysis of Dynamic
Actions,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 9, pp. 1530-1535, Sept. 2006.

[6] D.D. Vecchio, R.M. Murray, and P. Perona, “Decomposition of
Human Motion Into Dynamics-Based Primitives with Application
to Drawing Tasks,” Automatica, vol. 39, no. 12, pp. 2085-2098, 2003.

[7] C. Lu and N.J. Ferrier, “Repetitive Motion Analysis: Segmentation
and Event Classification,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 26, no. 2, pp. 258-263, Feb. 2004.

[8] G. Guerra-Filho and Y. Aloimonos, “Understanding Visuo-Motor
Primitives for Motion Synthesis and Analysis,” J. Visualization and
Computer Animation, vol. 17, pp. 207-217, 2006.

[9] F. De la Torre, J. Campoy, Z. Ambadar, and J.F. Cohn, “Temporal
Segmentation of Facial Behavior,” Proc. 11th IEEE Int’l Conf.
Computer Vision, 2007.

[10] P.K. Turaga, A. Veeraraghavan, and R. Chellappa, “Unsupervised
View and Rate Invariant Clustering of Video Sequences,”
Computer Vision and Image Understanding, vol. 113, no. 3, pp. 353-
371, 2009.

[11] T. Kobayashi, F. Yoshikawa, and N. Otsu, “Motion Image
Segmentation Using Global criteria and DP,” Proc. IEEE Eighth
Int’l Conf. Automatic Face & Gesture Recognition, 2008.

[12] S.M. Oh, J.M. Rehg, T. Balch, and F. Dellaert, “Learning and
Inferring Motion Patterns Using Parametric Segmental Switching
Linear Dynamic Systems,” Int’l J. Computer Vision, vol. 77, nos. 1-3,
pp. 103-124, 2008.

[13] A. Fod, M.J. Matari�c, and O.C. Jenkins, “Automated Derivation of
Primitives for Movement Classification,” Autonomous Robots,
vol. 12, no. 1, pp. 39-54, 2002.

[14] O.C. Jenkins and M.J. Matari�c, “Deriving Action and Behavior
Primitives from Human Motion Data,” Proc. IEEE/RSJ Int’l Conf.
Intelligent Robots and Systems, 2002.

[15] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J.K. Hodgins, and
N.S. Pollard, “Segmenting Motion Capture Data Into Distinct
Behaviors,” Proc. Graphics Interface, 2004.

[16] M. Müller, T. Röder, and M. Clausen, “Efficient Content-Based
Retrieval of Motion Capture Data,” ACM Trans. Graphics, vol. 24,
no. 3, pp. 677-685, 2005.

[17] G. Liu and L. McMillan, “Segment-Based Human Motion
Compression,” Proc. ACM Siggraph/Eurographics Symp. Computer
Animation, 2006.

[18] F. Lv and R. Nevatia, “Recognition and Segmentation of 3-D
Human Action Using HMM and Multi-Class AdaBoost,” Proc.
European Conf. Computer Vision, 2006.

[19] R. Hamid, S. Maddi, A. Bobick, and I. Essa, “Structure from
Statistics-Unsupervised Activity Analysis Using Suffix Trees,”
Proc. 11th IEEE Int’l Conf. Computer Vision, 2007.

[20] P. Beaudoin, S. Coros, M. van de Panne, and P. Poulin, “Motion-
Motif Graphs,” Proc. ACM Siggraph/Eurographics Symp. Computer
Animation, 2008.

[21] O.C. Jenkins and M.J. Matari�c, “A Spatio-Temporal Extension to
Isomap Nonlinear Dimension Reduction,” Proc. Int’l Conf. Machine
Learning, 2004.

[22] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A Global
Geometric Framework for Nonlinear Dimensionality Reduction,”
Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

[23] H. Zhong, J. Shi, and M. Visontai, “Detecting Unusual Activity in
Video,” Proc. IEEE Conf. Computer Vision Pattern Recognition, 2004.

[24] F. De la Torre and C. Agell, “Multimodal Diaries,” Proc. IEEE Int’l
Conf. Multimedia and Expo, 2007.

[25] G. Guerra-Filho and Y. Aloimonos, “A Language for Human
Action,” Computer, vol. 40, no. 5, pp. 42-51, May 2007.

[26] D. Minnen, C.L. Isbell, I.A. Essa, and T. Starner, “Discovering
Multivariate Motifs Using Subsequence Density Estimation and
Greedy Mixture Learning,” Proc. 22nd Int’l Conf. Artificial
Intelligence, 2007.

[27] E.J. Keogh, S. Chu, D. Hart, and M.J. Pazzani, “An Online
Algorithm for Segmenting Time Series,” Proc. IEEE Int’l Conf. Data
Mining, 2001.

[28] X. Xuan and K. Murphy, “Modeling Changing Dependency
Structure in Multivariate Time Series,” Proc. 24th Int’l Conf.
Machine Learning, 2007.

[29] M. Ostendorf, V.V. Digalakis, and O.A. Kimball, “From HMM’s to
Segment Models: A Unified View of Stochastic Modeling for
Speech Recognition,” IEEE Trans. Speech and Audio Processing, vol.
4, no. 5, pp. 360-378, Sept. 1996.

[30] F. Desobry, M. Davy, and C. Doncarli, “An Online Kernel Change
Detection Algorithm,” IEEE Trans. Signal Processing, vol. 53, no. 8,
pp. 2961-2974, Aug. 2005.

[31] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, “Nonparametric
Bayesian Learning of Switching Linear Dynamical Systems,” Proc.
Neural Information Processing Systems, 2008.

[32] S.M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory. Prentice-Hall, Inc., 1993.

[33] Z. Harchaoui, F. Bach, and E. Moulines, “Kernel Change-Point
Analysis,” Proc. Neural Information Processing Systems, 2009.

[34] P. Fearnhead, “Exact and Efficient Bayesian Inference for Multiple
Changepoint Problems,” Statistics Computing, vol. 16, no. 2,
pp. 203-213, 2006.

[35] V. Pavlovi�c, J.M. Rehg, and J. MacCormick, “Learning Switching
Linear Models of Human Motion,” Proc. Neural Information
Processing Systems, 2000.

[36] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, “Sharing Features
among Dynamical Systems with Beta Processes,” Proc. Neural
Information Processing Systems, 2009.

[37] J.B. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistical Probability, 1967.

[38] F. De la Torre and T. Kanade, “Discriminative Cluster Analysis,”
Proc. 23rd Int’l Conf. Machine Learning, 2006.

[39] H. Zha, X. He, C.H.Q. Ding, M. Gu, and H.D. Simon, “Spectral
Relaxation for k-Means Clustering,” Proc. Neural Information
Processing Systems, 2001.

[40] S.Z. Selim and M.A. Ismail, “k-Means-Type Algorithms: A
Generalized Convergence Theorem and Characterization of Local
Optimality,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 6, no. 1, pp. 81-87, Jan. 1984.

[41] I.S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-Means: Spectral
Clustering and Normalized Cuts,” Proc. 10th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, 2004.

[42] R. Cutler and L.S. Davis, “Robust Real-Time Periodic Motion
Detection, Analysis, and Applications,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 22, no. 8, pp. 781-796, Aug.
2000.

[43] N. Marwan, M.C. Romanoa, M. Thiela, and J. Kurthsa, “Recur-
rence Plots for the Analysis of Complex Systems,” Physics Reports,
vol. 438, pp. 237-329, 2007.

[44] B.-K. Yi, H.V. Jagadish, and C. Faloutsos, “Efficient Retrieval of
Similar Time Sequences under Time Warping,” Proc. 14th Int’l
Conf. Data Eng., 1998.

[45] H. Shimodaira, K.-I. Noma, M. Nakai, and S. Sagayama,
“Dynamic Time-Alignment Kernel in Support Vector Machine,”
Proc. Neural Information Processing Systems, 2001.

[46] B. Schölkopf and A.J. Smola, Learning with Kernels. MIT Press,
2002.

[47] B. Haasdonk, “Feature Space Interpretation of SVMs with
Indefinite Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 4, pp. 482-492, Apr. 2005.

[48] M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui, “A Kernel for
Time Series Based on Global Alignments,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing, 2007.

[49] T.W. Liao, “Clustering of Time Series Data—A Survey,” Pattern
Recognition, vol. 38, no. 11, pp. 1857-1874, 2005.

[50] F. De la Torre, “A Least-Squares Framework for Component
Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 34, no. 6, pp. 1041-1055, June 2012.

[51] R. Zass and A. Shashua, “A Unifying Approach to Hard and
Probabilistic Clustering,” Proc. 10th IEEE Int’l Conf. Computer
Vision, 2005.

[52] S. Roweis and Z. Ghahramani, “A Unifying Review of Linear
Gaussian Models,” Neural Computation, vol. 11, no. 2, pp. 305-345,
1999.

[53] D.P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[54] E.J. Keogh and M.J. Pazzani, “Scaling Up Dynamic Time Warping
for Datamining Applications,” Proc. Sixth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, 2000.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

[55] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[56] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering:
Analysis and an Algorithm,” Proc. Neural Information Processing
Systems, pp. 849-856, 2001.

[57] R. Burkard, M. DellAmico, and S. Martello, Assignment Problems.
SIAM, 2009.

[58] “Carnegie Mellon University Motion Capture Database,” http://
mocap.cs.cmu.edu, 2012.

[59] J. Lee, J. Chai, P.S.A. Reitsma, J.K. Hodgins, and N.S. Pollard,
“Interactive Control of Avatars Animated with Human Motion
Data,” ACM Trans. Graphics, vol. 21, no. 3, pp. 491-500, 2002.

[60] J. Wang and B. Bodenheimer, “An Evaluation of a Cost Metric for
Selecting Transitions between Motion Segments,” Proc. ACM
Siggraph/Eurographics Symp. Computer Animation, 2003.

[61] R. Bowden, “Learning Statistical Models of Human Motion,” Proc.
IEEE Workshop Human Modeling, Analysis, and Synthesis, 2000.

[62] K. Forbes and E. Fiume, “An Efficient Search Algorithm for
Motion Data Using Weighted PCA,” Proc. ACM Siggraph/
Eurographics Symp. Computer Animation, 2005.

[63] F. Zhou, F. De la Torre, and J.K. Hodgins, “Aligned Cluster
Analysis for Temporal Segmentation of Human Motion,” Proc.
Eighth IEEE Int’l Conf. Automatic Face & Gesture Recognition, 2008.

[64] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri,
“Actions as Space-Time Shapes,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 12, pp. 2247-2253, Dec. 2007.

[65] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing Human
Actions: A Local SVM Approach,” Proc. 17th Int’l Conf. Pattern
Recognition, 2004.

[66] A.A. Efros, A.C. Berg, G. Mori, and J. Malik, “Recognizing Action
at a Distance,” Proc. Ninth IEEE Int’l Conf. Computer Vision, 2003.

[67] B.D. Lucas and T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision,” Proc. Seventh
Int’l Joint Conf. Artificial Intelligence, 1981.

[68] J.C. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised Learning of
Human Action Categories Using Spatial-Temporal Words,” Int’l
J. Computer Vision, vol. 79, no. 3, pp. 299-318, 2008.

[69] Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng, “Learning
Hierarchical Invariant Spatio-Temporal Features for Action
Recognition with Independent Subspace Analysis,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2011.

[70] M. Hoai, Z.-Z. Lan, and F. De la Torre, “Joint Segmentation and
Classification of Human Actions in Video,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2011.

Feng Zhou received the BS degree in computer
science from Zhejiang University in 2005, the
MS degree in computer science from Shanghai
Jiao Tong University in 2008, and the MS degree
in robotics from Carnegie Mellon University in
2011. He is now working toward the PhD degree
in robotics at Carnegie Mellon University. His
research interests include machine learning and
computer vision. He is a student member of the
IEEE.

Fernando de la Torre received the BSc degree
in telecommunications, and the MSc and PhD
degrees in electronic engineering from the La
Salle School of Engineering at Ramon Llull
University, Barcelona, Spain in 1994, 1996,
and 2002, respectively. He is an associate
research professor in the Robotics Institute at
Carnegie Mellon University. His research inter-
ests are in the fields of computer vision and
machine learning. Currently, he is directing the

Component Analysis Laboratory (http://ca.cs.cmu.edu) and the Human
Sensing Laboratory (http://humansensing.cs.cmu.edu) at Carnegie
Mellon University. He has more than 100 publications in refereed
journals and conferences. He has organized and co-organized several
workshops and has given tutorials at international conferences on the
use and extensions of component analysis.

Jessica K. Hodgins received the PhD degree
in computer science from Carnegie Mellon
University (CMU) in 1989. She joined the
Robotics Institute and Computer Science De-
partment at Carnegie Mellon University as a
associate professor in the fall of 2000. She is
now a professor in computer science and
robotics, associate director for the faculty in
the Robotics Institute as well as the part-time
director of Disney Research, Pittsburgh Labora-

tory. Prior to moving to CMU, she was an associate professor and
assistant dean in the College of Computing at the Georgia Institute of
Technology. She has received a US National Science Foundation (NSF)
Young Investigator Award, a Packard Fellowship, and a Sloan Fellow-
ship. She was editor-in-chief of the ACM Transactions on Graphics from
2000 to 2002 and papers chair for ACM Siggraph 2003.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHOU ET AL.: HIERARCHICAL ALIGNED CLUSTER ANALYSIS FOR TEMPORAL CLUSTERING OF HUMAN MOTION 15

