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Careful design and verification of the power distribution network of
a chip are of critical importance to ensure its reliable performance.
With the increasing number of transistors on a chip, the size of the
power network has grown so large as to make the verification task
very challenging. The available computational power and mem-
ory resources impose limitations on the size of networks that can
be analyzed using currently known techniques. Many of today’s
designs have power networks that are too large to be analyzed in
the traditional way as flat networks. In this paper, we propose a
hierarchical analysis technique to overcome the aforesaid capac-
ity limitation. We present a new technique for analyzing a power
grid using macromodels that are created for a set of partitions of
the grid. Efficient numerical techniques for the computation and
sparsification of the port admittance matrices of the macromodels
are presented. A novel sparsification technique using a 0-1 integer
linear programming formulation is proposed to achieve superior
sparsification for a specified error. The run-time and memory effi-
ciency of the proposed method are illustrated through the analysis
of case studies of several multi-million node power grids, extracted
from real microprocessor and DSP designs.

With the increase in the complexity of VLSI chips, designing and
analyzing a power distribution network has become a challenging
task. A robust power network design is essential to ensure that
the circuits on a chip operate reliably at the guaranteed level of
performance. A poorly designed power network can become the
cause for a variety of problems such as loss of circuit performance,
noise generation, and electro-migration failures. With the increased
power level and device densities of microprocessors in sub-micron
technologies, these problems are more likely unless serious atten-
tion is given to power network design. Critical to obtaining a ro-
bust design is the ability to analyze the network efficiently several
times in the design cycle. Several previously published research
works [1–4] discuss methodologies and techniques to accomplish
this task efficiently.

The difficulty in power network analysis stems mainly from
three sources: (i) the network is very large, typically 1 million
to 100 million nodes, (ii) the network is nonlinear as it contains
switching devices, and (iii) the voltage and current distribution in
the network is dependent on the instruction executed on the pro-
cessor. Our work, presented in this paper, addresses the first prob-
lem. The second problem is circumvented traditionally [1] by per-
forming nonlinear simulation of individual circuit blocks without
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including the parasitics in the power interconnects, and then sim-
ulating the power interconnect as a whole using the time-variant
current profiles, obtained in the nonlinear simulation as the excita-
tion sources. The third problem is one of obtaining a good coverage
of all possible worst case power demand situations. Manually gen-
erated “hot loops,” an extensive set of input vectors, and statically
generated worst case current profiles [5–7] are some of the alterna-
tives that address the worst case coverage issue.

The size based complexity of the problem has been partly ad-
dressed earlier [1, 2] by using very efficient sparse linear system
solution techniques. Cholesky factorization (direct method) [8]
and conjugate gradient techniques with pre-conditioners (iterative
method) [8] have been used to solve the linear system associated
with the power grid. These specialized techniques operate very ef-
ficiently by exploiting the special structure and properties of the
underlying linear system. However, the solutions proposed earlier
have applied these techniques to a flat (nonhierarchical) model of
the power network. As a result, there is a serious limitation on
the size of the problem they can solve, the limitation being im-
posed by the amount of memory available for computation. At the
current technological level, it is seen that the available computing
resources are insufficient to simulate very large power grids of to-
day’s microprocessors using a flat model. The size of the power
grid of a typical high performance microprocessor in 0.18 micron
design, and using 6 layers of metal, is in the range of 10 million
to 100 million nodes. Thus the power grid simulation would re-
quire solving a linear system of similar size at multiple time points.
Clearly, the speed and memory capacity of a typical computing en-
vironment is insufficient to solve such a large system even with the
most efficient linear system solution techniques.

In this work, we propose a hierarchical analysis technique to
overcome the limitations of the traditional approach based on flat
power grid model. Our approach comprises of the following steps:
(1) Partitioning of the power grid into local and global grids, using
the hierarchical structure in the design, (2) Generating macromod-
els for the local grids using efficient numerical methods, (3) Spar-
sifying the port admittance matrices of the macromodels, while
maintaining the accuracy of the solution, (4) Simulating the global
grid after augmenting it with the macromodels of the local grids,
and finally, (5) Simulating the local grids where desired.

The basic strength of the proposed approach is derived from
the well-known strategy of “divide and conquer,” which is real-
ized through partitioning. However, the efficiency and usefulness
of the hierarchical approach is sensitive to several factors, such as
the partitioning technique and the memory and runtime costs in-
volved in generating the macromodels. Our work in this research
addresses these problems in order to realize a practical and efficient
implementation of the hierarchical analysis strategy. We propose a
partitioning strategy that reduces the memory required for storage
in our hierarchical simulation approach. Moreover, a novel matrix
sparsification technique based on 0-1 integer linear programming is
proposed to further reduce the memory requirements. Additionally,
an efficient numerical procedure for calculating the macromodels is
given. The computation takes advantage of the fact that the under-
lying linear system is symmetric and positive definite. The pro-
posed approach has been applied for analyzing the power grid of a
number of high performance microprocessors and DSP chips, ob-
taining significant memory and runtime advantages over the flat
model analysis approach. To our knowledge, no work has been re-
ported so far to address this critical issue of limitation on the size
of power grids analyzable using current approaches.

The remainder of the paper is organized as follows. In section
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2, we present the concept of macromodeling and the partitioning
strategy. Also presented in that section are the computational tech-
niques for generating the macromodels. In section 3, the matrix
sparsification technique is explained. Section 4 reports the perfor-
mance results of the proposed approach for a set of benchmark de-
signs, followed by conclusions in section 5.

Before presenting the macromodeling approach, let us present an
overview of power grid simulation in general. A chip’s power dis-
tribution system is modeled as a linear RLC network with inde-
pendent time-varying current sources modeling the switching cur-
rents of the transistors. Simulating the network requires solving the
following system of differential equations, which are formed in a
typical approach such as the Modified Nodal Analysis (MNA) [9]
approach:

G x t C x t b t (1)

where G is a conductance matrix, C is the admittance matrix result-
ing from capacitive and inductive elements, x(t) is the time-varying
vector of voltages at the nodes, and currents through inductors and
voltage sources, and b(t) is the vector of independent time-varying
current sources. This differential system is very efficiently solved
by reducing it to a linear algebraic system

G C h x t b t C h x t h (2)

using Backward Euler (BE) technique with a fixed time step, h.
The BE reduction with fixed time stepping is advantageous for tran-
sient simulation since the left hand side (LHS) matrix (G C h ,
referred to as the coefficient matrix, is rendered stationary, allow-
ing either pre-processing or factoring of the matrix for a one-time
cost and reusing it efficiently to solve the system at successive time
points.

When x consists only of node voltages, as in the case of a mod-
ified nodal formulation of a network with R’s, C’s, and current
sources only, the coefficient matrix can be shown to be symmetric
and positive definite. A symmetric positive definite formulation is
feasible even when inductive elements are included in the analysis,
although this would involve an additional reduction step from the
modified nodal formulation. The symmetric positive definiteness
of the coefficient matrix, which is also very sparse, is especially at-
tractive as the system can now be solved very efficiently using spe-
cialized linear system solution techniques, such as Cholesky factor-
ization (direct method) and Conjugate Gradient (iterative method)
techniques. The direct method through Cholesky factors is very
cost-effective for simulations at multiple time points, as the expen-
sive step of factoring is performed only once initially and its cost is
amortized over multiple time point solutions. Successive solutions
would involve only inexpensive forward and backward substitution
procedures. Although the macromodeling techniques presented in
this paper are suitable for use with either type of solution approach,
direct or indirect, we will assume, for simplicity of presentation,
that the underlying linear solver is direct.

The run time and memory requirement for solving a linear system
is determined primarily by the size, sparsity, and structure of the
coefficient matrix. If the network is very large (107 - 108 nodes),
the available physical and virtual memory of the system is insuf-
ficient even for loading in the data associated with the network.
Even when the base memory requirement is met, memory demand
quickly grows during the matrix factorization process, due to new
fills being created. Given a reordering scheme, the number of fills
created is determined by the initial sparsity and structure of the ma-
trix. The sparsity is given by the ratio of the number of elements in
the network to the number of nodes. While tree-like network struc-
tures have low fills, mesh structures generally tend to have large
fills during factorization. The amount of matrix computation be-
ing very sensitive to the sparsity and fill pattern, it is very desirable

to have the initial matrix as sparse as possible. The objective of
the proposed approach is, hence, twofold - (i) to reduce the size of
the problem, and (ii) to maintain a high degree of sparsity in the
reduced problem.

The first objective is met by partitioning the given network into
subnetworks of manageable size, and solving the network by solv-
ing the sub-pieces individually. Since the entire network is tightly
connected, we cannot ignore the interaction between the various
partitions without incurring significant error. So, in order to ac-
count for the interactions between partitions, while at the same time
not enlarging the size of the problem at hand, we use models for the
partitions that capture their behavior as observed at their interface
nodes (also called ports). We refer to these models as macromod-
els. A macromodel is a multi-port linear circuit element that has
the same linear relation between the voltages and currents through
its ports as the partition itself. With macromodels for partitions
available, the original (unpartitioned) network is efficiently solved
after replacing the partitions by the respective macromodels, as the
macromodels are much smaller in size than the partitions them-
selves.

The gains made through partitioning can be quickly lost if the
partitions generate very dense macromodels, and thus increase the
effective size of the problem. Our approach addresses this issue in
two ways. First, the partitioning is performed strategically as ex-
plained in section 2.4. Then, an optional step of sparsification can
be applied to the generated models. The key issue in sparsification
is not to compromise accuracy of the final solution. The sparsifica-
tion technique is covered in section 3.

Besides the memory advantage, the macromodeling approach
provides a significant speedup as the creation of macromodels for
the partitions can be performed in parallel.
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Figure 1: Hierarchical power network analysis

The macromodel approach to power grid analysis is illustrated in
Figure 1. Let us consider a division of the entire power network
into one global partition and k local partitions. A node in a local
partition having links only to other nodes in the same partition is
called an internal node, a node in the global partition is called a
global node, and a node in a local partition that is connected to
some node outside the local partition (i.e., in the global partition or
in another local partition) is called a port. The global grid is then
defined to include the set of nodes that lie in the global partition
and the port nodes, while the grid in a local partition constitutes a
local grid.

Now each of the k local grids can be modeled as a multi-port
linear element with transfer characteristics given by

I A V S I Rm A Rm m V Rm S Rm (3)

where m is number of ports in the local grid, A is the port admit-
tance matrix, V is the vector of voltages at the ports, I is the current
through the interface between the local and global grids, and S is a
vector of current sources connected between each port and the ref-
erence node. S essentially has the effect of moving all the current
sources internal to a local grid to the ports of the multi-port model.
We refer to the set (A,S) as the macromodel of the respective local
grid. The macromodel (A,S) in equation (3) is obtained through a
reduction procedure starting from the modified nodal equations of
the local grid expressed in the form:



G U J G Rn n U Rn J Rn (4)

where n is number of nodes in the local grid, G is the coefficient
matrix, U is the voltage vector of the nodes of the local grid, and
J is vector of currents that flow out of each node in the local grid.
For the port nodes, J would also include the currents through the
interface between the local and global grids. The procedure of de-
riving the transfer characteristic in Equation (3) from the modified
nodal equation of (4) is referred to as macromodeling, and will be
addressed in detail in section 2.5.

Once the macromodels for all the local grids are generated, the
entire network can be abstracted simply as the global grid, with
the macromodel elements connected to it at the port nodes. This
is achieved by combining the coefficient matrix and the RHS cur-
rent vector of the global grid with the macromodels, (A,S); Equa-
tions (3) of each local grid may be stamped into the modified nodal
equations of the global grid as follows.

G00 G01 G02 G0k
GT

01 A1 G12 G1k
GT

02 GT
12 A2 G2k

...
...

GT
0k GT

1k GT
2k Ak

V0
V1
V2
...

Vk

I0
S1
S2
...
Sk

(5)

In the above equation,

global nodes are labeled as partition 0
Gi j represents the conductance links between partition i and
partition j.
I0 is the vector of currents that flow out of the global nodes.
Si is the constant vector of partition i.
Vi is voltage vector of partition i.
Ai is the port admittance matrix of partition i, where i 1 k .

This is a system of (n0 m1 m2 mk) linear equations,
where n0 is the number of global nodes and mi is the number of
ports in each partition.

From the above reduction scheme, the voltages and currents in
the entire power grid can be solved in the following steps:

Obtain global grid voltages by solving equation (5).
For each partition, obtain I from equation (3) using the port
voltages
Solve equation (4) for each partition using I on the right hand
side, to obtain voltages at the internal nodes of partitions.

The flow of the macromodel approach is illustrated in Figure 2.
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Figure 2: Flow of the macromodel

The main difficulty in macromodeling is that the model is often
fully dense even though the partition from which it is created itself
may be very sparse. Note that the entries of matrix A in equation (8)
are admittances of paths between pairs of ports. Thus, a nonzero
entry at position i j results if there is a conducting path in the
partition between these ports, even though there may not be a direct
link between these ports. As a result, the number of nonzero entries

in A is m2 , where m is the number of ports, unless the grid
inside the partition is heavily fragmented. Nevertheless, there is a
substantial win if m2 is much smaller than the number of nodes in
the partition that are abstracted away by this model. Thus, the key
idea in the partitioning strategy is to identify a subnetwork and a
interface boundary such that the number of internal nodes is much
larger than the square of the number of nodes at the interface.

Fortunately, the natural hierarchical boundaries of circuit
blocks often meet the above criteria. For instance, a large mem-
ory array with 3 local metal layers may have several millions of
internal nodes, but it may have very few (hundreds of) nodes inter-
facing with the upper layer of the global grid, and almost none with
other circuit blocks. Although one can have a sophisticated parti-
tioning strategy, we have found in practice that a simple inspection
procedure of checking every circuit block or a group of adjacently
placed blocks for the above criteria works very well.

Macromodeling is the procedure of deriving Equation (3) from
the modified nodal equations of the partition. The modified nodal
equations for a partition can be written as

G11 G12
GT

12 G22

U1
V

J1
J2 I (6)

where
U1 and V are vectors of voltages at the internal nodes and
ports respectively
J1 and J2 are vectors of current sources connected at the in-
ternal nodes and ports respectively
I is the vector of currents through the interface
G12 is the admittance of links between the internal nodes and
the ports
G11 is the admittance matrix of internal nodes
G22 is the admittance matrix of ports.

From (6), we may rewrite the first set of equations as

U1 G 1
11 J1 G12V (7)

Substituting this value of U1 into the second equation of (6), we get

I G22 GT
12G 1

11 G12 V GT
12G 1

11 J1 J2 (8)

Here, GT
12G 1

11 J1 J2 is the constant vector S in Equation (3) and
G22 GT

12G 1
11 G12 is the port admittance matrix A in Equation (3).

It may be noted that the pre-multiplication and post-
multiplication operations with G 1

11 can be carried out without ex-
plicitly inverting G11, but through multiple invocation of the direct
or iterative solver.

The above calculation can be made very efficient using the fact
that the coefficient matrix, G is symmetric and positive definite.
We show below how A and S can be computed efficiently from
the submatrices of the Cholesky factors, rather than the Cholesky
factors themselves. Relating G11, G12, and G22 to the submatrices
of the Cholesky factors of G, we have

G11 G12
GT

12 G22

L11 0
L21 L22

LT
11 LT

21
0 LT

22

L11LT
11 L11LT

21
L21LT

11 L21LT
21 L22LT

22

Now computing A in terms of submatrices of factors, we get

A G22 GT
12G 1

11 G12

L21LT
21 L22LT

22 L21LT
11 L11LT

11
1L11LT

21

L22LT
22



Similarly, vector S is given by

S GT
12G 1

11 J1 J2

L21LT
11 LT

11
1L 1

11 J1 J2

L21L 1
11 J1 J2 (9)

The above simplified technique reduces computation dramati-
cally over the direct computation based on equation (6), as L22 and
L11 used in equation (9) are already triangular.

In this section we present the computational advantage of macro-
modeling over the flat model analysis approach.

Suppose the cost of factorizing a matrix is C1 l , and the cost
of one forward and one backward substitution is C2 l , where l is
the size of the matrix, and C2 l C1 l . Let N be the number of
nodes in the entire power network.

If no macromodels are used for the power analysis, the com-
putation cost of the first run is C1 N and the computation cost of
a subsequent run is C2 N . In the macromodeling approach, the
computation cost of the first run can be expressed as

C1 n1 C1 n2 C1 nk C1 n0 m0 m1 mk

C2 n1 C2 n2 C2 nk (10)

Here, ni i 1 k is number of nodes in each partition, n0 and mi are
defined in Section 2.3, and n0 n1 n2 nk N. The compu-
tation cost from macromodeling is given by C1 n1 C1 n2
C1 nk by using the simplified macromodeling method described in
section 2.5. The cost of finding the solution to the global network is
C1 n0 m0 m1 mk and the cost of solving the local grids
is C2 n1 C2 n2 C2 nk , since the factors obtained from
macromodeling can be used for solving the local grid.

The computation cost of each subsequent run can therefore be
approximated as

C2 n0 m0 m1 mk 2C2 n1 2C2 n2 2C2 nk
(11)

where the computation cost of macromodeling is C2 n1
C2 n2 C2 nk since the Ai’s are unchanged and only the Si’s
must be recalculated during the subsequent run in macromodeling.

Expressions (10) and (11) provide a rough estimate of compu-
tation costs based on the size of the network and its partitions. In
reality, the density of a matrix is an important factor that influences
the solution speed. Generally, the conductance matrices for parti-
tions are denser than the conductance matrix of the entire network,
and thus the conductance matrix in equation (8) used for the global
solution is a dense matrix.

Typically, Cholesky factorization requires n3 6 multiplications
and substitution requires n2 2 multiplications. However the spar-
sity of the conductance matrix, combined with efficient reordering,
enables the observed computation cost to be near-linear with the di-
mension of the matrix. However, with an increase in the size of the
conductance matrix, the computation cost will approach the n3 6
or n2 2 curve gradually. In such cases, the computation cost for the
macromodel approach will be lower than that for the flat analysis
even with the overheads associated with partitioning.

Most important of all, the divide and conquer procedure applied
to the power network makes parallel execution of power network
simulation possible. During parallel execution, the execution time
of the first run is given by

max C1 n1 C1 n2 C1 nk C1 n0 m0 m1 mk

max C2 n1 C2 n2 C2 nk

where C1 n0 m0 m1 mk is the global solu-
tion time, max C1 n1 C1 n2 C1 nk represents the max-
imum execution time among macromodeling of partitions and
max C2 n1 C2 n2 C2 nk represents the maximal execution
time out of partition solutions. Similarly, the execution time of the
subsequent run is given by

C2 n0 m0 m1 mk 2 max C2 n1 C2 n2 C2 nk

Moreover, the memory requirement with macromodels is the max-
imum memory required for solving any partition, rather than the
sum of memory requirement of each partition.

Besides run time and memory advantage, macromodeling pro-
vides a certain flexibility to a design/analysis situation so that sig-
nificant analysis effort can be saved. Given below are few examples
of design/analysis situations when such flexibility is useful.

Example-1: When a designer is interested in the detailed anal-
ysis only of a specific circuit block, then significant design time is
saved by not simulating the other partitions, but while accounting
accurately the effect of switching of these other blocks on the block
s/he is interested in.

Example-2: A designer knows a priori in which circuit block
or blocks the worst drop is to be expected, and the objective of the
analysis is to only to find the worst IR drop estimate for the design.
Then, it will be necessary to simulate only few blocks (partitions)
in the last step of the macromodel approach.

Example-3: The process of fixing problems in a power grid is
usually an iterative one. The process consists of detecting an error,
making local changes to the grid to correct the problem, and re-
running the analysis. In this case, only the macromodeling of the
partition whose grid was changed needs to be recalculated. The
speed-up in analysis due to this makes it possible for the designer
to fix the problems interactively with the analysis tool.

In section 2.4, we pointed out that the number of entries in the
macromodel has m2 complexity for model size m. Although
the macromodels reduce the size of the system to the smaller sys-
tem described in equation (5), the sparsity of the coefficient matrix
of equation (5) decreases considerably due to the density of the
Ai submatrices. For an iterative solver, this is undesirable as the
number of floating point operations (FLOPs) to solve the system
increases. For a direct solver, this affects both the FLOPs, as well
as the memory required to factorize. The additional memory de-
mand is caused by excessive fills created by the dense parts during
factoring. So, to derive the most benefit out of the macromodel-
ing approach, it is important that the coefficient matrix in equa-
tion (5) is kept sparse. While the partitioning strategy explained in
section 2.4 is a natural way of achieving this, other sparsification
techniques in conjunction with good partitioning schemes are very
useful for making the macromodeling approach practical. In this
section, we present a novel technique to sparsify the port admit-
tance matrices of the macromodels.

Our sparsification method is motivated by the observation that
although the matrix A is dense, it consists of a large number of
values that are numerically small and will have little influence on
the results if approximated to zero. We provide an algorithm to
sparsify the coefficient matrix A by dropping some of its entries,
while keeping the error introduced by this process below a spec-
ified value. The proposed sparsification technique also preserves
the symmetry and the positive definite property of the matrix. Note
that the sparsification procedure needs to be performed only once
(during the first run).

The problem is stated as follows: Given the transfer characteristic
equation of each partition

i1
i2
i3
.
.
.

im

a1 1 a1 2 a1 3 a1 m
a2 1 a2 2 a2 3 a2 m
a3 1 a3 2 a3 3 a3 m

.

.

.
am 1 am 2 am 3 am m

v1
v2
v3

.

.

.
vm

s1
s2
s3

.

.

.
sm

(12)

the nominal value of v j , j 1 m : B, B 0, and

the error in i j , j 1 m : e j



Table 1: Run-time and memory comparison for the first simulation
Chip #nodes Without macromodel With macromodel

(millions) Run-time Peak # #nodes(max) Total Run-time Peak
(minutes) Memory (GB) part (millions) Serial(min) Parallel(min) Memory (GB)

Chip-1 3.9 93 1.5 12 0.40 43 7 0.2
Chip-2 2.7 57 1.2 9 0.58 25 6 0.3
Chip-3 7.5 629 2.6 11 0.79 136 26 0.4
Chip-4 20.0 - - 7 3.5 444 152 1.3

transform equation (12) into

i1
i2
i3
.
.
.

im

a1 1 a1 2 a1 3 a1 m
a2 1 a2 2 a2 3 a2 m
a3 1 a3 2 a3 3 a3 m
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.

.

.
sm

(13)

to maximize

the number of a j k j k such that a j k 0

subject to
i j i j e j j 1 m

a j k ak j (maintaining matrix symmetry)

This problem can be formulated into a 0-1 multidimensional knap-
sack problem [10, 11]. In this section, we describe the transforma-
tion from the above problem to the knapsack problem.

The task here involves zeroing out off-diagonal elements of the
matrix A. It is easy to show that these sparsification operations
maintain the positive definite property of the matrix. To see this,
we note first that the partition can be thought of as being purely
resistive (for example, any capacitors are linearized). Given this
“resistive” network, one may build an equivalent network of a set
of equivalent resistances R jk between each pair of ports j and k.
The matrix A is then simply the conductance matrix for this net-
work of R jk’s, and is therefore diagonally dominant. This leads to
two conclusions: (1) all off-diagonal elements must be nonpositive,
and (2) zeroing out off-diagonal elements of A maintains the diag-
onal dominance of the matrix, and therefore its positive definite
property.

The problem formulation is described as follows. First consider
the maximum error that an element of matrix a j k can cause if it
is rounded off to 0. Since B is positive and a j k 0 j k, the
maximum negative error caused by rounding off a j k , en j k , is given
by

en j k a j k B j k

Let X j k represent a Boolean value, 1 when element a j k is rounded
to zero, and 0 otherwise. The matrix sparsification problem can be
formulated as 0-1 knapsack problem as follows.

Maximize z x m
k 1

k
j 1 X j k

subject to
j 1
k 1 en j k X j i

m
k j 1 en j k X j k e j j 1 m

X j k 0 1 for all X j k, j k (14)

In (14), the indices of the variables X j k are required to satisfy
the relation, j k, so that X j k 1 indicates the rounding-off of
both a j k and ak j to maintain the symmetricity of A. Therefore, the
resulting sparsified matrix is symmetric and positive definite.

The 0-1 knapsack problem can be solved optimally either by
dynamic programming or using an ILP solver. In our implemen-
tation, we use the latter, but with some modifications for speed
considerations. First, we relax the integer requirement and solve
the fractional knapsack problem using a linear programming solver
[12]. Next, the fractional x jk’s are sorted, and applied successively
until the maximum error in i j reaches the specified limit, e j .

The hierarchical analysis method using macromodels was imple-
mented using C and embedded in an existing in-house power analy-
sis tool [1]. An efficient direct linear solver based on Cholesky fac-
tors was used in all the experiments. The extracted power grids of
four high performance general purpose/DSP microprocessor chips
were used to benchmark the performance of macromodeling (Ta-
bles 1 and 2) and sparsification (Table 3) techniques. Chips 1, 2 and
4 are DSP and communication chips whose power grids are imple-
mented in 3 layers of metal. Chips 3 and 5 are high performance
microprocessor chips using 5 and 6 metal layers respectively. The
analyses were run on Sun workstations. The run time measures
used for comparison are based on the actual time required to com-
plete the task.

Table 1 compares the performance of the proposed hierarchical
approach using macromodels with that of the nonhierarchical ap-
proach. Two metrics are compared - the peak memory demand
and the total run-time. The number of nodes, in millions, for the
entire power network is given in column 2, the number of parti-
tions used by the macromodeling algorithm are listed in Column 5,
and the number of nodes in the largest partition is given in column
5. Column 3 shows the total time, in minutes, taken for complet-
ing the analysis on the flat model, while columns 7 and 8 show
the total time required by the hierarchical approach. The run-time
in column 7 corresponds to the cases when the macromodels for
the various partitions were generated serially on a single computer,
whereas column 8 is for the cases when these computations are per-
formed in parallel. The run-time reported in this table is the time
taken for analyzing the power network at the first time point in a
sequence of simulations. Columns 4 and 9 show the peak mem-
ory demand, in Gigabytes, during the analysis without macromod-
els and with macromodels, respectively. Chip-4 can not be solved
without macromodeling due to its large size.

It is evident from the above table that the problem size tackled
with the proposed approach is substantially reduced from the orig-
inal problem. This is the primary goal of the proposed approach
so that a chip-level analysis of very large designs is made possible.
Based on the benchmarks, it can be seen that the size of the linear
system that needs to solved with the new approach is about 10X
smaller than the traditional approach.

The effect of problem size reduction is clearly reflected in the
peak memory requirements of the different approaches shown in
the table. Again, a 10X to 20X reduction in memory requirement is
seen possible with the hierarchical approach. This implies that with
the available computing resources (memory and speed), the new
method enables the analysis of much larger designs that will be-
come common in the near future. From the results, we can see that
without macromodels the run time can be several hours (e.g., 10.5
hours for Chip 3) for a supply network with millions of nodes. As a
result of reducing the size complexity, the run-time is reduced by a
factor of 2X to 5X even when the macromodels are computed one
after another on a single computer. The run-time is dramatically re-
duced by 10X to 23X, if the parallelism created by the macromodel
is utilized. It is noteworthy that the speedups improve with the size
of the circuit under consideration.

It should be noted that the performance of hierarchical approach
reported in Table 1 does not consider the additional performance
gain resulting from the proposed sparsification technique.

Table 2 compares the performance of the two approaches based



Table 2: Comparison of run time for 1000 subsequent simulations
Chip Without macromodel With macromodel

run-time run-time
(hours) Total(hours) Parallel(hours)

Chip-1 8.4 28.0 4.0
Chip-2 8.0 22.5 4.4
Chip-3 33.7 43.5 6.6

on the time required to perform simulations at 1000 successive time
points, after the first one. Thus, the run-times here are independent
of the time taken to generate the macromodels. Column 2 shows the
run time without macromodels. For the hierarchical approach, run-
times for both serial (column 3) and parallel (column 4) execution
are shown. Since the memory requirement of these runs is less than
that of the first run, these figures are omitted in Table 2.

The hierarchical approach executed in serial mode recorded un-
favorable run-times for the benchmarks. However, the disparity in
run-times between the nonhierarchical and hierarchical approach
(in serial mode) diminishes as the size of the original network be-
comes larger, as evidenced from the results for Chip-3, which has
7.5 million nodes. This behavior is not unexpected, and can be ex-
plained by the fact that the overhead associated with computing the
S vector for each partition at every time step, and back-solving each
partition again in the final step of the solution, is a dominant factor.
This behavior is exhibited for networks up-to a certain size, where
the original matrix and the reduced matrix do not differ greatly in
terms of the time required for a back-solve. However, as the net-
work becomes larger, the difference in problem sizes with and with-
out macromodels are significantly different, and the overhead cost
of handling the partitions becomes negligible in the overall cost.
As a result, the hierarchical approach becomes favorable for very
large networks even in the serial execution mode.

The run-time advantage of parallel execution mode is very clear
from Table 2. Results show that the parallel execution utilizing hi-
erarchy is 1 8 5 1 times faster than the nonhierarchical approach.
As designers would like to simulate the power grid with long traces
of current signatures in order to obtain good coverage of the IR-
drop situations, efficiency of simulation in this phase is crucial. The
parallel execution mode, as well as the flexibility in the hierarchi-
cal analysis discussed in section 2.6, make the hierarchical analysis
approach extremely attractive.

The sparsification procedure described in section 3 reduces the
number of nonzero elements while maintaining an acceptable level
of accuracy. In our implementation, the specified error e j is defined
as e j max const s j x% , where const is a small positive con-
stant, s j 1 j m, is as defined in equation (12), and x% is the
user-defined error limit, which is typically 0% 10%. The spar-
sification technique was implemented using a linear programming
solver lp solve 2.3 [12].

Table 3 reports the sparsity and run-time improvements
achieved for two benchmark examples, analyzed at different lev-
els of accuracy. The second column in the table shows the voltage
value of the clean power supply and the value of the maximum
voltage drop observed in the circuit. Columns 3 and 4 report the
number of nodes and the total number of ports respectively in the
global grid. The number of nonzero elements in the coefficient
matrix of equation (5) are shown in Column 5. Column 6 shows
the maximum voltage error caused by the sparsification procedure.
The ratio of maximum observed error in voltage to the maximum
voltage drop is shown in column 7. Finally, column 8 reports the
time required to solving equation (5).

For each benchmark, the proposed sparsification technique was
tested at four levels of accuracy. The benchmark Chip-5 is a 6-
layer, mesh type, power grid. Its power grid is much denser than
the other examples, and this example also has some partitions with
large number of ports. As a result, the coefficient matrix obtained
for this example could not be solved with the available computing
resources without sparsification.

The results clearly show that the sparsity of the coefficient ma-
trix is improved by as much as 11X, incurring only 2 6% error in

the final results. The improved sparsity improved the run-time for
the dense example, Chip-5 significantly, besides greatly reducing
the memory requirement.

Table 3: The effect of sparsification

Chip Clean/ # # #non- Max-err Error Run-
Max- nodes ports zeroes (v) % time

drop(v) (secs)

Chip 2.0/0.12 23261 379 106909 0.0 0.0% 38.3
-3 98505 0.000043 0.04% 36.0

98253 0.00058 0.5% 32.4
98005 0.0013 1% 30.6

Chip 1.8/0.02 2932 2849 2067572 0.0 0.0% -
-5 366612 0.000045 0.2% 36.5

249588 0.00021 1.0% 24.4
197868 0.00051 2.6% 20.1

In this paper, we have presented a hierarchical power network anal-
ysis method using novel macromodeling and matrix sparsification
techniques. The proposed techniques were shown to gain sig-
nificant memory and run-time advantages over the traditional ap-
proach of analyzing the power network without using the hierarchy.
The experimental results based on analyzing the entire power net-
work of four high performance microprocessor designs confirmed
these claims. The hierarchical analysis approach shows excellent
promise as a viable alternative to the traditional nonhierarchical
analysis method, capable of handling the increasing size of power
grids in modern microprocessors.

It was shown that the method of partitioning has significant in-
fluence on the performance of this approach. One of our future
directions is to explore optimal partitioning techniques that can be
applied with minimal user-intervention. Another research direction
is to develop more efficient sparsification techniques.
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