
Hierarchical Apprenticeship Learning, with
Application to Quadruped Locomotion

J. Zico Kolter, Pieter Abbeel, Andrew Y. Ng
Department of Computer Science

Stanford University
Stanford, CA 94305

{kolter, pabbeel, ang}@cs.stanford.edu

Abstract

We consider apprenticeship learning—learning from expert demonstrations—in
the setting of large, complex domains. Past work in apprenticeship learning
requires that the expert demonstrate complete trajectories through the domain.
However, in many problems even an expert has difficulty controlling the system,
which makes this approach infeasible. For example, consider the task of teach-
ing a quadruped robot to navigate over extreme terrain; demonstrating an optimal
policy (i.e., an optimal set of foot locations over the entire terrain) is a highly
non-trivial task, even for an expert. In this paper we propose a method forhier-
archical apprenticeship learning, which allows the algorithm to accept isolated
advice at different hierarchical levels of the control task. This type of advice is
often feasible for experts to give, even if the expert is unable to demonstrate com-
plete trajectories. This allows us to extend the apprenticeship learning paradigm
to much larger, more challenging domains. In particular, inthis paper we apply
the hierarchical apprenticeship learning algorithm to thetask of quadruped loco-
motion over extreme terrain, and achieve, to the best of our knowledge, results
superior to any previously published work.

1 Introduction
In this paper we considerapprenticeship learningin the setting of large, complex domains. While
most reinforcement learning algorithms operate under the Markov decision process (MDP) formal-
ism (where the reward function is typically assumed to be given a priori), past work [1, 13, 11]
has noted that often the reward function itself is difficult to specify by hand, since it must quantify
the trade off between many features. Apprenticeship learning is based on the insight that often it
is easier for an “expert” to demonstrate the desired behavior than it is to specify a reward function
that induces this behavior. However, when attempting to apply apprenticeship learning to large do-
mains, several challenges arise. First, past algorithms for apprenticeship learning require the expert
to demonstrate complete trajectories in the domain, and we are specifically concerned with domains
that are sufficiently complex so that even this task is not feasible. Second, these past algorithms
require the ability to solve the “easier” problem of finding anearly optimal policygivensome can-
didate reward function, and even this is challenging in large domains. Indeed, such domains often
necessitate hierarchical control in order to reduce the complexity of the control task [2, 4, 15, 12].

As a motivating application, consider the task of navigating a quadruped robot (shown in Figure
1(a)) over challenging, irregular terrain (shown in Figure1(b,c)). In a naive approach, the dimen-
sionality of the state space is prohibitively large: the robot has 12 independently actuated joints, and
the state must also specify the current three-dimensional position and orientation of the robot, lead-
ing to an 18-dimensional state space that is well beyond the capabilities of standard RL algorithms.
Fortunately, this control task succumbs very naturally to ahierarchical decomposition: we first plan
a general path over the terrain, then plan footsteps along this path, and finally plan joint movements

1

Figure 1: (a) LittleDog robot, designed and built by Boston Dynamics, Inc. (b) Typical terrain. (c) Height
map of the depicted terrain. (Black = 0cm altitude, white = 12cm altitude.)

to achieve these footsteps. However, it is very challengingto specify a proper reward, specifically
for the higher levels of control, as this requires quantifying the trade-off between many features,
including progress toward a goal, the height differential between feet, the slope of the terrain under-
neath its feet, etc. Moreover, consider the apprenticeshiplearning task of specifying a complete set
of foot locations, across an entire terrain, that properly captures all the trade-offs above; this itself is
a highly non-trivial task.

Motivated by these difficulties, we present a unified method for hierarchical apprenticeship learn-
ing. Our approach is based on the insight that, while it may be difficult for an expert to specify
entire optimal trajectories in a large domain, it is much easier to “teach hierarchically”: that is, if we
employ a hierarchical control scheme to solve our problem, it is much easier for the expert to give
advice independently at each level of this hierarchy. At thelower levels of the control hierarchy,
our method only requires that the expert be able to demonstrate goodlocal behavior, rather than
behavior that is optimal for the entire task. This type of advice is often feasible for the expert to give
even when the expert is entirely unable to give full trajectory demonstrations. Thus the approach
allows for apprenticeship learning in extremely complex, previously intractable domains.

The contributions of this paper are twofold. First, we introduce the hierarchical apprenticeship
learning algorithm. This algorithm extends the apprenticeship learning paradigm to complex, high-
dimensional control tasks by allowing an expert to demonstrate desired behavior at multiple levels of
abstraction. Second, we apply the hierarchical apprenticeship approach to the quadruped locomotion
problem discussed above. By applying this method, we achieve performance that is, to the best of
our knowledge, well beyond any published results for quadruped locomotion.1

The remainder of this paper is organized as follows. In Section 2 we discuss preliminaries and
notation. In Section 3 we present the general formulation ofthe hierarchical apprenticeship learning
algorithm. In Section 4 we present experimental results, both on a hierarchical multi-room grid
world, and on the real-world quadruped locomotion task. Finally, in Section 5 we discuss related
work and conclude the paper.

2 Preliminaries and Notation

A Markov decision process (MDP) is a tuple(S,A, T,H,D,R), whereS is a set of states;A is a
set of actions,T = {Psa} is a set of state transition probabilities (here,Psa is the state transition
distribution upon taking actiona in states); H is the horizon which corresponds to the number of
time-steps considered;D is a distribution over initial states; andR : S → R is a reward function.
As we are often concerned with MDPs for which no reward function is given, we use the notation
MDP\R to denote an MDP minus the reward function. A policyπ is a mapping from states to a prob-

ability distribution over actions. The value of a policyπ is given byV (π) = E
[

∑H
t=0R(st)|π

]

,

where the expectation is taken with respect to the random state sequences0, s1, . . . , sH drawn by
stating from the states0 (drawn from distributionD) and picking actions according toπ.

1There are several other institutions working with the LittleDog robot, and many have developed (unpub-
lished) systems that are also very capable. As of the date of submission,we believe that the controller presented
in this paper is on par with the very best controllers developed at other institutions. For instance, although di-
rect comparison is difficult, the fastest running time that any team achieved during public evaluations was 39
seconds. In Section 4 we present results crossing terrain of comparable difficulty and distance in 30-35 seconds.

2

Often the reward functionR can be represented more compactly as a function of the state.Let
φ : S → R

n be a mapping from states to a set of features. We consider the case where the reward
functionR is a linear combination of the features:R(s) = wTφ(s) for parametersw ∈ R

n. Then
we have that the value of a policyφ is linear in the reward function weights

V (π) = E[
∑H
t=0R(st)|π] = E[

∑H
t=0 w

Tφ(st)|π] = wTE[
∑H
t=0 φ(st)|π] = wTµφ(π) (1)

where we used linearity of expectation to bringw outside of the expectation. The last quantity
defines the vector offeature expectationsµφ(π) = E[

∑H
t=0 φ(st)|π].

3 The Hierarchical Apprenticeship Learning Algorithm

We now present our hierarchical apprenticeship learning algorithm (hereafter HAL). For simplicity,
we present atwo levelhierarchical formulation of the control task, referred to generically as the
low-levelandhigh-levelcontrollers. The extension to higher order hierarchies poses no difficulties.

3.1 Reward Decomposition in HAL
At the heart of the HAL algorithm is a simple decomposition ofthe reward function that links the
two levels of control. Suppose that we are given a hierarchical decomposition of a control task in the
form of two MDP\Rs — a low-level and a high-level MDP\R, denotedM` = (S`, A`, T`,H`,D`)
andMh = (Sh, Ah, Th,Hh,Dh) respectively — and a partitioning functionψ : S` → Sh that maps
low level states to high-level states (the assumption here is that|Sh| � |S`| so that this hierarchical
decomposition actually provides a computational gain).2 For example, in the case of the quadruped
locomotion problem the low-level MDP\R describes the state of all four feet, while the high-level
MDP\R describes only the position of the robot’s center of mass. As is standard in apprenticeship
learning, we suppose that the rewards in the low-level MDP\R can be represented as a linear function
of state features,R(s`) = wTφ(s`). The HAL algorithm assumes that the reward of a high-level
state is equal to the average reward over all its corresponding low-level states. Formally

R(sh) =
1

N(sh)

∑

s`∈ψ−1(sh)

R(s`) =
1

N(sh)

∑

s`∈ψ−1(sh)

wTφ(s`) =
1

N(sh)
wT

∑

s`∈ψ−1(sh)

φ(s`)

(2)
whereψ−1(sh) denotes the inverse image of the partitioning function andN(sh) = |ψ−1(sh)|.
While this may not always be the most ideal decomposition of the reward function in many cases—
for example, we may want to let the reward of a high-level state be themaximumof its low level
state rewards to capture the fact that an ideal agent would always seek to maximize reward at the
lower level, or alternatively theminimumof its low level state rewards to be robust to worst-case
outcomes—it captures the idea that in the absence of other prior information, it seems reasonable
to assume a uniform distribution over the low-level states corresponding to a high-level state. An
important consequence of (2) is that the high level reward isnow also linear in the low-level reward
weightsw. This will enable us in the subsequent sections to formulatea unified hierarchical appren-
ticeship learning algorithm that is able to incorporate expert advice at both the high level and the
low level simultaneously.

3.2 Expert Advice at the High Level
Similar to past apprenticeship learning methods, expert advice at the high level consists of full
policies demonstrated by the expert. However, because the high-level MDP\R can be significantly
simpler than the low-level MDP\R, this task can be substantially easier. If the expert suggests that
π

(i)
h,E is an optimal policy for some given MDP\R M

(i)
h , then this corresponds to the following

constraint, which states that the expert’s policy outperforms all other policies:

V (i)(π
(i)
h,E) ≥ V (i)(π

(i)
h) ∀π

(i)
h .

Equivalently, using (1), we can formulate this constraint as follows:

wTµ
(i)
φ (π

(i)
h,E) ≥ wTµφ(π

(i)
h) ∀π

(i)
h .

While we may not be able to obtain the exact feature expectations of the expert’s policy if the high-
level transitions are stochastic, observing a single expert demonstration corresponds to receiving

2As with much work in reinforcement learning, it is the assumption of this paper that the hierarchical
decomposition of a control task isgivenby a system designer. While there has also been recent work on the
automated discovery of state abstractions[5], we have found that thereis often a very natural decomposition of
control tasks into multiple levels (as we will discuss for the specific case of quadruped locomotion).

3

a sample from these feature expectations, so we simply use the observed expert features counts
µ̂

(i)
φ (π

(i)
h,E) in lieu of the true expectations. By standard sample complexity arguments [1], it can be

shown that a sufficient number of observed feature counts will converge to the true expectation. To
resolve the ambiguity inw, and to allow the expert to provide noisy advice, we use regularization and
slack variables (similar to standard SVM formulations), which results in the following formulation:

minw,η
1
2‖w‖

2
2 + Ch

∑n
i=1 η

(i)

s.t. wT µ̂
(i)
φ (π

(i)
h,E) ≥ wTµφ(π

(i)
h) + 1 − η(i) ∀π

(i)
h , i

whereπ(i)
h indexes over all high-level policies,i indexes over all MDPs, andCh is a regularization

constant.3 Despite the fact that there are an exponential number of possible policies there are well-
known algorithms that are able to solve this optimization problem; however, we defer this discussion
until after presenting our complete formulation.

3.3 Expert Advice at the Low Level
Our approach differs from standard apprenticeship learning when we consider advice at the low
level. Unlike the apprenticeship learning paradigm where an expert specifies full trajectories in the
target domain, we allow for an expert to specify single, greedy actions in the low-level domain.
Specifically, if the agent is in states` and the expert suggests that the best greedy action would move
to states′`, this corresponds directly to a constraint on thereward function, namely that

R(s′`) ≥ R(s′′`)
for all other statess′′` that can be reached from the current state (we say thats′′` is “reachable” from
the current states` if ∃a s.t.Ps`a(s

′′

`) > ε for some0 < ε ≤ 1).4 This results in the following
constraints on the reward function parametersw,

wTφ(s′`) ≥ wTφ(s′′`)
for all s′′` reachable froms`. As before, to resolve the ambiguity inw and to allow for the expert to
provide noisy advice, we use regularization and slack variables. This gives:

minw,ξ
1
2‖w‖

2
2 + C`

∑m
j=1 ξ

(j)

s.t. wTφ(s′`
(j)

) ≥ wTφ(s′′`
(j)

) + 1 − ξ(j) ∀s′′`
(j)
, j

wheres′′`
(j) indexes over all states reachable froms′`

(j) andj indexes over all low-level demonstra-
tions provided by the expert.

3.4 The Unified HAL Algorithm
From (2) we see the high level and low level rewards are a linear combination of the same set of
reward weightsw. This allows us to combine both types of expert advice presented above to obtain
the following unified optimization problem

minw,η,ξ
1
2‖w‖

2
2 + C`

∑m
j=1 ξ

(j) + Ch
∑n
i=1 η

(i)

s.t. wTφ(s′`
(j)

) ≥ wTφ(s′′`
(j)

) + 1 − ξ(j) ∀s′′`
(j)
, j

wT µ̂
(i)
φ (π

(i)
h,E) ≥ wTµφ(π

(i)
h) + 1 − η(i) ∀π

(i)
h , i.

(3)

This optimization problem is convex, and can be solved efficiently. In particular, even though the
optimization problem has an exponentially large number of constraints (one constraint per policy),
the optimum can be found efficiently (i.e., in polynomial time) using, for example, the ellipsoid
method, since we can efficiently identify a constraint that is violated.5 However, in practice we
found the following constraint generation method more efficient:

3This formulation is not entirely correct by itself, due to the fact that it is impossible to separate a policy
from all policies (including itself) by a margin of one, and so the exact solution to this problem will bew = 0.
To deal with this, one typically scales the margin or slack by some loss function that quantifies how different
two policies are [16, 17], and this is the approach taken by Ratliff, et al. [13] in their maximum margin planning
algorithm. Alternatively, Abbeel & Ng [1], solve the optimization problem without any slack, and notice that
as soon as the problem becomes infeasible, the expert’s policy lies in the convex hull of the generated policies.
However, in our full formulation with low-level advice also taken into account, this becomes less of an issue,
and so we present the above formulation for simplicity. In all experimentswhere we use only the high-level
constraints, we employ margin scaling as in [13].

4Alternatively, one interpret low-level advice at the level ofactions, and interpret the expert picking actiona
as the constraint that

∑

s′
Psa(s′)R(s′) ≥

∑

s′
Psa′(s′)R(s′) ∀a′ 6= a. However, in the domains we consider,

where there is a clear set of “reachable” states from each state, the formalism above seems more natural.
5 Similar techniques are employed by [17] to solve structured prediction problems. Alternatively, Ratliff, et

al. [13] take a different approach, and move the constraints into the objective by eliminating the slack variables,
then employ a subgradient method.

4

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

Number of Training Samples

S
ub

op
tim

al
ity

 o
f P

ol
ic

y

HAL

Flat Apprenticeship Learning

0 2 4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

400

of Training MDPs

S
ub

op
tim

al
ity

 o
f p

ol
ic

y

HAL

High−Level Contraints Only

Low−Level Constraints Only

Figure 2: (a) Picture of the multi-room gridworld environment. (b) Performance versus number of training
samples for HAL and flat apprenticeship learning. (c) Performance versus number of training MDPs for HAL
versus using only low-level or only high-level constraints.

1. Begin with no expert path constraints.
2. Find the current reward weights by solving the current optimization problem.
3. Solve the reinforcement learning problem at the high level of the hierarchy to find the

optimal (high-level) policies for the current reward for each MDP\R, i. If the optimal
policy violates the current (high level) constraints, thenadd this constraint to the current
optimization problem and goto Step (2). Otherwise, no constraints are violated and the
current reward weights are the solution of the optimizationproblem.

4 Experimental Results
4.1 Gridworld
In this section we present results on a multi-room gridworlddomain with unknown cost. While this
is not meant to be a challenging control task, it allows us to compare the performance of HAL to
traditional “flat” (non-hierarchical) apprenticeship learning methods, as these algorithms are feasible
in such domains. The grid world domain has a very natural hierarchical decomposition: if we
average the cost over each room, we can form a “high-level” approximation of the grid world. Our
hierarchical controller first plans in this domain to choosea path over the rooms. Then for each
room along this path we plan a low-level path to the desired exit.

Figure 2(b) shows the performance versus number of trainingexamples provided to the algorithm
(where one training example equals one action demonstratedby the expert).6 As expected, the flat
apprenticeship learning algorithm eventually converges to a superior policy, since it employs full
value iteration to find the optimal policy, while HAL uses the(non-optimal) hierarchical controller.
However, for small amounts of training data, HAL outperforms the flat method, since it is able to
leverage the small amount of data provided by the expert at both levels of the hierarchy. Figure 2(c)
shows performance versus number of MDPs in the training set for HAL and well as for algorithms
which receive the same training data as HAL (that is, both high level and low level expert demon-
strations), but which make use of only one or the other. Here we see that HAL performs substantially
better. This is not meant to be a direct comparison of the different methods, since HAL obtains more
training data per MDP than the single-level approaches. Rather, this experiment illustrates that in
situations where one has access to both high-level and low-level advice, it is advantageous to use

6Experimental details: We consider a 111x111 grid world, evenly dividedinto 100 rooms of size 10x10
each. There are walls around each room, except for a door of size 2that connects a room to each of its
neighbors (a picture of the domain is shown in figure 2(a)). Each state has 40 binary features, sampled from
a distribution particular to that room, and the reward function is chosen randomly to have 10 “small” [-0.75,
-0.25], negative rewards, 20 “medium” [-1.0 -2.0] negative rewards, and 10 “high” [-3.0 -5.0] negative rewards.
In all cases we generated multiple training MDPs, which differ in which features are active at each state and we
provided the algorithm with one expert demonstration for each sampled MDP. After training on each MDP we
tested on 25 holdout MDPs generated by the same process. In all casesthe results were averaged over 10 runs.
For all our experiments, we fixed the ratio ofCh/C` so that the both constraints were equally weighted (i.e., if
it typically took t low level actions to accomplish one high-level action, then we used a ratio ofCh/C` = t).
Given this fixed scaling, we found that the algorithm was generally insensitive (in terms of the resulting policy’s
suboptimality) to scaling of the slack penalties. In the comparison of HAL with flat apprenticeship learning
in Figure 2(b), one training example corresponds to one expert action.Concretely, for HAL the number of
training examples for a given training MDP corresponds to the number ofhigh level actions in the high level
demonstration plus the (equal) number of low level expert actions provided. For flat apprenticeship learning
the number of training examples for a given training MDP corresponds tothe number of expert actions in the
expert’s full trajectory demonstration.

5

Figure 3:(a) High-level (path) expert demonstration. (b) Low-level (footstep) expert demonstration.

both. This will be especially important in domains such as the quadruped locomotion task, where
we have access to very few training MDPs (i.e., different terrains).

4.2 Quadruped Robot
In this section we present the primary experimental result of this paper, a successful application of
hierarchical apprenticeship learning to the task of quadruped locomotion. Videos of the results in
this section are available athttp://cs.stanford.edu/˜kolter/nips07videos.

4.2.1 Hierarchical Control for Quadruped Locomotion

The LittleDog robot, shown in Figure 1, is designed and builtby Boston Dynamics, Inc. The robot
consists of 12 independently actuated servo motors, three on each leg, with two at the hip and one at
the knee. It is equipped with an internal IMU and foot force sensors. We estimate the robot’s state
using a motion capture system that tracks reflective markerson the robot’s body. We perform all
computation on a desktop computer, and send commands to the robot via a wireless connection.

As mentioned in the introduction, we employ a hierarchical control scheme for navigating the
quadruped over the terrain. Due to space constraints, we describe the complete control system
briefly, but a much more detailed description can be found in [8]. The high level controller is abody
path planner, that plans an approximate trajectory for the robot’s center of mass over the terrain;
the low-level controller is afootstep plannerthat, given a path for the robot’s center, plans a set of
footsteps that follow this path. The footstep planner uses areward function that specifies the rel-
ative trade-off between several different features of the robot’s state, including (i) several features
capturing the roughness and slope of the terrain at several different spatial scales around the robot’s
feet, (ii) distance of the foot location from the robot’s desired center, (iii) the area and inradius of the
support triangle formed by the three stationary feet, and other similar features. Kinematic feasibility
is required for all candidate foot locations and collision of the legs with obstacles is forbidden. To
form the high-level cost, we aggregate features from the footstep planner. In particular, for each
foot we consider all the footstep features within a 3 cm radius of the foot’s “home” position (the
desired position of the foot relative to the center of mass inthe absence of all other discriminating
features), and aggregate these features to form the features for the body path planner. While this is
an approximation, we found that it performed very well in practice, possibly due to its ability to ac-
count for stochasticity of the domain. After forming the cost function for both levels, we used value
iteration to find the optimal policy for the body path planner, and a five-step lookahead receding
horizon search to find a good set of footsteps for the footstepplanner.

4.2.2 Hierarchical Apprenticeship Learning for Quadruped Locomotion

All experiments were carried out on two terrains: a relatively easy terrain for training, and a signif-
icantly more challenging terrain for testing. To give advice at the high level, we specified complete
body trajectories for the robot’s center of mass, as shown inFigure 3(a). To give advice for the
low level we looked for situations in which the robot steppedin a suboptimal location, and then
indicated the correct greedy foot placement, as shown in Figure 3(b). The entire training set con-

6

http://cs.stanford.edu/~kolter/nips07videos

Figure 4:Snapshots of quadruped while traversing the testing terrain.

Figure 5: Body and footstep plans for different constraints on the training (left) and testing (right) terrains:
(Red) No Learning, (Green) HAL, (Blue) Path Only, (Yellow) Footstep Only.

sisted of a single high-level path demonstration across thetraining terrain, and 20 low-level footstep
demonstrations on this terrain; it took about 10 minutes to collect the data.

Even from this small amount of training data, the learned system achieved excellent performance,
not only on the training board, but also on the much more difficult testing board. Figure 4 shows
snapshots of the quadruped crossing the testing board. Figure 5 shows the resulting footsteps taken
for each of the different types of constraints, which shows avery large qualitative difference be-
tween the footsteps chosen before and after training. Table1 shows the crossing times for each of
the different types of constraints. As shown, he HAL algorithm outperforms all the intermediate
methods. Using only footstep constraints does quite well onthe training board, but on the testing
board the lack of high-level training leads the robot to takea very roundabout route, and it performs
much worse. The quadruped fails at crossing the testing terrain when learning from the path-level
demonstration only or when not learning at all.

Finally, prior to undertaking our work on hierarchical apprenticeship learning, we invested several
weeks attempting to hand-tune controller capable of picking good footsteps across challenging ter-
rain. However, none of our previous efforts could significantly outperform the controller presented
here, learned from about 10 minutes worth of data, and many ofour previous efforts performed
substantially worse.

5 Related Work and Discussion
The work presented in this paper relates to many areas of reinforcement learning, including ap-
prenticeship learning and hierarchical reinforcement learning, and to a large body of past work in
quadruped locomotion. In the introduction and in the formulation of our algorithm we discussed the
connection to the inverse reinforcement learning algorithm of [1] and the maximum margin plan-
ning algorithm of [13]. In addition, there has been subsequent work [14] that extends the maximum
margin planning framework to allow for the automated addition of new features through a boosting
procedure; There has also been much recent work in reinforcement learning on hierarchical rein-
forcement learning; a recent survey is [2]. However, all thework in this area that we are aware of
deals with the more standard reinforcement learning formulation where known rewards are given
to the agent as it acts in a (possibly unknown) environment. In contrast, our work follows the ap-
prenticeship learning paradigm where the model, but not therewards, are known to the agent. Prior
work on legged locomotion has mostly focused on generating gaits for stably traversing fairly flat

7

HAL Feet Only Path Only No Learning
Training Time (sec) 31.03 33.46 — 40.25
Testing Time (sec) 35.25 45.70 — —

Table 1: Execution times for different constraints on training and testing terrains. Dashes indicate that the
robot fell over and did not reach the goal.

terrain (see, among many others, [10], [7]). Only very few learning algorithms, which attempt to
generalize to previously unseen terrains, have been successfully applied before [6, 3, 9]. The terrains
considered in this paper go well beyond the difficulty level considered in prior work.

6 Acknowledgements

We gratefully acknowledge the anonymous reviewers for helpful suggestions. This work was sup-
ported by the DARPA Learning Locomotion program under contract number FA8650-05-C-7261.

References

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. InPro-
ceedings of the International Conference on Machine Learning, 2004.

[2] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.Dis-
crete Event Dynamic Systems: Theory and Applications, 13:41–77, 2003.

[3] Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi Kagami. Planning biped navigation strate-
gies in complex environments. InProceedings of the International Conference on Humanoid Robotics,
2003.

[4] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposi-
tion. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[5] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state variables. InProceed-
ings of the International Joint Conference on Artificial Intelligence, 2005.

[6] H. Kim, T. Kang, V. G. Loc, and H. R. Choi. Gait planning of quadruped walking and climbing robot
for locomotion in 3D environment. InProceedings of the International Conference on Robotics and
Automation, 2005.

[7] Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion. InProceedings of AAAI,
2004.

[8] J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. A complete control architecture for quadruped loco-
motion over rough terrain. InProceedings of the International Conference on Robotics and Automation
(to appear), 2008.

[9] Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh, and Andrew Y. Ng. Quadruped robot obstacle
negotiation via reinforcement learning. InProceedings of the International Conference on Robotics and
Automation, 2006.

[10] Jun Morimoto and Christopher G. Atkeson. Minimax differential dynamic programming: An application
to robust biped walking. InNeural Information Processing Systems 15, 2002.

[11] Gergeley Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforcement learning and
gradient methods. InProceedings of Uncertainty in Artificial Intelligence, 2007.

[12] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchcies of machines. InNeural Infor-
mation Processing Systems 10, 1998.

[13] Nathan Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Maximum margin planning. InProceedings of
the International Conference on Machine Learning, 2006.

[14] Nathan Ratliff, David Bradley, J. Andrew Bagnell, and Joel Chestnutt. Boosting structured prediction for
imitation learning. InNeural Information Processing Systems 19, 2007.

[15] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning.Artificial Intelligence, 112:181–211, 1999.

[16] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured prediction
models: A large margin approach. InProceedings of the International Conference on Machine Learning,
2005.

[17] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables.Journal of Machine Learning Research, 6:1453–1484, 2005.

8

	Introduction
	Preliminaries and Notation
	The Hierarchical Apprenticeship Learning Algorithm
	Reward Decomposition in HAL
	Expert Advice at the High Level
	Expert Advice at the Low Level
	The Unified HAL Algorithm

	Experimental Results
	Gridworld
	Quadruped Robot
	Hierarchical Control for Quadruped Locomotion
	Hierarchical Apprenticeship Learning for Quadruped Locomotion

	Related Work and Discussion
	Acknowledgements

