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Abstract

MUGHAL, USMAN AZEEZ. Hierarchical Approach to Global Modeling of Active

Antenna Arrays. (Under the direction of Michael B. Steer.)

This thesis presents an hierarchical modeling approach to electromagnetic modeling of
electrically large planar structures. The computer aided design tool, ArraySim, is ideally
suited for modeling active antenna arrays. The structure is sketched in a graphical layout tool
which produces a layout file in a CIF format. The CIF file is parsed, circuit ports identified
and basis cells assigned. A search algorithm is used to minimize repetitive calculations
of elements thus increasing speed and efficiency. An independent MoM analysis tool is
called to fill an evolving impedance/admittance matrix, element by element. ArraySim is a
complete modeling scheme for spatial power combining arrays targeted at producing tens and
hundreds of watts of power at microwave and millimeter wave frequencies. While ArraySim

is targeted at spatial power combining arrays, it can be used to model any tri-layer structure
if appropriate MoM routines are used. Using ArraySim, we study the behavior of double-slot
stripline coupled (SSS) and folded-slot structures. Unit cell as well as arrays are simulated
and results are compared with published results.
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Chapter 1

Introduction

1.1 Motivation

Quasi-optical power combiners using active antenna arrays are becoming an important and
efficient way of combining power in free space. Optimum design requires modeling and
understanding of coupling effects among unit cells in arrays.

Costly and tedious experiments to study the characteristics of these array antennas can
be replaced by computer aided tools to simulate array structures. Changing dimensions of
array unit cell and adjusting spacing between unit cells in an array can change the resonating
frequency and coupling effects among array unit cells and thus increase system efficiency.
These changes in behavior of a system can be viewed much quicker using computer aided
tools rather than by conducting individual experiments.

A computer aided engineering tool (CAE) has been developed that is based on Method of
Moments (MoM) analysis to simulate two antenna structures; Coplanar Waveguide (CPW)
Slot Antenna and Slot Strip-line Slot (SSS) Antenna. The CAE tool developed here, called
ArraySim, is based on the C ++ programming language with MoM analysis implementation
in Fortran. The tool is designed so that new antenna structures with their MoM functions
can be added with no difficulty. This approach is similar to adding a circuit element into
SPICE. ArraySim is developed to simulate and study the behavior of CPW and SSS arrays
in free space.

1.2 Background

Computer aided design and modeling provides efficient ways of evaluating performance of a
system. Several CAD tools are now available for simulating circuits at low and high frequen-
cies. Quasi-optical systems involve several components such as; hard horns for plane wave
excitation, optical lenses for beam focusing and active antenna arrays for power combining.
The need for CAD tools to model and describe such systems is overwhelming. The basic
approach here is to model each part of the quasi-optical system individually and then cas-
cade the individual information to analyze the complete system. This approach is sometimes
referred as an hierarchical approach to modeling structures.

Several approaches to simulating an antenna system include:

• Methods of Moments (MoM) and spectral domain analysis

• Finite Time Domain Analysis (FTDA)

1



• Transmission Line Method (TCM), time domain simulation using diakoptics

• Modal expansion and multi-port network development technique

In this thesis, a CAD tool for analyzing an antenna array in free space, a block of Quasi-
Optical Systems, is described. This tool is based on Method of Moment analysis.

1.3 Quasi-Optical System Description

Circuit power combining schemes are associated with high losses in conductors. These high
losses can be avoided by using antenna arrays for combining power. Such antenna arrays
form part of a system referred to as a “Quasi-optical power combining system” as shown
in Figure 1.1. The system involves integration of many solid state devices into a quasi-
optical component like antenna array and thus achieve a high power source. The basic idea
is to replace corporate combining with its associated conductor losses with lossless or low-
loss combining in air dielectric. Thus combining in air results in efficient power combining.
Numerous solid-state millimeter-wave sources are attached to radiating antenna arrays so
that power from these radiating elements is combined in free space and focused down into a
single mode. Mink [1] developed the first theoretical basis of power combining using source
array in a quasi-optical resonator. Presently, active quasi-optics has become one of the
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Figure 1.1: A Quasi-Optical Power Combining Model

most exciting research areas in the microwave power combining community. As a result of
high complexity and challenge in understanding the behavior of quasi-optical systems, it
has become imperative to create computer aided design tools to study the characteristics of
quasi-optical components to achieve higher efficiency.

The most important achievements discussed in this thesis are:

• Developing a tool for full wave analysis of antenna arrays in free space. ArraySim

allows to investigate the behavior of various structures up to three layers of depth.

• Creating a general algorithm to develop an efficient CAD tool to simulate antenna
array structures using MoM.



• Reducing computation time by using smart search routines to find symmetries within
the antenna array.

• Integrating the CAD tool with the non-linear circuit simulator Transim for designing
amplifiers using network parameters.

1.4 Thesis Overview

Chapter 2 covers the implementation of MoM analysis and structure of ArraySim in detail.
Chapter 3 describes simulation results of Slot stripline Slot (SSS) unit cells and arrays and
compares them with measurements. Chapter 4 describes simulation results of folded-slot
unit cells and arrays with connecting CPW lines and compares them with measurements.
Chapter 5 summarizes the thesis with conclusions and suggestions for future work on this
topic.

1.5 Publications

Following publications resulted from this work:

• Mostafa N. Abdullah, Usman A. Mughal, Huan-Shang Tsai, Michael B. Steer and
Robert A. York, “A Full-Wave System Simulation of a Folded-Slot Spatial Power
Combining Amplifier Array,”accepted for publication in IEEE MTT-S Int. Microwave

Symp., June 1999.

• Mostafa N. Abdullah, Usman A. Mughal and Michael B. Steer, “Network Charac-
terization for a Finite Array of Folded-Slot Antennas for Spatial Power Combining
Application,” accepted for publication in IEEE AP-S, July 1999.

• M. B. Steer, J. Harvey, J. W. Mink, M. N. Abdullah, C. E. Christoffersen, H. Gutierrez,
C. W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa, T. W. Nuteson, J. Patwardhan,
M. A. Summers, A. B. Yakovlev, “Global Modeling of Spatially Distributed Microwave
and Millimeter-Wave Systems,” accepted for publication in IEEE MTT-S, July 1999.



Chapter 2

Structure of MoM Based ArraySim

In this chapter we describe in detail the structure of ArraySim, a CAD tool based on MoM
to simulate antenna arrays in quasi-optical systems. ArraySim allows users to draw array
structures using a commercial layout editor like Cadence Virtuoso and then use the CIF
description produced along with other inputs parameters (frequency sweep, dielectric prop-
erties, incident fields, antenna type, near and far field distances etc.) describing the structure
to run a full-wave analysis of the given problem. ArraySim is essentially composed of two
parts; MoM based passive analysis and active analysis followed by a non-linear circuit simu-
lator interface. Before describing parts of ArraySim, it is important to understand the basics
of Method of Moments as it forms the basis of ArraySim.

2.1 Background of Method of Moments

Method of Moments is a numerical technique to solve complex integral equations generated
by electro-magnetic description of a certain structure. In electro-magnetics, we usually end
up with integral equations that cannot be solved analytically and thus have to be solved using
some kind of numerical technique. Method of Moments (MoM) offers accurate numerical
solutions that transform integral equations into linear equations which are easier to solve
using a computer program. MoM was first introduced by Harrington [2]. A general electro
magnetic integral equation is;

f(u) =
∫ 1

0
G(u, u′)I(u′)du′ (2.1)

where G(u, u′) is a known kernel, Greens function, f(u) is a known function and I(u′) is the
unknown function to be determined. The unknown function, I(u′) can be expressed as a
Fourier series sine and cosine functions, unit height-pulse functions or overlapping functions.
Figure 2.1 and Figure 2.2 represent a sinusoidal and triangular basis function that are used to
describe the unknown. Usually, the unknown, I(u′) is a current function that is approximated
as a summation of a certain type of basis function. I(u′) is given as;

I(u′) =
N

∑

n=1

InΦn(u′) (2.2)

where In are unknown amplitude constants to be determined.
If triangular basis functions are used as approximations to In, we get a linear interpolation

of I(u) with sample points represented by coefficients In. Triangular and sinusoidal basis
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Figure 2.2: An x-directed triangle basis function



functions tend to give a smother approximation with better accuracy than rectangular basis
functions [3]. Another reason to use triangular basis cells is their inherent property of
numerical convergence.

When the expansion of Equation 2.2 is substituted into the integral Equation 2.1 we
obtain

f(u) =
N

∑

n=1

In

∫ 1

0
G(u, u′)Φn(u′)du′ =

N
∑

n=1

InGn(u) (2.3)

where

Gn(u) =
∫ 1

0
G(u, u′)Φn(u′)du′ (2.4)

The above equation can be considered as a moment of G(u, u′) with respect to φn. So, the
objective is to choose coefficients In such that Equation 2.3 is satisfied as closely as possible.

Equation 2.4 forms the basis of point matching system. In this system, the test cell is a
delta function while the source is the basis cell.

There are N unknown constants In, so a system of N equations must be obtained that
will allow these unknown constants to be determined. One procedure is to equate both sides
of Equation 2.3 at N different values of u, which are equally spaced at increments of

h =
1

N − 1
(2.5)

This point matching system gives a system of equations as

f(u) =
N

∑

n=1

GmnIn =
N

∑

n=1

InGn(mh) = f(mh) = fm (2.6)

where
Gmn = Gn(mh) (2.7)

So, in matrix form:
[Gmn] [In] = [fm] (2.8)

Galerkins method, on the other hand, is a more complex method because the test and source
cells are actual basis cells and so reactions computed (Gmn) are over the area of the test
and source basis cells and not the source basis cell center. The trade off between Galerkins
method over the point matching method is speed versus accuracy. Galerkins method ends
up with large integral equations while point matching method has simple integral equations.
The spatial-domain dyadic Greens function are calculated using a numerical evaluation of
Sommerfeld integration [4]. However, Galerkins method is more accurate than point match-
ing method. In ArraySim, the MoM technique used is based on Galerkins method.

In the above Equation 2.8, In is solved by taking the inverse of Gmn. One of the major
problems of MoM is deriving the Greens function of a given structure. Once the G matrix
is computed, the remaining problem becomes a matter of matrix solving.

In the next section we discuss the structure of ArraySim that is based on MoM. Smart
algorithms are used to fill the G matrix in order to reduce the integral evaluation of complex
Greens functions.
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2.2 ArraySim

ArraySim is CAD tool based on MoM analysis. It is a complete simulation environment
for full-wave analysis of antenna array structures. As discussed in the previous section, the
values of the G elements in Equation 2.7 are computed for a given structure. Depending
on boundary conditions, each structure has its own specific Greens function. These inte-
gral equations of Greens function are implemented in Fortran due to Fortran’s fast math
functions. In crude form we can say that a Greens function is the behavior of an antenna
structure just like a circuit element model in a SPICE like circuit simulator. So, ArraySim

treats a Greens function of a certain structure as an element model. Presently, ArraySim

can handle Slot-Stripline-Slot structure and a folded-slot structure. As Greens functions
of other structures are derived, their MoM interface can be included in ArraySim with few
modifications.

ArraySim allows users to study the behavior of a given structure, laid out using a com-
mercial layout editor. Figure 2.3 shows a top level flow of ArraySim. After drawing the
structure, a CIF file is extracted describing the layout. This CIF file is used as input to
ArraySim which parses the layout and extracts the basis cells. Other input parameters de-
scribing the structure material are listed in an input parameter file. ArraySim will then use
these two input files and perform passive analysis of the array. In the next set of subsections,
each component of ArraySim is described in detail. Each component is an object defined in
C ++ with a certain set of instance variables and member functions describing the behavior
of the object [6].

The simulation environment of ArraySim is divided into two categories:

• Passive analysis



• Active analysis

2.3 Passive Analysis
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Figure 2.4: Flow for Passive Analysis

Passive Analysis makes up the first part of ArraySim. This process consists of parsing
a CIF file [11] of an antenna array layout and reading the input parameters describing the
structure. The input parameter file contains information about the type of incident fields
on the array and other parameters like frequency sweep and print options. Figure 2.4 shows
the flow of passive analysis procedure in ArraySim.

After parsing the input files, many data structures are allocated memory. These data
structures keep track of basis cells, ports, layer information etc. The main algorithm is
then invoked that begins to calculate the Gmn values. The G matrix is a complex matrix
that includes many sub-matrices. Each sub-matrix further contains a set of four matrices.
These matrices are filled in an intelligent way. After filling, excitation vectors (f(m)) are
set up and the matrix is numerically solved. The solution of the matrix is used to extract
network parameters at the ports. Finally port currents or voltages along with their network
parameters are given to a circuit simulator for active analysis. Near and far field plots are
also generated to study the passive behavior of the antenna array.



The next subsections describe the individual blocks of ArraySim used in passive analysis.
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Figure 2.5: A Sample Three Layer Layout

2.3.1 Layout Design Rules

ArraySim allows users to draw their antenna structure using a layout editor. Presently, up
to three layers of material can be used in laying out an array. In our examples, we used
Cadence’s Virtuoso as a layout tool. For proper parsing of the layout CIF file, a few design
rules must be observed. These design rules include;

• Cell Size: Presently, all cell sizes of a particular layer must have the same dimensions.
In short, a layer ‘A’ cell will have the same dx and dy as any other cell of layer ‘A’.
However, Layer ‘B’ cells may be different in size from layer ‘A’ cells but a layer ‘B’
cell will also have the same dimensions as any other layer ‘B’ cell. Same rule holds for
layer ‘C’ cells.

• Cell Shape: Presently, the ArraySim parser can only handle rectangular or square cells
2.6. These polygons are called boxes in CIF terminology.

• Cell Overlap: Same layer cells are not allowed to overlap one another. However, cells
of another layer can overlap cells of a different layer i.e. layer ‘A’ cells can overlap layer
‘B’ and ‘C’ cells but not layer ‘A’ cells 2.7.

• Cell layout: Cells of a certain layer must be directed either in the x-axis or 1 y-axis
direction i.e. they cannot have an inclination angle associated with them as shown in
Figure 2.8.

It is important to recognize the difference in meanings of the term basis cell and cell. A cell
like a basis cell has x and y dimensions and a center described in x and y coordinates. Basis
cell, however, is formed by two abut cells and is described by the same dimensions as that
for a cell but its center is offset by half the x-dimension, dx, or y-dimension, dy, depending
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if it is an x-directed basis cell or y-directed basis cell. Figure 2.5 shows a sample layout of
different layer cells.

Ports in a layout are described using a Portnum:Portgroup format. In Virtuoso, a layout
editor from Cadence Design Systems Inc., a port is added as a label at the center of a basis
cell. It is not allowed to place a port at the center of a cell. Figure 2.5 shows two ports on
layer B. The CIF file is later parsed in another format which is more readable. The later
CIF conversion of the CIF file is created by a CIF parser. A sample CIF file containing cell
information is shown below.

(CIF file written on 15-Sep-1998 22:37:02 by CADENCE);

DS 1 1 1;

9 3L_UNIT_10GHZ_13_7.5_3;

L CMF;B 3000 4500 9500,-67500;B 3000 4500 27500,-67500;

B 3000 4500 6500,-67500;B 3000 4500 24500,-67500;

B 3000 4500 21500,-67500;B 3000 4500 18500,-67500;

B 3000 4500 15500,-67500;B 3000 4500 12500,-67500;

B 3000 4500 3500,-67500;94 1:2 23000,-67500;

94 1:1 20000,-67500;B 3000 4500 39500,-67500;

B 3000 4500 36500,-67500;B 3000 4500 33500,-67500;

B 3000 4500 30500,-67500;L CVA;B 1500 1000 33500,-69000;

B 1500 1000 33500,-66000;B 1500 1000 33500,-67000;

B 1500 1000 33500,-65000;B 1500 1000 33500,-75000;

B 1500 1000 33500,-70000;B 1500 1000 33500,-63000;

B 1500 1000 33500,-71000;B 1500 1000 33500,-74000;

B 1500 1000 33500,-72000;B 1500 1000 33500,-73000;

B 1500 1000 33500,-68000;B 1500 1000 33500,-61000;

B 1500 1000 33500,-60000;B 1500 1000 33500,-64000;

B 1500 1000 33500,-62000;L CPG;B 1500 1000 9500,-71000;

B 1500 1000 9500,-70000;B 1500 1000 9500,-74000;

B 1500 1000 9500,-72000;B 1500 1000 9500,-73000;

B 1500 1000 9500,-75000;B 1500 1000 9500,-63000;



B 1500 1000 9500,-62000;B 1500 1000 9500,-64000;

B 1500 1000 9500,-60000;B 1500 1000 9500,-61000;

B 1500 1000 9500,-68000;B 1500 1000 9500,-67000;

B 1500 1000 9500,-69000;B 1500 1000 9500,-66000;

B 1500 1000 9500,-65000;

DF;

C 1;

E

In this CIF file, L is a layer symbol that follows with layer information. CMF , CV A and
CPA are three different layer types in order of first, second and third layer respectively.
Ports are identified by the colon symbol in the CIF file. B stands for box described by its
horizontal and vertical dimensions and center coordinates.

2.3.2 CIF Parser and Modified CIF File

The raw CIF file shown in previous section is re-ordered in a certain fashion that allows to
read each layer information, step by step. The new CIF file is arranged so that top most
layer is on the top in the modified CIF file followed by the middle layer and then the lowest
layer in the layout. This order is achieved by selecting poly, via and active for layer 1, layer
2 and layer 3 respectively. Ports are labeled with lowest layer material i.e. active material
for a three layer structure. If above convention is followed, port information is ordered at
the end of the CIF file. For a single layer structure, both layer and port label are made from
the same material. For a two layer structure, upper layer is made from poly, while lower
layer is made from metal. Ports in this case are labeled using metal layer. In any case, ports
are always labeled using the lowest layer material. A modified CIF file is shown below:

(Plain CIF file);

DS 1 1 1;

9 Expanded_Array;

L CPG;

B 1500 1000 9500 -65000;

B 1500 1000 9500 -66000;

B 1500 1000 9500 -69000;

B 1500 1000 9500 -67000;

B 1500 1000 9500 -68000;

B 1500 1000 9500 -61000;

B 1500 1000 9500 -60000;

B 1500 1000 9500 -64000;

B 1500 1000 9500 -62000;

B 1500 1000 9500 -63000;

B 1500 1000 9500 -75000;

B 1500 1000 9500 -73000;

B 1500 1000 9500 -72000;

B 1500 1000 9500 -74000;

B 1500 1000 9500 -70000;

B 1500 1000 9500 -71000;

L CVA;

B 1500 1000 33500 -62000;

B 1500 1000 33500 -64000;



B 1500 1000 33500 -60000;

B 1500 1000 33500 -61000;

B 1500 1000 33500 -68000;

B 1500 1000 33500 -73000;

B 1500 1000 33500 -72000;

B 1500 1000 33500 -74000;

B 1500 1000 33500 -71000;

B 1500 1000 33500 -63000;

B 1500 1000 33500 -70000;

B 1500 1000 33500 -75000;

B 1500 1000 33500 -65000;

B 1500 1000 33500 -67000;

B 1500 1000 33500 -66000;

B 1500 1000 33500 -69000;

L CMF;

B 3000 4500 30500 -67500;

B 3000 4500 33500 -67500;

B 3000 4500 36500 -67500;

B 3000 4500 39500 -67500;

B 3000 4500 3500 -67500;

B 3000 4500 12500 -67500;

B 3000 4500 15500 -67500;

B 3000 4500 18500 -67500;

B 3000 4500 21500 -67500;

B 3000 4500 24500 -67500;

B 3000 4500 6500 -67500;

B 3000 4500 27500 -67500;

B 3000 4500 9500 -67500;

94 1:1 20000 -67500;

94 1:2 23000 -67500;

DF;

E

where L stands for layer, B for box and “:” for port information. All dimensions of boxes
drawn in layout tool must be extracted in microns µm. Micron is the normal way of ex-
pressing dimensions in layout editors as they are used for transistor level layout. ArraySim

converts these microns into meters internally.

2.3.3 Input Parameters

The second input to ArraySim is a file containing a list of parameters. This file includes
antenna type, frequency sweep, print options, incident field type, near and far field analysis
information and layout material information like; substrate height and dielectric material.
This file is parsed by ArraySim parser. The user is warned to follow the convention of units
described in the input parameter file. A sample input parameter file is given below

Enter data in following format.

value Description

2 1 antenna type: 1:sss 2:cpw 0:not defined

2.0 2 frequency in GHz



0.813 3 substrate height in mm

2.2 4 epsilon_r

1 5 Search Table on/off. 1:on 0:off

1e-6 6 Search Table Tolerance Level (Default: 1e-6)

0 7 Print Individual Matrices 1:print 0:do not print

1 8 Print Inverted Matrix 1:print 0:do not print

2.0 9 START frequency (GHz). Should be same as in line 2

6.0 10 END frequency (GHz)

0.1 11 Step size for frequency range

180 12 Characteristic Imp of cpw in Ohms.

0 13 new port def flag. If 1 use new method for Y_nn

1 14 stub len factor. if 1:1 cell away 2:2 cell away..

*************************** INCIDENT WAVE INFO **************

1 15 E_o antenna excitation in V/m

0 16 Ein_x incident in V/m

1 17 Ein_y incident in V/m

*************************** FAR FIELD INFO ********

10 18 Far Field Distance in meters

*************************** NEAR FIELD INFO *******

0.078 19 near field window length (m) i.e l_x

0.09 20 near field window width (m) i.e l_y

75 21 no. of columns (for resolution)

75 22 no. of rows (for resolution)

0.0008 23 distance away from array in meters

0 24 by pass field analysis if 1:bypass 0:perform

The above file is parsed by the InternalParser C + + object. The first column in the input
file consists of values and flags (0 or 1), the second column are line numbers for Table
2.3.3 and third column are comments about the values. Flags consist of SearchTable flag,
PrintMatrices flag, PrintInvertedMat flag, new port def flag and bypass. If flags are set to
1 then they are active. Active flags mean; search engine is enabled, print all sub-matrices,
print inverted G matrix, use new port definition which is described for SSS type antenna
structure and skip near and far field analysis. On the other hand if flags are set to 0, then
they are disabled.

2.3.4 Internal Parser

The parser forms the first block of ArraySim. It parses the input file and the modified CIF
file. It is a C + + object called InternalParser. It allocates data structures for basis cells,
cells and ports for each layer. Figure 2.9 shows the object structure of InternalParser.

After reading the number of cells per layer, InternalParser dynamically allocates memory
for cells of that layer. In this specific case, an array of Cell object is created. Cell is a C ++
class that describes the attributes and behavior of a cell in a given structure. So, a Cell

knows the layer it belongs to, its center, its x and y dimensions, and has some standard
member functions. If the structure has three layers then three similar data structures are
made. All Cell arrays are ordered with respect to their x axis position using selective sort
routines [7]. Cells are ordered to facilitate the creation of basis cell arrays. The next step
is to read the port information. Ports are detected by the “:” sign in the modified CIF file.
Port is a C ++ object that knows its location, the layer it belongs to, its future index in the



Table 2.1: InternalParser class member variables for storing above input data parameters

Line Number Variable Name

1 antenna

2 frequency

3 height

4 epsilon r

5 SearchTable flag

6 max tol

7 PrintMatrices flag

8 PrintInvertedMat flag

9 Start freq

10 End freq

11 Step freq

12 Zc

13 new port def flag

14 stub len factor

15 E0

16 Ein x

17 Ein y

18 farFieldDistance

19 window length x

20 window length y

21 numOfCols

22 numOfRows

23 nearFieldDistance

24 bypass
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filled and inverted matrix and some standard C + + member functions. An array of ports is
dynamically created depending upon the number of ports. The ports are then ordered with
respect to their x-axis using selective sort routines.

After reading the input parameter file and the CIF layout, the InternalParser object
begins to create basis cells. As defined before, a basis cell is composed of two cells and
has the same dimension as a cell. However, unlike a cell, a basis cell is associated with a
direction. A layer may have both x-directed and y-directed basis cells. So, to keep track of
all basis cells in each layer, six basis cell arrays are created. Each layer will consist of two
basis cell arrays; x basis cell array and y basis cell array. The nomenclature used in defining
basis cell arrays is;

L1_BasisCell_x //contains x-directed basis cells in layer 1

L1_BasisCell_y

L2_BasisCell_x

L2_BasisCell_y

L3_BasisCell_x

L3_BasisCell_y

Since all cells in a layer have the same size, a basis cell is formed if two cells are lying next
to each other and the intersection plane of the two cells is equal to half the x-dimension of
the cell, see Figure 2.10 (for an x-directed basis cell), or half the y-dimension of the cell, see
Figure 2.11 (for a y-directed basis cell). i.e. for x-directed basis cell the center is computed
as;

centerx =
1

2
dx + xcell (2.9)
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for y-directed basis cell the center is computed as;

centery =
1

2
dy + ycell (2.10)

After locating all basis cells, the parser determines the total x and y dimensions of the layout.
This is calculated by finding the minimum and maximum x and y centers of each layer cells.
Then the maximum and minimum among them is chosen to determine the x and y dimension
of the layout. This dimension is used by the interpolation routine to speed the calculation
of the Greens function integral equations. So, the InternalParser object is responsible for

• Reading the input parameter file

• Reading the modified CIF layout file

• Indentifing all circuit ports

• Indentifing all basis cells in each layer

• Computing the total x and y dimension of the layout

• Creating data structures like; BasisCell Arrays, Cell Arrays Port Arrays and ordering
them with respect to their x location in the layout

In the next subsection we define the Port Class that is used to describe the behavior and
attribute of an electrical port in a structure.

2.3.5 Circuit Ports

Ports are used as amplifier terminals. For passive analysis, we do not connect an amplifier
to the ports. However, port network parameters are calculated to study passive effects of an
array structure. So, to make the existing code more modular, a Port class is created that
defines the behavior and attributes of an electrical port in a structure. As mentioned earlier,
ports are labels in the layout with the nomenclature Port num:Port group. Port num may
or may not be correctly labeled in the layout, but ArraySim internally keeps track of port
numbers. However, it is important to give the port a Port group number. Figure 2.12 gives
an example of ports in a layout.

Port Group

Unit Cell 1 Unit Cell 2

Port number

1:1 2:1 3:2 4:2

Figure 2.12: Port nomenclature



The ports with the same port group number belong to the same local reference group
(LRG) and must share a common cell which becomes the local reference node (LRN).
Port group number defines the group to which the port belongs. So, a unit cell may have
two ports and there may be several unit cells in an array e.g. in a 3x3 array there are nine
unit cells which implies eighteen ports. Each unit cell is considered a group. A port in the
first unit cell has a Port group number 1. Similarly a port in the second unit cell has a group
number 2. This nomenclature is used as an interface with the circuit simulator and also
creates order among the ports. Thus a port is associated with a particular basis cell.

As the modified CIF file is being parsed and basis cells assigned, each basis cell is checked
for its association with a port. If the basis cell is a port, then a port is identified and so the
port object’s type member variable is asserted.

Each port has an index number which is the position of the port in the filled or inverted
matrix. This index is used to locate the ports from the large filled G matrix when port
network parameters are being extracted. All ports are stored in an array of Port objects
allocated by InternalParser.

2.3.6 MoM Based Analysis and Matrix Formulation

1:1 2:1 3:2 4:2

Unit Cell 1 Unit Cell 2

Reaction : y-y 

All y Basis Cells are
numbered from smallest
x and increasing y.

All x Basis Cells are
ordered smallest to 
largest x and increasing
y.

1

3 4

2

1 2 3 4

SRC Basis Cell TST Basis Cell

Figure 2.13: YY reaction of a source and test basis cell

Given two basis cells, their reaction with one another is found using the MoM routines.
The result of this reaction is then stored in the G matrix depending upon the basis cell
number of the source cell and then test cell. Both source and test cells are basis cells that
can belong to the same layer or different layers. Figure 2.13 shows a reaction of a source
and test basis cell such that both are in the y-direction. Such a reaction is referred as a yy
reaction and the value obtained from this reaction is stored in the yy Quad of the sub-matrix
(more on quad and sub-matrices in the next sections). The information needed to calculate
the reaction are;

• dx and dy of both the source (src) and test (tst) basis cell

• center coordinates of both the source (src) and test (tst) basis cell

• direction of src and tst basis cell which is usually defined as flags i.e. flag 1: both src
and tst are in x-direction flag 2: src in x-direction and tst in y-direction flag 3: both
src and tst are in y-direction

Of course, depending upon antenna type, the corresponding antenna’s MoM functions
are called. All reactions are computed by the MainAlg object.



2.3.7 Hierarchical Matrix Composition

In order to fill the main matrix, the G matrix, with elements computed by MoM, a hierarchy
of matrices is used. So, the main matrix is subdivided into sub-matrices depending upon the
number of layers in the layout. The sub-matrices are further divided into quads which are
4 small matrices. MainMatrix, SubMatrix and QuadMatrix are C + + classes that are used
to define the hierarchy of matrices. All matrices are single dimensional (1D) and their size
are dynamically allocated by the MainAlg object discussed in the previous sub-section. As
matrices are 1D, they are defined with an offset that is used to locate the correct element
address in the G matrix. All elements computed by MoM are complex numbers. So, a
Complex class is written with normal complex functions to define each element.
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offset = 3
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MainMatrix with 9 SubMatrices

Each SubMatrix has 4 QuadMatrices

Figure 2.14: Matrix configuration in ArraySim

submatrices = n2 (2.11)

where n is the number of layers in the layout. So, for a 3 layer layout, the number of
sub-matrices is 9.

The QuadMatrix class consists of four small matrices. The small matrices are named xx,
xy, yx and yy which correspond to the src and tst basis cell direction. Usually, the yx matrix
is simply the transpose of the xy matrix.

In order to form the MainMatrix object which consists of a number of SubMatrix objects
(depending upon Equation 2.11), all SubMatrix objects have to be merged together to form
one large MainMatrix. Before merging the SubMatrix objects, all QuadMatrix objects in a
SubMatrix are merged together.

Figure 2.14 shows the construction of the MainMatrix from SubMatrix and QuadMatrix

objects.



2.3.8 Matrix Filling

Matrix filling is done by the MainAlg object. After allocating size of QuadMatrix, SubMatrix

and MainMatrix objects, MainAlg begins to compute the reaction of basis cells with one
another. Depending upon the antenna type, corresponding MoM functions are used to
calculate the reaction of two elements (src and tst basis cells). In essence, the QuadMatrix

objects are filled first with respect to the direction of src and tst basis cells. Once all the
QuadMatrix objects are filled up, they are merged together to form the respective SubMatrix

object. After filling all QuadMatrix and thus SubMatrix objects, all SubMatrix objects are
mergered together to form the MainMatrix object. This MainMatrix object is then solved
using LU decomposition technique for further analysis.

Matrix filling is directly coupled with a Search Engine. In the next section we describe
the working of Search Engine, a C + + object called SearchTable.

2.3.9 Search Engine for Symmetries

MainMatrix grows much faster than the increase in number of cells in a layout. Simulat-
ing large array structures especially three layered structures explodes the MainMatrix size.
Consequently, the computation time is increased as more elements are computed for a given
layout. Element computation time is a big blow to the overall analysis. So, in order to
reduce computation time and use the CPU more efficiently, a search engine is introduced.
This search engine is a C + + class called SearchTable. It is a collection of STL link lists [8]
that hold elements that have already been computed. Figure 2.15 shows the search engine
algorithm. For each QuadMatrix object, there is a corresponding link list in the search table.
For example the XX QuadMatrix object has a link list to store XX reaction elements, XY
QuadMatrix object has its own link list to store XY reaction elements and so on. The basic
idea is that once an element has been computed for a certain src and tst cell then their is no
need to re-compute a similar reaction between the src and tst cell. The criteria of deciding
not to re-compute a reaction between a src and tst basis cell depends on the direction of
the src and tst cells, the layer the src and tst cell belong to, the absolute x and y distance
between the src and tst cell and the antenna type. ArraySim shows the number of elements
that were not computed because of the search engine. The output of ArraySim for a sample
run looks like;

A ONE LAYER STRUCTURE ONLY

CALLING L1_XX

elm found: 24105 elm not found: 231**

CALLING L1_XY

elm found: 1094 elm not found: 154**

TRANSPOSING QUAD1 to get QUAD 2 for L1_YX

CALLING L1YY

elm found: 54 elm not found: 10**

The above example is a part of a one layer antenna MoM simulation. It clearly shows the
benefit of using a search table. In the first part, the search engine link list size for an XX
QuadMatrix object is only 231. This means out of a total of 24336 elements in the XX
QuadMatrix object, only 231 had to be computed while 24105 elements were just fetched
from the search table. This reduces the computation time by more than 70%. Presently,
linear sequential search [7] is being used to search an element in the link list. Other search
routines may be used to enhance searching speed. Let us consider an example of a layout
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Figure 2.16: Symmetrical reaction between test and source basis cells of different layers is
identified by search engine

with five cells consisting of three y-direction basis cells in layer A and two x-direction basis
cells in layer B as shown in Figure 2.16.

Reaction between 1y and 1x is identical to the reaction of 3y and 1x because distances
A, B and C are same in absolute terms. In such a case, link list XY , in the SearchTable

object, contains reaction 1x and 1y, and reaction 2y and 1x only because reaction 3y and 1x
is identical to reaction 1y and 1x So, before computing a reaction between a src and tst basis
cell, corresponding SearchTable link lists are traversed and checked for any similar reaction
depending on absolute distances like A, B and C, if found then the reaction value is pulled
out from the link list and MoM integral equations are avoided from being computed.

Depending upon the structure and its Greens function formulation, conditions to find
identical reactions are different. For SSS structure, which is a three layer structure, we check
for absolute x and y distances, and layers of tst and src basis cells i.e.

xABSdistance = |xsrc − xtst| (2.12)

yABSdistance = |ysrc − ytst| (2.13)

If xABSdistance and yABSdistance, for a pair of src and tst basis cells in the SearchTable object
link lists, is same as absolute x and y distances of the given src and tst basis cells then a
symmetrical match is found and MoM based integral equation computation is by-passed.
When checking for Equations 2.12 and 2.13 it is important to keep track of layer information
of current src and tst basis cells and src and tst basis cells in search table link lists. Similar
condition is checked for folded-slot single layer structures. However, in XY reactions (where
tst is x-directed and src is y-directed), depending upon x and y distances (absolute and
normal), placing a negative sign to element values may by-pass MoM computation. Figure
2.17 shows a reaction that results in same absolute values but with different signs.

signcurrent = xdistanceydistance (2.14)

signST = xSTdistanceySTdistance (2.15)

where Equation 2.14 gives the sign for current tst and src basis cell distances while Equation
2.15 gives the sign of tst and src basis cells in search engine link lists. If Equations 2.14 and
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Figure 2.17: Reaction between highlighted test and source basis cells is equal in magnitude
but opposite in signs

2.15 have different signs then the element in the search table link list with same absolute x
and y distances is fetched and placed in the G matrix with a negative sign.

By using search routines to look for symmetries and avoid expensive and time consuming
MoM calculations, we speed up overall performance of ArraySim. Chapter 4. tabulates some
simulations for folded-slot structures showing effects of search tables on computation time.

2.3.10 Solving Matrix using LU Decomposition

Once the matrix is filled with complex elements, it is inverted in order to solve the system
of equations for the unknowns. LU decomposition coupled with back substitution is used
to invert the matrix [12]. All matrix manipulation is performed by the MatrixManipulation

class. This class allows to add, multiply and solve complex matrices such that the matrices
are 1D matrices. After inversion, the elements are ordered from [1..n] instead of [0..n-1].
This new notation allows us to use published algorithms about matrix manipulation. The
inverted matrix is printed to a file called out Inverse.txt . This file is read by the active
analysis part of ArraySim in order to find near and far field plots.

2.3.11 Port Based Reduced Matrix

The next step is to extract only those reaction elements that are also ports. These elements
are obtained when a reaction of a basis cell with itself is computed if that basis cell is labeled
a port. So, for a 2 port network, the reduced matrix will be a 2×2 matrix. Similarly, for a
4 port network, the reduced matrix will be a 4×4.

As elements are being computed and filled in the matrix, a check is made for port basis
cells. If both the src and the tst basis cell are same and have their instance variable, port,
asserted then the port index number is set to new element position in the main matrix. This
way all ports are tracked and their corresponding instance variable, index, is set.

Port based reduced matrix is formed by a function call in main new.C file that contains
the main of the program. These ports may be Y-ports or Z-ports depending up on the
antenna structure. For folded-slot structures, port based reduced matrix is a Z matrix
while for the SSS structure, the reduced matrix is a Y matrix. All port based matrices are



converted into Y-port matrix for Transim input. Figure 2.12 has a 4 port network. The
main matrix for this structure is a 8×8 matrix. However, the ports are all located in the
xx quad matrix as shown in matrix below. The following matrix equation is an example of
inverted G matrix from Figure 2.12.

Z =























z1,1 z1,2 z1,3 z1,4 z1,5 · · · z1,8

z2,1 z2,2 z2,3 z2,4 z2,5 · · · z2,8

z3,1 z3,2 z3,3 z3,4 z3,5 · · · z3,8

z4,1 z4,2 z4,3 z4,4 z4,5 · · · z4,8
...

z8,1 z8,2 z8,3 z8,4 z8,5 · · · z8,8























(2.16)

where all the bold elements make up the port based reduced matrix and Z is a SubMatrix

object containing four sub-matrices (quads). This reduced matrix is then converted into
S-parameters to study the behavior of the passive structure.

2.3.12 Network Parameters: Y,Z and S

After reducing the large main matrix into port based reduced matrix, we compute some
common network parameters that are used to study the array structure behavior. Equations
2.17 and 2.18 are used to convert Y and Z port parameters into S port parameters [9]. Any
plotting tool like xess, gnuplot etc. may be used to view the S-parameters. S-Parameters
are written in out S Port.txt.

[S] = [U + Y ]−1 [U − Y ] (2.17)

[S] = [Z + U ]−1 [Z − U ] (2.18)

2.3.13 Formation of Excitation Vectors

Excitation vector depends upon the incident field on the array. In the input parameter
file, the user is given the option of setting the intensity of incident electric field. Presently,
incident fields are set either in the x or y-direction. If Einx is 0 and Einy is 1, then it means
that the incident electric field is only in the y-direction (with Hx component) and has a
magnitude of 1 V/m. The excitation vector is defined in A/m as;

[Hinx] =
2dx

Z0
[Einy] (2.19)

[Hiny] =
2dy

Z0
[Einx] (2.20)

where Z0 is the free space impedance (377 Ω), dx is the upper layer’s basis cell x dimension,
dy is the upper layer’s basis cell y dimension. For active analysis the excitation vector is
adjusted with amplifier currents and voltages obtained from non-linear circuit simulation
discussed in the next section.

2.3.14 Interface with Non-Linear Circuit Simulator

Active analysis requires linear and non-linear circuit simulation of amplifiers being used in
array structures. For this purpose, an interface [15] is developed between ArraySim and



Transim, a non-linear circuit simulator. After extracting port based reduced matrix from
main matrix, we extract port based currents/voltage sources. If the reduced matrix is an
impedance matrix, then it is inverted into admittance matrix for Transim interface. A sample
Transim input file is given below;

File # 1: out_TransimPortInfo.txt

# port:group

1:1

# GHZ Y RI R 50

2

0.0233506 ,0.00380929

File # 2: out_TransimExitationInfo.txt

2.0000000000e+09

7.6385605435e-01 ,-1.3684498083e+00

File 2. contains either short circuit current sources or open circuit voltage sources that are
used as initial conditions for non-linear circuit simulation. The first parameter in that file is
frequency in GHz and then the real and imaginary current/voltage value. Figure 2.18 shows
an n port matrix with short circuit current and open circuit voltage sources respectively.
These figures form the input to the circuit simulator that computes the active currents and
voltages at the ports.
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Figure 2.18: Y Port model for Transim: (a) used by folded-slot based CPW Structure (b)
used by SSS Structure

2.3.15 Near and Far Field Analysis

Field profile is the last part of passive analysis. It gives an overall behavior of the array. Far
field analysis considers the array as a point charge and calculates the field due to the point
charge. Far field analysis thus gives the direction of the output field due to the incident field
using polar plots.

Near field analysis, on the other hand, gives the field distribution on the array. The
user is allowed to view the near field plots for different distances away from the array. In
the input file, the user sets the display window size as well as the resolution of the plot.
On completion of passive analysis for a frequency point, the user can study the near field



analysis for different inputs and then allow ArraySim to run for next frequency. Figure
2.19 is a sample output of near and far field analysis which is displayed using matlab [10].
Magnetic currents that are used as input for both near and far field analysis are computed
as;

[Mx] =

[

Vx

dy

]

(2.21)

[My] =
[

Vy

dx

]

(2.22)

where dx and dy are x and y dimensions of layer 1 basis cells and Vx and Vy are the unknowns
computed by solving the G matrix. The object responsible for near and far field analysis is
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Figure 2.19: Field Profile: (a) Near Field Plot of a folded-slot (FS) at a distance of 5 mm
at 2GHz (b) Far field plot of a FS at a distance of 10 m at 2GHz



FieldAnalysis. Depending on the kind of antenna, the respective near and far field functions
are called.

2.4 Hierarchical Modeling Philosophy

The previous section on passive analysis forms the basis of hierarchical modeling approach.
MoM analysis is not an iterative process like FTDA. In MoM, once the G matrix is filled,
it can be used for both active and passive analysis. In active analysis, amplifier currents
and voltages are computed that are added to the existing excitation vector to form a new
excitation vector. This new excitation vector when multiplied with the original inverted
matrix, gives new values for currents. The basic idea is the computation of G matrix after
that, remaining problem becomes more or less a circuit problem.

ArraySim provides a perfect environment for hierarchical modeling of array structures.
Its object oriented design methodology allows to include MoM functions of other structures
into ArraySim with minor adjustments. The basic algorithm of parsing, assigning basis cells
identifying circuit ports, searching for symmetries when filling the G matrix, and extracting
network parameters remains same for all structures.

2.5 Active Analysis

After solving for non-linear currents and voltages using Transim, active analysis is performed.
Active analysis involves, recomputing the excitation vector with new currents or voltages and
then solving for output magnetic currents, Mx and My. These currents are then used for
near and far field analysis. Figure 2.20 shows a step-by-step process of active analysis. This
analysis is much faster than passive analysis as the G matrix is not computed.

2.5.1 Inputs from Passive Analysis

Most of the inputs to active analysis procedure are obtained from passive analysis of the
structure. These inputs include, old excitation vector that was formed using incident E field,
inverted G matrix and port row numbers in the inverted matrix. Port row numbers are used
to fill the new excitation vector, E2 (see Figure 2.20), correctly with Transim port currents
or voltages.

2.5.2 Inputs from Circuit Simulator

Presently, ArraySim is interfaced with Transim, a non linear Spice like circuit simulator.
Transim, takes the Y-port parameters along with current or voltage sources and performs
harmonic balance analysis for a non-linear amplifier. It then outputs currents and voltages
at the amplifier ports. These currents and voltages are used as input for active analysis by
ArraySim to form the new excitation vector.

2.5.3 Formation of Excitation Vector

Using port row information, a new excitation vector is formed that is filled with current or
voltage values from Transim in port row number locations. The remaining elements of this
excitation vector, E2, are filled with zeros. This vector is then added with E1, excitation
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vector used in passive analysis, to form a new excitation vector for active analysis. Mx and
My vectors are then computed with this new excitation vector. These Mx and My are used
for near and far field analysis in the same way as described in passive analysis procedure.

Enew =



























E11

E12

E13

E14

E15
...

E18



























+



























0
E22

0
E24

0
...
0



























(2.23)

In Equation 2.23, the right hand side vector is created using port row information and
Transim currents or voltages. The left hand matrix, on the other hand, is the old excitation
vector. The bold elements in these vectors refer to excitation at the ports. Enew is then used
to find new Mx and My vectors that are used for near and far field analysis as shown in 2.24.

[fm] = [G]−1 [Enew] (2.24)

where fm holds Mx and My values.

2.6 Conclusion

ArraySim provides an environment for hierarchical modeling of antenna arrays used in spa-
tial power combiners. It performs active and passive analysis of any structure as long as
their MoM based functions are provided. In this chapter we discussed various modules of
ArraySim. These modules are C++ objects that talk with each other in a defined way. Using
object oriented methodology, hierarchical modeling of antenna arrays has become suitable.
The analysis is divided into three parts, passive, circuit and active. An interface with a cir-
cuit simulator is established to solve for port currents and voltages due to amplifiers. These
new currents and voltages are then used to create a new excitation vector that computes new
output magnetic currents. In the next chapter we look at some simulation and experimental
results for SSS and folded-slot array structures using ArraySim.



Chapter 3

Investigating SSS Structure

ArraySim is used for behavior modeling of structures. It allows users to study the behavior
of a given structure provided its MoM functions are interfaced correctly in the MainAlg

object. In this chapter we use MoM functions developed by [14] for slot-stripline-slot (SSS)
structure. This three layer antenna has a complicated behavior due to coupling between
layers. The MoM matrix for such structures are usually large and take much time to solve.
However, if the lower and upper slots are symmetric, ArraySim uses this symmetry to speed
up computation time. Various simulations are done on SSS structures which include unit
cells and arrays. Since this particular three layer structure as shown in Figure 3.1 has not
been experimented before, we use a two layer slot-stripline structure and compare simulation
results with published results. Simulation results show close agreement with published results
and thus verifies ArraySim. Effect of search table is also discussed by comparing simulation
time with and without search tables.

3.1 Simulation of SSS Array Structure

Slot-Stripline-Slot antenna consists of three layers. The upper layer and the lower layers have
slots cut into the metal while the middle layer is a stripline sandwiched between the upper
and lower slots. Figure 3.1 shows a unit cell description of a SSS antenna. Active device
is connected in the middle layer. The basic idea is that incident electric field on the upper
slot induces current on the stripline. This current is then amplified by the active device and
radiated out though the lower layer slot. Before simulating an array structure, it is worth
analyzing the behavior of a unit cell as array usually behaves similar to a unit cell. For
symmetry purpose, upper and lower layer are made identical with respect to the stripline,
the middle layer. Replicating unit cells side by side results into an array of unit cells. Figure
3.7 shows a 3×3 array of SSS type. In spatial power combiners, arrays are made with active
devices that are used to gain high output power.

3.1.1 Matrix Configuration

SSS is a three layer structure and its G matrix consists of nine SubMatrix objects. Each
SubMatrix object further includes a QuadMatrix object consisting of four small matrices as
discussed in the previous chapter. Figure 3.1 is based on equivalence principle and therefore
decomposes the structure into three different regions. MoM matrix for this three layer
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Figure 3.1: 3 Layer SSS Unit Cell: (a) Passive (b) Active

structure is given by Equation 3.1 [14];
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where [Y ],[U ],[W ] and [Z] are mutual coupling integrals between slots and the stripline.
[Mupper],[Istripline] and [Mlower] are unknown coefficients of the basis function on receiving
slot, stripline and transmitting slot respectively. [Hupper] is the excitation vector on the
upper slot due to incident fields (assuming excitation is unidirectional and not from lower
slots).

If lower and upper slots are made identical with respect to each other and stripline, then
ArraySim recognizes this symmetry and only computes matrices, [Y11], [W21], [Z22] and [Y13].
All other sub-matrices are filled by symmetry. Individual sub-matrices are also filled using
search routines that further reduces computation time. The only drawback in simulating
this kind of structure is memory. Large memory is needed to store all nine sub-matrices and
then solve the whole matrix.

For a two layer structure shown in Figure 3.2a, the MoM based matrix reduces to four
SubMatrix objects. Equation 3.2 described in [13] shows the matrix configuration of a 2 layer
SS type structure. ArraySim uses a search engine to find symmetries when filling and thus
reduce computation time.

[

Hin

Vstrip

]

=

[

Y11 U12

W21 Z22

]

×
[

Mslot

Istrip

]

(3.2)

In the next subsection we use ArraySim as a tool to study a two layer slot-stripline (SS)
published structure and compare simulations with published results. We then investigate
the behavior of simulated results by changing stripline basis cell numbers.



3.1.2 2 Layer Unit Cell Simulation

A two layer unit cell is shown in Figure 3.2. It is similar to unit cell in Figure 3.1, but with
one slot only. The dimensions of this unit cell are;

W = 2.6 mm of stripline

L = 30 mm of stripline

H1=H2=1.57 mm or (62mil) thickness of substrate

W_s = 2 mm of slot

L_s = 30 mm of slot

x_offset = 10mm

y_offset = 0

ǫr = 2.2
The stripline width is selected as 2.6 mm as this width gives an impedance of 50 ohms

to the stripline. Equation 3.3 (for W ≥ 2H) and 3.4 (for W ≤ 0.4H) from [5] were used to
compute the characteristic impedance, Zc of the stripline.

Zc =
πZ0

8
√

ǫr(ln 2 + πW/(4H)
(3.3)

For a very narrow strip,

Zc =
Z0

2π
√

ǫr

ln
16H

πW
(3.4)

ArraySim was used to simulate this simple 2 layer structure with the given dimensions. S-
parameters were extracted for this structure and compared with published results [13]. A
close agreement is seen in simulated and published results which shows the correct working
of ArraySim. The simulated S11 plot is slightly shifted to the right of the published S11 plot.
This shift is due to the number of stripline basis cells. Increasing stripline basis cell number
shifts the curve to the left. More on effects of basis cell numbers in the next subsection.

3.1.3 Effect of Basis Cells Numbers on Simulations

A test simulation was performed to check the behavior of a unit cell when number of basis
cells were changed. Figure 3.3 shows simulation result of a series of simulations with different
number of cells for a 3 layer SSS unit cell shown in 3.1. Dimensions for this unit cell were;

Stripline:

W = 4.5 mm

L = 38.75 mm

Slots:

W_s = 1.5 mm

L_s = 16 mm

x_offset = 7.5 mm

Dielectric:

Epsilon_r = 2.2

H1=H2=1.57 mm

x offset of unit cell = 20 mm

y offset of unit cell = 20 mm

x_dist = 156.25 mm

y_dist = 88 mm
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Figure 3.2: 2 Layer Slot Stripline Unit Cell: (a) Structure layout (b) Comparing simulations
and published results



ǫr = 2.2 It is observed that as cell number increases from 13 to 55 for the same length of
stripline, the curve tends to shift to the upper left side. This behavior is attributed to MoM
dependence on number of integration points. Figure 3.3 plots S2

11 + S2
12 in magnitude.

            

Figure 3.3: Effect of number of cells on simulation result

Figure 3.4: Measurement showing minimum insertion loss around 10.3 GHz as expected by
simulation results

Since, SSS is a lossy structure, we observe that around 10 GHz, most of the input power is
absorbed i.e. minimum reflection. This structure was fabricated and some measurements
were made. Measurements show a minimum insertion loss of 2 dB near 10.3 GHz which
agrees with simulated behavior as seen in Figure 3.4. An HP Spectrum analyzer was used to
measure insertion loss. Scattering parameters were not measured because it was not possible
to drill into the stripline. Drilling would have caused to change the boundary conditions
used in formulation of Greens functions.



3.1.4 Differential Versus Normal Ports

In SSS, the middle layer is a stripline with an active device. So, the stripline is sandwiched
between two layers separated with a dielectric medium that makes it impossible to refer
the amplifier ports to ground. The Y-port parameters obtained by MoM in this case are
differential ports rather than normal ports referring to ground. So, to get the correct Y-port
parameters, the MoM based parameters are adjusted for an open circuit stub that is matched
with the input impedance. Equation 3.5 is used to calculate Y-port parameters in this case.

Y11new =
1

1
Y 11MoM

+ jZcCot(βa)
(3.5)

This adjustment is made in structures similar to SSS structure. However, in folded-slots
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Figure 3.5: S11 of a unit SSS Cell using differential and normal ports

structures discussed in the next chapter, such modifications are not needed. Figure 3.5
shows S11 for a unit SSS cell using both differential port and normal port definition. Once
the differential ports from MoM are adjusted by stub matching, we get less oscillations in
the S11 plot.

3.1.5 Simulation of 3x3 SSS Array

A 3×3 SSS structure with dimensions shown below is simulated using ArraySim. Figure 3.6
shows the physical sense of the simulation setup. The array is centered between two hard
horns, transmitting an receiving. A curve showing output radiation for a certain frequency
range is plotted. This curve can be interpreted as S-parameters as it shows the frequency
points at which the array resonates. The curves are formed by plotting the following equa-
tions.

S ′

11 = S2
11 + S2

12 + S2
13 + ... + S2

19 (3.6)

Similarly,
S ′

99 = S2
91 + S2

92 + S2
93 + ... + S2

99 (3.7)

The dimensions of this array are;
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Stripline:

W = 4.5 mm

L = 38.75 mm

Slots:

W_s = 1.5 mm

L_s = 16 mm

x_offset = 7.5 mm

Dielectric:

Epsilon_r = 2.2

H1=H2=1.57 mm

x offset of unit cell = 20 mm

y offset of unit cell = 20 mm

x_dist = 156.25 mm

y_dist = 88 mm

As expected, the array behaves similar to a unit cell. The array shows minimum insertion
loss around 10 GHz.

3.1.6 Field Plots

Near and far field plots were made for the 3×3 array at 10 GHz. Figure 3.9 shows near field
plots at a distance of 0.8 mm, 10 mm, and 1 m. Note, at large distances, we see a beam as
an output. Far field plot in y-direction is shown in Figure 3.10.

Near field plots in Figure 3.9 describe coupling effects in great detail. If all unit cells are
isolated, then near field plots of lower slots (transmitting slots) show almost equal output
field intensity as shown in Figure 3.9(a), (d) and (f) which is an ideal case. However, if
coupling effects are taken into account, as shown in Figure 3.9(b), (c) and (e), then the left
lower layer slots show more output field intensity than the remaining lower layer slots. This
behavior is attributed to the cancelation of input E fields in the middle and the right lower
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layer slots. However, the left lower slots are more isolated than the middle and the right
lower slots and thus show more output E field intensity.
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Figure 3.10: Far Field radiation pattern in the y-direction for 3×3 array at 10 GHz and a
distance of 10 m away from array

3.2 Conclusion

In this chapter we take a sample three layer structure, SSS, and study its characteristics
using ArraySim. Matrix configuration for the three and two layer structures of type SSS
is discussed. If upper and lower slots shown in Figure 3.1 are made symmetric, ArraySim

uses this symmetry to compute only 4 out of 9 SubMatrix objects. A two layer slot-stripline
structure is simulated and compared with published results and a close agreement seen
between results. A unit SSS structure is simulated and effects of stripline basis cell number
on passive analysis is shown. We observe that as stripline cells in layout are increased,
the plot in Figure 3.3 moves up and left. From simulating this unit cell we expect to see
maximum power absorption (by plotting S2

11 + S2
12) around 10 GHz. This simulation is

verified by observing a minimum insertion loss (of 2 dB) around 10.3 GHz on a spectrum
analyzer for a fabricated SSS structure.

A 3×3 SSS array is also simulated and results plotted. We studied the coupling effects
as observed from near field analysis of the 3×3 SSS array. Two cases are simulated and their
near field plots are shown. In the first case, all unit cells (which are 9 for the 3×3 array)
are simulated as if they are isolated from one another while in the second case, unit cells are
allowed to couple with other unit cells within the array. A shift in the output beam is seen
for the later case while a centered output beam is observed for the isolated case. The shift
in the beam is due to cancelation of input Ey field that falls on the upper slots.

Coupling effects among unit cells may result in low efficiency of the system where they are
used and so unit cells should be isolated by some technique during fabrication of such arrays
to produce uniform output field patterns. Coupling effects may also reduce by rearranging
unit cells in a fashion that gives minimum cancelation of input Ey thus enhancing overall
system performance.



ArraySim can be further enhanced by interfacing more MoM functions describing other
structures thus enabling to study more structures. Search tables are used to find symmetries
and reduce computation time. In the next chapter we use ArraySim to simulate folded-slot
structures given MoM functions describing single layer folded-slots.



Chapter 4

Investigating Folded-Slot Structures

In this chapter we show how ArraySim is used to study the behavior of folded slot structures
that are based on a single layer of material. Various folded-slot antennas coupled with
CPW lines are simulated. For simplification and speed purposes, CPW lines are neglected
during passive analysis. The term folded-slot and CPW slot is interchangeably used in this
thesis. Simulation results are then compared with published measurements. Coupling effects
between array unit cells to overall performance is shown. Scaling of port input impedance in
folded-slots is discussed. We will see from simulations that Zin seen by the port is inversely
promotional to the number of slots. This simple, but intuitive observation allows us to match
the folded-slot antenna with transmission lines of various characteristic impedance. We see
from simulation results that as unit cell distances within an array is increased, coupling
effect decreases. So, at large distances of unit cells, arrays can be modeled as a unit cell
which requires less simulation time. Effect of search table is also discussed by comparing
simulation time with and without search tables.

4.1 Simulation of Folded Slot Antenna

Folded-slot antenna with coplanar waveguides, CPW, in an orthognal layout behaves as an
effective receiver and transmitter antenna. The two orthognal folded-slots are connected to
one another via a 90 degrees bent coplanar transmission line. Figure 4.1 shows a CPW unit
cell which consists of two folded-slots on each CPW line (see Figure 4.23 for layout). Input
impedance seen from the port into the slot depends upon the number of slots. We will see
from a simple simulation that as the number of slots is increased, input impedance seen by
the port reduces. So, an active device’s input impedance can be matched with the folded-slot
antenna by changing the number of slots.

Folded-slot unit cells are simulated using ArraySim and results compared with published
measured results. A close agreement is seen in simulated and measured results. These results
verify the correct working of ArraySim environment and so folded-slot arrays like 2× 2, and
4 × 4 are simulated and their behavior investigated. Matrix configuration is simple for a
single layer structure. In the next subsection, we describe the matrix configuration of the
MoM based G matrix for a folded-slot antenna structure.

4.1.1 Matrix Configuration

Folded slot structures are single layer structures. So, the G matrix filled by ArraySim

using MoM based functions, is a simple admittance matrix as described in [20]. The G

42
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matrix (MainMatrix object) consists of a single SubMatrix object which in tern includes a
QuadMatrix object as discussed in chapter 2. The matrix configuration of a this single layer
folded-slot antenna is given in equation below.

[

Hx

Hy

]

=

[

Yxx Yxy

Yyx Yyy

]

×
[

Vx

Vy

]

(4.1)

where [Yxx], [Yxy], [Yyx] and [Yyy] are MoM admittance matrices. These four matrices are
part of a QuadMatrix object as mentioned in chapter 2. [Hx] and [Hy] make up the excitation
vector depending upon incident electric fields. For example an incident uniform field in the
y-direction, Ey, only results in zero values for [Hy] vector and finite values for [Hx] vector.
ArraySim uses the search engine described in chapter 2. to look for possible symmetries and
reduce computation time. In the next subsection we discuss the effect of number of slots on
input impedance of folded-slots.

4.1.2 Controlling Input Impedance

ArraySim allows to study the behavior of a given structure in detail. One of the character-
istics of folded-slot antennas is their relation with input port impedance to number of slots.
In this section we describe a rule of thumb that can be used to scale input port impedance
with varying number of slots. Input impedance of a dipole in free space at first resonance
is around 70Ω [17]. If this wire is folded, a folded dipole is created as two equal parallel
currents with same direction flow on the wires. The input impedance of this folded dipole
is on the order of 300Ω. The input impedance of folded dipole is around 4 times that of the
input impedance of a single dipole. This results in a simple rule of thumb give by Equation
4.2;

Zin = N2Zdipole (4.2)

where Zdipole is the input impedance of a single dipole (approximately 70Ω).
A similar relation holds for slot antennas. As described in [17] and [18] impedance of a

half-wave slot is given as;

Zslot =
(377)2

4Zdipole

(4.3)



So, the input impedance of N slots is given as;

Zslot =
Zslot

N2
(4.4)

Equation 4.4 shows that as the number of slots is increased, the input impedance lowers by
a factor of the number of slots squared. So, adding additional slots allows the designer to
vary the slot input impedance over a wide range. This simple design rule is useful for circuit
designs that require impedance matching with slots.

ArraySim was used to simulate three structures with same dimensions and material but
different number of slots. Figure 4.2 shows the three types of slot antenna structures. We plot
input impedance seen at the ports and compare them with the rule of thumb described by
Equation 4.4. Figure 4.3 shows simulated input impedances for single, double and quadruple
slots. From simulations we see that input impedance does reduce with increasing number of
slots by Na where a is between 1 and 2. We also see a frequency shift as number of slots is
increased. The dimensions for Figure 4.2 a, b and c were; L=18 mm, slot gap=1 mm, metal
width=1mm, side width=1mm, ǫr=10.8, substrate thickness=0.635 mm. In Figure 4.2a,
W=1mm, in Figure 4.2b W=7mm and in Figure 4.2c W=19mm. The simulated structures
are simple folded-slots with no CPW line as shown in Figure 4.2a, b and c.

4.1.3 Unit Cell Behavior

To study the behavior of CPW based folded-slot arrays of various sizes, it is meaning full
to simulate a unit cell first as unit cells tend to give an insight into array characteristics. In
this section simulation results from ArraySim for a folded slot antenna are compared with
measured results. Figure 4.4 shows a folded two slot antenna layout. This simple folded
slot structure is simulated with dimensions L= 78mm, W= 6mm, slot width= 2mm, metal
width= 2mm, layout cell size= 2×2 mm. ǫr= 2.2 and substrate thickness= 0.813mm. Figure
4.5 shows simulated and measured S11 [18] at the port. A good agreement is seen between
simulation and measured results [19]. These results indicate the correct working of ArraySim

and show how it can be used to study basic structures as well as complicated arrays. Note:
unit cell only consists of horizontal double slots, othognal slots are not part of the above
simulation result.

4.1.4 Near and Far Field Analysis

Near field analysis is done on folded-slot unit cell and arrays. These cells are excited with
a uniform electric field, Ey, with a magnitude of 1 V/m. The horizontal slots are receivers
while vertical slots are transmitters. Initially, during passive analysis we expect vertical
slots to transmit lesser field than that transmitted/scattered by the horizontal slots. This is
because the horizontal and vertical slots are not connected with one another.

So, incident field on horizontal slots are scattered more than being transmitted to vertical
slots through mutual coupling. This means that vertical slots show weaker field intensity
during passive analysis than field intensity on horizontal slots. However, during active anal-
ysis, vertical slots are excited with amplified currents and voltages that result in stronger E
field.

This implies that in active analysis (depending on the direction of active device), trans-
mitting slots will show stronger radiation than receiving slots. This is the basics of power
combining. Figure 4.6 shows an othognal folded-slot cell without a CPW transmission line.
The dimensions for this structure are; L= 18 mm, W= 7 mm, metal and slot width= 1 mm,
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Figure 4.4: Layout of a 78 mm long double folded slot cell with 2×2 mm cell size drawn in
Virtuoso. Port label is assigned at the center of the length on the lower slot.
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layout cell size = 1×1 mm ǫr= 10.8 and substrate thickness=0.635 mm. Near field analysis
is performed at distance of 0.8 mm away from the slots as shown in Figure 4.8. As expected,
for passive analysis, the horizontal slots show higher field intensity than vertical slots because
their is no transmission line and active device involved to amplify transmitted fields. Figure
4.9 shows a far field plot at a distance of 10 m away for fields in the x direction.

4.1.5 Simulation of 2×2 Folded-Slot Array

A 2×2 CPW array is simulated using ArraySim. Network parameters are extracted and
analyzed. Figure 4.10 shows a 2×2 array. In this figure, Dx = Dy = 6 mm. between unit
cells. Other dimensions include, L=78mm, W=6mm, Wslot=2mm, ǫr=2.2 and h=0.813mm
(thickness of substrate). Figure 4.11a,b,c and d show S and Z parameters for this 2×2
array. Figure 4.11a compares S11 for a horizontal folded-slot, shown in Figure 4.5, with S11

obtained for the 2×2 array and S11 for a unit othognal folded-slot.
Figure 4.11b shows S11, S12, S13, S14 S15 S16, S17and S18 for the 2×2 array while Figures

4.12 and 4.13 show real and imaginary parts of input port impedances at ports 1,3,5 and 7.
Coupling effects due to unit cells next to one another is responsible for changes in impedance
and S-parameters. Note, for this simulation, unit cells were separated by 6 mm from one
another. This distance is fairly small ,however, the 2×2 array behaves similar to the unit
othognal cell.

Figure 4.14 shows near field plots in mesh view for a plane incident E field in the y-
direction. Since, folded-slots are not connected, we expect horizontal slots in the x-direction
to show higher field intensity than field intensities on vertical y-direction folded slots. Near
field plots show results as expected. These plots are created at a distance of 0.8 mm from
the array, in the z-direction.



Figure 4.6: Layout of an 18 mm long double folded slot cell with 1×1 mm cell size drawn in
Virtuoso. Near and far field analysis is done on this slot with an uniform incident field Ey=
1 V/m
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Figure 4.7: Near field plots at 0.8mm for a unit folded-slot cell with plane Ey of 1V/m. All
plots show Ex on the horizontal transmitting slots
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Figure 4.8: Passive near field plots at 0.8mm for a unit cpw cell with incident plane Ey of
1V/m. All plots show Ey on the vertical transmitting slots
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Figure 4.12: Folded-slot 2×2 array (unit cells separated by 6mm): (a) Real Zin of 2×2 array
(b) and (c) Zoomed real Zin of 2×2 array
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Figure 4.13: Folded-slot 2×2 array (unit cells separated by 6mm): (a) Imaginary Zin(b) and
(c) Zoomed imaginary Zin
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Figure 4.14: Passive near field plots of folded-slot 2×2 array at 0.8mm: (a) Mesh view of x
direction slots (b) Mesh view of y direction slots



4.1.6 Simulation of 4×4 Folded-Slot Array

A 4×4 folded-slot array is simulated using ArraySim. Figure 4.15 shows a 4×4 array of
othognal folded-slots. However, the simulated layout of the folded-slot array does not include
CPW transmission lines. Neglecting, CPW lines is basically done to ignore transmission line
coupling effects. Input impedance parameters for this array are plotted in Figures 4.16a and
b with real and imaginary parts compared with unit cell Z11 to analyze coupling effects.
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Figure 4.15: CPW 4x4 Array

4.1.7 Designing Folded-Slot Arrays

As observed in chapter 3, coupling effects among unit cells in an array may degrade the
performance of the overall system. In this section we look at three configurations of 2×2
folded-slot arrays as shown in Figure 4.17 and plot their near field plots at 0.8 mm, 10
mm and 1 m away from the array to show which one of the three configuration may be
a designer’s choice. For all designs the length of the slots is 18 mm while the width is
7 mm (same dimensions as described for the 4×4 array). From near field plots shown in
Figure 4.18 we observe that design 3 is the most symmetric design and probabally is a better
choice than design 2 and design 1 because of its symmetric coupling cancelation around 10
mm distance. Since quasi-optical systems tend to be smaller in size at higher frequencies,
near field distances like 10 mm make more sense than 1 m near field distances in order to
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Figure 4.16: Zin of folded-slot array compared with unit double folded-slot cell (a) real (b)
imaginary



(a) Design 1: Array made from replicating unit cells

(b) Design 2: Array with its 2nd column a mirror image of its 1st column

(c) Design 3: Symmetric array

Figure 4.17: Three designs for 2×2 folded-slot arrays with vertical slots as transmitting slots
and horizontal slots as receiving slots



understand the system behavior. Once again we have shown the versatility of ArraySim is
designing array structures.

4.1.8 Active Analysis and EIPG

Active analysis involves interfacing ArraySim passive analysis with a circuit simulator. As
discussed in chapter 2. , an interface with a circuit simulator, Transim, is developed. In order
to perform active analysis for folded-slot based CPW structure, we first perform passive
analysis and find the frequency for a certain input impedance. A CPW transmission line
is then designed for simulated input impedance. Figure 4.19 shows a CPW line whose
characteristic impedance depends upon W and S, where W is the width of the CPW slot
and S is the width of the CPW line (metal). Z0 of the CPW line is calculated using the
equations from [22] which are;

k1 =
S

S + 2W
(4.5)

ǫre =
ǫr + 1

2
(4.6)

Z0 =
30π

√

(ǫr)

K ′(k1)

K(k1)
(4.7)

where K ′(k1)
K(k1)

depends on the value of k1 (see [22] for K ′(k1)
K(k1)

expressions).

After designing the CPW line for a certain impedance, EIPG (Isotropic Power Gain) is
computed, for an operating frequency range, with no active device. The EIPG just computed
indirectly gives the gain of the passive antenna system. For the folded-slot based CPW unit
cell discussed in [18] ,and earlier in the chapter, with dimensions; L=18 mm and W=7 mm,
the CPW line is designed for Z0=80 Ω. For that purpose Equation 4.5 is recomputed to
Equation 4.8;

S = 0.3694011276W (4.8)

It is not possible to layout a folded-slot CPW unit cell with cell size of 0.33×0.33 because
of large number of cells needed to draw the layout. Greater number of cells implies higher
simulation time and possibly memory problems. So, as a compromise, we use layout cell size
of 0.5×0.5 which gives us Z0 (CPW) of 82 Ω. Figure 4.21 shows the EIPG in dB with the
vertical slots as the transmitting slots while Figure 4.20 shows the actual layout drawn in
Virtuoso. The width of the CPW line i.e. S= 1 mm while the width of the CPW slot is 3
mm.

An active device (like MESFET or BJT) is then connected on the transmission line and
currents and voltages for this amplifier are computed using Transim. A simple small signal
BJT/MESFET model is used for AC analysis with Zin=Zout=125 Ω and gm=33 mS. Output
currents and voltages are then calculated. These currents or voltages are used to form a
new excitation vector and overall gain (EIPG) is re-computed. Similar procedure is used for
array active analysis. Figure 4.24 shows a connection of a MESFET with a two port based
admittance matrix. Care should be taken in signs of currents or voltages that are added to
form the new excitation vector. Figure 4.22 shows the EIPG for when an active device is
connected (see Appendix A for EIPG). In this particular simulation, a simple transmission
line is used to model the CPW line. However, using the CPW line modeled earlier in this
subsection and shown in Figure 4.23, we expect to see the simulated EIPG to be closer to
the published measurement (measurement data is obtained from [18]).



Design 1 Design 2 Design 3

(a) d = 0.8 mm (b) d = 0.8 mm (c) d = 0.8 mm

(d) d = 10 mm (e) d = 10 mm (f) d = 10 mm

(g) d = 1 m (h) d = 1 m (i) d = 1 m

Figure 4.18: Near field plots for 2×2 array at 9GHz
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Figure 4.19: Coplanar waveguide (CPW) geometry

Figure 4.20: Layout for an othognal folded-slot based CPW cell which is used to compute
the EIPG without active device
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Figure 4.22: EIPG for an active othognal folded-slot unit cell with a simple transmission
line modeled as a CPW line.



Figure 4.23: Layout of folded-slot unit cell with 82 Ohm CPW line used for active analysis
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Figure 4.24: Circuit Analysis of an amplifier given a Y port based matrix



4.1.9 Search Engine Efficiency

ArraySim uses symmetries in the drawn layout to reduce computation time for calculating
and filling MoM based G matrix. Folded-slot (with and without CPW lines) are single layer
structures and size of G matrix (depending on number of cells in layout) is generally smaller
in size than the size of G matrix for three layer structures like SSS. However, the search
engine increases efficiency by more than 90%. Table 4.1.9 shows simulation time of relatively
small unit cells with and without search table. Table 4.1.9 lists the number of elements that
were computed by solving MoM integral equations when search engine option was turned
off and on. where ST stands for search table and Śim. Time‘ includes time for MoM

Table 4.1: Comparing simulation times with and without search engine for small single layer
structures with varying number of cells in layout.

Num. Figure Num. Sim. Time Sim. Time Time

of of ST OFF ST ON Improvement

Layers Cells secs secs %

1 4.1 17424 12539 388 96.9

1 4.3a 289 606 33 94.5

1 4.3b 2116 2639 63 97.6

Table 4.2: Comparing number of elements computed by solving MoM integral equations
with and without search engine.

Num. Figure Num. Elements Elements

of of Computed Computed

Layers Cells ST OFF ST ON

1 4.1 17424 13068 1094

1 4.3a 289 289 17

1 4.3b 2116 1705 148

based G matrix filling, solving of matrix, reducing matrix to port based matrix, calculation
of network parameters, and far field analysis (near field analysis was turned off). Clearly,
having a search engine in ArraySim enhances performance. All simulations were made on a
Sun Ultra 1 workstation.

4.2 Discussion

In this chapter we depict ArraySim as a CAE tool to study behaviors of single layer struc-
tures. Folded-slot antenna structure is used as a sample single layer structure and simulations
are performed using ArraySim to study basic characteristics of folded-slots. Simulation re-
sults are compared with published measurements that show close agreement. This very
notion verifies ArraySim and shows how this tool can be used to study large structures like
those used in quasi-optical systems. Coupling effects among folded-slot unit cells is studied
using near field plots. Generally, replicating unit cells one after the other to form arrays may



not give an optimum performance. So, rearranging unit cells to get more symmetric arrays
may give a better performance as seen from near field plots in Figure 4.18 . At the end we
tabulate effect of search engine on simulation time and prove the efficiency of ArraySim. In
the next chapter we conclude this thesis and list possible future research that may enhance
performance and useablity of ArraySim.



Chapter 5

Conclusions and Future Research

5.1 Conclusions

A hierarchical modeling approach was presented for simulating electrically large structures
used in spatial power combiners. A computer aided engineering tool, ArraySim, is developed
to study behavior of various structures as long as their appropriate MoM functions are
interfaced. This CAE tool allows users to draw their structure on a commercial graphical
layout editor that produces a layout CIF description.

This CIF file is parsed to extract circuit port information and rectangular based basis
cells. These basis cells are reacted with one another to form an impedance or admittance
based MoM G matrix. Smart search routines are used to constantly check for symmetries
in the drawn structure thus reducing computation time. The MoM G matrix is then solved
and reduced to get port based impedance/admittance matrix. An interface with a circuit
simulator is defined that uses these port based admittance matrices along with excitation
currents/voltages at the ports to compute currents and voltages of an active device. These
new currents and voltages are used to form an updated excitation vector to find near and
far fields due to inclusion of active device.

Sample simulations are done on a three layer SSS structure, two layer slot-stripline struc-
ture and a single layer folded-slot structure. Unit cells as well as arrays are simulated and
discussed. Simulation results are compared with published measurements for specific dimen-
sions. A close agreement is seen in simulated and measured results that verify the correct
working of ArraySim.

ArraySim allows the user to model structures like antennas and grids provided their
correct MoM routines are used. From near field analysis of various array configurations of
single layer folded-slot structures and triple layer SSS structure, we observe coupling effects
at various distances from the arrays (on the output side). From these coupling effects we
conclude that arrays should be designed carefully so as to reduce coupling effects among unit
cells. In the next section we discuss various options that can be included in ArraySim to
make it more efficient.

5.2 Future Research

Simulating components of quasi-optical systems has become unavoidable. As this new re-
search area is being explored, new and better techniques of simulating array structures are
evolving. Basic problems to simulating these electrically large structures include; formulation
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of MoM greens functions, computation time, matrix solution and memory. These problems
are listed below with suggestions for improvement;

• ArraySim reduces computation time by using smart search routines that look for sym-
metries in the given structure and thus avoids re-computing symmetric reactions. Cur-
rently, sequential search routines are being used for searching purposes. These routines
can be replaced by more efficient binary search routines to further speed up simulation
time by several folds.

• Simulating large structures like a 10×10 CPW array, fixed size cells to mesh the layout
generates an extremely large MoM G matrix and thus increasing simulating time by
thousands of folds. A practical approach to this problem is to use adaptive cell size.
For e.g. the CPW line can be made from a few long rectangular cells rather than small
cells used to layout the folded-slots.

• The size of MoM G matrix is directly proportional to number of cells used in the layout
as well as number of layers. For large arrays, like, 5×5 arrays, matrix size could be
easily as large as 6 million elements. It is not efficient to store such matrices in data
structures at all times. Each sub-matrix should be computed and stored in a file and
should only be read into data structures just before solving.

• Presently, matrix solving, that includes inversion and multiplication, takes up a chunk
of total simulation time. This is because we use LU decomposition based matrix inver-
sion. Since a new matrix is computed for every frequency point, other matrix inversion
algorithms can be used that avoid the initial expensive step of LU decomposition.

• Currently, ArraySim can be invoked in stand-alone mode or in a graphical user interface
(GUI) as discussed in the appendix. This interface can be made more automated
with the circuit simulator, Transim, and active analysis procedure. Presently, once
the port based admittance matrix with port currents/voltages are computed, Transim
(circuit simulator) is run that uses Y-port information to compute amplifier currents
and voltages. This step can be reduced into a single process by invoking ArraySim

inside Transim’s netlist and avoid unnecessary hand moving of ArraySim files thus
enhancing overall efficiency of the system.

ArraySim can be made more effective by introducing more MoM based routines describing
variety of structures. This is analogous to adding more circuit models in Spice. Currently,
SSS and folded-slot structure based MoM routines are interfaced as shown in Figure 5.1.
By expanding the ability of ArraySim, we can model and study behaviors of various spatial
power combiners.
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Figure 5.1: More MoM based routines can be interfaced to handle more structures
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Appendix A

Effective Isotropic Power Gain

Effective Isotropic Power Gain, EIPG, refers to the actual measured gain of the quasi-optical
system which includes a transmitting horn, antenna array with active devices and polarizers.

The EIPG measurement setup is shown in Figure A.1. The signal is transmitted by a
standard gain horn with vertical polarization. The signal is then amplified by the active
antenna array and then received by another standard gain horn with horizontal polarization.
If Ptran and Pmeas are the transmitted and received power, then according to [18]:

Pmeas = Pmeas

λo

4ΠR

4

G2
hornG2

arrayGamp (A.1)

where λo is the wavelength in free space, Ghorn and Garray are the gain of the horn and

Source
Vertical HorizontalActive Antenna

       Array

Power Meter

R R

(a)

Source
Vertical

Power Meter

2R

Vertical

(b)

Figure A.1: Measurement setup for computing EIPG (a) Measurement (b) Calibration

antenna array while Gamp is the gain of the amplifier connected in the array.
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As discussed in [18], measurement apparatus dependence is eliminated by the calibration
procedure shown in Figure A.1b. In this case the array has been removed and the receiving
and the transmitting horn have the same vertical polarization. The power received in the
this case, Pcali, is expressed as;

Pcali = Ptrans

λo

8ΠR

2

G2
horn (A.2)

Using Equations A.1 and A.2, a term EIPG is defined as

EIPG = G2
arrayGamp =

Pmeas

4Pcali

4ΠR

λo

2

(A.3)

ArraySim uses the definition on the left hand side of Equation A.3 to compute the EIPG.
Note, EIPG is not the amplifier gain, Gamp



Appendix B

Usage of ArraySim

Two steps are involved to run ArraySim:

• Converting layout CIF into modified CIF file

• Running ArraySim with input parameter file and modified CIF file

For passive analysis the usage is:

cifParser filename.cif

mom input_param.txt filename.cif

cifParser converts filename.cif into modified CIF file keeping the same name, filename.cif.
ArraySim executable is called mom that takes two arguments; input param.txt and file-

name.cif.
For active analysis, the usage is:

PostTransim input_param.txt filename.cif

where input param.txt and filename.cif are the same files used for passive analysis discussed
earlier. An Outputs and Inputs directory has to be created to contain all output files.

B.1 Input Files

Enter data in following format.

value Description

2 antenna type: 1:sss 2:cpw 0:not defined

2.0 frequency in GHz

0.635 substrate height in mm

10.8 epsilon_r

1 Search Table on/off. on == 1 off == 0

1e-6 Search Table Tolerance Level (Default: 1e-6)

0 Print Individual Matrices and Complete Matrix

0 Print Inverted Matrix (Default on)

2.0 START freq (GHz). Should be same as one in line 2

4.2 END frequency (GHz)

0.1 Step size for frequency range
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180 Characteristic Imp of cpw in Ohms.

0 new port definition flag. If 1 use new method for Y_nn

1 stub length factor. if 1 then port is 1 cell away if 2.

*************************** INCIDENT WAVE INFO ***************

1 E_o to generate input for antenna in V/m

0 Ein_x incident in V/m

1 Ein_y incident in V/m

*************************** FAR FIELD INFO *******************

10 Far Field Distance in meters

*************************** NEAR FIELD INFO ******************

0.030 near field window length (m) i.e l_x

0.030 near field window width (m) i.e l_y

75 no. of columns (for resolution)

75 no. of rows (for resolution)

0.0008 distance away from array in meters

1 by pass field analysis

B.2 Output Files

Output files include network parameter files containing network parameters (S,Z and Y)
for each frequency point, set in input param.txt, matrix files that include G matrix as a
whole, individual sub-matrices, and inverted G matrix, output magnetic currents in x and y
direction on the slots, all currents i.e. on all layers, data for Transim (circuit analysis), data
for active analysis, near and far field data.

B.3 Matlab File

%***********************************************

%

% File: nearplot.m

% This file plots the Ex and Ey fields

% obtained from near field analysis

%

% History:

% Mostafa Created

% Usman Mughal Edited

%***********************************************

clear;

fid=fopen(’ex’);

%fid=fopen(’ex_phase’);

%fid=fopen(’ey’);

%fid=fopen(’ey_phase’);

a=fscanf(fid,’%g ’,[1 inf]);

a=a’;

fclose(fid);

n=length(a);

for i=1:n;



Table B.1: ArraySim Output Files

Type File Name Description

Matrix files outIncidentV ector.txt contains all sub-matrices

outComplete.txt Full MoM G matrix

outInverse.txt Inverted MoM G matrix

Network Files outReducedM at.txt contains port based reduce

matrix

outSP ort.txt port S parameters

Current Files outAllCurrents.txt current on all layers

outCurrentAllFreqx.txt magnetic current in

x direction for all freq

outCurrentAllFreqy.txt magnetic current in

y direction for all freq

outCurrentx.txt magnetic current

in x dir for last freq pt.

outCurrenty.txt magnetic current

in y dir for last freq pt.

Transim Files outT ransimExitationInfo.txt I or V sources

at the ports used to

excite the active device

outT ransimPortInfo.txt contains port group

num. and port

num. with frequency info.

outP ostTransimInput.txt contains row num. of G

where ports are located.

This info. is used to create

a new excitation vector.

Near Field ex E in the x direction

ey E field in the y direction

exphase Phase of E in the x dir

eyphase Phase of E in the y dir

Far Field EIPG.dat Isotropic power gain in dB

in the y-dir

epp0.dat radiation pattern phi=0

etp0.dat radiation pattern theta=0

epp90.dat radiation pattern phi=90

etp90.dat radiation pattern theta=90



z(i)=a(i);

end

n=sqrt(n);

for i=1:n

for j=1:n

Z(i,j)=z((i*n-n)+j);

end

end

Z=Z’; x=1:n; y=x;

figure

colormap(gray);

grid; contour(x,y,Z,10); colorbar;

figure

surf(x,y,Z) mesh(Z) hidden on

colormap(hsv); colorbar;

zlabel(’E (V/m)’) xlabel(’X’) ylabel(’Y’)

colormap(hot) colorbar

figure

contour(x,y,Z,10); colorbar

figure

pcolor(x,y,Z) axis([1 n 1 n]) shading flat

colormap(hot) colorbar

B.4 Makefile

# Makefile for MOM

#

# Auther: Usman Mughal

#

# Date: 11/10/97

#

# Use: - the xlC compiler on IBM’s RS6000,

# - the g++ compiler on SUN workstations.

# Remove the comment flag ’#’ from the

# respective "CPP" definition.

# Compile your project with:

# "make"

#

# "make clean" will delete all extra files

# and executables (useful when switching systems).

#

CXX=g++

#CXX=xlC

#

FC=g77

#

#STL=-lstdc++



#

#CXXFLAGS=

CDFLAGS= -L/ncsu/gnu/lib -L/afs/eos.ncsu.edu/ \

contrib/gcc272/lib -lf2c

#

XLIB=-lX11

#

# Set the DEBUG definition to be empty if you do not

# want debug.

#

#DEBUG=-DDEBUG -g

#

#use this for Active Analysis

#CXXSRC = PostTransim.C

#use this for Passive Analysis

CXXSRC = main_new.C

FSRCS = interpolation.f ginterpolated.f math.f \

matrix_element.f \

param_S.f scalargreen.f spatial_integrand.f \

spatial_mat_elem.f \

spectral_integrand.f zelement.f nearfield.f \

zinput.f matrix_inversion.f cpw_farfield.f\

cpw_interpolation.f cpw_yel.f param_Z_to_S_.f

OBJS = $(FSRCS:.f=.o) $(CXXSRC:.C=.o)

#use this for Active Analysis

#all: PostTransim

#

#mom: $(OBJS)

# $(CXX) -o PostTransim $(DEBUG) $(OBJS) $(CDFLAGS)

#$

all: mom

#

mom: $(OBJS)

$(CXX) -o mom $(DEBUG) $(OBJS) $(CDFLAGS)clean:

-rm -f $(OBJS)

#use this for Avtive Analysis

#depend:

# g++ -M PostTransim.C >> Makefile

depend:

g++ -M main_new.C >> Makefile

B.5 Sample Run

%

*********************************************************

* *

* ArraySim for Quasi Optical Systems *

* *



* Simulation Begins *

* *

* Version 3.0 01/25/1999 *

* ERL Group *

* North Carolina State University *

*********************************************************

Parsing CIF FILE...

Num of Ports 1

ORDER OF PORTS IN PORTARRAY[]

9000, -12500 Port Group: 1

Num of Layers: 1

Layer 1 cells: 264

Layer 2 cells: 0

Layer 3 cells: 0

L1_BasisCell_x[ ] size is: 201

L2_BasisCell_x[ ] size is: 0

L3_BasisCell_x[ ] size is: 0

L1_BasisCell_y[ ] size is: 201

L2_BasisCell_y[ ] size is: 0

L3_BasisCell_y[ ] size is: 0

Reading INPUT FILE...

Antenna Structure: CPW

Frequency (GHz):4 Substrate Height (mm): 0.635

Epsilon_r: 10.8 ST_on/off: 1 maxtol: 1e-06

Print Matrices: 0 Print Inverted Mat: 0

Start Freq: 4 End Freq: 5.2 Step Freq: 0.1

Charateristic Impedance of Stripline, Zc : 180

USE new port definition: 0

Incident Field Const: 1

Incident E-Field x: 0

Incident E-Field y: 1

Far Field Distance: 10

window_length_x 0.03

window_length_y 0.03

numOfCols 75

numOfRows 75

nearFieldDistance 0.0008

By Pass Field Analysis: 1

xmin :500 xmax: 26500

xMax_distance 27000

ymin :-19500 ymax: 6500

yMax_distance 27000



Frequency: 4

Done with Internal Parsing!

FREQUENCY : 4

Freq FILL 4

Creating Main Matrix...

Begin Filling...

Size of Sub Matrix is: 161604

Number of Quads in Y[s1,s1] 4

Total Number of SubMatrices are: 1

Calculate Data to Interpolate Array Region

Interpolation for CPW Structure:

&freq,&epsr,&d,&aline,&xmax, &ymax

4 10.8 0.000635 0.001 0.027 0.027

freq= 4.

polr= 1.00118569 poli= 0.

--------------------------

Done with Interpolation

A ONE LAYER STRUCTURE ONLY

CALLING L1_XX

elm found: 39865 elm not found: 536**

CALLING L1_XY

elm found: 39749 elm not found: 652**

TRANSPOSING QUAD1 to get QUAD 2 for L1_YX

CALLING L1YY

elm found: 39865 elm not found: 536**

Merging all 4 Quads

Merging all submatrices to form one Matrix...

End of Filling...

LU Factorizing....

Calling Matrix_inverse

Inverting Matrix....

Reducing Matrix....

Calculating Current Vector...

Exiting Structure with incident Field....

CPW ANTENNA

Plane Perpendicular Incident Field with Hy zero

Printing Incident Vector to file....

Multiply Inverted Matrix with Incident Vector

LHS VECTOR



Transim Port Parameters....

Converting Z port params to Y port parameters...

1.6816649013e-06 , 1.4958530703e-06

Calculating S Parameters...

Converting Z to S param

Printing Reduced Port Matrix...

CPW Array FAR FIELD ANALYSIS...

freq:= 4.

nx:= 201

ny:= 201

ax:= 0.001

ay:= 0.001

Phi = 0 degrees

|E| theta maximum: 0.000743245921 V/m

|E| phi maximum: 0.000417748433 V/m

Phi = 90 degrees

|E| theta maximum: 0.000419009956 V/m

|E| phi maximum: 0.000743258345 V/m

EIPG : 1.54894234

EIPG (dB): 1.9003525

EIRP (mW): 0.000290037328

EIRP (dBm): -35.375461

DONE CPW Array FAR FIELD ANALYSIS...

next freq....

B.6 GUI Version

A simple GUI (graphical user interface) is created to ease the analysis. Figure B.1 shows the
GUI which is written in Java. The graphical user interface allows to run ArraySim by clicking
respective buttons. The analysis is broken into three steps. In the first step the raw CIF
file is converted into modified CIF file. In the second step, the modified CIf and the input
parameter file is loaded in and then Execute is clicked to run the passive simulation. At the
end of the passive simulation, step 3 is performed which executes post transim simulation.



Figure B.1: A Graphical User Interface of ArraySim



Appendix C

C++ Class Headers

This chapter includes alll C++ class headers that are used in AraySim. Some of the member
functions have lengthy implementation and thus their definition is not listed. However, for
complete source code and header information visit:

http://ncsu/erl/mbs_group/work/www/ArraySim.html.

C.1 Complex.h

/////////////////////////////////////////////////////////////

// Name: Usman A Mughal

// File: Complex.h

//

// Description:

// This class contains the definition of complex numbers

// with their regular functions. An Element in the G

// matrix is of type Complex.

/////////////////////////////////////////////////////////////

class Complex{

public:

double real,

imag;

Complex(){real =-1; imag=-1;}

Complex( double r, double i){ real = r; imag = i;}

void initialize(double r, double i);

friend ostream& operator<<( ostream& out,

const Complex& c);

int operator==(const Complex& c);

Complex& operator=(const Complex& rhs);

///////////// adding a real to a Complex number ///////////

friend Complex operator+( const Complex& lhs, float rhs);

friend Complex operator+(float lhs, const Complex& rhs);

///////////// adding Complex with Complex //////////////////

friend Complex operator+( const Complex& lhs,

83



const Complex& rhs);

friend Complex operator-(const Complex& lhs, float rhs);

// the following friend function definition uses operator

// overloading "-" .

// It subtracts a Complex number from a real

friend Complex operator-(float lhs, const Complex& rhs);

// the following friend function definition uses operator

// overloading "-" . It subtracts two Complex numbers

friend Complex operator-(const Complex& lhs,

const Complex& rhs);

friend Complex operator*(const Complex lhs,

const Complex rhs);

// the following friend function definition uses operator

// overloading "*" . It multipies a Complex number to a real

friend Complex operator*(const Complex& lhs, float rhs);

// the following friend function definition uses operator

// overloading "*" . It multipies a real to a Complex number

friend Complex operator*(float lhs, const Complex& rhs);

friend Complex operator/(const Complex& lhs ,

const Complex& rhs);

// the following friend function definition uses operator

// overloading "/" . It divides a real by a Complex number

friend Complex operator/(float lhs , const Complex& rhs);

// the following friend function definition uses operator

// overloading "/" . It divides a Complex number by a real

friend Complex operator/(const Complex& lhs , float rhs);

double mag();

double phase();

}; //end of class Complex

C.2 Port.h

//////////////////////////////////////////////////////////////

// Name: Port.h

// Auther:

// Usman Mughal

// Description:

// This class contains neccessay information about a port

// All ports are contained in a PortArray which is declared

// InternalParser. Ports in PortArray[] are ordered w.r.t

// port coordinates.

//////////////////////////////////////////////////////////////

class Port{

public:

double x; // x and y coordinates of the port position

double y;

int indx_x, indx_y;



// row and col indeces of port in the

// inverted Matrix (Matrix Manipulation)

int index;

ndex number of the port in

// single dimmension C_Invert_Matrix[]. It is

// used to get the row and col indeces

// which are

// then assigned to indx_x and indx_y.

int portGroup;

// An amplifier is two port device

// such that the two ports belong to a

// single group. In an array there are

// several amplifiers and each amp’s

// port belong to a certain group

// e.g in layout 1:2 means port 1 beloging

// to group two.

////////////////// Constructors ////////////////////////

Port();

Port(double x1, double y1);

////////////////////// Overload Operators //////////////////

friend ostream& operator<< (ostream& out, const Port& p);

int operator< ( const Port& c);

Port& operator= ( const Port& p );

}; // end of class Port

C.3 Layer.h

////////////////////////////////////////////////////////

// Name: Usman A. Mughal

// File:

// Layer.h

//

// Description:

// Contains attributes of a Layer.

////////////////////////////////////////////////////////

class Layer {

public:

int type; // layer type e.g 1, 2, 3

double dielectric; // dielectric of layer

double conductivity; // zero for air

////////////////// Constructors ///////////////////

Layer();

Layer( int t, double d, double c) ;

/////////////////// Overload Operators ////////////

Layer& operator= ( const Layer& rhs);

int operator== (const Layer& L);



friend ostream& operator<<(ostream& out, const Layer& L);

}; // end of class Layer

C.4 Cell.h

/////////////////////////////////////////////////////////////

// Name of File: Cell.h

//

// Authur:

// Usman A Mughal

//

// Description:

// Class declaration of a unit Cell. The input

// CIF file has Cell information which are then

// combined to form BasisCell

/////////////////////////////////////////////////////////////

#define false 0

#define true 1

///////////// Class Declaration for Cell ////////

class Cell{

public:

double x, y; // Position of Unit cell in the layer

// both x and y denote the

// center of the unit cell

double dx, dy; // Dimmensions of a unit cell

Layer L;

/////////////////////////// constructors /////////

Cell();

Cell ( double x1,

double y1,

double dx1,

double dy1

);

////////////////// Overloading operators /////////

Cell& operator= ( const Cell& c );

int operator< ( const Cell& c);

friend ostream& operator<<( ostream& out,

const Cell& c);

int operator== (const Cell& c);

void absDistance (double &xd, double &yd,

const Cell& c );

////////////////////////// getters ////////////////

double getX(){ return x; }

double getY(){ return y; }

////////////////////////// setters ////////////////

void setX(double X){ x = X;}

void setY(double Y){ y = Y; }



}; //end of class Cell

C.5 BasisCell.h

////////////////////////////////////////////////////

// Authur:

// Usman A Mughal

// File Name:

// BasisCell.h

// Description:

// This file contains the definition of BasisCell.h.

// BasisCell in this case is a triangular cell with

// a rectangular base. A BasisCell is formed by the

// combination of two Cells. The center of the

// BasisCell is thus the center point of the interface

// of the two Cells forming the BasisCell.

// The dimensions of the BasisCell is the same as

// that of a unit Cell i.e. same dx and dy.

//////////////////////////////////////////////////////

class BasisCell{

public:

//member variables

double x, y; // Center of BasisCell

double dx, dy; // Dimension of BasisCell

int direction;

// direction of BasisCell, i.e. x or y where

// x ==1 amd y == 2

int port;

// if port then its value is ’1’ else ’-1’

int type; // sourse or test ?

Layer L;

//member functions

//default constructor

BasisCell() { x = -1; y = -1; dx = -1; dy =-1;

direction = -1; type = -1;

port = -1; }

//constructor

BasisCell( double x_b,

double y_b,

double dx_b,

double dy_b,

int d,

Layer t );

//copy constructor

BasisCell (const BasisCell& b);

//overload identity operator



int operator== (const BasisCell& b);

//overload less than operator

int operator< ( const BasisCell& c);

//overload assignment operator

BasisCell operator= ( const BasisCell& rhs);

//overload output operator

friend ostream& operator<< (ostream& out,

const BasisCell& b);

}; // end of class BasisCell

C.6 Element.h

////////////////////////////////////////////////////

// Authur:

// Usman A Mughal

// File Name:

// Element.h

// Description:

// Definition of Element class.

// Element is created by the reaction

// of two BasisCells.

//

////////////////////////////////////////////////////

class Element{

public:

Complex value; // value of the element calculated

// using Fortran prog

int type; // xx, xy, yx, yy

BasisCell parent_src,

parent_tst;

double delta_X, delta_Y, dist;

///////////////////// Constructors //////////////

Element(){ type = -1;}

Element(Complex v, int t, BasisCell& src,

BasisCell& tst);

//Returns the distance between a src and tst cell that

//create an element

double distance();

double deltaX(){

return (parent_src.x - parent_tst.x) ;

}

double deltaY(){

return (parent_src.y - parent_tst.y) ;

}

//////////////////////// Overload Operators /////////

int operator== ( Element& e);



int operator<(Element &e);

//////////////////// Member Functions //////////////

int lessthan(Element &e1);

double absDeltaX();

double absDeltaY();

void setElement(Complex v, int t, BasisCell& src,

BasisCell& tst);

friend ostream& operator<<(ostream& out,

const Element& e);

Element& operator= ( const Element& rhs);

void negateValue();

};

C.7 InternalParser.h

/////////////////////////////////////////////////////////

// Authur:

// Usman A Mughal

// Name of File:

// InternalParser.h

// Description:

// This class reads the cif file for the layout

// and then orders the cells of each layer in

// separate arrays. These ordered cells and then

// used to create BasisCells for each layer.

// Note: Each layer has two BasisCell Associated

// to it. i.e. BasisCell_x and BasisCell_y.

// The interface function of this class with the

// main.C is through the method parse().

//////////////////////////////////////////////////////////

class InternalParser{

public:

int numOfLayers, numOfPorts,

L1_numOfCells, L1_numOfCells_x, L1_numOfCells_y,

L2_numOfCells, L2_numOfCells_x, L2_numOfCells_y,

L3_numOfCells, L3_numOfCells_x, L3_numOfCells_y,

L1_numOfBCells_x, L1_numOfBCells_y,

L2_numOfBCells_x, L2_numOfBCells_y,

L3_numOfBCells_x, L3_numOfBCells_y;

int SearchTable_flag; //if 1 then on if 0 then off

int PrintMatrices_flag; //if 1 then on if 0 then off

int PrintInvertedMat_flag; //if 1 then on if 0 then off

int new_port_def_flag;

//if 1 then use the new port def for

//Y port parameters



int antenna;

// if 1 then slot-stripline-slot (3 layers)

// if 2 then cpw (1 layer)

double E0; // const for

// incident input field. Read from input file

double Ein_x, Ein_y;

int TypeOfField_flag; //1: plane perpendicular

//2: plane field with Q=Q’

double farFieldDistance;

double window_length_x;

double window_length_y;

int numOfCols;

int numOfRows;

double nearFieldDistance;

double xoff,yoff;

double xMax_distance, yMax_distance;

double freq, height, epsilon_r, max_tol;

double Start_freq, End_freq, Step_freq,

Zc, stub_len_factor;

int bypass; //if one then bypass field analysis

// till last freq point

Port *PortArray;

Cell *Layer1Cells,

*Layer2Cells,

*Layer3Cells;

BasisCell *L1_BasisCell_x, *L1_BasisCell_y,

*L2_BasisCell_x, *L2_BasisCell_y,

*L3_BasisCell_x, *L3_BasisCell_y;

InternalParser();

~InternalParser();

int L1_L2_sym();

void getPorts(istream& ins)

void countCells( istream& ins){

void createCellArrays(istream& ins){

// This function is called after createLayerCellArrays()

// This function will fill the Layer#Cells[] from the .cif

// file. The cells in the arrays are then later ordered

// w.r.t. to their coordinates by orderLayerCells()

void swap(Cell a[], int min, int i);

void swap(Port a[], int min, int i);

void swap(BasisCell a[], int min, int i);

void selectionSort(Cell a[], int N);

void selectionSort(BasisCell a[], int N);

void selectionSort(Port a[], int N);

void orderPorts()

void orderLayerCells();

// This function will order the cells in each

// array w.r.t their a 7 y coordinates



void createBasisCellArrays();

// This function will use the cell arrays

//orderd by orderLayerCells()

// and create two BasisCellArrays per Layer.

//i.e BasisCell_x & BasisCell_y

void cal_xMax_yMax_distance();

void Find_Max_x_Max_y(double& Min_x, double& Min_y,

double& Max_x, double& Max_y,

Cell a[], int n);

void readInputFile( istream &ins );

void parse( istream& ins, istream& ins2);

};

C.8 QuadMatrix.h

//////////////////////////////////////////////////////

// Name:

// Usman A Mughal

// File:

// QuadMatrix.h

//

// Description:

// This class contains the attibutes of a QuadMatrix.

// QuadMatrix is a part of SubMatrix object.

// It contains Elements.

//

///////////////////////////////////////////////////////

class QuadMatrix {

public:

int quadSize_x, //number of rows in QuadMatrix

quadSize_y, //number of rows in QuadMatrix

size_t, //total Elements in a QuadMatrix

offset, //Equal to number of columns

empty; //asserted if QuadMatrix is empty

Element* elmArray; // a quad contains an array of

// Element types

QuadMatrix() { offset = 0;

quadSize_x = 0;

quadSize_y = 0;

size_t = 0;

empty = 0;

elmArray = NULL;}

void QuadMat(int size_x, int size_y, int os);

~QuadMatrix(){

delete [] elmArray;

}

//////////////////////// Transpose a Matrix ///////////



//

//This function takes a QuadMatrix as a parameter and

//transposes it. The current instance thus becomes the

//transposed QuadMatrix.

void transpose( QuadMatrix &q);

/////////////////// Add Element to Matrix ////////////

void addElement( Complex& v, int type, BasisCell& s,

BasisCell& t,

int row, int col);

/////////////////// Fill Zeros ///////////////////////

void fillZero();

/////////////////// Overload Operators ////////////////

friend ostream& operator<<(ostream& out,

const QuadMatrix& q);

QuadMatrix& operator=(const QuadMatrix &rhs);

}; // end of class QuadMatrix

C.9 SubMatrix.h

///////////////////////////////////////////////////////

// Name:

// Usman A Mughal

// File:

// SubMatrix.h

//

// Description:

// This class defines the SubMatrix which is inside the

// MainMatix. The number of SubMatrices depends upon the num

// of layers. i.e number of sumatrices is equal to

// (num of layers * num of layers).

// Each submatrix is made up of max. four quad matrices.

// Each quad has reaction information e.g quad[0] has xx

// reaction info, quad[1] has xy etc.

// The user can do the following with a sub matrix matrix:

// - negate and transpose a matrix,

// - print a submatrix to a file

// - assign a submatrix to another

// - merge the quad matrices inside the submatrix to form one

// solid submatrix.

//////////////////////////////////////////////////////////////

class SubMatrix {

public:

int subSize_x;

int subSize_y;

int offset;

int size_t;

int numOfQuads;



int maxNumOfQuads;

Element* elmSubArray;

QuadMatrix* quads; // Max 4 in number

SubMatrix();

void setSize(int num);

~SubMatrix();

///////////////////////// Merge ///////////////////////

void merge();

////////////////////// Negate and Transpose ///////////

void negateAndTranspose(SubMatrix &s);

///////////////////////// Overload ////////////////////

friend ostream& operator<<(ostream& out,

const SubMatrix& s);

SubMatrix& operator= (const SubMatrix& rhs);

void negReverse(const SubMatrix& s);

};

C.10 MatrixManipulation.h

////////////////////////////////////////////////////////

// Name: Matrix_Manipulation.h

//

// Auther: Usman A Mughal

// Description:

// This class contains varous funtions for solving

// a complex matrix. It will Inverse the Main_Matrix

// using LU decomposition method.

// Reference:

// Numerical Recipies in C pp43. ed 1988

//////////////////////////////////////////////////////////

extern "C"

{

void matinv_();

}

class Matrix_Manipulation{

public:

Complex *C_Inverse_Matrix;

Complex *Reduced_Matrix;

float d;

int N;

int offset; // for LU_dcmp_Matrix

int size_c;

////////////// default constructor /////////////////////

Matrix_Manipulation()



///////////// constructor used for ArraySim ////////////

Matrix_Manipulation(MainMatrix& m);

////////////////// destructor //////////////////////////

~Matrix_Manipulation();

/////// call this funtiion to begin matrix manip ///////

void Begin_Matrix_Manip(MainMatrix &m ,

InternalParser& p);

/////////////////////// get value //////////////////////

// it was with Complex instaed of Element return

// a[((row-1)*offset + col)];

// and the complex vector was from 1 to n.

inline Complex getValue_mm(int row,int col,

int offset, Element a[])

{return a[((row)*offset + col)].value;}

inline Complex getValue_mm(int row,int col,

int offset, Complex a[])

{return a[((row-1)*offset + col)];}

//////////////// set value same as a[i][j] = value /////

// was a[( (row-1)*offset + col ) ] = rhs;

inline void setValue_mm(int row, int col, int offset,

Element a[], Complex& rhs)

{a[( (row)*offset + col ) ].value = rhs;}

inline void setValue_mm(int row, int col, int offset,

Complex a[], Complex& rhs)

{a[( (row -1)*offset + col ) ] = rhs;}

//The following get function is for arrays

//starting from 1 to n

inline Complex getValue_1_to_n(int row,int col,

int offset, Complex a[])

{return a[((row-1)*offset + col)];}

/////////////// set value same as a[i][j] = value //////

inline void setValue_1_to_n(int row, int col,

int offset,

Complex a[], Complex& rhs)

a[( (row-1)*offset + col ) ] = rhs;}

void convert_IndxTo_Row_and_Col(int &row, int &col,

int Ind, int offset);

///////////////// Fill Redeuced Matrix /////////////////

void Reduced_Port_Matrix(InternalParser& p);

//////// Make Copy of elmMainArray in the form [1..n]///

void makeCopy(MainMatrix& m, InternalParser& p);

/////////////////////////// LU Decompose ///////////////

void LU_dcmp(Element a[], int n, int indx[],

float &d, int offset);

////////////////////////// Overload output operator ////

friend ostream& operator<<(ostream& out,

const Matrix_Manipulation& m);

////////////’/////////// Matrix inverse /////////////////

void Matrix_Inverse_Fortran( Element a[], int size_a,



int n, Complex aInv[]);

//////////////// forTran Complex Input /////////////////

void Matrix_Inverse_Fortran( Complex a[], int size_a,

int n, Complex aInv[])

//////////////////////////////////////////////////////////

void Matrix_Inverse( Element a[], int n, int offset,

Complex aInv[], float d);

// first call the LU decomposition method on matrix

// LU_dcmp_Matrix and then inverse this matrix

// This function call LU_dcmp() will initialize the

// vector indx[] and re-fill LU_dcmp_Matrix[].

/*

a[]: It is a Complex vector that is LU decomposed

n: Is the order of the input matrix (not size of)

vector a[]

indx: is an output vector which records the row

permutation effected by the partial pivoting

d: Is output as +-1 depending on whether the number

of row

interchanges was even or odd

offset: Offset of a[]. This way we know when the

next row begins.

col[]: a vector (complex) of zeros and ones used by

LU_bksb

aInv: A Complex vector which is the final result.

It is the inverse of a[].

*/

//////////////// Backsubstitution //////////////////////

void LU_bksb(Element a[], int n, int indx[],

int offset,Complex cb[]);

//////////////////////// for complex inputs /////////////

void Matrix_Inverse( Complex a[], int n, int offset,

Complex aInv[], float d);

// first call the LU decomposition method on matrix

// LU_dcmp_Matrix and then inverse this matrix

// This function call LU_dcmp() will initialize the

// vector indx[] and re-fill LU_dcmp_Matrix[].

/*

a[]: It is a Complex vector that is LU decomposed

n: Is the order of the input matrix (not size of)

vector a[]

indx: is an output vector which records the row

permutation effected by the partial pivoting

d: Is output as +-1 depending on whether the number

of row

interchanges was even or odd

offset: Offset of a[]. This way we know when the

next row begins.

col[]: a vector (complex) of zeros and ones used by



LU_bksb

aInv: A Complex vector which is the final result.

It is the inverse of a[].

*/

///////////////// Backsubstitution for complex ///////////

void LU_bksb(Complex a[], int n, int indx[],

int offset,Complex cb[]);

//////////////// LU Decompose for complex ////////////////

void LU_dcmp(Complex a[], int n, int indx[], float &d,

int offset);

///////// Matrix Multiplication with a real vector ///////

void multiply( Complex a[], int a_offset,

float b[], Complex ans[]);

// the two matrices are multiplied as

// ans = a*b;

/////////// multiply a matrix with a complex vector //////

void multiply( Complex a[], int a_offset,

Complex b[], Complex ans[]);

// the two matrices are multiplied as

// ans = a*b;

///// add a complex matrix with a complex vector ////////

//This fucntion adds two same sized matrices

//ans=a+b;

//for a vector with one coloumn, a_offset=1;

void add( Complex a[], int a_offset, Complex b[],

Complex ans[], int size);

// the two matrices are multiplied as

// ans = a+b;

}; // end of class definition

C.11 MainMatrix.h

//////////////////////////////////////////////////////////

// Name:

// Usman A Mughal

// File:

// MainMatrix.h

//

// Description:

// This class contains the attributes of MainMatrix.

// The is the large matrix containing SubMatrix objects

// SubMatrix objects are merged row at a time in order

// to merge all SubMatrix objects to form one large

// MainMatrix.

///////////////////////////////////////////////////////////

class MainMatrix {



public:

int mainSize_x; //number of columns

int mainSize_y; //num of rows

int size_t; //total elements in MainMatrix

int offset; //number of columns

int numOfSubsPerRow;

int sizePerRow ;

int antenna; //if 1 then sss; 2: cpw; else undefined

SubMatrix *subMat;

Element *elmMainArray;

MainMatrix();

MainMatrix(InternalParser &p);

/////////////////////// Compute Sixe of MainMatrix ////

void setSize( int index, InternalParser& p);

~MainMatrix();

////////////////// Access a Row and Col of Main Mat ////

Complex getValue(int row,int col);

///////////////////// Overload output operator /////////

friend ostream& operator<<(ostream& out,

const MainMatrix& m);

/////////////////// Merge A Row ///////////////////////

int mergeRow(int start, int &elmIndex){

};

C.12 SearchTable

///////////////////////////////////////////////////////

// Name:

// Usman A Mughal

// File:

// SearchTable.h

// Description:

// At the present time the search table uses

// linear search to find an element.In later versions,

// binary search should be used

///////////////////////////////////////////////////////

class SearchTable {

public:

//STL vectors. Elements can be added from both

//sides of a vector. STL vectors have their

//own destructors.

vector<Element> ElemArray_ST_xx; // for xx quad

vector<Element> ElemArray_ST_yy; // for yy quad

vector<Element> ElemArray_ST_xy; // for xy quad.

// yx = [xy]T for Y



// therefore no ST needed for yx.

// used to define the size of the searchtable

int start, numOfCells;

int index_xx;

int index_yy;

int index_xy;

int entries_xx; // enteries in the search table

int entries_yy;

int entries_xy;

int antenna; //antenna type (1 for SSS, 2 for CPW)

double tol; //tolarance level

///////////////////// Constructors ///////////////////////

SearchTable(int nOfCells, InternalParser& p);

//////////////////////// add Item /////////////////////////

void addItem ( Element &e);

///////////////////////// find ////////////////////////////

// This function returns the index in the search

// table for the

// element which has been found. This index is then

// used by

// getElement() to extract the respective Element value

int find ( BasisCell& s, BasisCell& t, double &flag_sign);

///////////////////////// getElement ///////////////////////

Element& getElement(BasisCell& s, BasisCell& t, int ii)

void swap(Element a[], int i, int j);

void selectionSort(Element a[], int N);

};

C.13 MainAlg.h

////////////////////////////////////////////////////////

//

// Name:

// Usman A Mughal

// File Name:

// MainAlg.h

//

// Description:

// This is the core of the program.

// This class acts like a main

// First we setup the sizes of all the quad matrices

// in all the 9 SubMatrices. Then we call

// Reaction() to find the reaction between two

// BasisCell arrays. Each time Reaction is called,

// one of the quad is filled up.

//

/////////////////////////////////////////////////////////

//just for fortran



extern "C"

{

void interpolation_( );

void cpwinterpolation_( );

void matelem_( );

void cpwyelem_( );

}

struct element_value{

double r;

double i;

};

class MainAlg{

public:

int index;

//gives the total number of Submatrices

int position;

//actual index position of the submatrix

int positionTranspose;

//The index of Submatrix to be transposed

int numOfLayers;

int result;

int dummy;

double freq, epsr, d, lline, wline,

lslot, wslot, xoff, yoff,

xmax, ymax, aline, bslot;

element_value z, z1, z2;

//////////// Constructor called in main() ///////

/* This constructor allocates memory for QuadMatrices

depending upon the number of layers. Depending upon

the antenna type, it calls the respective interpolation

functions. Then it calls the functions to fill the

individual SubMatrices which intern call the respective

reaction functions. After filling all SubMatrices,

subMatrices are merged to form one large MainMatrix.

The MainMatrix and the individual matrices are then

printed

*/

MainAlg(InternalParser& p, MainMatrix& m);

void OutputMatrices(InternalParser& p, MainMatrix& m );

//////////////////////// Fill Y[s1,s1] ///////////////

void FillYs1s1( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////////Fill W[ln,s1]///////////////

void FillWlns1( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////// Fill Z[ln,ln] ///////////////

void FillZlnln( InternalParser& p, MainMatrix& m,



int pos);

//////////////////////////Fill U[s1,ln] //////////////

void FillUs1ln( InternalParser& p, MainMatrix& m,

int pos, int posTran);

//////////////////////////Fill U[s2,ln] //////////////

void FillUs2ln( InternalParser& p, MainMatrix& m,

int pos, int posTran);

//////////////////////////Fill W[ln,s2] //////////////

void FillWlns2( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////////Fill Y[s2,s2] //////////////

void FillYs2s2( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////////Fill Y[s2,s1] //////////////

void FillYs2s1( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////// Fill Y[s1,s2] ///////////////

void FillYs1s2( InternalParser& p, MainMatrix& m,

int pos);

//////////////////////// setupQuadMatrix /////////////

void setupQuadMatrices( InternalParser& p,

MainMatrix& m);

//setting up sizes of all the quad matrices.

//This is an initialization process.

// The number of quads depends on the structure

// It is max 4 in value and is set to set the

// size of the submatrix. Each submatrix knows

// the number of quads in it.

//////////////////////////Set up Main Matrix /////////

void setupMainMatrix(MainMatrix& m,

InternalParser& p);

////////////////////////// Reaction //////////////////

void Reaction( BasisCell tst[], int tstCells,

BasisCell src[], int srcCells,

MainMatrix& m, InternalParser &p,

int pos);

};

C.14 FieldAnalysis.h

///////////////////////////////////////////////////////

// Name: Usman A. Mughal

// File:

// FieldAnalysis.h

//

// Description:



// This class calls the respective near and far

// field fortran fuctions. This class is used in

// passive and active analysis

////////////////////////////////////////////////////////

// The following lines are addedto avoid warning messages

// due to Fortran function call.

extern "C"

{

void cpwfarfield_();

void nearfield_();

}

class FieldAnalysis{

public:

int typeOfAnalysis; //near = 1; far = 2;

FieldAnalysis(){typeOfAnalysis = 1;};

void nearField(InternalParser &p );

void farField( InternalParser &p);

}; // end of class FieldAnalysis



Appendix D

C++ Source Files

D.1 main new.C

///////////////////////////////////////////////////////

//

// Name: main_new.C

//

// Auther: Usman A Mughal

//

// Description:

// This is the main program. It creates instances

// of InternalParser, MainMatrix, Matrix_Manipulation

// All results are output to files.

//

///////////////////////////////////////////////////////

//just for fortran

extern "C"

{

void paramz2s_();

void params_();

}

void banner_end();

void banner_begin();

void Fill_and_Solve_Matrix(

istream& ins, istream& ins2, InternalParser &p,

double freq_point,

ofstream &outTime,

ofstream &outfileInverse,

ofstream &outfileRM,

ofstream &outfileTransimPortInfo,

ofstream &outfileTransimExitationInfo,

ofstream &outfileAllCurrents,

ofstream &outfilePortCurrents,

ofstream &outfileCurrentsForFeildAnalysis_x,

ofstream &outfileCurrentsForFeildAnalysis_y,

ofstream &outfileS);
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void nearField_forOtherParameters(InternalParser &p);

void Calculate_S_Parameters( InternalParser& p,

Matrix_Manipulation& mp,

ofstream &outfileS);

void OutputFor_Transim_Input (

Complex aZ[],

InternalParser& p,

Matrix_Manipulation& mp,

double freq_point,

ofstream& outfileTransimPortInfo,

ofstream& outfileTransimExitationInfo,

Complex lhs[], Complex Ish[]);

void Convert_Z_to_Y(Complex aZ[], Complex aY[],

InternalParser& p,

Matrix_Manipulation& mp

);

void Convert_Y_to_S( InternalParser& p,

Matrix_Manipulation& mp,

double S_mag[],

double S_phase[]

);

void Convert_Z_to_S( InternalParser& p,

Matrix_Manipulation& mp,

double S_mag[],

double S_phase[]

);

void printS_parameters(double S_mag[],

double S_phase[],

InternalParser &p,

ofstream &outfileS);

////////////////// Set up rhs Vector ///////////////////

// This vector could be either

//1. plane incident field with Q=90 deg

//2. plane incident field at an angle Q

//Depending upon the parameter set in the input file

//the rhs current vector will be filled with certain

//values describing the incident field.

//The rhsVector[1...n] and TypeOfField_flag is read

//from input file.

void setup_rhs_Vector(Matrix_Manipulation& mp,

MainMatrix& mm,

InternalParser &p,

Complex rhsVector[]

);

void printIncidentVector(int size,

Complex rhsVector[]);

void fill_rhsVector_Plane_Perpendicular(

Matrix_Manipulation& mp,

MainMatrix& mm,



InternalParser &p,

Complex rhsVector[]

);

/*

We fill excitation vector in this function

In this function we fill the rhsVector according

to the user given input factor, EO. For a

cpw antenna we fill

Hx while Hy is all zero. For sss antenna

(case 1) we fill Hin while Vex and Ho is all

set to zero.

*/

void fill_rhsVector_Plane_inclined(Complex rhsVector[]);

void FindCurrent(Matrix_Manipulation& mp,

InternalParser& p,

MainMatrix& mm,

Complex rhsVector[],

Complex lhsVector[]);

/*Ax=B;

x = [B]*[A]^-1

where x is lhsVector and B is the rhsVector

*/

void printInvertedMat_to_file(

InternalParser& p,

Matrix_Manipulation &mp,

ofstream& outfileInverse);

void printTransimPortInfo_to_file(

InternalParser &p,

double freq_point,

ofstream& outfileTransimPortInfo,

Complex in[]

);

void printTransimExitationInfo_to_file(

InternalParser &p,

Matrix_Manipulation &mp,

double freq_point,

ofstream& outfileTransimExitationInfo,

Complex lhsVector[], //Ax=b x is lhsvector

Complex Ish[],

Complex aY[] //[Z]*[V] = [I] so A=Z & x=V

);

void printReducedMat_to_file(Matrix_Manipulation &mp,

InternalParser &p,

ofstream& outfileRM);

void printAllCurrents_to_file(

MainMatrix &mm, InternalParser &p,

Matrix_Manipulation &mp,

ofstream& outfileAllCurrents,

ofstream& outfilePortCurrents,



ofstream& outfileCurrentsForFeildAnalysis_x,

ofstream& outfileCurrentsForFeildAnalysis_y,

Complex rhsVector[], Complex lhsVector[]

);

void Calculate_Zstub(InternalParser &p, Complex &Zstub);

double beta, //beta is a the propagation constant

a, //a is the dx of a basis of the stripline cell

Zc, //characteristic impedance of the stipline given

//by the user. It is calculated using

//the Zc formula in Collins p171.

c, //speed of light.

f, //freq in Hz

Pi,

delta, //extra stub len

h, // height of substrate in meters

stub_len_factor;

f = p.freq*1000000000;

Pi = 3.141592654;

c = 2.998e8; //2.998 x 10^8 m/s

Zc = p.Zc;

stub_len_factor = p.stub_len_factor;

//is one if new_port_def_flag is 1 and

//the port is only at dist of 1 cell

//else it is a higher factor of 2

//depending upon the number of cells

//before the port.

double Calculate_delta_Stub_len(double beta,

double w, double h);

//In this function the reduced matrix that contains the

//Y port param directly from the inverted matrix is edited

//using open cct. stub matching. So, Zstub is

//first calculated

//then added to the original y11 to find the new y11 which is

//stored in the Y_vec. This Y_vec is then converted into

//S params

void Y_param_array_to_Y_param_vec(Matrix_Manipulation &mp,

InternalParser &p,

double Y_vec[]);

int main(int argc, char *argv[]);

//////////////////END OF FILE //////////////////////////////

D.2 PostTransim.C

#include "headersForMain.h"

#include <set.h>

struct ltint



{

bool operator()(const int s1, const int s2) const

{

return (s1 < s2);

}

};

void readInvertedMatrix(Complex invMat[],

int sizeofinvMat);

void readTransimCurrents(Complex I_Transim[],

int sizeofI_Transim);

void readTransimVoltages(Complex V_Transim[],

int sizeofV_Transim);

void readExitationVector(Complex Exitation_old[],

int sizeofI_old);

void readPortRowNum( set<int,ltint> &A);

void postTransimSimulation(InternalParser &p);

void formNewCurrentVector(set<int,ltint> &PortRowInfo,

int numOfPorts,

Complex I_Transim[],

Complex I_new[]

);

void printCurrents( InternalParser &p,

Matrix_Manipulation &mp,

Complex lhsVector[]

);

int main(int argc, char *argv[]);



Appendix E

Java Source Files

// -----------------------------------------------

// ArraySim shell

// by Usman Mughal

// -----------------------------------------------

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class ArraySim {

static ArraySim tr_shell = null;

TextArea ta = new TextArea("",20, 80,

TextArea.SCROLLBARS_VERTICAL_ONLY);

GUI gui = null;

String proj_name = "inputfile.txt";

String proj_cif = "filename.cif";

// ---------------------

// Some default strings

// ---------------------

String editor = "/usr/local/bin/nedit";

//String mat_lab = "/ncsu/matlab/bin/matlab";

String gnu_plot = "/ncsu/gnu/bin/gnuplot";

String xtermWindow = "/usr/bin/X11/xterm";

String cifparser = "/ncsu/erl/mbs_group/work/

uamughal/CIF_Parser/cifParser";

String netscape = "/usr/local/bin/Netscape4";

String helpfile = "file:/ncsu/erl/mbs_group/work/

radanchi/transim/docs/transim_docs/

help_start_here.html";

String arraysim = "/ncsu/erl/mbs_group/work/uamughal/

ArraySim_01_13_99/mom";

String postsim =

"/ncsu/erl/mbs_group/work/uamughal/

ArraySim_01_13_99/PostTransim/PostTransim";

// ---------------------

static public void main(String args[]);

ArraySim();
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static public ArraySim get();

public void open();

public void open_cif();

public void edit();

public void edit_cif();

public void near();

public void far();

public void help();

public void text_read(String text);

public void run_passive();

public void run_parser();

public void run_post();

public void view();

public void exit();

class GUI {

Frame f = null;

Panel cPanel = null; //upper frame

Panel nPanel = null;

Panel sPanel = null;

TextField near_text;

public GUI(TextArea ta);

Frame getFrame();

class near_text implements ItemListener {

ArraySim parent;

near_text(ArraySim outer)

{

parent = outer;

}

public void itemStateChanged(ItemEvent evt) {

String s = parent.gui.near_text.getText();

parent.text_read(s);

}

}

class OpenButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public OpenButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Load Input File");

}

public void actionPerformed (ActionEvent e) {

app.open();



}

}

class farButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public farButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Far Field");

}

public void actionPerformed (ActionEvent e) {

app.far();

}

}

class nearButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public nearButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Near Field");

}

public void actionPerformed (ActionEvent e) {

app.near();

}

}

class OpenCIFButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public OpenCIFButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Load CIF File");

}

public void actionPerformed (ActionEvent e) {

app.open_cif();

}

}

class EditButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public EditButton() {

this.app = app;

this.addActionListener(this);



this.setLabel("Edit Input File");

}

public void actionPerformed (ActionEvent e) {

app.edit();

}

}

class EditCIFButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public EditCIFButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Edit CIF File");

}

public void actionPerformed (ActionEvent e) {

app.edit_cif();

}

}

class HelpButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public HelpButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Help");

}

public void actionPerformed (ActionEvent e) {

app.help();

}

}

class Run_passive_Button extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public Run_passive_Button() {

this.app = app;

this.addActionListener(this);

this.setLabel("Execute");

}

public void actionPerformed (ActionEvent e) {

app.run_passive();

}

}

class Run_parser_Button extends Button

implements ActionListener

{



private ArraySim app = ArraySim.get();

public Run_parser_Button() {

this.app = app;

this.addActionListener(this);

this.setLabel("Execute");

}

public void actionPerformed (ActionEvent e) {

app.run_parser();

}

}

class Run_post_Button extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public Run_post_Button() {

this.app = app;

this.addActionListener(this);

this.setLabel("Execute");

}

public void actionPerformed (ActionEvent e) {

app.run_post();

}

}

class ViewButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public ViewButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("View Output");

}

public void actionPerformed (ActionEvent e) {

app.view();

}

}

class ExitButton extends Button

implements ActionListener

{

private ArraySim app = ArraySim.get();

public ExitButton() {

this.app = app;

this.addActionListener(this);

this.setLabel("Exit");

}

public void actionPerformed (ActionEvent e) {

System.exit(0);

}

}


