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Abstract

Computational modeling plays an important role in modern neuroscience research. Much

previous research has relied on statistical methods, separately, to address two problems

that are actually interdependent. First, given a particular computational model, Bayesian

hierarchical techniques have been used to estimate individual variation in parameters over

a population of subjects, leveraging their population-level distributions. Second, candidate

models are themselves compared, and individual variation in the expressed model esti-

mated, according to the fits of the models to each subject. The interdependence between

these two problems arises because the relevant population for estimating parameters of a

model depends on which other subjects express the model. Here, we propose a hierarchical

Bayesian inference (HBI) framework for concurrent model comparison, parameter estima-

tion and inference at the population level, combining previous approaches. We show that

this framework has important advantages for both parameter estimation and model compar-

ison theoretically and experimentally. The parameters estimated by the HBI show smaller

errors compared to other methods. Model comparison by HBI is robust against outliers and

is not biased towards overly simplistic models. Furthermore, the fully Bayesian approach of

our theory enables researchers to make inference on group-level parameters by performing

HBI t-test.

Author summary

Computational modeling of brain and behavior plays an important role in modern neuro-

science research. By deconstructing mechanisms of behavior and quantifying parameters

of interest, computational modeling helps researchers to study brain-behavior mecha-

nisms. In neuroscience studies, a dataset includes a number of samples, and often the

question of interest is to characterize parameters of interest in a population: Do patients

with attention-deficit hyperactive disorders exhibit lower learning rate than the general

population? Do cognitive enhancers, such as Ritalin, enhance parameters influencing
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decision making? The success of these efforts heavily depends on statistical methods mak-

ing inference about validity and robustness of estimated parameters, as well as generaliz-

ability of computational models. In this work, we present a novel method, hierarchical

Bayesian inference, for concurrent model comparison, parameter estimation and infer-

ence at the population level. We show, both theoretically and experimentally, that our

approach has important advantages over previous methods. The proposed method has

implications for computational modeling research in group studies across many areas of

psychology, neuroscience, and psychiatry.

This is a PLOS Computational BiologyMethods paper.

Introduction

Across different areas of neuroscience, researchers increasingly employ computational models

for experimental data analysis. For example, decision neuroscientists use reinforcement learn-

ing (RL) and economic models of choice to analyze behavioral and brain imaging data in

reward learning and decision-making tasks [1, 2]. The field of computational psychiatry uses

these models to characterize patients and people at the risk of brain disorders [3–6]. Neuroim-

aging studies use models of neural interaction, such as dynamic causal modeling [7, 8], as well

as abstract models to analyze brain signals [2, 9]. The success of these efforts heavily depends

on statistical methods making inference about validity and robustness of estimated parameters

across individuals, as well as making inference on validity and generalizability of computa-

tional models. A key theoretical and practical issue has been capturing individual variation

both in a model’s parameters and additionally in which of several candidate models a subject

expresses, which may also vary from subject to subject.

Computational models usually rely on free parameters, such as learning rate in RL models,

which often capture quantities of scientific interest but typically vary across individuals and

must be estimated from data. A dataset includes a number of subjects, and often the question

of interest is to characterize parameters in a population: Is choice consistency altered in

patients with attention-deficit hyperactive disorders? Do cognitive enhancers, such as Ritalin,

enhance the learning rate at the population level? These questions are most naturally framed

in terms of hierarchical models, which characterize both the population distributions over a

model’s parameters and also each individual subject’s parameters given the population distri-

bution. Since these two levels are mutually interrelated, they are often estimated simulta-

neously, using methods like expectation maximization or sampling (MCMC). For example,

the hierarchical parameter estimation (HPE) procedure [10, 11] regularizes individual esti-

mates according to group statistics, producing better individual estimates and permitting

reliable group-level tests. Because subjects typically share underlying structure, hierarchical

Bayesian approaches can leverage this structure to yield better individual estimates and to pro-

vide better predictions for unseen data, compared to approaches that fit each subject separately

[12].

A second, and seemingly logically prior, question is which of several candidate models pro-

vides the best explanation for the data. This is important both for providing the setting within

which to do parameter estimation, and also for investigating questions of scientific interest.

Hierarchical Bayesian inference
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Are rodents’ reaction times best explained by independent or competing accumulators? Do

compulsive gamblers rely more on model-free RL compared to controls? Importantly, in prin-

ciple (and apparently in practice) the model expressed might also vary from subject to subject;

thus modern model comparison techniques rely on estimating which of several models obtains

for each subject [13]. Estimating such variation is important since the prior assumption that

the same model obtains across all individuals (treating model identity as a fixed effect) is a

very strong (and in most cases potentially unwarranted) assumption, which makes model

comparison very sensitive to outliers [13]. To estimate this variation, in turn, depends on the

likelihood of each subject’s data given each model (and, thus, on each subject’s parameters for

each model).

Intuitively, evaluating whether a model is a good model for a subject’s data precedes estima-

tion of its specific parameter values; and indeed, previous research has used separate tools to

solve these two problems. But statistically, the two questions are actually interconnected,

because individual parameters and hence individual fit depend on which subjects belong to

the population that expresses the model. Here, we address this challenge from a fully Bayesian

viewpoint. This work addresses issues of statistical inference over both parameters and models,

which have remained elusive with the previous hierarchical methods.

Notably, although it is accepted (for the reasons discussed above) that the best-fitting model

may vary from subject to subject, hierarchical parameter estimation (conducted separately)

has typically assumed that the given model is expressed over all subjects, i.e. that it is a fixed

effect (and if multiple models are compared, these are each fit to the entire population). This

assumption biases parameter estimation, at both individual and group levels, because it entails

that the estimated parameters for each individual subject equally affect group-level estimates,

even though some members of the population may be better understood as expressing alto-

gether different models. This same bias, in turn, affects the estimation of which subjects are

best fit by each model.

In this work, we introduce a hierarchical and Bayesian inference method, which solves

these problems by addressing both model fitting and model comparison within the same

framework using variational techniques. Furthermore, our fully Bayesian approach enables us

to assess uncertainty and provide a rigorous statistical test, HBI t-test, for making inference

about parameters of a model at the population level, an issue that has not been addressed in

some previous hierarchical models. This paper is structured as follows. First, we highlight the

main theoretical advances in our approach. A full formal treatment is given in Materials and

methods and S1 Appendix. We then apply the proposed method to synthetic choice datasets as

well as empirical datasets to demonstrate its advantages over previous methods.

Results

Theoretical results

Consider a typical computational modeling study in which data of a group of subjects have

been measured and a set of candidate models are considered as possible underlying computa-

tional mechanisms generating those data. Such studies have generally two main goals: 1) to

compare model evidence across competing models; 2) to estimate free parameters of models

for each individual and their group-level distributions. All this is typically characterized in

terms of inference in a hierarchically structured model of the data, which captures how each

subject’s observations depend on their parameters and the individual parameters on their

group distribution.

The HPE procedure [10, 11] employs a hierarchical approach to define the priors based

on statistics of the group. This method typically assumes that for a particular model k, all

Hierarchical Bayesian inference
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individual parameters are normally distributed,

pðhknÞ ¼ N ðhknjμk;VkÞ;

where hkn is a vector of the free parameters of the kth model for subject n, μk and Vk are the

mean and variance parameters, respectively, indicating the prior distribution over hkn.

It is important to distinguish the statistical model itself from the algorithms or approxima-

tions used to estimate it. HPE uses the expectation-maximization algorithm [14], a well-

known iterative procedure, for obtaining estimating group parameters μk and Vk and individ-

ual parameters hkn. Every iteration of this algorithm alternates two steps: 1) an expectation

step in which the individual parameters are estimated in light of the group-level distribution;

and 2) a maximization step in which the group parameters, μk and Vk, are updated given the

current estimates of the individual parameters. Importantly, reflecting the assumption that all

subjects express model k, this update weights the individual subjects’ estimates equally; for

instance, the update for μk is given by the average of subject level mean estimates (denoted θkn)

across all subjects:

μk ¼
1

N

X

n

θkn;

where N is the number of subjects.

Although HPE characterizes variation across subjects in the model parameters hkn (that is,

it treats those parameters as random effects), a critical assumption of the procedure is that the

parameters for model k are estimated assuming that the same model is responsible for generat-

ing data in all subjects. That is, the model identity is taken as a fixed effect, in contrast to the

random effects approach that assumes different models might be responsible for generating

data in different subjects. The fixed effects assumption has two important implications: 1) for

parameter estimation, group parameters, the group mean μk and variance Vk, are influenced

equally by all subjects, even those who would be better fit by some other candidate model j 6¼
k; 2) for model comparison, the straightforward procedure (e.g. iBIC from [10, 11]) is to com-

pare models according to the sum of individual model evidences over all subjects, i.e. again

treating the model identity as a fixed effect. Note that while it is possible to submit individual

model evidence values (per subject and model) derived from HPE to a separate model compar-

ison procedure that treats model identity as a random effect (such as random effects model

selection [13]), these will be biased both from having been fit under the fixed effects assump-

tion and also due to the optimization of the free group-level parameters. For this reason,

HPE has typically been accompanied by fixed-effects model comparison [10, 11, 15], whereas

attempts to study subject-subject variation in model identity [13] have typically been con-

ducted using a different, non-hierarchical parameter estimation procedure. Altogether, viola-

tions of the fixed effects assumption can adversely influence both parameter estimation and

model comparison.

Here, we extend HPE’s generative model with another level of the hierarchy, specifying for

each subject which model generated their data. This is governed by a subject-specific multino-

mial random variable, itself drawn from a distribution controlling the proportion of each

model in the population. This, in effect, merges the Bayesian model selection model from Ste-

phan et al. [13] with HPE. To accomplish inference in this model, we then lay out a procedure

for joint inference over model identities and parameters, including quantifying the probability

that each model is responsible for generating data for each subject. To achieve this goal, we

adopt a fully Bayesian framework in which the group parameters for each model, μk and Vk,

are also random variables. This also gives us a straightforward way to quantify the level of

Hierarchical Bayesian inference
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certainty in group-level estimations. We use mean-field variational Bayes [16, 17], an exten-

sion of expectation-maximization [18], which is able to deal with multiple latent variables in a

probabilistic model. Since HBI is a mean-field variational framework, the resulting algorithm

(see Materials and methods) is an iterative algorithm. On every iteration, the HBI performs 4

steps: calculates the summary statistics, updates its estimates of the posterior over group

parameters, updates its estimate of the posterior over each individual parameter and finally

updates its estimates of responsibility of each model in generating each individual data. The

algorithm and other important mathematical issues are given in Materials and methods. Here,

we highlight three main results. The mathematical proofs are given in S1 Appendix.

As noted above, the HBI method estimates the probability of each subject’s dataset being

generated by each model, or the responsibility of model k for generating data for subject n, rkn,

which is expressed as (expected) probability. Larger values of rkn (i.e. close to 1) indicate that

model k is likely to be the true underlying model of the nth subject. In contrast, smaller values

of rkn (close to 0) indicate that model k is unlikely to be the underlying model for the nth sub-

ject. Based on the responsibilities, it is then possible to estimate the number of subjects

explained by each model, �Nk:

�N k ¼
X

N

n¼1

rkn:

Thus �Nk is always less than the number of subjects and indexes the predominance of model k

in the population. Furthermore, the fraction �Nk=N is called model frequency, which always

lies between 0 and 1 and is a useful and intuitive metric for model comparison.

In practice, in many situations, researchers are interested in selecting a single best model

(rather than relative comparisons among several) even in the face of variation in model iden-

tity across subjects. One way to accomplish this goal is to compute the exceedance probability

of each candidate model, a metric commonly used for model selection [13]. Exceedance proba-

bility is the probability that model k is more commonly expressed than any other model in the

model space. Furthermore, the random effects approach enables us to quantify how likely the

observed differences in model evidence is simply due to chance [19]. In this case, model selec-

tion is not statistically supported, as there is no meaningful difference between models. A met-

ric called protected exceedance probability [19], which typically is more conservative than the

exceedance probability, takes into account this possibility (see Materials and methods). Alto-

gether, the random effects approach results in a more robust model comparison and model

selection, one less driven by outliers than fixed-effects methods. Note that previous attempts to

do model selection at group level using exceedance probability assumed no hierarchy for

parameter estimation, thus did not deal with the issue that parameter estimation was not prop-

erly conditionalized by group distributions based on model identity.

We noted above that an issue with the HPE is that the influence of subjects on the group

parameters is equal, due to the assumption that the model is a fixed effect. However, by virtue

of its random effects structure, the comparable parameter in our approach, the mean of poste-

rior distribution over μk, denoted by ak, shows an important property: Algorithmically, a sub-

ject’s effect on this parameter depends on the degree to which the model is estimated to be the

underlying model for that subject. Specifically, this parameter, ak, is updated at each iteration

as:

ak ¼
1

1þ �N k

ða
0
þ
X

n

rknθknÞ;

where θkn is the mean of the individual posterior and a0 is the prior mean over μk. The

Hierarchical Bayesian inference
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important point in this equation is that ak is a weighted average of individual parameters, in

which the weights are the corresponding responsibilities, rkn. This is not specific to the group

mean, but it is rather a general feature of our approach: contribution of model k to group

parameters is weighted according to the responsibility of model k in generating data in the nth

subject, rkn.

As mentioned above, another issue that has been incompletely treated in HPE is related to

inference on parameters of a fitted model at the population level. Statistically, one needs the

uncertainty of the estimated group mean, μk, to be able to make inference on the correspond-

ing parameter at the group level. Since parameters fitted by the HPE are not independent but

instead regularized according to the variance given by data, one cannot employ regular statisti-

cal tests, such as t-test, to test whether a specific model parameter is “significantly” different

from zero. Using those tests on such parameters is biased in favor of generating a significant p-

value (more false positives). The HBI framework solves this problem by quantifying the uncer-

tainty of the posterior over the group parameter, resulting in a statistical test similar to the t-

test, which we call it HBI t-test. Specifically, it is possible to show that the posterior over the ith

group parameter in model k, μki, takes the form of standard Student’s t-distribution centered

at the corresponding group mean, aki, with nk ¼ 1þ �Nk as degrees of freedom. The resulting

t-value takes an intuitive form:

t ¼ mki � aki

ski=
ffiffiffiffiffi

nk

p ;

where ski is the empirical deviance statistics for the ith parameter of model k. Therefore,

ski=
ffiffiffiffiffi

nk

p
plays the role of standard error, which we call it hierarchical error. Note that the

degrees of freedom of the test depend on the number of subjects (i.e. evidence) in favor of

model k given by �Nk, not the total number of subjects. Other group statistics, aki and ski, are

also weighted according to the responsibilities of model k in generating data of each subject

(as formally obtained in Materials and methods). Using this marginal distribution for popula-

tion-level group parameters, the HBI t-test enables researchers to determine whether a param-

eter is significantly different from an arbitrary value, notably 0. For example, the parameter is

significantly different from 0 at P< 0.05 if 0 does not fall within the 95% credible interval.

HBI for model comparison and parameter estimation

In this section, we apply the proposed HBI method to synthetic datasets and compare its per-

formance with that of HPE, as well as with a non-hierarchical inference (NHI) method esti-

mating parameters for each subject independently according to some fixed, a priori Gaussian

priors [20–23]. Importantly, these methods differ in their statistical assumptions about the

generative process of data. The NHI assumes no hierarchy in parameter estimation. We then

used the individual-level evidence approximated by the NHI (S1 Text) to subsequently per-

form random effects model comparison using the procedure introduced by Stephan et al. [13,

19]. This means that whereas the NHI procedure assumes no hierarchy across parameters, it

does (via the Stephan procedure [13]) allow for a hierarchical structure over model identity. In

contrast, the HPE procedure, as introduced by Huys et al. [10, 11], assumes a hierarchy over

parameters, but no hierarchy over model identity: we accordingly, use it with a fixed-effects

model comparison procedure. The HBI assumes that both parameters and model identities are

generated hierarchically in turn. Note that related approximations, as similar as possible, have

been used for making inference in these methods, which allows for a fair comparison (S1 Text)

since our main points concern the statistical structure of the methods, not the estimation tech-

niques. In particular, HPE builds upon NHI’s Bayesian inference of per-subject parameters to

Hierarchical Bayesian inference
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condition these on additional group level parameters, by using expectation-maximization [14];

and HBI extends that algorithm to condition these on an additional level of model identity var-

iables, by using variational Bayes [16, 17]. We also use the same (Laplace) approximation to

marginalize the subject-level variables in all three methods. The HBI algorithm has been given

in Materials and methods and details of implementing the NHI and HPE have been given in

S1 Text. The details of simulation analyses and parameters used in simulations have also been

given in S1 Text.

The HBI is general and could be applied to any type of data, such as choice data, reaction

times, physiological signals and neural data. Since we are primarily interested in models of

choice data, we focus on decision-making experiments.

Model comparison and parameter estimation for models with the same number of

parameters. First, we considered a relatively easy problem in which the number of parame-

ters in models is the same. We simulated a dataset including 40 artificial datasets using two

different learning models and a randomly generated reward sequence (binarized Gaussian

random-walk). Both models maintain a value for each of the two possible actions and calculate

a prediction error signal representing the difference between the seen reward and predicted

value. On every trial, the action value gets updated according to the product of the prediction

error and a learning rate. The first model is an RL model, in which the learning rate is a con-

stant free parameter, α. The second model is a Kalman filter model in which the learning rate

gradually decreases on every trial. The decreasing rate depends on a positive free parameter

(representing observational noise), ω. Both models employ a softmax function together with

an inverse-temperature parameter, β, to calculate the probability of each action according to

corresponding expected values. Therefore, both models contain two free parameters and nei-

ther of them is nested within the other one. The RL and Kalman filter models were then used

to simulate 10 and 30 artificial datasets, respectively. Parameters of these models were drawn

randomly from normal distributions. Since parameters of these models have theoretical con-

straints, we used appropriate functions (sigmoid or exponential) to transform these randomly

generated parameters. Using this procedure, we constructed a dataset of 40 artificial subjects,

in which the true underlying model is known. We applied the HBI to this dataset to estimate

parameters and model evidence given the sequence of actions. Simulations were repeated 20

times.

Fig 1 shows the results of applying the HBI on this dataset. We first reported protected

exceedance probability (Fig 1A), a metric commonly used for Bayesian model selection [19],

which is the probability that each model is the most likely model across all subjects taking into

account the null possibility that differences in model evidence are due to chance. This analysis

revealed that the HBI has correctly identified the Kalman filter as the most likely model across

the artificial datasets in all simulations with probability close to 1. Next, we looked into model

frequency, which represents the ratio of subjects assigned to each model. As plotted in Fig 1B,

model frequencies estimated by the HBI is close to true frequencies, 0.25 and 0.75 for the RL

and Kalman filter models, respectively (Fig 1B). We then examined the HBI performance in

model attribution at the individual level (Fig 1C). The HBI attributes models to each individual

by quantifying responsibility parameters, which is the probability that that model is the true

underlying model for that individual. First, we verified that the HBI has assigned the correct

model to about 90% of all subjects (Fig 1C, inset). We then looked into the average of responsi-

bilities for true attribution (those cases whose model was correctly identified) and for false

attribution (those cases whose model was erroneously assigned) (Fig 1C). We found that the

average of responsibilities estimated by HBI is about one for true attributions and it is closer to

chance-level (than one) for false attributions. This means that the HBI method was quite cer-

tain when it was successful in identifying the true model and uncertain in cases in which it

Hierarchical Bayesian inference
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failed to recognize the true model. Later, we will examine HBI performance in model attribu-

tion more thoroughly.

We then compared the performance of the HBI with the HPE and NHI. Note that NHI

depends on Gaussian priors over parameters. Across all simulations and models, we used the

same Gaussian prior (with mean 0, and variance 6.25, similar to our previous works [24]).

This value for the prior variance ensures that parameters can vary in a wide range with no sub-

stantial effects of prior (see S1 Text for a formal derivation). The hierarchical methods, in con-

trast, replace NHI’s fixed prior over individual-level parameters with additional group-level

parameters that are themselves estimated from the data.

In this set of simulations, all methods performed well in recognizing the most likely model

(i.e. the Kalman filter) across all samples (Fig 1D) at the liberal threshold of 50%, although the

HPE performed worse than the other two models (failing 15% of simulations). In the next sec-

tion, we examine the limitations of HPE for model comparison more thoroughly.

We then investigated the performance of these methods in parameter estimation. We

quantified individual-level estimation error, which is defined as the absolute difference

between estimated individual-level parameters using that method and true individual-level

parameters used for generating data. For both models and all parameters, the average error

in parameter estimation by HBI was smaller than those by HPE and NHI (Fig 1E and 1F).

Furthermore, HPE performed better than NHI in estimation across all parameters. These

results were indeed theoretically expected. Unlike NHI, both HPE and HBI use group statis-

tics to regularize parameter estimation for each individual. However, while HPE uses all sub-

jects equally to regularize group parameters of a model, HBI weights individuals according

Fig 1. Performance of the HBI in a synthetic dataset. 10 and 30 artificial subjects were generated according to the RL
(RL) and Kalman filter (KF) models, respectively. A) Model selection by HBI using protected exceedance probabilities
(PXP); B) Model frequencies estimated by the HBI. C) Model attribution at the individual level by the HBI;
Responsibility estimates are plotted for true attributions (TA), in which the true model has been attributed, and for
false attributions (FA), in which the incorrect model is attributed. The HBI shows lower levels of responsibility for FA.
Inset: percentage of correct assignment of the model by the HBI at the individual level. D) Comparison of accuracy of
model selection with HPE and NHI; E, F) Error in estimating individual parameters of the RL (E) and the Kalman
filter model (F). The estimation error is defined as the absolute difference between estimated parameters and the true
parameters. In all plots, error-bars are standard errors of the mean obtained across 20 simulations.

https://doi.org/10.1371/journal.pcbi.1007043.g001
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to its responsibility (i.e. its belief that that model is responsible for generating each individual

dataset).

Robustness of model comparison to outliers. We noted before that fixed effects model

comparison using HPE is very sensitive to outliers. This is because fixed effects approaches

sum up evidence across all subjects. If a few outlier subjects show large evidence in favor of a

model, those usually impact model comparison adversely. In contrast, the HBI takes a ran-

dom-effects approach, in which the contribution of every subject in favor of each model is nor-

malized according to the corresponding responsibility, which is a relative evidence measure

with a maximum of one. In this section, we show a simulation analysis to demonstrate this

point.

We took the same datasets generated in the previous simulations by the RL and Kalman fil-

ter models. We then identified one outlier subject in that dataset that showed the largest evi-

dence in favor of the RL model. From all 200 subjects generated using the RL model across all

20 simulations in the previous analysis, the subject with maximum relative log-likelihood in

favor of the RL model (under the HPE parameters) was selected as the outlier subject in evi-

dence space (the relative log-likelihood for this subject was 4 times more than average relative

log-likelihood). This outlier subject was then used to create datasets with 1, 2 or 3 outliers by

copying it 1, 2 or 3 times, respectively, and adding those copies to the original dataset.

We then compared the performance of NHI, HPE, and HBI. Note that while NHI and HBI

perform random effects model comparison, HPE performs a fixed effects model comparison.

As shown in Fig 2, whereas the performance of HPE is very sensitive to outliers, the random

effects model comparison of NHI and HBI are robust. Note that although NHI performs well

in the model selection here, we will demonstrate its limitations for model comparison in the

next section. It is also important to note that the outlier here is in the space of model evidence

(i.e., a subject displaying abnormally large evidence for one model over another). We will

examine the effects of outliers in parameter space later.

Model comparison and parameter estimation in models with different number of

parameters. We then considered a challenging problem in which the number of free param-

eters in two models is different and one model is a special case of the other one. Such problems

are ubiquitous in studies using computational models and inference using hierarchical

approaches is typically even more advantageous in this setting, as the variance explained by

such models are more likely to overlap.

The first model was again assumed to be an RL model with a constant learning rate

parameter, α. The second model, however, was assumed to contain two different learning

rates depending on whether the prediction error is positive or negative (dual-α RL), com-

monly used to assess asymmetries in learning from positive vs negative prediction errors [25,

26]. Both models use the same choice function, i.e., a softmax function with an inverse-tem-

perature parameter, β. The RL and the dual-α RL models were then used to simulate 10 and

30 artificial datasets, respectively. Note that the RL model is a nested case of the dual-α RL, in

which α+ = α−.

As Fig 3 shows, the HBI method was successful in model selection (i.e. recognizing the

most likely model, Fig 3A). Model frequencies estimated by the HBI are close to true frequen-

cies, 0.25 and 0.75 for the RL and dual-α RL models, respectively (Fig 3B). At the individual

level, HBI assigned the correct model to each individual in 95% of all subjects and was also

quite certain when it was successful in selecting the right model (Fig 3C). In contrast, in those

rare cases in which HBI failed to recognize the correct underlying model (false attributions), it

assigned responsibility that was only slightly above chance.

Next, we compared the performance of the HBI with that of NHI and HPE. Here, NHI fails

to choose correctly the most likely model in 75% of simulations (Fig 3D). This is likely because
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Fig 2. Robustness of model selection to outliers. The same 20 datasets simulated in the previous section were used as
the base datasets (i.e. 0 outliers) and the effects of adding 1, 2 or 3 outliers to each dataset were examined. The HPE
shows severe sensitivity to outliers, while the other two (random effects) methods are robust.

https://doi.org/10.1371/journal.pcbi.1007043.g002

Fig 3. Performance of the HBI in a synthetic dataset including models with the different number of parameters.

10 and 30 artificial subjects were generated according to the RL and dual-α RLmodels, respectively. A) Model selection
by HBI using protected exceedance probabilities (PXP); B) Model frequencies estimated by the HBI. C) Model
attribution at the individual level by the HBI. Responsibility estimates are plotted for true attributions (TA) and for
false attributions (FA). The HBI shows lower levels of responsibility for FA. Inset: percentage of correct assignment of
the model by the HBI at the individual level. D) Model selection performance of NHI, HPE, and HBI; E, F) Error in
estimating individual parameters of the RL (E) and the dual-α RL model (F). The estimation error is defined as the
absolute difference between estimated parameters and the true parameters. In all plots, error-bars are standard errors
of the mean obtained across 20 simulations.

https://doi.org/10.1371/journal.pcbi.1007043.g003
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non-hierarchical methods penalize more complex models more harshly than do their hierar-

chical counterparts because they neglect the structure of the data. In particular, the issue is that

a model with one additional parameter adds one independent free parameter per subject in

the non-hierarchical case, which carries an excessive overfitting penalty, whereas these param-

eters are pooled by being drawn from a common distribution in the hierarchical setting, ensur-

ing less overfitting and a more moderate complexity penalty. Note that reducing the variance

of the prior of the NHI decreases the complexity penalty and somewhat improves model selec-

tion performance slightly in this scenario, but it also worsens parameter estimation (S1 Fig).

This poor parameter estimation has negative consequences also for model selection in other

situations in which the RL should be favored (S1 Fig). Therefore, in general, the NHI is not

flexible enough to capture the true model in different situations.

We can also consider why the estimation errors of HBI are much smaller than those of

HPE. Consider, for example, the learning rate parameter of the RL model, α (Fig 3E). In gener-

ating the datasets for this analysis, α was assumed to be smaller than the learning rate parame-

ters of the dual-α RL model. This structure was designed to exercise a situation in which the

HBI excels, and the HPE has trouble: when the parameters systematically differ across models,

and therefore failing to take into account which subjects exemplify which model confuses the

parameter estimates. In particular, since the HPE uses average statistics across all subjects

(even those generated by the dual-α model) to constrain parameters, the group average esti-

mate of α by HPE was much larger than the true average. Therefore, the individual estimates

of α by HPE are also tended to be larger than the true parameters, resulting in larger estimation

error. The HBI does not have this problem because the group statistics are estimated using a

weighted average, in which the weights are the corresponding responsibilities of models. Note

that for a different set of learning rate parameters, in which the learning rate of the RL is in the

middle of those of dual-α RL model, and the consequences of estimating parameters across all

subjects thus less problematic, the difference between the HPE and HBI might not be so pro-

nounced (S2 Fig).

So far, we conducted model selection using a liberal threshold (50%). Often researchers are

interested to perform model selection using higher thresholds of exceedance probabilities.

With higher thresholds, we expect that none of the models get selected in situations in which

there are equal numbers of subjects expressing each model. As both HBI and NHI (but not

HPE) compute exceedance probabilities and model frequencies, we compared their perfor-

mance in model selection. Here, we considered different ratios of subjects expressing each

model. In particular, in addition to the previous simulation in which the RL model was less fre-

quent, we considered two other situations in which the ratio of subjects expressing each model

was equal or was more in favor of the RL model (Fig 4). These analyses showed that HBI is

superior to the NHI, as its protected exceedance probabilities are closer to one when one of the

models is actually more frequent. The HBI model frequency is closer to the true frequencies

than the NHI. Furthermore, the HBI selects the most likely model with higher exceedance

probabilities. It is important to note that NHI overestimates model frequencies in favor of the

RL model in all simulations, probably again due to additional overfitting (and correspondingly

higher penalties for the additional parameter) in the non-hierarchical setting.

We then examined the performance of HBI and NHI in model attribution at the individual

level (Fig 4E). The HBI computes responsibility parameters for every subject and model,

which is the posterior probability that that model generated the data for that subject. Similar

parameters can be estimated using evidence approximated by the NHI. Using the threshold of

0.95 for responsibilities (r>0.95), we observed that the HBI is more accurate than the NHI in

model attribution. This is mainly because the NHI shows a higher false attribution rate due to

its bias to attribute individuals to the simpler model. Note that it is possible to compute true
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attribution and false attribution rate using different thresholds for responsibilities here. In

machine learning, it is common to illustrate attribution performance of a binary classification

machine using plots called receiver operating characteristic (ROC) curves, which are obtained

by plotting the true attribution rate against the false attribution rate at various thresholds. In

ROC curves, the upper left corner point (i.e. 0 false attribution rate, 1 true attribution rate)

Fig 4. Comparison of HBI with NHI in model selection and model attribution.We compared the performance of
HBI and NHI in three simulation analyses with different ratio of subjects expressing each model. The first simulation
includes 10 subjects expressing RL and 30 subjects expressing dual-α RL model (10/30). The second one includes 20
subjects per model (20/20) and the third one includes 30 subjects expressing RL and 10 dual-α RL (30/10). A) Mean
protected exceedance probabilities (PXP) estimated by the HBI and NHI; B) Mean model frequency of RL across all
simulations (true frequencies are also plotted). C-D) Model selection performance at PXP>0.5 (C) and PXP>0.95 (D).
For the 20/20 simulations, 50% of each model should be selected at the chance level, i.e. PXP>0.5, and none of the
models should be selected at PXP>0.95. E) Model attribution performance, at the individual level, using responsibility
(r) parameters at 0.95 thresholds across all three simulations. The HBI is more accurate than the NHI in model
attribution and shows more true attributions (TA) and less false attributions (FA). E) ROC curves, across all three
simulations, for HBI and NHI, which illustrate model attribution performance at various threshold settings. Inset: area
under the curve (AUC) of the ROC, as a metric for model attribution performance. The HBI shows better performance
than the NHI according to this metric. In A-B, error-bars are standard errors of the mean obtained across 20
simulations.

https://doi.org/10.1371/journal.pcbi.1007043.g004
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represents perfect classification. The diagonal line, on the other hand, represents classification

at the chance level. The area under the curve in this plot is, therefore, a good metric for classifi-

cation performance. This metric shows that the overall model attribution performance of the

HBI is better than that of NHI (Fig 4F).

Effects of number of trials. It is also important to note that all these methods are sensitive

to the amount of within-subject data (i.e. the number of trials). Importantly, HBI is even more

useful when there are a limited number of trials (Fig 5). In this case, non-hierarchical methods,

such as NHI, over-penalize complex models even more, as there are fewer data-points per sub-

ject to justify additional parameters. Furthermore, in this case, the HPE model selection per-

formance is even more sensitive to outliers, as outliers are more likely when data per subject

is limited. Therefore, the HBI performs better than the other two methods in model selection

when there is limited within-subject power (Fig 5A). Hierarchical methods are also more pow-

erful in parameter estimation in this case, although the HBI performs better than the HPE

across a different number of trials (Fig 5B).

Effects of number of participants. Hierarchical methods are also sensitive to the amount

of between-subject data (i.e. the number of subjects expressing each model). Moreover, model

selection can be particularly unstable with a small number of subjects. Therefore, we did

another simulation analysis with a smaller number of subjects and tested the performance of

HBI in model selection. We performed a simulation analysis with the RL and dual-α RL mod-

els, in which we manipulated the number of subjects. We repeated simulations 1000 times, in

which in half of the simulations, the ratio of RL model was three times more likely than the

dual-α RL, and vice versa in the other half (Fig 6). These simulation analyses showed that the

HBI selects the more frequent model with a high protected exceedance probability. The model

selection performance of the HBI improved with a higher number of subjects. Across all simu-

lations, the NHI estimates protected exceedance probabilities that are only slightly above

chance and it fails to select the more frequent model.

Next, we compared model selection performance of all three methods using the area under

the ROC curves for a different number of subjects (Fig 6E). Here, model selection of NHI and

HBI was performed using protected exceedance probabilities. For HPE, the normalized evi-

dence (i.e. normalized Bayes factor) was used for model selection. The HBI performed better

than the other two methods with a higher area under the curve. Finally, we compared the

Fig 5. Performance of the HBI as a function of the number of trials. 10 and 30 artificial subjects were generated
according to the RL and dual-α RL models, respectively. These simulations were performed with a different number of
trials (T) per subject. A) The accuracy of model selection by NHI, HPE, and HBI for T = 50, T = 100, and T = 200
trials; B) Mean error in estimating individual parameters across both models and parameters. Note that the estimation
errors here are computed on the normally distributed parameters. The estimation error is defined as the absolute
difference between estimated parameters and the true parameters. In all plots, error-bars are standard errors of the
mean obtained across simulations 20 times.

https://doi.org/10.1371/journal.pcbi.1007043.g005
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parameter estimation performance of these methods (Fig 6F). Across all parameters and sub-

jects, the average estimation error in individual-level parameters was quantified. The analyses

showed that the HBI exhibits lower estimation error than the other methods and its perfor-

mance improves when there is a higher number of subjects.

Robustness of parameter estimation to outliers. All model fitting methods are sensitive

to outliers whose parameters are dramatically different from other subjects. Although HBI is

more robust than HPE against outliers in evidence space, there is no theoretical reason that

Fig 6. Performance of the HBI as a function of the number of subjects. In this analysis, simulations were repeated
1000 times, in which in half of the simulations, the ratio of the RL model was three times more than the dual-α RL, and
vice versa in the other half. A) Protected exceedance probabilities (PXP) of the most frequent model estimated by the
HBI and NHI; B) Model frequency of the most frequent model across all simulations. The black line indicates the true
frequency (0.75). C-D) Model selection performance by the HBI and NHI at PXP>0.5 and PXP>0.95, respectively.
The NHI almost never selects the most frequent model at PXP>0.95. E) Model selection performance using area under
the ROC curve. Higher values indicate better performance (one corresponds to perfect model selection). The HBI
performance improves by increasing the number of subjects. F) Error in estimating individual parameters across both
models and parameters. Estimation errors are computed on the normally distributed parameters. The estimation error
is defined as the absolute difference between estimated parameters and the true parameters. In A, B, and F, median
across 1000 simulations is plotted and error-bars represent the first and third quantile.

https://doi.org/10.1371/journal.pcbi.1007043.g006
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HBI is more robust against outliers in parameter space. Indeed, both HPE and HBI make the

distributional assumption that subjects’ parameters vary according to a Gaussian distribution,

and outliers (or indeed other non-Gaussian structures) violate this assumption. However, since

the HBI takes into account multiple models during fitting, it is possible to reduce the effects of

outliers on estimated group parameters in another way, by including additional simple models

in the model space to “soak up” these subjects. Defining such a simple model depends on the

nature of data and task. For example, in learning tasks, outliers typically show no learning effect

(resulting in a decision noise parameter of about zero) or simple strategies such as switching

decisions according to the most recent outcome (value is always equal to the most recent out-

come). A simple model that captures both those situations is a softmax that translates the most

recent outcome to probabilities according to a decision noise parameter. If the decision noise

parameter is zero, this model captures outliers that outcomes have no effect on their choices.

We considered two scenarios to demonstrate this point experimentally (Fig 7). In the first

scenario, 30 subjects were generated according to the RL model and a number of outliers

that were generated by using the same model with the same learning rate but a small decision

noise. We then used the HBI with a model space including an RL model and the simple model

described above. We found that the estimation error for capturing the group mean was smaller

for the HBI than the NHI and HPE methods. In the second scenario, we considered a more

realistic situation in which outliers were generated based on a small learning rate and a small

decision noise. Similar to the previous simulation, HBI exhibited less estimation error for

group parameters compared with other methods.

HBI for model spaces with more than two models. So far, we have examined the perfor-

mance of the HBI in relatively small model spaces. Next, we considered another situation in

which 60 subjects are generated according to four different learning models. In addition to the

RL, the dual-α RL and the Kalman filter model used in previous simulations, here we also con-

sidered an actor-critic RL model, which is a class of RL models in which different modules are

responsible for learning (critic) and action selection (actor). We considered four scenarios in

which 30 subjects were generated according to one of the models and 10 subjects were gener-

ated according to each of the other three models (Fig 8). These simulations revealed that pro-

tected exceedance probability of the most frequent model computed by the HBI is close to 1.

Fig 7. The sensitivity of parameter estimation to outliers. 30 subjects are simulated using the RL model. A) In
scenario 1, a number of outliers are also simulated with the same learning rate but small decision noise parameter. B)
In scenario 2, outliers are simulated with small learning rate and small decision noise parameter. Errors in recovering
the group-level parameters are plotted (for the learning rate, and decision noise,). HBI performs better than
alternatives. The estimation error is defined as the absolute difference between estimated group-level parameters and
the true parameters. In all plots, error-bars are standard errors of the mean obtained across simulations 20 times.

https://doi.org/10.1371/journal.pcbi.1007043.g007
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Moreover, the HBI estimate of model frequencies matches well with true frequencies. For

reasons detailed in previous analyses, unlike the HBI, the HPE and NHI fail to select the true

model in three and one sets, respectively. Furthermore, HBI shows smaller errors in parameter

estimation than the other two methods.

Finally, we tested the HBI in a more complicated task by considering the two-step Markov

decision task introduced by Daw et al. [27]. This task is a well-known paradigm to distinguish

two behavioral modes, model-based and model-free learning. Daw et al. [27] have proposed

three RL accounts, a model-based, a model-free and their hybrid (which nests the other two and

combines their estimates according to a weight parameter), to disentangle the contribution of

these two behavioral modes on choices. Here, we skip the details of the models and focus on

the application of the HBI to a model space consisting of model-free, model-based and hybrid

agents. We generated 30, 10 and 10 artificial subjects according to the hybrid, the model-based

and model-free models, respectively (Fig 9). This simulation analysis showed that the HBI per-

forms well in model selection and estimation of model frequencies given true frequencies.

Importantly, the HBI recovers the parameters of the models better than alternative methods. In

particular, the critical weight parameter of the hybrid model, which determines the degree of bal-

ance between the model-based and model-free strategies, was significantly better recovered by

the HBI than the other methods (in all 20 simulations, HBI did better than both HPE and NHI).

HBI t-test for inference at the group-level

Sensitivity and specificity of HBI t-test. We then tested the performance of the HBI t-

test introduced above (Fig 10, see Materials and methods for full derivation). In these

Fig 8. Performance of the HBI in a large model space.HBI was tested in a large model space including RL, dual-α
(DA) RL, Kalman filter (KF) and actor-critic (AC) models in four scenarios. In each scenario, one model (the
dominant model) was used to generate 30 subjects. Other models were used to generate 10 subjects. A) Model selection
by HBI using protected exceedance probabilities (PXP). B) Model frequencies estimated by the HBI. Note that in each
scenario, the model frequency of the dominant model is 0.5 and it is about 0.17 for the other models. C) Model
selection performance (at 50%) of NHI, HPE, and HBI. D) Error in estimating individual parameters across both
models and parameters. Estimation errors are computed on the normally distributed parameters, defined as the
absolute difference between estimated parameters and the true parameters. In all plots, error-bars are standard errors
of the mean obtained across 20 simulations.

https://doi.org/10.1371/journal.pcbi.1007043.g008
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simulation analyses, we focused on an example that represents a typical inference problem at

the population level for parameters of a computational model.

Consider a situation in which subjects should learn stimulus-action-outcome contingen-

cies. The subject’s task is to either to make a go-response by approaching the stimulus or to

do nothing (i.e. no-go response). Furthermore, assume that the stimulus is either emotionally

appetitive or aversive (e.g. a happy or an angry face cue), but the outcome value is independent

of the emotional content of the stimulus. A question of interest is whether the emotional con-

tent (happy versus angry) of stimuli induces opposite biases in making a go response, regard-

less of action values (a form of Pavlovian to instrumental transfer). This is easy to test using

an RL model with one additional bias parameter, b (we call this model biased RL). The bias is

assumed to be +b for the emotionally appetitive stimulus and −b for the emotionally aversive

stimulus. Thus, for larger values of b, the subject has a tendency to choose a go response after

seeing the emotionally appetitive stimulus and a no-go response after seeing the emotionally

aversive stimulus. The bias parameter b varies from subject to subject; we are interested here in

testing the null hypothesis that its group-level mean is zero.

We simulated a dataset including 20 artificial subjects using this model and a randomly

generated reward sequence (binarized Gaussian random-walk). We tested the sensitivity or

power of the methods to detect true effects (i.e., nonzero b, when present). We repeated this

analysis for different effect sizes, in which the bias parameter, b, was drawn from a normal

Fig 9. Performance of the HBI in the two-step Markov decision task. 30, 10 and 10 artificial subjects have been
generated using the hybrid, the model-based (MB) and the model-free (MF) models, respectively. A) Model selection
by HBI using protected exceedance probabilities (PXP). B) Model frequencies estimated by the HBI. C) Model
selection performance (at 50%) of NHI, HPE, and HBI. D) Error in estimating the critical weight parameter of the
hybrid model at the individual level. HBI shows less error than other methods in all simulations. In all plots, error-bars
are standard errors of the mean obtained across 20 simulations.

https://doi.org/10.1371/journal.pcbi.1007043.g009
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distribution with different nonzero effect sizes as its mean, and a variance of 1. A collection of

500 simulations per effect size was simulated. We then compared the performance of HBI in

making inference about effects at the group level with that of NHI and HPE. The HBI t-test is

very similar to the classical t-test, in which degrees of freedom of the test depends on estimated

model frequencies. For NHI, the inference can be done using a classical t-test, as unlike HBI

and HPE, samples are treated independently by the NHI. For HPE, one can make inference

using Bayesian model selection between a full HPE fit, in which all individual parameters are

fitted according to the group level statistics, and a null HPE fit in which the group-level mean

and variance for the bias parameter are fixed at their prior value. Note that the group mean of

the bias parameter in the null HPE was fixed at zero.

Fig 10. Performance of the HBI t-test for making inference at the population level. RL agents with a bias parameter
were generated according to different mean (effect size) values in two simulations where A) there is only one model in
the model-space (scenario 1); or B) there are two models in the model-space (scenario 2). The HBI makes inference
using the HBI t-test, the NHI makes inference by performing a t-test on its estimated parameters and the HPE makes
inference by comparing the full fit and null fit (in which the group-level prior mean for the bias parameter is fixed).
The sensitivity (or power) of the tests in detecting true effects at P<0.05 for a number of different effect sizes is plotted
(i.e. true positive rate). For the HPE, log-evidence of at least 3 was considered as significant. The HPE shows lower
sensitivity than the other methods in both scenarios. Moreover, the HBI shows higher sensitivity than the NHI in
scenario 2.

https://doi.org/10.1371/journal.pcbi.1007043.g010
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For each simulation analysis, we then quantified accuracy using the HBI t-test at P<0.05.

Similarly, we quantified the sensitivity of the NHI at P<0.05. For the HPE, the log-evidence

of at least 3 in favor of the full HPE was defined as a significant effect (which means evidence

in favor of the null hypothesis is about 0.05 times less than the alternative hypothesis). These

analyses showed that both the HBI and NHI performed quite well in detecting group effects

(Fig 10A). The HPE, however, showed low sensitivity. This is because the HPE uses Bayesian

information criterion (BIC) to penalize parameters at the group level, which is known to

be a conservative metric [23]. Therefore, the full fit HPE loses against the null fit in this

stimulation.

We found similar results in another scenario in which samples were generated according to

two different models (Fig 10B). Here, the HBI first infers model frequency and then quantifies

hierarchical errors and degrees of freedom according to those frequencies. Therefore, we con-

sidered the same stimulus-action-outcome learning experiment as above and simulated a

dataset including 40 artificial subjects. Data for half of the subjects were generated using the

same biased RL model and data for the other half were generated using the dual- RL model

explained in previous simulations. Using the same procedure as above, we compared the per-

formance of the HBI, NHI and HPE and found very similar results.

HBI t-test under the null hypothesis. Next, we conducted a complementary test of how

the HBI t-test performs at avoiding false positives when there are no true effects to be found.

Specifically, we tested the performance of HBI t-test for data generated under the null hypothe-

sis, i.e. when the group level mean for the parameter is zero. Note that individual subjects

still show a positive or negative bias. Under the null, the p-value generated by the HBI t-test

should be uniformly distributed. For example, if null is true, the probability that the p-value

falls under 0.05 (the false positive rate) should be 0.05 and the probability that the p-value falls

under 0.1 should be 0.1.

We tested the HBI t-test using the same biased RL model as in previous analyses (Fig 11).

The null hypothesis was true here, which means that the individual bias parameters were

drawn from a normal distribution with zero mean and variance of 1. We performed 2000 sim-

ulations, which allows us to estimate the distribution of p-values generated by the HBI t-test.

We found that those p-values are very close to the theoretical uniform distribution (Fig 11A).

Fig 11. Performance of the HBI t-test under the null.A bias parameter was generated under the null (effect size is 0)
in two simulations where A) there is only one model in the model-space (scenario 1); or B) there are two models in the
model-space (scenario 2). The probability distribution of P-value is obtained by repeating the simulation 2000 times.
Note that under the null hypothesis, the resulting P-value is theoretically expected to have a uniform distribution. The
error-bars are 95% confidence intervals for the binomial distribution.

https://doi.org/10.1371/journal.pcbi.1007043.g011
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We then considered a more difficult scenario in which there are two models in the model

space (as above, the biased RL model alongside the dual RL model; Fig 11B). Here, the p-value

computed by the HBI t-test depends on the estimated model frequency and even a tiny bias

towards one model deteriorates the HBI t-test. Although the performance of the HBI t-test

slightly dropped in this scenario, the distribution of p-values was still reasonably good.

HBI t-test for skewed samples. It is well known that the classical t-test is biased when

data is generated by a skewed distribution rather than a normal distribution. Since the HBI t-

test developed here is also based on a normality assumption, we examined to what extent its

performance drops when samples are drawn from a skewed distribution (Fig 12).

We considered the same scenario as in previous simulations, testing false positives in which

20 subjects are generated with the biased RL model. Here, the bias parameter was drawn under

the null hypothesis (in the sense that parameter had zero mean, and 1 variance, across sub-

jects), but distributed according to a skewed distribution (with a skewness of –0.5) (Fig 12A).

This simulation was repeated 2000 times. First, we compared the probability of finding a sig-

nificant effect (P<0.05) under the null and compared it with the benchmark t-test on true

parameters (Fig 12B). Note that this is an unrealistic benchmark as it sees the true parameters.

Nevertheless, we found that both tests show statistical biases (as expected theoretically). In par-

ticular, both tests showed elevated false positive rates for tests nominally at P<.05: false posi-

tives occurred for the benchmark test on true parameters was 0.054 and for the HBI t-test on

estimated parameters was 0.079. Importantly, increasing the number of samples substantially

improves the performance of the HBI t-test as it improves parameter estimation. To investigate

this point experimentally, we repeated the same simulation analysis with 50 samples in each

dataset. In this simulation, the false positive rate for the benchmark test and the HBI t-test was

0.053 and 0.055, respectively (Fig 12C). Next, we considered the full probability distribution of

the p-values under the null hypothesis. As Fig 12D and 12E shows, the mismatch between the

estimated and theoretical probabilities reduced by increasing the number of samples.

Applying HBI to empirical data

We then applied the HBI method to an empirical choice dataset from 31 subjects performing

the two-step Markov decision task. The data used for this analysis have been reported else-

where [28]. In Fig 13, we have plotted protected exceedance probabilities of each model,

model frequencies and estimated group means and corresponding hierarchical errors. Accord-

ing to this analysis, the hybrid model is the most likely model across the group.

We also performed further analysis testing whether individual differences found by the HBI

generalize to individual differences in conceptually related, yet independent, data. We rea-

soned that subjects showing a hybrid strategy might be slower in their choice, as the hybrid

model requires combining of model-based and model-free values (which in some trials might

be in conflict). Therefore, we looked at the median of response time across all first-level

choices for each subject and tested whether there is a difference in response times between

those subjects who (according to the separate analysis of choices) employed a hybrid strategy

vs. those who employed a model-based strategy as estimated by the HBI. The subgroup attrib-

uted to the hybrid model by the HBI showed slower response time compared to those subjects

attributed to the model-based account (P = 0.03, Wilcoxon test). These results suggest that

HBI reveals meaningful individual differences generalizing to unseen data.

We applied the HBI to another choice dataset of Parkinson’s disease (PD) patients (N = 31),

who performed a probabilistic reward and punishment learning task with binary choices (160

trials), which has been used previously for studying maladaptive learning in PD patients. All

patients tested on medication. The dataset used here has been reported elsewhere [15].

Hierarchical Bayesian inference

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007043 June 18, 2019 20 / 34

https://doi.org/10.1371/journal.pcbi.1007043


Previous studies proposed that positive and negative prediction errors might be communi-

cated through different dopaminergic receptors or striatal pathways [25, 26, 29], and thus

the PD patients might have different learning rate parameters for learning from positive and

negative prediction errors [29]. Therefore, we considered a model space including the RL

model, the dual- RL model and a simple strategy that selects actions based on the most recent

Fig 12. Performance of the HBI t-test when samples are drawn from a skewed distribution. A) The skewed
distribution (skewness of −0.5). The mean, variance and kurtosis of the distributions are 0, 1 and 3 (i.e. kurtosis of the
normal distribution), respectively. This distribution was used to generate the bias parameter, which was then used to
generate 20 (A) and 50 (B) subjects according to the biased RL model. B-C) Inference at P<0.05 for the HBI t-test on
estimated parameters and t-test on true parameters, as a benchmark, when there is no effect (under the null). Note that
this is an unrealistic benchmark because it is based on true parameters that the HBI does not have access to. D-E)
Probability of P-value is obtained under the null hypothesis by repeating simulations 2000 times. Under the null
hypothesis, the resulting P-value is theoretically expected to have a uniform distribution. Increasing the number of
subjects improves the performance of the HBI t-test. The error-bars are 95% confidence intervals for the binomial
distribution.

https://doi.org/10.1371/journal.pcbi.1007043.g012
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outcome. In both RL models, we also included a perseveration parameter, which models the

tendency to repeat or avoid the same choice regardless of the value [15, 30]. This analysis

showed that the dual-α RL model was more likely across the group. Protected exceedance

probabilities, model frequencies and estimated group means and corresponding hierarchical

errors are plotted in Fig 14A. We then considered data from matched control participants

(N = 20), who performed the same task. The analysis with the HBI showed that the RL model

is more likely for the control group (Fig 14B), suggesting that PD (or dopaminergic medication

Fig 13. Using HBI for making inference on empirical datasets. A) HBI has been applied to a dataset of the two-step
Markov decision task. The model space consisted of the hybrid, the model-based (MB) and the model-free (MF)
models. Protected exceedance probabilities (PXP), model frequencies and estimated parameters of the winning model
(the hybrid) are plotted. The error-bars are obtained by applying the corresponding transformation function on the
hierarchical errors and, therefore, are not necessarily symmetric.

https://doi.org/10.1371/journal.pcbi.1007043.g013

Fig 14. Using HBI for making inference on Parkinson’s patients data. A) HBI has been applied to a dataset of 31 PD
patients performing a probabilistic reward and punishment learning task. The model space consisted of a null non-
learning (NL) model, RL, and the dual-α RL. Protected exceedance probabilities (PXP), model frequencies and
estimated parameters of the winning model (the dual-α RL) are plotted. The HBI revealed that the dual-α RL is more
likely across PD patients. B) The same model space was fitted to a dataset of 20 healthy control subjects performing the
same task. In contrast to PD patients, the RL model is more likely across the control group. In addition to the decision
noise, β, and learning rate parameters, both RL models also modeled tendency to repeat or avoid the previous choice
regardless of outcomes using a perseveration parameter, p. A permutation test revealed that the dual-α model is more
likely than the RL model in PD compared with the controls. The error-bars are obtained by applying the
corresponding transformation function on the hierarchical errors and, therefore, are not necessarily symmetric.

https://doi.org/10.1371/journal.pcbi.1007043.g014
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in PD) increases the discrepancy between the learning rates for positive and negative predic-

tion errors. We finally performed a permutation test to formally test the significance of this dif-

ference (1000 permutations). For each permutation, all participants were randomly divided

into control and PD groups with the same size as the real control and PD groups. The HBI

was then used to fit the same model space to each random group. The relative model frequency

statistics (RL vs. dual-α RL) was quantified for each permutation. This permutation test con-

firmed that the dual-α RL was significantly more likely than the RL model in PD patients com-

pared with controls (P<0.001).

Discussion

In this work, we have introduced a novel method, a hierarchical and Bayesian inference frame-

work, for parameter estimation and model comparison. The HBI framework is hierarchical in

the sense that parameters at the individual level are regularized by statistics across all individu-

als in the group. The HBI framework is Bayesian in the sense that all uncertainties at both indi-

vidual and group levels are represented by probability distributions. The HBI framework has

major theoretical advantages over current state-of-the-art methods, mainly because it com-

bines, in a single hierarchical structure, two sorts of inference (about model identity and

model parameters), which are interdependent but have previously been treated separately. Our

simulation results demonstrated these advantages experimentally.

In this work, we took an empirical Bayes approach [31, 32], in which priors are constructed

based on data. In other words, parameters at the individual level are regularized by statistics

across all individuals in the group. Furthermore, we took a so-called random effects approach

to model identity [13], which indicates that different models might underlie data in different

subjects. This is in contrast to previous hierarchical methods for model fitting, which assume

the same model underlie data in all subjects (fixed effects assumption [10, 11]). The random

effects approach to hierarchical inference has important consequences for both parameter esti-

mation and model comparison. Moreover, we took a fully Bayesian approach by quantifying

uncertainty at the group level, which enabled us to develop statistical tests about group param-

eters and to quantify corresponding statistical errors.

Empirical Bayes methods play an increasing role in modern statistics. These methods essen-

tially take a hierarchical approach, by assuming that individual data are generated based on the

probabilistic properties of the population. This hierarchical approach has important conse-

quences. The most important consequence is that they provide a promising solution to the

classical problem of priors in Bayesian statistics by providing informative, yet objective, priors

at the individual level. Furthermore, by partly sharing parameters across subjects, they reduce

overfitting relative to non-hierarchical models, which in turn allows them to confidently fit

more complex models with a smaller penalty for overfitting. This is because non-hierarchical

methods assume that the extra parameters of a complex model are independent. For example,

consider a model space in which the more complex model has one extra free parameter and

there are 40 subjects in the dataset. Fitting the dataset with the complex model using non-hier-

archical methods introduces 40 additional independent free parameters, driving the danger

of overfitting, and accordingly an excessive penalty to account for this possibility in assessing

the evidence for the model. The hierarchical approach, however, assumes that the individual

parameters are dependent, as they are all generated according to the same distribution, sharing

a single mean parameter and smaller deviations from it. Modeling this hierarchical depen-

dency enables those methods to avoid penalizing complex models as excessively. Our simula-

tion results demonstrate this point experimentally (Fig 3D). While the non-hierarchical

method failed to select the correct model with one additional parameter, evidently because the
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overfitting penalty was too extreme, the HBI was successful in selecting the correct model (Fig

3D).

The HBI method introduced in this paper is built based on the random effects view that dif-

ferent models might underlie data in different subjects. Taking this view enabled us to address

problems caused by taking the model identity as a fixed effect in some hierarchical parameter

estimation procedures. For parameter estimation, the fixed effects assumption biases the

group parameters because it assumes that all subjects contribute equally to the group parame-

ters. The proposed HBI framework solves this problem by weighting contribution of each sub-

ject to group statistics by the degree to which that model is likely to be the true underlying

model for that subject (Figs 1 and 3). For model comparison, the fixed effects assumption

leads to oversensitivity to outliers as the evidence across the group is driven by the sum of

individual evidence. Our simulation results (Fig 2) showed that only a few outliers lead to

incorrect model selection inference made by the fixed effects assumption. The proposed HBI

method solves this problem by normalizing individual evidence across all candidate models.

Specifically, the HBI framework quantifies the responsibility of each model k in generating

each subject data, a metric lying between 0 and 1. For every subject, the responsibility sums

up to 1 across all candidate models as it partitions probability space among those models (see

[13, 19] for a similar non-hierarchical approach). It is then easy to compare models by enu-

merating responsibilities across the group in favor of each model or by estimating the most

likely model.

Another major contribution of this paper is to provide a statistical test, HBI t-test, to the

inference problem at the group level using hierarchically fitted parameters. For models fitted

by a non-hierarchical method, such as maximum likelihood or Laplace approximation, it is

statistically valid to use classical statistical tests on fitted parameters to make inference at the

group level. However, for datasets fitted by a hierarchical method in which the individual fits

are regularized according to statistics of the group data, conventional statistical tests are not

valid, because the parameter estimates are non-independent from subject to subject. Our fully

Bayesian approach enabled us to address this issue. Our method provides an intuitive solution

to this problem in the form of a t-statistic, in which all the group statistics are computed

according to the estimated responsibilities of the corresponding model in generating each

individual data. Thus, the HBI quantifies the uncertainty of the group parameters and thereby

the corresponding hierarchical errors. Our analysis showed that the HBI performed better

than both the NHI and HPE in detecting true effects and also that it was well calibrated, dis-

playing the appropriate number of false positives when effects were absent. Therefore, the HBI

framework enables researchers to make statistical claims about parameters at the group level.

It is important, however, to note that the foundation of the HBI t-test is completely different

from the classical t-test, as it is a Bayesian (in contrast to frequentist) test using posterior prob-

abilities. In particular, this test is based on the posterior distribution of the statistics of interest

(i.e. group mean) marginalized over all other parameters (e.g. group variance), which is given

by a Student’s t-distribution (Eq 24). Statistically, the precise claim of the HBI t-test is that

whether a specific point is outside of a credible interval, which is the interval that the group

parameter value falls with a particular subjective probability. For example, if the HBI t-test

indicates that a parameter is significantly different from 0 at P<0.05, it means that 0 does not

fall within the 95% credible interval. One important difference between Bayesian credible

intervals and classical (frequentist) confidence intervals (used in classical Student’s t-test) is

that Bayesian credible intervals depend on priors. However, since we used minimally-informa-

tive priors (statistically proper priors with very little effects on posteriors, see Materials and

methods), the HBI t-test almost entirely depends on data. In fact, that is the reason that

under the null, the HBI t-test generates p-values uniformly as shown by simulations (Fig 11).
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Notably, the same Student distribution can also be used to accept the null hypothesis for exam-

ple using a “region of practical equivalence” procedure described by Kruschke [33]. It is also

possible to employ the more common way and make inference in favor of the null hypothesis

using model selection. In this case, one needs to perform a model selection between a model in

which the group-level mean of the parameter of interest is fixed at the null value (null model)

and compare that with a full HBI with no restriction (alternative model) using Bayes factor

(i.e. difference log model evidence).

In addition to model comparison, the HBI framework can also be used for model selec-

tion in situations where the goal is to select one of the models as the best model across the

group. Exceedance probability is a metric proposed [13] to perform model selection using a

random effects approach. An important revision of this metric called protected exceedance

probability [19] also takes into account the null possibility that none of the models in model

space is supported sufficiently by data, i.e. the differences in model evidence are due to

chance. As the HBI framework treats model identity as a random effect, it is possible to com-

pute exceedance and protected exceedance probabilities (Eqs 26–28). Note that if this proce-

dure indicates that models’ ability to explain data are not different (i.e. their difference is

likely to be due to chance), one cannot rely on estimated parameters, as those are also depen-

dent on estimated model frequencies. In this situation, we recommend to obtain parameters

by fitting models separately to data using the HBI, which makes sense as there is no evidence

that models are differently expressed across subjects. In our analysis with simulated and

empirical data, however, we never encountered this situation as probability of the null (P0 in

Eq 28) was always very small.

In this study, we compared the performance of the HBI with two alternative methods with

different statistical assumptions about the generative process of data. The NHI assumes a hier-

archy in model identity for generating individual data. The HPE assumes that parameters are

generated in a hierarchical fashion, but assumes no hierarchy regarding model identities. The

HBI assumes that both model identity and parameters are generated hierarchically. Impor-

tantly, the inference procedure for all these methods is very similar, which allows a fair com-

parison of them largely based on their statistical assumptions. In particular, the three methods

all employ Laplace approximation for making a quadratic approximation of individual-level

posteriors. Furthermore, the HBI is based on variational Bayes, which is an extension to the

case of multiple latent variables of the expectation-maximization procedure used previously

for implementing the HPE [10, 11] (see also [34] for a variational implementation), which itself

extends the one-level Bayesian inference of NHI. There are other ways to make an inference,

for example using Markov chain Monte Carlo methods. Future studies should investigate the

pros and cons of those methods, compared with the variational Bayes used here, for making

inference in HBI.

There are increasing efforts to exploit advances in computational modeling for understand-

ing mental disorders [3–6]. Recent works, however, have started to tackle challenges related to

quantifying uncertainty in diagnosis and also in the evaluation of treatment effects. For exam-

ple, hierarchical unsupervised generative modeling, have used Monte-Carlo and variational

methods to identify a cluster of subjects showing similar patterns of neural connectivity [35,

36]. HBI also offers a promising solution by quantifying uncertainty in model attribution to

individuals. Our simulation analyses showed that the HBI performs better than other alterna-

tives in model attribution. This can help us to move towards better diagnosis and precise eval-

uation of different treatments [37].

In summary, the HBI framework proposed in this work rests on a hierarchical view of both

hypothesis testing (i.e. model comparison) and parameter estimation for multi-subject studies

and thus provides a generic framework for statistical inference. Moreover, the HBI framework
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runs fully automatically and it does not rely on hand tuning of parameters. Therefore, we

expect this method to be useful for a wide range of studies testing different hypotheses in a

multi-subject setting. This includes not only computational models of learning and decision

making but also any statistical models of brain or behavior.

Materials andmethods

Here, we give a formal treatment of the HBI framework in seven sections, in which we 1)

define the probabilistic model underlying HBI; 2) lay out the basis of our variational approach

for making inference (the full proof is given in S1 Appendix); 3) present the HBI algorithm; 4)

derive the HBI t-test; 5) show how HBI can be used for making inference about a new subject;

6) define important practical points, in particular prior parameters, initialization and conver-

gence criteria; 7) give a formal definition of the exceedance and protected exceedance proba-

bility. The HBI and its manual are freely available online as part of computational and

behavioral modeling (cbm) toolbox: https://payampiray.github.io/cbm.html.

Probabilistic model

We begin by describing the probabilistic model of the HBI. Consider an observed dataset

X = {x1, . . ., xN} where xn is the dataset (e.g. choices) of nth subject and N indicates the num-

ber of subjects and a model-space including K candidate models,M1. . .MK. Moreover, sup-

pose that the prior probability of each model in the population is given bym = {m1, . . .,mK}.

For each dataset, xn, we assume that there is a latent variable zn comprising a 1-of-K binary

random vector, in which zkn is one if xn generated is by the kth model. Thus, the probability

of the latent variable across all subjects, Z = {z1, . . ., zN}, is assumed to have a multinomial

distribution,

pðZjmÞ ¼
Y

n

Y

k

m
zkn
k : ð1Þ

Each modelMk in the model-space is supposed to compute the probability of a given data-

set (e.g. a set of choices) given a set of parameters, hkn. For example, the reinforcement learn-

ing model computes the probability of choices using two parameters: a learning rate and a

decision noise parameter. The number of models and their structures depend on specific sci-

entific questions. Here, we take a general approach by making no specific assumption about

the number of models, K. Thus, the kth model in the model-space,Mk, computes the probabil-

ity of dataset xn given the parameter vector hkn, which is denoted by p(xn|hkn,Mk). Note that

the number of parameters in model k, denoted by Dk, might be different across models. Since

data for each subject is generated by one of the models, which is denoted in the binary vector

zn, the probability of the observed dataset given the model-space is

pðXjH;ZÞ ¼
Y

k

Y

n

pðxnjhkn;MkÞ
zkn ; ð2Þ

whereH denotes all the parameters across all participants and models. The parameters of kth

model are assumed to have a multivariate normal distribution with mean μk and precision

matrix Tk,

pðHjZ;μ;TÞ ¼
Y

k

Y

n

N ðhknjμk;T
�1

k Þzkn ; ð3Þ

where Tk is a diagonal matrix with positive elements.
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We also introduce a distribution over model frequencies,m. We use the Dirichlet distribu-

tion, which forms the conjugate prior for the multinomial distribution, as the prior:

pðmÞ ¼ Dirðmja
0
Þ ¼ Cða

0
Þ
Y

K

k¼1

m
a0�1

k ; ð4Þ

where C(α0) is the normalizing constant for the Dirichlet distribution.

We also take group parameters μ and T as random variables, which allows us to evaluate

their posterior distribution given data. We introduce conjugate priors for these variables, a

Gaussian-Gamma prior in which the distribution over μk depends on Tk:

pðμjTÞ ¼
Y

K

k¼1

N ðμkja0; ðbTkÞ
�1Þ

pðTÞ¼
Y

K

k¼1

Y

Dk

i¼1

Gðtkijv; sÞ;

where Gð:Þ denotes Gamma distribution. Here, τki is the ith diagonal element of Tk. Assuming

that τk is a vector containing τki, by defining Tk = diag(τk), in which diag(.) is an operator out-

putting a diagonal matrix with elements given by τk, we can write these two equations in a

compact form:

pðμ; τÞ ¼
Y

K

k¼1

N ðμkja0; diagðbτkÞ
�1ÞGðτkjv; sÞ; ð5Þ

where we have defined:

Gðτkjv; sÞ ¼
Y

Dk

i¼1

Gðtkijv; sÞ;

in which v is a scalar and s is a vector with Dk elements all equal to s. The full probabilistic

model is given by,

pðX;H;Z;μ; τ;mÞ ¼ pðXjH;ZÞpðHjZ;μ; τÞpðZjmÞpðμjτÞpðτÞpðmÞ: ð6Þ

Variational inference

The task of Bayesian inference is to compute the posterior probabilities of latent variables

given data, p(H, Z, μ, τ,m|X). Since the inference is intractable for the probabilistic model out-

lined in the previous section, we employ variational inference to compute approximate poste-

riors. We take a so-called mean-field approach [16, 17] by assuming that the posterior is

partially factorized as follows:

qðH;Z;μ; τ;mÞ ¼ qðH;ZÞqðμ; τ;mÞ: ð7Þ

Note that we force no factorization in the posterior between latent variables, Z andH. Using a

quadratic approximation of the conditional posterior, q(H|Z), we prove in S1 Appendix that
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these posteriors are given by,

qðH;ZÞ ¼
Y

k

Y

n

r
zkn
kn N ðhknjθkn;A

�1

kn Þ
zkn ð8Þ

qðμ; τ;mÞ ¼ DirðmjαÞ
Y

k

qðμk; τkÞ ð9Þ

qðμk; τkÞ ¼ N ðμkjak; diagðbkτkÞ
�1ÞGðτkjnk;σkÞ; ð10Þ

where 0� rkn � 1 is the responsibility of model k for nth subject, θkn and Akn are the subject-

level mean and precision, νk and βk are scalars and σk is a vector with the same size as τk. In the

next section, we provide the HBI algorithm, which iteratively updates the parameters of these

distributions, rkn, θkn, Akn, α, ak, νk, βk, and σk.

HBI algorithm

After initializing the individual parameter estimates, θkn and Akn and responsibilities rkn for all

subjects and models, as well as setting prior parameters a0, b, s, v and α0 (which will be defined

later), the HBI algorithm performs these steps:

1. Calculate the summary statistics:

�N k ¼
X

n

rkn ð11Þ

�θ k ¼
1

�N k

X

n

rknθkn ð12Þ

�V k ¼
1

�N k

X

n

rkn θknθ
>
kn � �θ k

�θ>
k þ A

�1

kn

� �

: ð13Þ

2. Update parameters of q(μ, τ,m) for all models:

ak ¼
1

�N k þ b
ð �N k

�θ k þ ba
0
Þ ð14Þ

bk ¼ bþ �N k ð15Þ

σk ¼ sþ 1

2
diag �N k

�V k þ
b �N k

bþ �N k

ð�θ k � a
0
Þð�θ k � a

0
Þ>

� �

ð16Þ

nk ¼ vþ 1

2

�N k
ð17Þ

ak ¼ a
0
þ �N k: ð18Þ
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3. Update the individual posterior parameters θkn, Akn and fkn, by obtaining a quadratic

approximation of the function, ℓkn(h), with respect to h:

‘knðhÞ ¼ pðxnjh;MkÞN ðhjE½μk�;E½Tk�
�1Þ; ð19Þ

where E½μk� ¼ ak and E½Tk�
�1 ¼ 1

nk
diagðσkÞ. This approximation can be written as

‘knðhÞ ’ fkn exp ð�
1

2
ðhkn � θknÞ

>
Aknðhkn � θknÞÞ: ð20Þ

Note that any quadratic approximation can be used here. For example, using a Laplace qua-

dratic approximation (which is a very common approximation for analyzing behavioral

and neural data [20, 22, 23]), θkn, Akn and fkn are given by the mode, Hessian of log ℓkn and

the maximum value of ℓkn, respectively:

θkn ¼ argmax
h

log ‘knðhÞ

Akn ¼ �rr log ‘knðhÞjθkn

fkn ¼ ‘knðθknÞ:

4. Update responsibilities,

rkn ¼
rkn

PK

j¼1
rjn

; ð21Þ

where

log rkn ¼ log fkn þ
1

2
Dk log 2p� 1

2
log jAknj þ lk þ E½logmk� ð22Þ

lk ¼
Dk

2
ðcðnkÞ � log nk �

1

bk

Þ ð23Þ

E½logmk� ¼ cðakÞ � cð
X

K

k¼1

akÞ;

in which ψ(.) is the digamma function.

5. Terminate if stopping criteria are met, otherwise go to 1.

Statistical tests for group parameters

An important goal of computational modeling studies is to compute the distribution of param-

eters given data across the whole population. From a Bayesian viewpoint, this is given by the
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marginal posterior over the mean of group parameters, μk, which reads

pðμkjXÞ ’
Z

qðμk; τkÞdτk

¼
Z

N ðμkjak; ðbkτkÞ
�1ÞGðτkjnk;σkÞdτk

¼ Stðμkjak;ηk; nkÞ;

where nk ¼ 2nk ¼ 2vþ �Nk is the number of degrees of freedom of the Student distribution

and ηk ¼ nkbkσ
�1

k is the inverse-scale parameter. Therefore, the random variable t ¼
η

1

2

kðμk � akÞ takes a form of standard Student distribution with nk degrees of freedom. By defin-

ing s2ki ¼ 2

bk
ski, in which s2ki corresponds to empirical variance (c.f. Eq (16)), we can write this

result in an intuitive form,

pðmkijXÞ ¼ St
mki � aki

ski=
ffiffiffiffiffi

nk

p jnk

� �

: ð24Þ

Noting the similarity between ski=
ffiffiffiffiffi

nk

p
and the standard error of the mean, we called ski=

ffiffiffiffiffi

nk

p

the hierarchical error. Note that if we assume v = 0.5 (which is reasonable as explained later),

we obtain nk ¼ 1þ �Nk.

Predictive distribution for a new subject

In many situations, researchers are interested to fit a new dataset to a particular model and

find corresponding parameters. In Bayesian statistics, this is called the predictive distribution

and it is given by marginalizing over group parameters. Suppose that x� and h
�
k denote the new

dataset and its corresponding parameters for model k. The marginal distribution pðx�; h�
kjz�k ¼

1;XÞ is the predictive distribution given the observed dataset X assuming that the new data is

generated by the kth model. This distribution is given by:

pðx�; h�
kjz�k ¼ 1;XÞ ¼

Z

pðx�jh�
k;MkÞpðh�

kjμk; τk; z
�
k ¼ 1Þpðμk; τkjXÞdμkdτk

¼ pðx�jh�
k;MkÞStðh�

kjak; ð1þ bkÞ
�1ηk; nkÞ;

where ηk and nk have been defined in the previous section. This distribution can also be writ-

ten in terms of standard Student distribution with nk degrees of freedom. Furthermore, if we

assume that b = 2v, which is a reasonable assumption (see the next section), this distribution is

given by

pðx�; h�
kjz�k ¼ 1;XÞ ¼ pðx�jh�

k;MkÞStðdiagðskÞ
�1ðh�

k � akÞjnkÞ;

where sk is a vector of corresponding empirical deviance parameters, defined in the previous

section. Using this joint distribution, one can use sampling methods to obtain the posterior

over parameters, pðh�
kjzkn ¼ 1;X; x�Þ, or to obtain the maximum-a-posteriori parameters, θ�

k,

given by

θ�
k ¼ argmax

h

log pðx�jh;MkÞStðdiagðskÞ
�1ðh� akÞjnkÞ: ð25Þ

Note that for many degrees of freedom due to large values of �Nk, the Student distribution

tends to a Gaussian with mean ak and deviance matrix diag(sk). However, small values of �Nk
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lead to a small number of degrees of freedom and heavier tailed distributions than Gaussians,

which are more robust against outliers.

Parameters, initialization and convergence criteria

As the mean-field variational inference is an iterative framework, it also depends on the ini-

tialization of the parameters. In this section, we provide priors that do not bias the final solu-

tion and also provide some intuitive criteria for the initialization.

We initialize the parameters θkn and Akn by fitting all models separately to all participants

(with some initial Gaussian prior), i.e., assuming as if zkn = 1. These values are then used to cal-

culate summary statistics according to Eqs (11)–(13).

Furthermore, we need to define prior parameters. The free parameter α0 indicates prior fre-

quency of each model. We take uninformative priors on frequency of models, which is given

by α0 = 1 for all models. The prior mean, a0k, is assumed to be zero. Given Eq (15), we see that

b can be interpreted as the effective number of prior samples associated with models. Also,

given Eq (17), v could be interpreted as the half of the effective number of prior samples associ-

ated with models. Assuming that the priors account for one sample, which is a common

assumption in Bayesian statistics, we take b = 1 and v ¼ 1

2
. Finally, since s has always an addi-

tive effect on σk according to Eq (16), we assume a small positive value for s, allowing that σk to

be driven dominantly by data. In all our analyses, we assumed s = 0.01. It is also important to

note that by choosing a small value for s, we ensure that if a model loses entirely (takes no

responsibility), its corresponding parameters at the individual level converge to the prior

mean, a0k, with a very small variance.

Finally, the HBI algorithm presented above requires stopping criteria. In our analyses, we

terminated the algorithm if the change in normalized value of parameters between two conse-

cutive iterations, j − 1 and j, defined as

d̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

k

1

Dk

X

i

ðŷ j

ki � ŷ
j�1

ki Þ
2

s

;

was smaller than 0.01. Here, ŷ j

ki is defined according to summary statistics of parameters on

the jth iteration:

ŷ
j

ki ¼ �yki= �V
1

2

ki;

where �yki and �V ki are the ith element of �θ k and �V k defined in (12 and 13), respectively. In our

analyses, we also set 50 as the maximum number of iterations, although almost always the algo-

rithm stopped before hitting this number.

Exceedance probability and protected exceedance probability

Using the posterior overm, one can also derive the so-called exceedance probability and pro-

tected exceedance probability, as defined in previous works [13, 19]. We reproduce the equa-

tions here for completeness.

The exceedance probability of kth model, ϕk, is defined as the probability that modelMk is

more likely than any other model in the model-space and it is given by

�k ¼ Probðmk > mjjαÞ; 8j 6¼ k: ð26Þ

Computing protected exceedance probabilities, as defined in [19], also requires to run the HBI

under the (prior) null hypothesis,H0, that there is no difference between models (i.e. α0 !
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1). The alternative hypothesis,H1, is the original case, in which α0 = 1. If we define L and L0
as the log-likelihood (actually the variational lower bound as its approximation) of all data

given the model-space underH1 andH0, respectively, then the protected exceedance probabil-

ity of kth model, ~�k, is defined as:

~�k ¼ �kð1� P
0
Þ þ 1

K
P
0
; ð27Þ

where

P
0
¼ 1

1þ exp ðL� L
0
Þ : ð28Þ

Note that if P0 is close to 1, then model frequencies should be ignored, as the difference

between models in the model space is due to chance. Furthermore, if data does not support

any model, i.e. P0 is close to 1, then parameters should be estimated by fitting each model sepa-

rately using the HBI.

Supporting information

S1 Text. Supplementary methods.

(PDF)

S1 Fig. A control analysis assessing the effects of prior variance on NHI performance. In

scenario 1, similar to the analysis presented in the main text (Fig 3), 10 and 30 subjects gener-

ated with the RL and dual-α RL models, respectively. Conversely, in scenario 2, the RL model

is more likely (30 subjects) than the dual-α RL model (10 subjects). In A and C, protected

exceedance probability (PXP) as a function of prior variance is plotted in scenario 1 and 2,

respectively. In B and D, estimation error for the learning rate parameter of RL is plotted in

scenarios 1 and 2, respectively. The simulations show in general that no single prior is flexible

enough to capture the different scenarios. In particular, while narrowing the prior reduces the

complexity penalty (and thus somewhat improves model selection in scenario 1, when the

more complex model should be favored), it also worsens parameter estimation in both scenar-

ios. This is because the learning rates for the two models are, generatively, different, and a nar-

row prior cannot support both at once. Here, the true value of the RL learning rate was 0.1,

which was quite away from the prior mean (i.e. 0.5), making it difficult for a narrower variance

to capture it. Finally, this poor parameter estimation for the RL model has negative conse-

quences also for model selection in scenario 2 (where the RL model should be favored, but the

evidence for it is hampered by poor fit to the learning rate with smaller prior variance). The

parameters used in this simulation are the same as those used in the original simulation analy-

ses (Figs 3 and 4). Median across 100 simulations is plotted. Errorbars indicate the first and

third quantiles. The prior variance in all simulation analyses of the main text is 6.25.

(TIF)

S2 Fig. A control simulation analysis extending that from Fig 3, with different settings of

learning rates for simulating data. The same parameters as in Fig 3 were used for simulations

here, with the only difference that the learning rate parameter for the RL model was different

here. In particular, the true learning rate of the RL was in the middle of those for the dual-α RL

(for RL: α = 0.6; for dual-α RL: α+ = 0.8, α− = 0.4). The difference between parameter estima-

tion performance of the HPE and HBI is not as pronounced as in Fig 3, which is expected theo-

retically.

(TIF)
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S1 Appendix. Formal derivations of the HBI algorithm.

(PDF)
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36. Yao Y, Raman SS, Schiek M, Leff A, Frässle S, Stephan KE. Variational Bayesian Inversion for Hierar-
chical Unsupervised Generative Embedding (HUGE); 179:604–619.

37. Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, et al. Computational
Neuroimaging Strategies for Single Patient Predictions; 145:180–199.

Hierarchical Bayesian inference

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007043 June 18, 2019 34 / 34

https://link.springer.com/chapter/10.1007/978-94-011-5014-9_12
https://doi.org/10.1126/science.1102941
http://www.ncbi.nlm.nih.gov/pubmed/15528409
https://projecteuclid.org/euclid.bsmsp/1200501653
https://doi.org/10.1371/journal.pcbi.1007043

