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Abstract. The level set approach has proven widely successful in the study of

inverse problems for interfaces, since its systematic development in the 1990s.
Recently it has been employed in the context of Bayesian inversion, allowing
for the quantification of uncertainty within the reconstruction of interfaces.
However the Bayesian approach is very sensitive to the length and amplitude
scales in the prior probabilistic model. This paper demonstrates how the
scale-sensitivity can be circumvented by means of a hierarchical approach,
using a single scalar parameter. Together with careful consideration of the
development of algorithms which encode probability measure equivalences as
the hierarchical parameter is varied, this leads to well-defined Gibbs based

MCMC methods found by alternating Metropolis-Hastings updates of the level
set function and the hierarchical parameter. These methods demonstrably

outperform non-hierarchical Bayesian level set methods. Inverse problems for
interfaces and Level set inversion and Hierarchical Bayesian methods

1. Introduction

1.1. Background. The level set method has been pervasive as a tool for the study
of interface problems since its introduction in the 1980s [43]. In a seminal paper
in the 1990s, Santosa demonstrated the power of the approach for the study of
inverse problems with unknown interfaces [47]. The key benefit of adopting the
level set parametrization of interfaces is that topological changes are permitted.
In particular for inverse problems the number of connected components of the
field does not need to be known a priori. The idea is illustrated in Figure 1.
The type of unknown functions that we might wish to reconstruct are piecewise
continuous functions, illustrated in the bottom row by piecewise constant ternary
functions. However in the inversion we work with a smooth function, shown in
the top row and known as the level-set function, which is thresholded to create
the desired unknown function in the bottom row. This allows the inversion to be
performed on smooth functions, and allows for topological changes to be detected
during the course of algorithms. After Santosa’s paper there were many subsequent
papers employing the level set representation for classical inversion, and examples
include [11,15,19,52], and the references therein.

In many inverse problems arising in modern day science and engineering, the data
is noisy and prior regularizing information is naturally expressed probabilistically
since it contains uncertainties. In this context, Bayesian inversion is a very at-
tractive conceptual approach [33]. Early adoption of the Bayesian approach within
level set inversion, especially in the context of history matching for reservoir simu-
lation, includes the papers [39, 40, 44, 56]. In a recent paper [31] the mathematical
foundations of Bayesian level set inversion were developed, and a well-posedness
theorem established, using the infinite dimensional Bayesian framework developed
in [18, 34, 35, 51]. An ensemble Kalman filter method has also been applied in the
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Figure 1. Four continuous scalar fields (top) and the correspond-
ing ternary fields formed by thresholding these fields at two levels
(bottom). The smooth function in the top row is known as the
level-set function and is used in the inversion procedure. The dis-
continuous function in the bottom row is the physical unknown.

Bayesian level set setting [28] to produce estimates of piecewise constant permeabil-
ities/conductivities in groundwater flow/electrical impedance tomography (EIT)
models.

For linear Bayesian inverse problems, the adoption of Gaussian priors leads to
Gaussian posteriors, formulae for which can be explicitly computed [22, 37, 41].
However the level set map, which takes the smooth underlying level set function
(top row, Figure 1) into the physical unknown function (bottom row, Figure 1)
is nonlinear; indeed it is discontinuous. As a consequence, Bayesian level set in-
version, even for inverse problems which are classically-speaking ‘linear’, does not
typically admit closed form solutions for the posterior distribution on the level
set function. Thus, in order to produce samples from the posterior arising in the
Bayesian approach, MCMC methods are often used. Since the posterior is typi-
cally defined on an infinite-dimensional space in the context of inverse problems, it
is important that the MCMC algorithms used are well-defined on such spaces. A
formulation of the Metropolis-Hastings algorithm on general state spaces is given
in [53]. A particular case of this algorithm, well-suited to posterior distributions on
function spaces and Gaussian priors, is the preconditioned Crank-Nicolson (pCN)
method introduced (although not named this way) in [7]. As the method is defined
directly on a function space, it has desirable properties related to discretization –
in particular the method is robust with respect to mesh refinement (discretization
invariance) – see [16] and the references therein. On the other hand, the need for
hierarchical models in Bayesian statistics, and in particular in the context of non-
parametric (i.e. function space) methods in machine learning, is well-established [8].
However, care is needed when using hierarchical methods in order to ensure that
discretization invariance is not lost [3]. In this paper we demonstrate how hierar-
chical methods can be employed in the context of discretization-invariant MCMC
methods for Bayesian level set inversion.
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1.2. Key Contributions of the Paper. The key contribution of this paper is
in computational statistics: we develop a Metropolis Hastings method with mesh-
independent mixing properties that makes an order of magnitude of improvement
in the Bayesian level set method as introduced in [31].

Study of Figure 1 suggests that the ability of the level set representation to
accurately reconstruct piecewise continuous fields depends on two important scale
parameters:

• the length-scale of the level set function, and its relation to the typical
separation between discontinuities;

• the amplitude-scale of the level set function, and its relation to the levels
used for thresholding.

If these two scale parameters are not set correctly then MCMC methods to de-
termine the level set function from data can perform poorly. This immediately
suggests the idea of using hierarchical Bayesian methods in which these parameters
are learned from the data. However there is a second consideration which interacts
with this discussion. From the work of Tierney [53] it is known that absolute conti-
nuity of certain measures arising in the definition of Metropolis-Hastings methods
is central to their well-definedness, and hence to discretization invariant MCMC
methods [16]. In fact it appears algorithms defined on infinite dimensional spaces
have spectral gaps that are bounded independently of the mesh, and so their con-
vergence rates are bounded below in the limit [26]. The key contribution of our
paper is to show how enforcing absolute continuity links the two scale parameters,
and hence leads to the construction of a hierarchical Bayesian level set method
with a single scalar hierarchical parameter which deals with the scale and absolute
continuity issues simultaneously, resulting in effective sampling algorithms.

The hierarchical parameter is an inverse length-scale within a Gaussian random
field prior for the level set function. In order to preserve absolute continuity of
different priors on the level set function as the length-scale parameter varies, and
relatedly to make well-defined MCMC methods, the mean square amplitude of
this Gaussian random field must decay proportionally to a power of the inverse
length-scale. It is thus natural that the level values used for thresholding should
obey this power law relationship with respect to the hierarchical parameter. As
a consequence the likelihood depends on the hierarchical parameter, leading to a
novel form of posterior distribution.

We construct this posterior distribution and demonstrate how to sample from it
using a Metropolis-within-Gibbs algorithm which alternates between updating the
level set function and the inverse length scale. As a second contribution of the paper,
we demonstrate the applicability of the algorithm on three inverse problems, by
means of simulation studies. The first concerns reconstruction of a ternary piecewise
constant field from a finite noisy set of point measurements: in this context, the
Bayesian level set method is very closely related to a spatial probit model [45]. This
relation is discussed in in subsection 2.4. The other two concern reconstruction of
the coefficient of a divergence form elliptic PDE from measurements of its solution;
in particular, groundwater flow (in which measurements are made in the interior of
the domain) and EIT (in which measurements are made on the boundary).

1.3. Structure of the Paper. In section 2 we describe a family of prior distri-
butions on the level set function, indexed by an inverse length scale parameter,
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which remain absolutely continuous with respect to one another when we vary this
parameter; we then place a hyper-prior on this parameter. We describe an appro-
priate level set map, dependent on the length-scale parameter because length and
amplitude scales are intimately connected through absolute continuity of measures,
to transform these fields into piecewise constant ones, and use this level set map in
the construction of the likelihood. We end by showing existence and well-posedness
of the posterior distribution on the level set function and the inverse length scale
parameter. In section 3 we describe a Metropolis-within-Gibbs MCMC algorithm
for sampling the posterior distribution, taking advantage of existing state-of-the-
art function space MCMC, and the absolute continuity of our prior distributions
with respect to changes in the inverse length scale parameter, established in the
previous section. Section 4 contains numerical experiments for three different for-
ward models: a linear map comprising pointwise observations, groundwater flow
and EIT; these illustrate the behavior of the algorithm and, in particular, demon-
strate significant improvement with respect to non-hierarchical Bayesian level set
inversion.

2. Construction of the Posterior

In subsection 2.1 we recall the definition of the Whittle-Matérn covariance func-
tions, and define a related family of covariances parametrized by an inverse length
scale parameter τ . We use these covariances to define our prior on the level set func-
tion u, and also place a hyperprior on the parameter τ , yielding a prior P(u, τ) on a
product space. In subsection 2.2 we construct the level set map, taking into account
the amplitude scaling of prior samples with τ , and incorporate this into the forward
map. The inverse problem is formulated, and the resulting likelihood P(y|u, τ) is
defined. Finally in subsection 2.3 we construct the posterior P(u, τ |y) by combining
the prior P(u, τ) and likelihood P(y|u, τ) using Bayes’ formula. Well-posedness of
this posterior is established.

2.1. Prior. As discussed in the introduction it can be important, within the con-
text of Bayesian level set inversion, to attempt to learn the length-scale of the level
set function whose level sets determine interfaces in piecewise continuous recon-
structions. This is because we typically do not know a-priori the typical separation
of interfaces. It is also computationally expedient to work with Gaussian random
field priors for the level set function, as demonstrated in [20, 31]. A family of
covariances parameterized by length scale is hence required.

A widely used family of distributions, allowing for control over sample regularity,
amplitude and length scale, are Whittle-Matérn distributions. These are a family
of stationary Gaussian distributions with covariance function

cσ,ν,ℓ(x, y) = σ2 2
1−ν

Γ(ν)

( |x− y|
ℓ

)ν

Kν

( |x− y|
ℓ

)

whereKν is the modified Bessel function of the second kind of order ν [42,50]. These
covariances interpolate between exponential covariance, for ν = 1/2, and Gaussian
covariance, for ν → ∞. As a consequence, the regularity of samples increases as the
parameter ν increases. The parameter ℓ > 0 acts as a characteristic length scale
(sometimes referred to as the spatial range) and σ as an amplitude scale (σ2 is
sometimes referred to as the marginal variance). On Rd, samples from a Gaussian
distribution with covariance function cσ,ν,ℓ correspond to the solution of a particular
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stochastic partial differential equation (SPDE). This SPDE can be derived using
the Fourier transform and the spectral representation of covariance functions – the
paper [36] derives the appropriate SPDE for the covariance function above:

1
√

βℓd
(I − ℓ2△)(ν+d/2)/2v = W(1)

where W is a white noise on Rd, and

β = σ2 2
dπd/2Γ(ν + d/2)

Γ(ν)
.

Computationally, implementation of this SPDE approach requires restriction to a
bounded subset D ⊆ Rd, and hence the provision of boundary conditions for the
SPDE in order to obtain a unique solution. Choice of these boundary conditions
may significantly affect the autocorrelations near the boundary. The effects for dif-
ferent boundary conditions are discussed in [36]. Nonetheless, the computational
expediency of the SPDE formulation makes the approach very attractive for ap-
plications and, if necessary, boundary effects can be ameliorated by generating the
random fields on larger domains which are a superset of the domain of interest.

From (1) it can be seen that the covariance operator corresponding to the co-
variance function cσ,ν,ℓ is given by

Dσ,ν,ℓ = βℓd(I − ℓ2△)−ν−d/2.(2)

The fact that the scalar multiplier in front of the covariance operator Dσ,ν,ℓ changes
with the length-scale means that the family of measures {N(0,Dσ,ν,ℓ)}ℓ, for fixed
σ and ν, are mutually singular. This leads to problems when trying to design
hierarchical methods based around these priors. We hence work instead with the
modified covariances

Cα,τ = (τ2I −△)−α

where τ = 1/ℓ > 0 now represents an inverse length scale, and α = ν + d/2 still
controls the sample regularity. To be concrete we will always assume that the
domain of the Laplacian is chosen so that Cα,τ is well-defined for all τ ≥ 0; for
example we may choose a periodic box, with domain restricted to functions which
integrate to zero over the box, Neumann boundary conditions on a box, again with
domain restricted to functions which integrate to zero over the box, or Dirichlet
boundary conditions. We have the following theorem concerning the family of
Gaussians {N(0, Cα,τ )}τ≥0, proved in the Appendix.

Theorem 2.1. Let D = Td be the d-dimensional torus, and fix α > 0. Define the
family of Gaussian measures µτ

0 = N(0, Cα,τ ), τ ≥ 0. Then

(i) for d ≤ 3, the {µτ
0}τ≥0 are mutually equivalent;

(ii) if u ∼ µτ
0 , then µτ

0-a.s. we have u ∈ Hs(D) and u ∈ C⌊s⌋,s−⌊s⌋(D) for all
s < α− d/2. 1

(iii) if u ∼ µτ
0 and v ∼ N(0,Dσ,ν,ℓ), then

E‖u‖2 ∝ τd−2α · E‖v‖2

with constant of proportionality independent of τ.

1i.e. the function has s weak (possibly fractional) derivatives in the Sobolev sense, and the ⌊s⌋th

classical derivative is Hölder with exponent s− ⌊s⌋;
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Remark 2.2. (a) Proof of this theorem is driven by the smoothness of the eigen-
functions of the Laplacian subject to periodic boundary conditions, together with
the growth of the eigenvalues, which is like j2/d. These properties extend to
Laplacians on more general domains and with more general boundary condi-
tions, and to Laplacians with lower order perturbations, and so the above result
still holds in these cases. For discussion of this in relation to (ii) see [18]; for
parts (i) and (iii) the reader can readily extend the proof given in the Appendix.

(b) The proportionality in part (iii) above could be simplified if it were the case
that E‖v‖2 were independent of τ . However since we restrict to a bounded do-
main D ⊂ Rd, boundary effects mean that this isn’t necessarily true. Neumann
boundary conditions for example inflate the variance up to a distance of approx-
imately ℓ

√
8ν =

√
8ν/τ from the boundary [38]. Nonetheless, at points x ∈ D

sufficiently far away from the boundary we have E|v(x)|2 ≈ σ2 independently
of x. At these points we would hence expect that, for u ∼ µτ

0 ,

E|u(x)|2 ∝ τd−2α.

Note also that numerically, we may produce samples on a larger domain D∗ that
contains the domain of interest D, in order to minimize the boundary effects
within D. �

Let X = C(D) denote the space of continuous real-valued functions on domain
D. In what follows we will always assume that α − d/2 > 0 in order that the
measures have samples in X almost-surely. Additionally we shall write Cτ in place
of Cα,τ when the parameter α is not of interest.

In subsection 2.2, we pass the inverse length scale parameter τ to the forward
map and treat it as an additional unknown in the inverse problem. We therefore
require a joint prior P(u, τ) on both the level set field and on τ . We will treat τ as a
hyper-parameter, so that P(u, τ) takes the form P(u, τ) = P(u|τ)P(τ). Specifically,
we will take the conditional distribution P(u|τ) to be given by µτ

0 = N(0, Cτ ), and
the hyper-prior P(τ) to be any probability measure π0 on R+, the set of positive
reals; in practice it will always have a Lebesgue density on R+. The joint prior µ0

on X × R+ is therefore assumed to be given by

µ0(du, dτ) = µτ
0(du)π0(dτ).(3)

Non-zero means could also be considered via a change of coordinates. Discussion
of prior choice for the hierarchical parameters in latent Gaussian models may be
found in [23].

2.2. Likelihood. In the previous subsection we defined a prior distribution µ0 on
X × R+. We now define a way of constructing a piecewise constant field from a
sample (u, τ). In [31], where the Bayesian level set method was introduced, the
piecewise constant field was constructed purely as a function of u as follows. Let
n ∈ N and fix constants −∞ = c0 < c1 < . . . < cn = ∞. Given u ∈ X, define
Di(u) ⊆ D by

Di(u) = {x ∈ D | ci−1 ≤ u(x) < ci}, i = 1, . . . , n
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so that2 D =
⋃n

i=1 Di(u) and Di(u) ∩ Dj(u) = ∅ for i 6= j, i, j ≥ 1. Then given
κ1, . . . , κn ∈ R, define the map F : X → Z by

F (u) =

n
∑

i=1

κi1Di(u).(4)

Thus F maps the level set field to the geometric field, which is the field of interest,
even though inference is performed on the level set field. We may take Z = Lp(D),
the space of p-integrable functions on D, for any 1 ≤ p ≤ ∞. F (u) then defines a
piecewise constant function on D; the interfaces defined by the jumps are given by
the level sets {x ∈ D |u(x) = ci}.
Remark 2.3. One of the constraints of this construction, discussed in [31], is that
in order for F (u) to pass from κi to κj, it must pass through all of κi+1, . . . , κj−1

first. Thus this construction cannot represent, for example, a triple junction. This
also means that that it must be known a priori that, for example, level i is typically
found near levels i− 1 and i+ 1, but unlikely to be found near levels i+ 3 or i+ 4.
This is potentially a significant constraint; we discuss how this may be dealt with
in the conclusions. �

This construction is effective for a fixed value of τ , but in light of Theorem
2.1(iii), the amplitude of samples from N(0, Cα,τ ), varies with τ . More specifically,
since d − 2α < 0 by assumption, samples will decay towards zero as τ increases.
For this reason, employing fixed levels {ci}ni=0 and then changing the value of τ
during a sampling method may render the levels out of reach. We can compensate
for this by allowing the levels to change with τ , so that they decay towards zero at
the same rate as the samples.

From Theorem 2.1(iii) and Remark 2.2(b) we deduce that samples u from
N(0, Cα,τ ) decay towards zero at a rate of approximately τd/2−α with respect to
τ . This suggests allowing for the following dependence of the levels on the length
scale parameter τ :

ci(τ) = τd/2−αci, i = 1, . . . , n.(5)

In order to update these levels, we must pass the parameter τ to the level set map
F . We therefore redefine the level set map F : X ×R+ → Z as follows. Let n ∈ N,
fix initial levels −∞ = c0 < c1 < . . . < cn = ∞ and define ci(τ) by (5) for τ > 0.
Given u ∈ X and τ > 0, define Di(u, τ) ⊆ D by

Di(u, τ) = {x ∈ D | ci−1(τ) ≤ u(x) < ci(τ)}, i = 1, . . . , n,(6)

so that D =
⋃n

i=1 Di(u, τ) and Di(u, τ) ∩ Dj(u, τ) = ∅ for i 6= j, i, j ≥ 1. Now
given κ1, . . . , κn ∈ R, we define the map F : X × R+ → Z by

F (u, τ) =

n
∑

i=1

κi1Di(u,τ).(7)

We can now define the likelihood. Let Y = RJ be the data space, and let
S : Z → Y be a forward operator. Define G : X × R+ → Y by G = S ◦ F . Assume
we have data y ∈ Y arising from observations of some (u, τ) ∈ X × R+ under G,
corrupted by Gaussian noise η ∼ Q0 := N(0,Γ) on Y :

(8) y = G(u, τ) + η.

2For any subset A ⊂ Rd we will denote by A its closure in Rd.
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We now construct the likelihood P(y|u, τ). In the Bayesian formulation, we place a
prior µ0 of the form (3) on the pair (u, τ). Assuming Q0 is independent of µ0, the
conditional distribution Qu,τ of y given (u, τ) is given by

dQu,τ

dQ0
(y) = exp

(

− Φ(u, τ ; y) +
1

2
|y|2Γ

)

(9)

where the potential (or negative log-likelihood) Φ : X × R+ → R is defined by

Φ(u, τ ; y) =
1

2
|y − G(u, τ)|2Γ.(10)

and | · |Γ := |Γ−1/2 · |.
Denote Im(F ) ⊆ Z the image of F : X ×R+ → Z. In what follows we make the

following assumptions on S : Z → Y .

Assumptions 1. (i) S is continuous on Im(F ).
(ii) For any r > 0 there exists C(r) > 0 such that for any z ∈ Im(F ) with

‖z‖L∞ ≤ r, |S(z)| ≤ C(r).

In the next subsection we show that, under the above assumptions, the posterior
distribution µy of (u, τ) given y exists, and study its properties.

2.3. Posterior. Bayes’ theorem provides a way to construct the posterior distribu-
tion P(u, τ |y) using the ingredients of the prior P(u, τ) and the likelihood P(y|u, τ)
from the previous two subsections. Informally we have

P(u, τ |y) ∝ P(y|u, τ)P(u, τ)
∝ exp (−Φ(u, τ ; y))µτ

0(u)π0(τ)

after absorbing y−dependent constants from the likelihood into the normalization
constant. In order to make this formula rigorous some care must be taken, since
µτ
0 does not admit a Lebesgue density. The following is proved in the Appendix.

Theorem 2.4. Let µ0 be given by (3), y by (8) and Φ be given by (10). Let
Assumptions 1 hold. If µy(du, dτ) is the regular conditional probability measure on
(u, τ)|y, then µy ≪ µ0 with Radon-Nikodym derivative

dµy

dµ0
(u, τ) =

1

Z
exp

(

− Φ(u, τ ; y)
)

where, for y almost surely,

Z :=

∫

X×R+

exp
(

− Φ(u, τ ; y)
)

µ0(du, dτ) > 0.

Furthermore µy is locally Lipschitz with respect to y, in the Hellinger distance: for
all y, y′ with max{|y|Γ, |y′|Γ} < r, there exists a C = C(r) > 0 such that

dHell(µ
y, µy′

) ≤ C|y − y′|Γ.
This implies that, for all f ∈ L2

µ0
(X × R+;E) for separable Banach space E,

‖Eµy

f(u, τ)− Eµy′

f(u, τ)‖E ≤ C|y − y′|.
To the best of our knowledge this form of Bayesian posterior distribution, in

which the prior hyper-parameter appears in the likelihood because it is natural
to scale a thresholding function with that parameter, for algorithmic reasons, is
novel. A different form of thresholding is studied in the paper [9] where boundaries
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defining regions in which certain events occur with a specified (typically close to 1)
probability is studied.

2.4. Relation to Probit Models. The Bayesian level set method has a close
relation with an ordered probit model in the case that the state space X is finite
dimensional. Suppose that X = RN , then neglecting the length scale parameter,
the data ylevel in the level set method is assumed to arise via

ylevel = G(F (u)) + η, η ∼ N(0,Γ)

where F denotes the original thresholding function as defined by (4). In an ordered
probit model, the data yprob is assumed to arise via3

yprob = G(z),
zn = F (un + εn), εn ∼ N(0, 1), n = 1, . . . , N.

Note that in the case of probit, the noise is applied before the thresholding F so that
the geometric field takes values in the discrete set {κ1, . . . , κn}. In contrast in the
case of the level set model the noise is applied after thresholding. If G is linear then
the probit model results in categorical data, whilst in the level set case the data can
take any real value. Depending on the forward model either probit or level set may
be more appropriate: the former in cases where the data is genuinely discrete and
interpolation between phases doesn’t have a meaning, such as categorical data, and
the latter when it is continuous, such as when corrupted by measurement noise. The
two models could also be combined, which may be interesting in some applications.
In the small noise limit the models are seen to be equivalent.

Placing a prior upon u leads to a well-defined posterior distribution in both
cases. Dimension-robust sampling of both distributions can be performed using a
prior-reversible MCMC method, such as the preconditioned Crank-Nicolson (pCN)
method [16]. The spatial version of probit, that is when X is a function space
rather than RN , is of interest to study further.

Once we introduce the hierarchical length scale dependence, significant problems
arise in terms of sampling the probit posterior in high dimensions, due to the issues
associated with measure singularity discussed above. With the level set method
it is possible to circumvent through the choice of prior and rescaling discussed in
this section; a well-defined Metropolis-within-Gibbs sampling algorithm on function
space is outlined in the next section.

3. MCMC Algorithm for Posterior Sampling

Having constructed the posterior distribution on (u, τ)|y we are now faced with
the task of sampling this probability distribution. We will use the Metropolis-
within-Gibbs formalism, as described in for example [46], section 10.3. This algo-
rithm constructs the Markov chain (u(k), τ (k)) with the structure

• u(k+1) ∼ Kτ (k),y(u(k), ·),
• τ (k+1) ∼ Lu(k+1),y(τ (k), ·),

whereKτ,y is a Metropolis-Hastings Markov kernel reversible with respect to u|(τ, y)
and Lu,y is a Metropolis-Hastings Markov kernel reversible with respect to τ |(u, y).

3The thresholding function F is defined pointwise, so can be considered to be defined on either
RN or R, with F (u)n = F (un).
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The Metropolis-Hastings method is outlined in chapter 7 of [46]. See [24] for related
blocking methodologies for Gibbs samplers in the context of latent Gaussian models.

In defining the conditional distributions, and the Metropolis methods to sample
from them, a key design principle is to ensure that all measures and algorithms
are well-defined in the infinite-dimensional setting, so that the resulting algorithms
are robust to mesh-refinement [16]. This thinking has been behind the form of
the prior and posterior distributions developed in the previous section, as we now
demonstrate.

In subsection 3.1 we define the kernel Kτ,y and in subsection 3.2 we define the
kernel Lu,y. Then in the final subsection 3.3 we put all these building blocks together
to specify the complete algorithm used.

3.1. Proposal and Acceptance Probability for u|(τ, y). Samples from the dis-
tribution of u|(τ, y) can be produced using a pCN Metropolis Hastings method [16],
with proposal and acceptance probability as follows:

(1) Given u, propose

v = (1− β2)1/2u+ βξ, ξ ∼ N(0, Cτ ).
(2) Accept with probability

α(u, v) = min
{

1, exp
(

Φ(u, τ ; y)− Φ(v, τ ; y)
)}

or else stay at u.

3.2. Proposal and Acceptance Probability for τ |(y, u). Producing samples
of τ |(u, y) is more involved, since we must first make sense of this conditional
distribution. To do this, define the three measures η0, ν0, and ν on X ×R+×Y by

η0(du, dτ, dy) = µ0
0(du)π0(dτ)Q0(dy),

ν0(du, dτ, dy) = µτ
0(du)π0(dτ)Q0(dy),

ν(du, dτ, dy) = µτ
0(du)π0(dτ)Qu,τ (dy).

Here Q0 = N(0,Γ) is the distribution of the noise, and Qu,τ is as defined in (9).
Then we have the chain of absolute continuities ν ≪ ν0 ≪ η0, with

dν0
dη0

(u, τ, y) =
dµτ

0

dµ0
0

(u) =: L(u, τ),

dν

dν0
(u, τ, y) =

dQu,τ

dQ0
(y) = exp

(

−Φ(u, τ ; y) +
1

2
|y|2Γ

)

,

and so by the chain rule we have ν ≪ η0 and

dν

dη0
(u, τ, y) =

dQu,τ

dQ0
(y) · dµ

τ
0

dµ0
0

(u) =: ϕ(u, τ, y).

We use the conditioning lemma, Theorem 3.1 in [18], to prove the existence of the
desired conditional distribution.

Theorem 3.1. Assume that Φ : X × R+ × Y → R is η0 measurable and η0-a.s.
finite. Assume also that, for (u, y) µ0

0 ×Q0-a.s.,

Zπ :=

∫

R+

exp
(

− Φ(u, τ ; y)
)

L(u, τ)π0(dτ) > 0.
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Then the regular conditional distribution of τ |(u, y) exists under ν, and is denoted
by πu,y. Furthermore, πu,y ≪ π0 and, for (u, y) ν-a.s,

dπu,y

dπ0
(τ) =

1

Zπ
exp

(

− Φ(u, τ ; y)
)

L(u, τ).

Proof. The conditional random variable τ |(u, y) exists under η0, and its distribution
is just π0 since η0 is a product measure. Theorem 3.1 in [18] then tells us that the
conditional random variable τ |(u, y) exists under ν. We denote its distribution πu,y.
Define

c(u, y) =

∫

R+

ϕ(u, τ, y)π0(dτ)

= exp

(

1

2
|y|2Γ

)∫

R+

exp
(

− Φ(u, τ ; y)
)

L(u, τ)π0(dτ).

Now since exp
(

1
2 |y|2Γ

)

∈ (0,∞) µ0
0×Q0-a.s., we deduce that c(u, y) > 0 µ0

0×Q0-a.s.

by the µ0
0×Q0-a.s. positivity of Zπ. By the absolute continuity ν ≪ η0, we deduce

that c(u, y) > 0 ν-a.s. Therefore, again by Theorem 3.1 in [18], we have πu,y ≪ π0

and, for (u, y) ν-a.s.,

dπu,y

dπ0
(τ) =

1

c(u, y)
ϕ(u, τ, y)

=
1

Zπ
exp

(

− Φ(u, τ ; y)
)

L(u, τ).

� �

Remark 3.2. Above we have used µ0
0 as a reference measure, and the function

L(u, τ) enters our expression for the posterior. But any µλ
0 will suffice since the

entire family of measures {µτ
0}τ≥0 are equivalent to one another. A straightforward

calculation with the chain rule gives

dπu,y

dπ0
(τ) =

1

Zπ,λ

dµτ
0

dµλ
0

(u) exp
(

− Φ(u, τ ; y)
)

:=
1

Zπ,λ
Lλ(u, τ) exp

(

− Φ(u, τ ; y)
)

.

�

We now wish to sample from πu,y using a Metropolis-Hastings algorithm. We
assume from now on that π0 admits a Lebesgue density, so that πu,y also admits a
Lebesgue density. Abusing notation and using πu,y, π0 to denote Lebesgue densities
as well as the corresponding measures we have

πu,y(τ) ∝ exp
(

− Φ(u, τ ; y)
)

L(u, τ)π0(τ).

Take a proposal kernel Q(τ, dγ) = q(τ, γ) dγ. Define the two measures ρ, ρT on
(R× R,B(R)⊗ B(R)) by

ρ(dτ, dγ) = πu,y(dτ)Q(τ, dγ)

∝ exp
(

− Φ(u, τ ; y)
)

L(u, τ)π0(τ)q(τ, γ) dτdγ,

ρT (dτ, dγ) = µ(dγ, dτ).
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Then under appropriate conditions on π0 and q, these two measures are equivalent.
Define r(τ, γ) to be the Radon-Nikodym derivative

r(τ, γ) :=
dρT

dρ
(τ, γ)

= exp
(

Φ(u, τ ; y)− Φ(u, γ; y)
)

· dµ
γ
0

dµτ
0

(u) · π0(γ)q(γ, τ)

π0(τ)q(τ, γ)
.

The general form of the Metropolis-Hastings algorithm, as for example given in [53],
says that we produce samples from πu,y by iterating the follow two steps:

(1) Given τ , propose γ ∼ Q(τ, dγ).
(2) Accept with probability α(τ, γ) = min

{

1, r(τ, γ)
}

, or else stay at τ .

In order to implement this algorithm, we need an expression for the Radon-Nikodym

derivative
dµγ

0

dµτ
0
(u). Denote by {λj(τ)}j≥1 the eigenvalues of the covariance Cτ , and

{ϕj}j≥1 their corresponding eigenvectors. Note that because of the structure of the
family {Cτ}τ≥0, the eigenvectors are independent of τ . Using Proposition A.3, we
see that

dµγ
0

dµτ
0

(u) =
∞
∏

j=1

λj(τ)
1/2

λj(γ)1/2
× exp

(

1

2

∞
∑

j=1

(

1

λj(τ)
−

1

λj(γ)

)

〈u, ϕj〉
2

)

(11)

= exp

(

1

2

[

∞
∑

j=1

(

1

λj(τ)
−

1

λj(γ)

)

〈u, ϕj〉
2 + log

(

λj(τ)

λj(γ)

)

])

.

From Theorem 2.1 we know that µτ
0 and µγ

0 are equivalent, and so it must be the
case that the expressions for the derivative above are almost-surely finite. However
this is not immediately clear from inspection of the expression; thus we provide
some intuition about why it is so in the following theorem. The proof is given in
the Appendix.

Theorem 3.3. Assume that u ∼ N(0, C0). Then for each τ > 0,

(i)
∞
∑

j=1

(

1

λj(τ)
−

1

λj(0)

)

〈u, ϕj〉
2 is almost-surely finite if and only if d = 1; and

(ii)
∞
∑

j=1

[(

1

λj(τ)
−

1

λj(0)

)

〈u, ϕj〉
2 + log

(

λj(τ)

λj(0)

)]

is almost-surely finite if d ≤ 3.

A consequence of part (i) of this result is that in dimensions 2 and 3, both the
product and the sum in (11) diverge, despite the whole expression being finite. This
means that care is required when numerically implementing the Gibbs update of τ.

3.3. The Algorithm. Putting the theory above together, we can write down a
Metropolis-within-Gibbs algorithm for sampling the posterior distribution. Recall
that we assumed the proposal kernel Q admitted a Lebesgue density q: Q(τ, dγ) =
q(τ, γ)dγ.

Let {λj(τ), ϕj}j≥1 denote the eigenbasis associated with Cτ . Define

w(τ, γ) = exp

(

1

2

∞
∑

j=1

[(

1

λj(τ)
− 1

λj(γ)

)

〈u, ϕj〉2 + log

(

λj(τ)

λj(γ)

)]

)
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and set

ατ (u, v) = min
{

1, exp
(

Φ(u, τ ; y)− Φ(v, τ ; y)
)

}

,

αu(τ, γ) = min

{

1, exp
(

Φ(u, τ ; y)− Φ(u, γ; y)
)

· w(τ, γ) · π0(τ)q(τ, γ)

π0(γ)q(γ, τ)

}

.

Fix jump parameter β ∈ (0, 1], and generate {u(k), τ (k)}k≥0 as follows:

Algorithm 1 Metropolis-within-Gibbs

(1) Set k = 0 and pick initial state (u(0), τ (0)) ∈ X × R+.
(2) Propose v(k) = (1− β2)1/2u(k) + βξ(k), where ξ(k) ∼ N(0, Cτ ).
(3) Set u(k+1) = v(k) with probability ατ (k)

(u(k), v(k)), or else set u(k+1) = u(k).
(4) Propose γ(k) ∼ Q(τ (k), ·).
(5) Set τ (k+1) = γ(k) with probability αu(k+1)

(τ (k), γ(k)), or else set τ (k+1) =
τ (k).

(6) k → k + 1 and return to 2.

Then {u(k), τ (k)}k≥0 is a Markov chain which is invariant with respect to
µy(du, dτ).

4. Numerical Results

We perform a variety of numerical experiments to illustrate the performance
of the hierarchical algorithm described in section 3. We focus on three different
forward models. The first is pointwise observations composed with the identity –
the simplicity of this model allows us to probe the behavior of the algorithm at
low computational cost, and such models are also of interest in applications such as
image reconstruction – see for example [4,48] and the references therein. The other
two, groundwater flow and EIT, are physical models which have previously been
studied extensively, including study of non-hierarchical Bayesian level set methods
[20,31]. A review of studies on inverse problems associated with EIT is given in [10].

The code used for simulations is available on GitHub at https://github.com/
mattdunlop/bayes-hier/releases/v1.0.

4.1. Discretization of the problem. There are two spaces that we must dis-
cretize in order to implement the algorithm. The first is the state space, where the
samples will be generated, and the second is the function space associated with the
evaluation of the forward model. We briefly outline how this is done.

Our discretization for the state space relies on the Karhunen-Loéve expansion of
the prior. Suppose we wish to produce samples from a Gaussian measure N(0, C),
where C has associated eigenbasis {λj , ϕj}j∈N. Then a sample u from this distri-
bution may be represented as

u(x) =
∞
∑

j=1

√

λjξjϕj(x), ξj ∼ N(0, 1) i.i.d.

https://github.com/mattdunlop/bayes-hier/releases/v1.0
https://github.com/mattdunlop/bayes-hier/releases/v1.0
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We discretize the space by truncating and approximating this basis, so that elements
of the space are represented as

uN (x) =
N
∑

j=1

uN
j ϕN

j (x).

The inference is then performed on the random variables {uN
j }Nj=1. Additionally,

in the cases we consider, the eigenvectors associated with all covariances are given
by the Fourier basis and so we may use the Fast Fourier Transform for efficient
implementation.

The second discretization occurs in the solution of the differential equations. In
the EIT example a finite element discretization is used, in which the functions are
approximated by expansion in a finite basis. The coefficients of the expansion of
the solution to the PDE in this basis are then solved for numerically. The basis is
chosen such that each basis element is locally supported – this ensures that matrices
arising in the implementation of the method are sparse.

The groundwater flow model uses a finite difference discretization, in which
derivatives are approximated by difference quotients. For example, given a uni-
form grid {xi, yj}Ni,j=1 with spacing xi+1 − xi = δ, we may approximate

∂h

∂x
(xi, yj) ≈

h(xi + δ, yj)− h(xi − δ, yj)

2δ
.

This leads to an approximate solution to the PDE defined on the grid {xi, yj}Ni,j=1.

Finite element, finite difference and even spectral methods outlined above can
all be used for any PDE examples; what we use for illustrative purposes in this
paper (EIT with finite element and groundwater flow with finite difference) are just
examples of numerous possible forward models and discretization combinations.

4.2. Identity Map. The first inverse problem is based on reconstruction of a piece-
wise constant field from noisy pointwise observations.

4.2.1. The forward model. Let D = [0, 1]2 and define a grid of observation points
{qj}Jj=1 ⊆ D. Let Z = Lp(D) for some 1 ≤ p < ∞ and let Y = RJ . The forward
operator S : Z → Y is defined by

S(κ) = (κ(q1), . . . , κ(qJ)).

We are then interested in finding κ, given the prior information that it is piece-
wise constant, and taking a number of known prescribed values. Let G = S ◦ F :
X × R+ → Y . We reconstruct (u, τ) and hence κ = F (u, τ). The map S is not
continuous, and so Assumptions 1 do not hold. However Proposition A.2 in the
Appendix shows that the map G is uniformly bounded, and almost-surely contin-
uous under the priors considered. From this the conclusions of Proposition A.1 in
the Appendix follow, and it is possible to deduce the conclusions of Theorem 2.4.

4.2.2. Simulations and results. We study the effect of different length scales, for
both hierarchical and non-hierarchical methods, demonstrating the advantages of

the former over the latter. To this end we define τ †i = 5i, i = 1, . . . , 10, and generate
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10 different true level set fields u†
i ∼ µ

τ†
i

0 on a mesh of 210 × 210 points. This leads
to 10 sets of data yi, given by

yi = G(u†
i , τ

†
i ) + ηi, ηi ∼ N(0,Γ) i.i.d.

where we take the noise covariance Γ = 0.22 · I to be white. The level set map F
is defined such that there are 3 phases, taking the constant values 1, 3 and 5. The
mean relative error on the generated data sets ranges from 6% to 9%.

One of the motivations for developing a hierarchical method is that little knowl-
edge may be known a priori about the length scale associated with the unknown
geometric field. We therefore sample from each hierarchical posterior distribution
associated with each yi using a variety of initial values for the length scale pa-
rameter. This allows us to check that, computationally, we can recover a good
approximation to the true length scale even if our initial guess is poor. Specifi-
cally, for each set of data we run 10 hierarchical MCMC simulations started at the

different values of τ = τ †k , giving a total of 100 hierarchical MCMC chains. For
all chains we place a relatively flat prior of N(20, 102) on τ . On the prior for the
level set function u we take Neumann boundary conditions and fix the smoothness
parameter α = 5. The thresholding levels in the level set map are chosen such
that there is an order one amount of prior mass in all levels – specifically we take
c1 = −0.1 and c2 = 0.1.

We also wish to compare how the hierarchical method compares with the non-
hierarchical method. We therefore look at the 10 different posterior distributions
that arise from each set of data yi when using each of 10 fixed prior inverse length

scales τ †k , which gives another 100 MCMC chains.
We perform all sampling on a mesh of 27 × 27 points to avoid an inverse crime,

discretizing via the discrete Fourier transform (DFT) and retaining all 214 modes.
The observation grid {qj}100j=1 is taken to be a uniformly spaced grid of 100 points.
We use a Gaussian random walk proposal distribution for the length scale param-
eter. We make this choice as it is the canonical starting point for MCMC, and it
works in this case. It is possible however that something more sophisticated may
be beneficial. We produce 5× 106 samples for each chain, and discard the first 106

samples as burn-in when calculating quantities of interest.
In Figure 2 we look at the recovery of the true value of τ with the hierarchical

method. For large enough τ0, the mean of τ after the burn-in period is roughly
constant with respect to varying the initialization point, for each posterior. This
makes sense from a theoretical point of view since these means arise from the same
posterior distribution, for a fixed truth, but it is also reassuring from a computa-
tional point of view since the output is close to independent of the initial guess
for the length scale. There does however appear to be an issue with initializing
the value of τ at too low a value, with the value τ tending to get stuck far from
the truth when initialized at = 5. This effect has been detected in several other
experiments and models – initializing the value of τ much lower than the true in-
verse length can cause the parameter to become stuck in a local minimum. Such an
effect has not been observed however when the parameter is initialized significantly
larger than the true value. Table 1 shows that recovery of the true value of τ is
very good for τ † ≤ 35, though becomes slightly worse for larger values of τ †. The
means here are calculated without the τ0 = 5 sample means since they are clearly
outliers for most of the posteriors. One possible explanation for the lack of recovery



16 M. M. DUNLOP, M. A. IGLESIAS, AND A. M. STUART

in the cases τ † = 40, 45 and 50 is to do with the structure of the observation map
S. The observation grid has a length scale associated with it, related to distances
between observation points, and so issues could arise when trying to detect the
length scale of the geometric field that is significantly shorter than this. Addition-
ally, the length scales 1/τ are closer for larger τ and so it may be more difficult to
distinguish between particular values.

For brevity we now focus on the case where τ † = 15. The traces of the values
of τ along the hierarchical chains corresponding to this truth is shown in Figure 3.
After approximately 106 samples, all chains have become centered around the true
length scale. This convergence appears to be roughly linear for each chain.

Figure 4 shows the push forwards of the sample means from the different chains
under the level set map, that is, approximations of F (E(u),E(τ)). This figure also
shows approximations of E(F (u, τ)) and typical samples of F (u, τ) coming from the
different chains. We see that these conditional means for the hierarchical method
appear to agree with one other. This is reassuring for the reason mentioned above
– they are all estimates of the mean of the same distribution. The figures for the
non-hierarchical posteriors admit greater variation, especially near the boundary
for higher values of τ . Moreover, not all inclusions are detected when the length
scale parameter is taken to be τ = 5. Note that the mean from the hierarchical
posterior agrees closely with that from the non-hierarchical posterior using the
fixed true length-scale τ = 15. Additionally, even though the means are reasonable
approximations to the truth in most cases, the typical samples are much worse
when using the non-hierarchical method with an incorrect length scale parameter.

We can also consider the sample variance of the pushforward of the samples by
the level set map, i.e. approximations of the quantity Var(F (u, τ)). In Figure 5
we show this quantity for both the hierarchical and non-hierarchical priors. Note
that for the non-hierarchical priors, the variance increases both at the boundary
and away from the observation points for larger values of τ . Variance is also higher
along the interfaces and within the central phase, since points in these locations are
more likely to switch between all three phases. The hierarchical approximations
all appear to agree. Whilst the hierarchical means are very similar to the non-
hierarchical means using the true length scale, as seen in Figure 4, the hierarchical
variances are smaller away from the observation points.

Additionally, we look at the level set function u itself in Figure 6. In these
plots we rescale the level set function by τα−d/2 = τ4 so that they are all of
approximately the same amplitude. The means for both the hierarchical and non-
hierarchical methods are again quite similar to one another, though the difference
between the typical samples is much more stark.

Finally, in Figure 7, we look at the joint densities of the inverse length scale
parameter τ and first five Karhunen-Loève (KL) modes of the level set function u.4

Non-trivial correlations are evident between τ and each of these modes, with the
support of the densities appearing non-convex. This is likely related to the non-
linear scaling between the length-scale and the amplitude of the level-set function
under the prior. Conversely the KL modes, whilst still correlated with one-another
other, have simpler joint densities. Note, also, that the posterior on the length scale
is centered close to the true value of the inverse length scale parameter τ.

4KL modes are the eigenfunctions of the covariance operator, here ordered by decreasing eigen-
value.
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Figure 2. (Identity model) The sample mean of τ along each hier-
archical MCMC chain, against the initial value of τ . The different
curves arise from using different data yi.

Remark 4.1. In this section we studied the ability to recover the true length scale
parameter τ †, given a finite number of direct noisy observations of the geometric
field. The question arises of how the quality of this recovery depends upon the
spatial resolution of the data. As would be expected, learning this parameter becomes
more difficult when this resolution is poor due to the lack of information in the
data. However it is interesting to note that, even in the limit of an infinite number
of distinct observation points, it is unlikely that we would be able to identify τ †

perfectly. This is suggested by a result of Zhang [57] which states that, in the
context of generalized linear mixed models, the marginal variance and length-scale
parameters of a Matérn field cannot be consistently estimated in this limit where as
in our case the domain is fixed. This is in contrast to the case of additional data
points increasing the domain, where consistent estimation is possible [32]. �

4.3. Identification of Geologic Facies in Groundwater Flow. The identifica-
tion of geologic facies in subsurface flow applications is a common example of a large
scale inverse problem that involves the recovery of unknown interfaces. In the case
of groundwater flow, for example, the inverse problem concerns the recovery of the
interface between regions with different hydraulic conductivity given measurements
of hydraulic head. Geometric inverse problems of this type have recently received
a lot of attention by the research community [39, 40, 44, 56]. Indeed, it has been
recognized that the geometry determined by the aforementioned interfaces consti-
tutes one of the main sources of uncertainty that must be quantified and reduced
by means of Bayesian inversion.

In the context of groundwater flow, the identification of interfaces between re-
gions associated with different types of geological properties can be posed as the
recovery of a piecewise constant conductivity field parameterized with a level set
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Table 1. (Identity model) The value of τ used to create the data
yi, and the mean value of τ across the MCMC chains and the
different initial values of τ .

τ † Mean sample mean of τ

5 6.10
10 10.0
15 15.5
20 21.8
25 24.8
30 30.0
35 35.4
40 44.6
45 50.8
50 40.6

MCMC iterations ×10
6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

τ
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20

25

30

35

40

45

50

Figure 3. (Identity model) The trace of τ along the MCMC chain,
when initialized at the 10 different initial values. True inverse
length scale is τ = 15.

function. A fully Bayesian level set framework for the solution of the aforemen-
tioned type of inverse problems has been recently developed in [31]. The MCMC
method applied in [31] performs well when the prior of the level set function properly
encodes the intrinsic length-scales of the unknown interfaces. Clearly, in practical
applications such length-scales are most likely unknown and their incorrect specifi-
cation may result in inaccurate and uncertain estimates of the unknown interfaces.
The purpose of this section is to show that the proposed hierarchical Bayesian
framework enables us to determine an optimal length-scale in the prior of the level
set function which, in turn, captures more accurately the intrinsic length-scale of
the unknown interface.
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(a) The true geometric field used to generate the data y, with true
inverse length scale τ = 15

(b) (Top) Representative samples of F (u, τ) under the hierarchical
posterior. (Middle) Approximations of F (E(u),E(τ)). (Bottom) Ap-
proximations of E(F (u, τ)). From left-to-right, τ is initialized at
τ = 5, 15, 25, 35, 45.

(c) As in (b), using the non-hierarchical method. From left-to-right,
τ is fixed at τ = 5, 15, 25, 35, 45.

Figure 4. Simulations for the identity model.
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Figure 5. (Identity model) Approximations of Var(F (u, τ)) using
the hierarchical (top) and fixed (bottom) priors, initialized or fixed
at τ = 5, 15, 25, 35, 45, from left-to-right. True inverse length scale
is τ = 15.

Figure 6. (Identity model) Representative samples τ4 · u (top)
and sample means E(τ4 · u) (bottom) of the level set function.
The rescaling τ4 means that the above quantities have the same
approximate amplitude. True inverse length scale is τ = 15. (Left)
Using the non-hierarchical method; from left-to-right τ is fixed
at τ = 5, 15, 25, 35, 45. (Right) Corresponding quantities for the
hierarchical method.

4.3.1. The forward model. We are interested in the identification of a piecewise
constant hydraulic conductivity, denoted by κ, of a two-dimensional confined aquifer
whose physical domain is D = [0, 6] × [0, 6]. We assume single-phase steady-state
Darcy flow. The piezometric head, denoted by h(x) (x ∈ D), which describes the
flow within the aquifer can be modeled by the solution of [6]

−∇ · κ∇h = f in D(12)

where f represents sources/sinks and where boundary conditions need to be spec-
ified. For the present work we consider the setup from the Benchmark used
in [14,27–31]. In concrete, we assume that f is a recharge term of the form

f(x1, x2) =







0 if 0 < x2 ≤ 4,
137 if 4 < x2 < 5,
274 if 5 ≤ x2 < 6.

(13)
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Figure 7. (Identity model) (diagonal) Empirical densities of τ
and the first five KL modes of u. (off-diagonal) Empirical joint
densities. True inverse length scale is τ = 15.

and we consider the following boundary conditions

(14)

h(x1, 0) = 100,
∂h

∂x1
(6, x2) = 0,

−κ
∂h

∂x1
(0, x2) = 500,

∂h

∂x2
(x1, 6) = 0.

We consider the inverse problem of recovering κ from observations {ℓj(h)}64j=1 of
h given by (12)-(14). We assume we have smoothed point observations given by

ℓj(h) =

∫

D

1

2πε2
e−

1
2ε2

(x−qj)
2

h(x) dx

where ε > 0 and {qj}64j=1 ⊆ D is a grid of 64 observation points equally distributed

on D. Let Z = Lp(D) for some 1 ≤ p < ∞ and Y = R64. Given κ ∈ Z, let h be
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given by (12)-(14). Then the forward map S : Z → Y is given by

κ 7→ (ℓ1(h), . . . , ℓ64(h)).

We assume that each κi in the definition of the level set map F is strictly positive.
The image of F is contained in the set of bounded fields on D bounded below by
mini κi > 0. In [31] the map S is shown to be continuous and uniformly bounded
on such fields, with respect to ‖ · ‖Lp(D) for some p, and so Assumptions 1 hold. As
a consequence Theorem 2.4 applies directly.

4.3.2. Simulations and results. In the previous example we illustrate, with a simple
model, the capabilities of the proposed framework to recover a specified true length-
scale and a true level set function that defines a true discontinuous field from which
synthetic data are generated. However, we must reiterate that, in practice, we wish
to recover the true discontinuous field; the level set function is merely an artifact
that we use for the parameterization of such a field. In practical applications
the aim of the proposed hierarchical Bayesian level set framework is to infer a
length-scale alongside with a level set function which, by means of expression (7),
produces a discontinuous field that captures the desired piecewise constant field as
accurately as possible and, in particular, the intrinsic length-scale separation of the
interfaces determined by the discontinuities of the true geometric field. Therefore,
in order to test our methodology in the applied setting of groundwater flow, rather
than a true level set function, in this subsection we consider the true hydraulic
conductivity κ† whose logarithm is displayed in Figure 9(a). This κ† is defined such
that it takes the constant values e1.5, e4 and e6.5. This is channelized conductivity
typical of fluvial environments and often used as Benchmarks for subsurface flow
inversion [31, 40, 44, 56]. Note that the values that the conductivity can take on
the three different regions differ by at least one order of magnitude, due to the
logarithmic transformation. While there is indeed an intrinsic length-scale in the
channelized structure, this true conductivity field does not come from a specified
level set prior.

Synthetic data are generated by means of

y = (ℓ1(h
†), . . . , ℓ64(h

†)) + η, η ∼ N(0,Γ) i.i.d.

where h† is the solution to (12)-(14) for κ = κ†. Equations (12)-(14) have been
solved with cell-centered finite differences [5]. In order to avoid inverse crimes,
synthetic data are generated on a grid finer (160× 160 cells) than the one used for
the inversion (80× 80 cells). The discretization is performed via the DFT, and we
retain all modes. In addition, Γ is a diagonal matrix given by Γi,i = 0.0175ℓi(h

†).
In other words, we add noise that corresponds to 1.75% of the size of the noise-free
observations. On the prior for the level set function u we take Neumann boundary
conditions and fix the smoothness parameter α = 5.

We consider a Gaussian prior N(35, 102) for τ , and use a Gaussian random walk
proposal distribution for this parameter. We then apply the hierarchical MCMC
method from subsection 3.3 initialized with the following six different choices of
τ = 1, 10, 30, 50, 70, 90 and a sample of the prior (with that given τ) of the level
set function u. We thus produce six MCMC chains of length 4 × 106 and discard
the first 106 as burn-in for the computation of quantities of interest. The trace
plots of τ are displayed in Figure 8 from which we clearly observe that all chains,
regardless of their initial point, seem to stabilize and produce samples around τ =
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18. In the top row of Figure 9(b) we display the logarithm of some representatives
samples of F (u, τ) under the hierarchical posterior. The middle row of Figure
9(b) shows the logarithm of F (E(u),E(τ)), i.e., the pushforward of the posterior
means obtained using the hierarchical method. The bottom row of Figure 9(b)
displays the logarithm of the approximations of E(F (u, τ)). That is, the expected
value of the pushforward samples under the posterior. The aforementioned results
corresponds to five MCMC chains with τ initialized τ = 10, 30, 50, 70, 90 (the results
for τ = 1 have been omitted). Similarly, Figure 10 (top) shows the approximations
of the variance of the pushforward samples of the posterior, i.e. Var

(

F (u, τ)
)

.
Clearly, both E(F (u, τ)) and F (E(u),E(τ)) result in fields that provide a reasonable
approximation of the true geometric field. Note that, as expected, the largest
uncertainty in the distribution of the pushforward samples is around the interface
between the regions with different conductivity. In Figure 11(a) we show some
representative samples of u (top) and approximations to E(u) (bottom). In these
plots, as before, we rescale the level set function by τα−d/2 = τ4 so that they are
all of approximately the same amplitude. In Figure 12 we display the empirical
densities of τ and the first five KL modes of u. A key observation is that, although
the true hydraulic conductivity is not generated by thresholding a Gaussian random
field, and hence there is no “true” length scale, the posterior nonetheless settles on
a narrow range of values of τ which are consistent with the data.

From the aforementioned results we can also clearly see that the hierarchical
MCMC algorithm produces similar outcomes regardless of the initialization of the
inverse of the length-scale τ , reflecting ergodicity of the Markov chain. The results
from τ = 1 are not shown but they are very similar to the ones from other chains.
As with the results from the previous subsection, the similarity in outcomes be-
tween all six chains is not surprising as these are aimed at sampling from the same
posterior distribution; but the fact that this posterior distribution on τ concentrates
near to a single value is of particular interest because it shows that the true geomet-
ric field has an intrinsic length-scale, even though it was not constructed via the
map F (u, τ). Furthermore, this similarity of outcomes between chains showcases
the main advantage of the proposed framework with respect to the non-hierarchical
one. Indeed, as stated earlier, the proposed method has the ability to recover a
distribution for the intrinsic length-scale which gives rise to reasonably accurate
estimates (i.e. F (E(u),E(τ)) and E(F (u, τ))) of the true geometric field. We now
present the numerical results from applying a non-hierarchical MCMC algorithm in
which the inverse of length-scale τ is fixed. We consider again six MCMC chains as
before with the (now fixed) values of τ = 1, 10, 30, 50, 70, 90 that we used to initial-
ized the hierarchical chains used before. Analogous results to the ones presented
for the hierarchical method can be found in the bottom panels of Figure 9 as well
as the bottom of Figures 10 and 11. Clearly, the lack of properly prescribing the
intrinsic length-scale in the non-hierarchical method results in inaccurate estimates
of the true geometric field. We clearly observe that for τ ≥ 30 the estimates of the
truth given by F (E(u),E(τ)) and E(F (u, τ)) are substantially inaccurate and the
uncertainty measured by Var

(

F (u, τ)
)

is large. The non-hierarchical MCMC for
τ = 1 did not converge; the results are not shown. The non-hierarchical MCMC
only provides reasonable estimates for τ = 10 and τ = 30. However, we can visually
appreciate that these results are still suboptimal when compared to the results from
the hierarchical framework.
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Figure 8. (Groundwater flow model) Trace plots of τ obtained
from six hierarchical MCMC chains.

4.4. Electrical Impedance Tomography. Finally we consider the electrical
impedance tomography (EIT) problem. This problem has previously been ap-
proached with a non-hierarchical Bayesian level set method [20]. In this subsection
we show that the hierarchical approach outperforms the non-hierarchical approach
in the case where the true conductivity is a binary field, given the same number of
forward model evaluations.

4.4.1. The forward model. EIT is an imaging technique which attempts to infer
the internal conductivity of a body from boundary voltage measurements. Typical
applications include medical imaging, as well as subsurface imaging where it is
known as electrical resistivity tomography (ERT). We utilize the complete electrode
model (CEM), proposed in [49]. This is a physically accurate model which has been
shown to agree with experimental data up to measurement precision. The strong
form of the PDE governing the model is given by


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




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
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



−∇ · (κ(x)∇v(x)) = 0 x ∈ D
∫

el

κ
∂v

∂n
dS = Il l = 1, . . . , L

κ(x)
∂v

∂n
(x) = 0 x ∈ ∂D \

⋃L
l=1 el

v(x) + zlκ(x)
∂v

∂n
(x) = Vl x ∈ el, l = 1, . . . , L.

Here D ⊆ R2 is the domain and {el}Ll=1 ⊆ ∂D are electrodes on the boundary upon
which currents {Il}Ll=1 are injected and voltages {Vl}Ll=1 are read. The numbers
{zl}Ll=1 represent the contact impedances of the electrodes. The field κ represents
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(a) (Left) Logarithm of the true hydraulic conductivity field used to generate the data
y. (Right) True pressure field, and the grid of observation points.

(b) (Top) Logarithm of representative samples of F (u, τ) under the
hierarchical posterior. (Middle) Logarithm of the approximations

of F (E(u),E(τ)). (Bottom) Logarithm of the approximations of
E(F (u, τ)). From left-to-right, τ is initialized at τ = 10, 30, 50, 70, 90.

(c) As in (b), using the non-hierarchical method. From left-to-right,

τ is fixed at τ = 10, 30, 50, 70, 90.

Figure 9. Simulations for the groundwater flow model.
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Figure 10. (Groundwater flow model) Approximations of
Var
(

F (u, τ)
)

using the hierarchical (top) and the non-hierarchical
(bottom) MCMC.

(a) (Top) Representative samples of the rescaled level-set function
τ4 ·u and (bottom) approximations of E(τ4 ·u) using the hierarchical

method. From left-to-right, τ is initialized at τ = 10, 30, 50, 70, 90.

(b) As in (a), using the non-hierarchical method. From left-to-right,
τ is fixed at τ = 10, 30, 50, 70, 90.

Figure 11. (Groundwater flow model) Representative samples
and sample means of the level set function. The rescaling τ4 means
that the above quantities have the same approximate amplitude.
True inverse length scale is τ = 15.
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Figure 12. (Groundwater flow model) (diagonal) Empirical den-
sities of τ and the first five KL modes of u. (off-diagonal) Empirical
joint densities.

the conductivity of the body and v represents the potential within the body5. It
should be noted that the solution of this PDE comprises both a potential v ∈ H1(D)
and a vector {Vl}Ll=1 of boundary voltage measurements.

The inverse problem we consider is the recovery of κ from a sequence of boundary
voltage measurements. A number of (linearly independent) current stimulation
patterns {Il}Ll=1 may be performed to provide more information; we assume that
we perform the maximum M = L − 1 measurements. Let Z = Lp(D) for some
1 ≤ p < ∞ and Y = RJ where J = LM . We can concatenate the boundary voltage
measurements arising from different stimulation patterns to yield a map S : Z → Y ,

5In the EIT literature the conductivity field is often denoted σ, however we have already used this
in denoting the marginal variance of random fields.
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κ 7→ (V (1), V (2), . . . , V (M))

where V (m) = {V (m)
l }Ll=1 ∈ RL, m = 1, . . . ,M .

For the experiments we work on a circular domain D = {x ∈ R2 | |x| < 1}. 16
electrodes are spaced equally around the boundary providing 50% coverage. All
contact impedances are taken to be zl = 0.01. Adjacent electrodes are stimulated
with a current of 0.1, so that the matrix of stimulation patterns I = {I(j)}15j=1 ∈
R16×15 is given by

I = 0.1×

















+1 0 · · · 0
−1 +1 · · · 0

0 −1
. . . 0

...
...

. . . +1
0 0 0 −1

















.

We define our forward map G : X × R+ → RJ by G = S ◦ F . As in the
groundwater flow example, assume that each κi in the definition of the level set
map is strictly positive. We do not have a continuity result for the map S on
Lp for any 1 ≤ p < ∞. However the almost-sure continuity of the map G can
be seen via a modification of the proof of Proposition 3.5 in [20] to include the
parameter τ ; this modification is almost identical to the proof of Proposition A.1
given in the appendix. The uniform boundedness of G follows from a result in [20]
similarly. Hence as was the case with the identity map example, the conclusions of
Proposition A.1 follow, and we can deduce the conclusions of Theorem 2.4.

4.4.2. Simulations and results. We fix a true conductivity κ†, shown in Figure 14.
As with the groundwater flow experiments, this is constructed explicitly and does
not have a true value of τ associated with it. We generate data y as

y = S(κ†) + η, η ∼ N(0,Γ)

where we take the noise covariance Γ = 0.00022 · I to be white. The mean relative
error on the generated data is approximately 12%. The data is generated using
a mesh of 43264 elements and simulations are performed used a mesh of 10816
elements, in order to avoid an inverse crime. Forward solves are performed using
the EIDORS software [1]. All level set field samples are defined on the square
[−1, 1]2 and restricted to the domain D. This has the advantage of allowing for
efficient sampling via the Fast Fourier Transform, though has the drawback of
introducing possibly non-trivial boundary effects on the domain; no such effects are
observed in our problem, however. The discretization on the square is performed
via the DFT on a grid of 27 × 27 points, and we retain all modes.

The level set map F is defined such that there are 2 phases, taking the constant
values 1 and 10. We take the prior level set field mean to be zero, so that in this case
F (and hence Φ) becomes independent of τ . Thus a forward model evaluation is not
required for the Gibbs update of τ , and each sample of (u, τ) using the hierarchical
method costs virtually the same as one of u using the non-hierarchical method.

Similarly to the previous experiments, we initialize the hierarchical sampling
from τ = 10, 30, 50, 70, 90 to check for robustness of the method. We use a sharper
prior on τ than was used previously. We again use a Gaussian random walk proposal
distribution for τ . We fix the smoothness parameter α = 5 in the prior for u,
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and again use Neumann boundary conditions. We again wish to compare how
the hierarchical method compares with the non-hierarchical method. We therefore
also look at the 5 different posterior distributions that arise when using each of 5
fixed prior inverse length scales τ = 10, 30, 50, 70, 90, which gives another 5 MCMC
chains. For both the methods we produce 4 × 106 samples for each chain, and
discard the first 2× 106 samples as burn-in when calculating quantities of interest.

The traces of the values of τ along the hierarchical chains are shown in Figure
13. With the exception of the chain initialized at τ = 10, the chains converge to
the sample approximate value of τ . Unlike in previous experiments, the traces have
a relatively flat period before the approximate linear convergence to the common
length scale. Initializing τ = 90 requires an additional 106 samples to converge,
over the other converging chains.

Figure 14 shows the push forwards of the sample means from different chains un-
der the level set map, along with approximations of E(F (u, τ)) and typical samples
of F (u, τ) coming from the different posteriors. In both the hierarchical and non-
hierarchical methods, the chains initialized/fixed at τ = 10 fail to recover the true
conductivity, similarly to what was observed with the identity map experiments
when initializing at τ = 5. The other chains for the hierarchical method produce
very similar results to one another, whilst the effect of fixing the length scale to be
too short is apparent in the figures for the non-hierarchical method.

In Figure 15 we see approximations to Var(F (u, τ)) under the different posteriors.
In both cases, variance is highest around the boundaries of the two inclusions. The
difference between the hierarchical and non-hierarchical methods is more apparent
here, with higher variance between the two inclusions when the length scale is fixed
to be too short.

Again, we look at the level set function u itself in Figure 16. In these plots,
as before, we rescale the level set function by τα−d/2 = τ4 so that they are all
of approximately the same amplitude. As in the previous experiments, there is
noticeable contrast between the means for the hierarchical and non-hierarchical
methods, and yet more contrast between the typical samples.

Finally, in Figure 17, we show the posterior densities on the inverse length scale
and the first five KL modes, as well as correlations between them. As with the
groundwater flow example, although there is no “true” inverse length scale, the
data is sufficiently informative to define a small range of values for this parameter
under the posterior.

5. Conclusions

The level set method is an attractive approach to inverse problems for the de-
tection of interfaces. Furthermore the Bayesian approach is particularly desirable
when there is a need to quantify uncertainty. In this paper we have shown that
Bayesian level set inversion is considerably enhanced by a hierarchical approach
in which the length scale of the underlying level set function is inferred from the
data. We have demonstrated this by means of three examples of interest arising in,
respectively, the information, physical and medical sciences; however many poten-
tial applications remain to be explored and this provides an interesting avenue for
future work.

We also developed the theoretical underpinnings for our hierarchical method.
Our work is based on a Metropolis-within-Gibbs approach which alternates between



30 M. M. DUNLOP, M. A. IGLESIAS, AND A. M. STUART

MCMC iterations ×10
6

0 0.5 1 1.5 2 2.5 3 3.5 4

τ

0

10

20

30

40

50

60

70

80

90

Figure 13. (EIT model) The trace of τ along the MCMC chain,
when initialized at the 5 different values τ = 10, 30, 50, 70, 90.

updating the level set function and the length-scale. The Metropolis method we
use for the level set field update does not use derivatives of the log-likelihood,
and could be improved by doing so, using the infinite dimensional variants on
MALA and HMC (which use first derivative information, see the citations in [16])
or the manifold MALA and HMC methods, which use higher order derivatives [25].
Another interesting direction for future work is the design of methods with more
informed proposals which exploit correlations in the level set function and its length-
scale. And finally it would be interesting to consider pseudo-marginal methods to
sample the hierarchical parameter alone, as in [21].

Assuming independence under the prior, it would require little further work to
treat the thresholding levels {ci} and the values of the thresholded function {κi}
as part of the inference as well; we omitted this here for the sake of clarity. Such
a model may be more realistic, and numerical studies of such models may prove
interesting. Another extension of interest may be to place a hyperprior upon the
regularity parameter also, which may be useful for improving rates of convergence
[54]. This is a more challenging task, again related to singularity of measures. The
paper [2] discusses ways in which this may be done, however it is still an open
question in terms of theory and optimal algorithms. Additionally, it may be of
interest to overcome the restriction of the ordering of phases {κi} by means of a
vector level set method [52].

Finally we mention that the use of a single length-scale within an isotropic prior
is a simple example of more sophisticated hierarchical approaches which attempt
to learn non-stationary and non-isotropic [12, 13] features of the level set function
from the data. This provides an interesting opportunity for future work and for
ideas from machine learning to play a role in the solution of inverse problems for
interfaces.

Appendix A. Appendix
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(a) (Left) True conductivity field used to generate the data y. (Right) The entries yi of

the data vector y, plotted against i.

(b) (Top) Representative samples of F (u, τ) under the hierarchical
posterior. (Middle) Approximations of F (E(u),E(τ)). (Bottom) Ap-
proximations of E(F (u, τ)). From left-to-right, τ is initialized at
τ = 10, 30, 50, 70, 90.

(c) As in (b), using the non-hierarchical method. From left-to-right,
τ is fixed at τ = 10, 30, 50, 70, 90.

Figure 14. Simulations for the EIT model.
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Figure 15. (EIT model) Approximations of Var(F (u, τ)) using
the hierarchical (top) and fixed (bottom) priors, with τ initialized
or fixed at τ = 10, 30, 50, 70, 90, from left-to-right.

(a) (Top) Representative samples of the rescaled level-set function
τ4 ·u and (bottom) approximations of E(τ4 ·u) using the hierarchical
method. From left-to-right, τ is initialized at τ = 10, 30, 50, 70, 90.

(b) As in (a), using the non-hierarchical method. From left-to-right,
τ is fixed at τ = 10, 30, 50, 70, 90.

Figure 16. (EIT model) Representative samples and sample
means of the level set function. The rescaling τ4 means that the
above quantities have the same approximate amplitude. True in-
verse length scale is τ = 15.
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Figure 17. (EIT model) (diagonal) Empirical densities of τ and
the first five KL modes of u. (off-diagonal) Empirical joint densi-
ties.

A.1. Proof of Theorems.

Theorem 2.1. (i) Note that it suffices to show that µτ
0 ∼ µ0

0 for all τ > 0. (Here
∼ denotes “equivalent as measures”). It is known that the eigenvalues of −△
on Td grow like j2/d, and hence the eigenvalues λj(τ) of Cα,τ decay like

λj(τ) ≍ (τ2 + j2/d)−α, j ≥ 1.

Using Proposition A.3 below, we see that µτ
0 ∼ µ0

0 if

∞
∑

j=1

(

λj(τ)

λj(0)
− 1

)2

< ∞.
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Now we have
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Here we have used that (1 + x)−α − 1 ≤ exp(αx) − 1 for all x ≥ 0 to move
from the first to the second line, and that exp(x)− 1 ≤ Cx for all x ∈ [0, x0]
to move from the second to third line. Now note that when d ≤ 3, j−4/d is
summable, and so it follows that µτ

0 ∼ µ0
0.

(ii) The case τ = 0 is Theorem 2.18 in [18]; the general result follows from the
equivalence above.

(iii) Let v ∼ N(0,Dσ,ν,ℓ) where Dσ,ν,ℓ is as given by (2). Then we have

Dσ,ν,ℓ = βℓd(I − ℓ2△)−ν−d/2

= βℓdℓ−2ν−d(ℓ−2I −△)−ν−d/2

= βτ2α−d(τ2I −△)−α

= βτ2α−dCα,τ .

Hence, letting u ∼ N(0, Cα,τ ), we see that

E‖u‖2 = tr(Cα,τ )

=
1

β
τd−2αtr(Dσ,ν,ℓ)

=
1

β
τd−2αE‖v‖2.

�

�

Theorem 2.4. Proposition A.1 which follows shows that µ0 and Φ satisfy Assump-
tions 2.1 in [31], with U = X × R+. Theorem 2.2 in [31] then tells us that the
posterior exists and is Lipschitz with respect to the data. � �

Proposition A.1. Let µ0 be given by (3) and Φ : X × R+ → R be given by (10).
Let Assumptions 1 hold. Then

(i) for every r > 0 there is a K = K(r) such that, for all (u, τ) ∈ X × R+ and
all y ∈ Y with |y|Γ < r,

0 ≤ Φ(u, τ ; y) ≤ K;

(ii) for any fixed y ∈ Y , Φ(·, ·; y) : X × R+ → R is continuous µ0-almost surely
on the complete probability space (X × R+,X ⊗R, µ0);

(iii) for y1, y2 ∈ Y with max{|y1|Γ, |y2|Γ} < r, there exists a C = C(r) such that
for all (u, τ) ∈ X × R+,

|Φ(u, τ ; y1)− Φ(u, τ ; y2)| ≤ C|y1 − y2|Γ.
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Proof. (i) Recall the level set map F defined by (7) defined via the finite constant
values κi taken on each subset Di of D. We may bound F uniformly:

|F (u, τ)| ≤ max{|κ1|, . . . |κn|} =: Fmax

for all (u, τ) ∈ X × R+. Combining this with Assumption 1(ii) it follows
that G is uniformly bounded on X × R+. The result then follows from the
continuity of y 7→ 1

2 |y − G(u, τ)|2Γ.
(ii) Let (u, τ) ∈ X×R+ and let Di(u, τ) be as defined by (6), and define D0

i (u, τ)
by

D0
i (u, τ) = Di(u, τ) ∩Di+1(u, τ)

= {x ∈ D |u(x) = ci(τ)}, i = 1, . . . , n− 1.

We first show that G is continuous at (u, τ) whenever |D0
i (u, τ)| = 0 for

i = 1, . . . , n− 1.
Choose an approximating sequence {uε, τε}ε>0 of (u, τ) such that ‖uε −

u‖∞ + |τε − τ | < ε for all ε > 0. We will first show that ‖F (uε, τε) −
F (u, τ)‖Lp(D) → 0 for any p ∈ [1,∞). As in [31] Proposition 2.4, we can
write

F (uε, τε)− F (u, τ) =

n
∑

i=1

n
∑

j=1

(κi − κj)1Di(uε,τε)∩Dj(u,τ)

=

n
∑

i,j=1
i 6=j

(κi − κj)1Di(uε,τε)∩Dj(u,τ).

From the definition of (uε, τε),

u(x)− ε < uε(x) < u(x) + ε, τ − ε < τε < τ + ε

for all x ∈ D and ε > 0. We claim that for |i− j| > 1 and ε sufficiently small,
Di(uε, τε) ∩Dj(u, τ) = ∅. First note that

Di(uε, τε) =
{

x ∈ D
∣

∣ τd/2−α
ε ci−1 ≤ uε(x) < τd/2−α

ε ci
}

=
{

x ∈ D
∣

∣ ci−1 ≤ τα−d/2
ε uε(x) < ci

}

.

Then we have that

Di(uε, τε) ∩Dj(u, τ) = {x ∈ D | ci−1 ≤ τα−d/2
ε uε(x) < ci,

cj−1 ≤ τα−d/2u(x) < cj}.
Now, since u is bounded,

τα−d/2u(x)−O(ε) < τα−d/2
ε uε(x) < τα−d/2u(x) +O(ε)

and so

Di(uε, τε) ∩Dj(u, τ) ⊆ {x ∈ D | ci−1 −O(ε) ≤ τα−d/2u(x) < ci +O(ε),

cj−1 ≤ τα−d/2u(x) < cj}.

From the strict ordering of the {ci}ni=1 we deduce that for |i−j| > 1 and small
enough ε, the right hand side is empty. We hence look at the cases |i− j| = 1.
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With the same reasoning as above, we see that

Di(uε, τε) ∩Di+1(u, τ) ⊆
{

x ∈ D
∣

∣ ci −O(ε) ≤ τα−d/2u(x) < ci +O(ε)
}

→
{

x ∈ D
∣

∣ τα−d/2u(x) = ci
}

=
{

x ∈ D
∣

∣ u(x) = τd/2−αci
}

= D0
i (u, τ)

and also

Di(uε, τε) ∩Di−1(u, τ) ⊆
{

x ∈ D
∣

∣ ci−1 −O(ε) < τα−d/2u(x) < ci−1

}

→ ∅.

Assume that each |D0
i (u, τ)| = 0, then it follows that |Di(uε, τε) ∩

Dj(u, τ)| → 0 whenever i 6= j. Therefore we have that

‖F (uε, τε)− F (u, τ)‖pLp(D) =

n
∑

i,j=1
i 6=j

∫

Di(uε,τε)∩Dj(u,τ)

|κi − κj |p dx

≤ (2Fmax)
p

n
∑

i,j=1
i 6=j

|Di(uε, τε) ∩Dj(u, τ)|

→ 0.

Thus F is continuous at (u, τ). By Assumption 1(i) it follows that G is con-
tinuous at (u, τ).

We now claim that |D0
i (u, τ)| = 0 µ0-almost surely for each i. By Tonelli’s

theorem, we have that

E|D0
i (u, τ)| =

∫

X×R+

|D0
i (u, τ)|µ0(du, dτ)

=

∫

X×R+

(∫

R

1D0
i
(u,τ)(x) dx

)

µ0(du, dτ)

=

∫

Rd

(∫

X×R+

1D0
i
(u,τ)(x)µ0(du, dτ)

)

dx

=

∫

Rd

(∫ ∞

0

(∫

X

1D0
i
(u,τ)(x)µ

τ
0(du)

)

π0(dτ)

)

dx

=

∫

Rd

(∫ ∞

0

µτ
0({u ∈ X | u(x) = ci(τ)})π0(dτ)

)

dx.

For each τ ≥ 0 and x ∈ D, u(x) is a real-valued Gaussian random vari-
able under µτ

0 . It follows that µτ
0({u ∈ X | u(x) = ci(τ)}) = 0, and so

E|D0
i (u, τ)| = 0. Since |D0

i (u, τ)| ≥ 0 we have that |D0
i (u, τ)| = 0 µ0-almost

surely. The result now follows.
(iii) For fixed (u, τ) ∈ X × R+, the map y 7→ 1

2 |y − G(u, τ)|2Γ is smooth and hence
locally Lipschitz. �

�
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Theorem 3.3. Recall that the eigenvalues of Cα,τ satisfy λj(τ) ≍ (τ2 + j2/d)−α.
Then we have that

(

λj(0)

λj(τ)
− 1

)

≍ (1 + τ2j−2/d)α − 1 = O(j−2/d).

It follows that
∞
∑

j=1

(

λj(0)

λj(τ)
− 1

)p

< ∞ if and only if d < 2p.(15)

(i) We first prove the ‘if’ part of the statement. We have u ∼ N(0, C0), and
so E〈u, ϕj〉2 = λj(0). Since the terms within the sum are non-negative, by
Tonelli’s theorem we can bring the expectation inside the sum to see that that

E

∞
∑

j=1

(

1

λj(τ)
− 1

λj(0)

)

〈u, ϕj〉2 =

∞
∑

j=1

(

λj(0)

λj(τ)
− 1

)

which is finite if and only if d < 2, i.e. d = 1. It follows that the sum is finite
almost surely.

For the converse, suppose that d ≥ 2 so that the series in (15) diverges
when p = 1. Let {ξj}j≥1 be a sequence of i.i.d. N(0, 1) random variables
so that 〈u, ϕj〉2 has the same distribution as λj(0)ξ

2. Define the sequence
{Zn}n≥1 by

Zn =

n
∑

j=1

(

λj(0)

λj(τ)
− 1

)

ξ2j

=

n
∑

j=1

(

λj(0)

λj(τ)
− 1

)

+

n
∑

j=1

(

λj(0)

λj(τ)
− 1

)

(ξ2j − 1)

=: Xn + Yn.

Then the result follows if Zn diverges with positive probability. By assump-
tion we have that Xn diverges. In order to show that Zn diverges with positive
probability it hence suffices to show that Yn converges with positive probabil-
ity. Define the sequence of random variables {Wj}j≥1 by

Wj =

(

λj(0)

λj(τ)
− 1

)

(ξ2j − 1).

It can be checked that

E(Wj) = 0, Var(Wj) = 2

(

λj(0)

λj(τ)
− 1

)2

.

The series of variances converges if and only if d ≤ 3, using (15) with p = 2.
We use Kolmogorov’s two series theorem, Theorem 3.11 in [55], to conclude
that Yn =

∑n
j=1 Wj converges almost surely and the result follows.

(ii) Now we have

log

(

λj(τ)

λj(0)

)

= − log

(

1−
(

1− λj(0)

λj(τ)

))

=

(

1− λj(0)

λj(τ)

)

+
1

2

(

1− λj(0)

λj(τ)

)2

+ h.o.t.
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Let {ξj}j≥1 be a sequence of i.i.d. N(0, 1) random variables, so that again
we have that 〈u, ϕj〉2 has the same distribution as λj(0)ξ

2. Then it is sufficient
to show that the series

I =
∞
∑

j=1

[(

λj(0)

λj(τ)
− 1

)

ξ2j + log

(

λj(τ)

λj(0)

)]

is finite almost surely. We use the above approximation for the logarithm to
write

I =
∞
∑

j=1

(

λj(0)

λj(τ)
− 1

)

(ξ2j − 1)

+

∞
∑

j=1

[

1

2

(

1− λj(0)

λj(τ)

)2

+ h.o.t.

]

.

The second sum converges if and only if d < 4, i.e. d ≤ 3. The almost sure
convergence of the first term is shown in the proof of part (i). �

�

Proposition A.2. Let D ⊆ Rd. Define the construction map F : X × R+ → RD

by (7). Given x0 ∈ D define G : X × R+ → R by G(u, τ) = F (u, τ)|x0
. Then G

is continuous at any (u, τ) ∈ X × R+ with u(x0) 6= ci(τ) for each i = 0, . . . , n. In
particular, G is continuous µ0-almost surely when µ0 is given by (3). Additionally,
G is uniformly bounded.

Proof. The uniform boundedness is clear. For the continuity, let (u, τ) ∈ X × R+

with u(x0) 6= ci(τ) for each i = 0, . . . , n. Then there exists a unique j such that

cj−1(τ) < u(x0) < cj(τ).(16)

Given δ > 0, let (uδ, τδ) ∈ X × R+ be any pair such that

‖uδ − u‖∞ + |τδ − τ | < δ.

Then it is sufficient to show that for all δ sufficiently small, x0 ∈ Dj(uδ, τδ), i.e.
that

cj−1(τδ) ≤ uδ(x0) < cj(τδ).

From this it follows that G(uδ, τδ) = G(u, τ).
Since the inequalities in (16) are strict, we can find α > 0 such that

cj−1 + α < u(x0) < cj(τ)− α.(17)

Now cj is continuous at τ > 0, and so there exists a γ > 0 such that for any λ > 0
with |λ− τ | < γ we have

cj(λ)− α/2 < cj(τ) < cj(λ) + α/2.(18)

We have that ‖uδ − u‖∞ < δ, and so in particular,

u(x0)− δ < uδ(x0) < u(x0) + δ.(19)

We can combine (17)-(19) to see that, for δ < γ,

cj−1(τδ)− δ + α/2 < uδ(x0) < cj(τδ) + δ − α/2

and so in particular, for δ < min{γ, α/2},
cj−1(τδ) < uδ(x0) < cj(τδ). �
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�

A.2. Radon-Nikodym Derivatives in Hilbert Spaces. The following propo-
sition gives an explicit formula for the density of one Gaussian with respect to
another and is used in defining the acceptance probability for the length-scale up-
dates in our algorithm. Although we only use the proposition in the case where H
is a function space and the mean m is zero, we provide a proof in the more general
case where m is an arbitrary element of separable Hilbert space H as this setting
may be of independent interest.

Proposition A.3. Let (H, 〈·, ·〉, ‖ · ‖) be a separable Hilbert space, and let A,B
be positive trace-class operators on H. Assume that A and B share a common
complete set of orthonormal eigenvectors {ϕj}j≥1, with the eigenvalues {λj}j≥1,
{γj}j≥1 defined by

Aϕj = λjϕj , Bϕj = γjϕj

for all j ≥ 1. Assume further that the eigenvalues satisfy
∞
∑

j=1

(

λj

γj
− 1

)2

< ∞.

Let m ∈ H and define the measures µ = N(m,A) and ν = N(m,B). Then µ and
ν are equivalent, and their Radon-Nikodym derivative is given by

dµ

dν
(u) =

∞
∏

j=1

γj
λj

· exp
(

1

2

∞
∑

j=1

(

1

γj
− 1

λj

)

〈u−m,ϕj〉2
)

.

Proof. The assumption on summability of the eigenvalues means that the Feldman-
Hájek theorem applies, and so we know that µ and ν are equivalent. We show that
the Radon-Nikodym derivative is as given above.

Define the product measures µ̂, ν̂ on R∞ by

µ̂ =
∞
∏

j=1

µ̂j , ν̂ =
∞
∏

j=1

ν̂j

where µ̂j = N(0, λj), ν̂j = N(0, γj). As a consequence of a result of Kakutani,
see [17] Proposition 1.3.5, we have that µ̂ ∼ ν̂ with

dµ̂

dν̂
(x) =

∞
∏

j=1

dµ̂j

dν̂j
(xj)

=

∞
∏

j=1

γj
λj

· exp
(

1

2

∞
∑

j=1

(

1

γj
− 1

λj

)

x2
j

)

.

We associate H with R∞ via the map G : H → R∞, given by

Gju = 〈u, ϕj〉, j ≥ 1.

Note that the image of G is ℓ2 ⊆ R∞, and G : H → ℓ2 is an isomorphism. Since A
and B are trace-class, samples from µ̂ and ν̂ almost surely take values in ℓ2. G−1

is hence almost surely defined on samples from µ̂ and ν̂. Define the translation
map Tm : H → H by Tmu = u + m. Then by the Karhunen-Loève theorem, the
measures µ and ν can be expressed as the push-forwards

µ = T#
m (G−1)#µ̂, ν = T#

m (G−1)#ν̂.
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Now let f : H → R be bounded measurable, then we have
∫

H

f(u)µ(du) =

∫

H

f(u)
[

T#
m (G−1)#µ̂

]

(du)

=

∫

R∞

f(G−1x+m) µ̂(dx)

=

∫

R∞

f(G−1x+m)
dµ̂

dν̂
(x) ν̂(dx)

=

∫

H

f(u)
dµ̂

dν̂
(G(u−m))

[

T#
m (G−1)#ν̂

]

(du)

=

∫

H

f(u)
dµ̂

dν̂
(G(u−m)) ν(du).

From this is follows that we have

dµ

dν
(u) =

dµ̂

dν̂
(G(u−m))

=

∞
∏

j=1

γj
λj

· exp
(

1

2

∞
∑

j=1

(

1

γj
− 1

λj

)

〈u−m,ϕj〉2
)

.

� �

Remark A.4. The proposition above, in the case m = 0, is given as Theorem
1.3.7 in [17] except that, there, the factor before the exponential is omitted. This is
because it does not depend on u, and all measures involved are probability measures
and hence normalized. We retain the factor as we are interested in the precise
value of the derivative for the MCMC algorithm; in particular its dependence on
the length-scale. �
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