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Summary
HIV dynamics studies have significantly contributed to the understanding of HIV infection and
antiviral treatment strategies. But most studies are limited to short-term viral dynamics due to the
difficulty of establishing a relationship of antiviral response with multiple treatment factors such as
drug exposure and drug susceptibility during long-term treatment. In this article, a mechanism-based
dynamic model is proposed for characterizing long-term viral dynamics with antiretroviral therapy,
described by a set of nonlinear differential equations without closed-form solutions. In this model
we directly incorporate drug concentration, adherence, and drug susceptibility into a function of
treatment efficacy, defined as an inhibition rate of virus replication. We investigate a Bayesian
approach under the framework of hierarchical Bayesian (mixed-effects) models for estimating
unknown dynamic parameters. In particular, interest focuses on estimating individual dynamic
parameters. The proposed methods not only help to alleviate the difficulty in parameter identifiability,
but also flexibly deal with sparse and unbalanced longitudinal data from individual subjects. For
illustration purposes, we present one simulation example to implement the proposed approach and
apply the methodology to a data set from an AIDS clinical trial. The basic concept of the longitudinal
HIV dynamic systems and the proposed methodologies are generally applicable to any other
biomedical dynamic systems.
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1. Introduction
Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with highly
active antiretroviral therapies (HAART), consisting of reverse transcriptase inhibitor (RTI)
drugs and protease inhibitor (PI) drugs, results in several orders of magnitude of viral load
reduction. The rapid decay in viral load can be observed in the relative short term (Perelson et
al., 1997; Wu et al., 1998), and it either can be sustained or followed by a resurgence of virus
within months (Nowak and May, 2000). The resurgence of virus may be caused by drug
resistance, noncompliance, pharmacokinetics problems, and other factors during therapy.
Mathematical models, describing the dynamics of HIV and its host cells, have been important
in understanding the biological mechanisms of HIV infection, the pathogenesis of AIDS
progression, and the role of clinical factors in antiviral activities.

* email: hwu@bst.rochester.edu.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2008 June 23.

Published in final edited form as:
Biometrics. 2006 June ; 62(2): 413–423.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Dynamic models have been introduced into various biomedical fields such as cancer (Goldie
and Coldman, 1979) and AIDS. Many HIV dynamic models have been proposed by AIDS
researchers (Perelson et al., 1996; Wu et al., 1998; Perelson and Nelson, 1999; Huang,
Rosenkranz, and Wu, 2003) in the last decade to provide theoretical principles in guiding the
development of treatment strategies for HIV-infected patients, and have been used to quantify
short-term dynamics. Unfortunately, these models are of limited utility in interpreting long-
term HIV dynamic data from clinical trials. The main reason is that many of the model
parameters cannot be uniquely estimated from the viral load data. As a result, simplified and
linearized models have often been used to characterize the viral dynamics based on the observed
viral load data (Ho et al., 1995; Perelson et al., 1996; Perelson and Nelson, 1999). Although
these models are useful and convenient to quantify short-term viral dynamics, they cannot
characterize more complex long-term viral load trajectories. In this article, we utilize a set of
relatively simplified models, which is a system of differential equations with time-varying
coefficients, to characterize long-term viral dynamics. In our models we consider many factors
related to the resurgence of viral load, such as pharmacokinetic properties, treatment
compliance, and drug susceptibility. Thus our models are flexible to quantify long-term HIV
dynamics.

Data from viral dynamic studies usually consist of repeated viral load measurements taken
over time for each subject. Because the viral dynamic processes share certain similar patterns
between patients while still having distinct individual characteristics, the hierarchical nonlinear
mixed-effects (NLME) models appear to be reasonable for modeling HIV dynamics. The
NLME model fitting can be implemented using standard statistical software, such as the
function nlme() in S-plus and the procedure NLMIXED in SAS. In practice, the difficulty of
using these standard packages in fitting NLME models arises when the closed form of the
nonlinear function is not available. For example, our viral dynamics model is a system of
nonlinear ordinary differential equations, which does not have a closed form. In this case the
standard packages cannot be used directly, and we must rely on the numerical solution to fit
the mixed-effects models.

Bayesian statistics has made great strides in recent years. For various models, including the
hierarchical NLME, parameter estimation and statistical inference are carried out via the
Markov chain Monte Carlo (MCMC) procedures (Gelfand et al., 1990; Wakefield, 1996). The
MCMC methods were introduced in NLME models with applications in pharmacokinetic/
pharmacodynamic (PK/PD) modeling in the mid-1990s (Wakefield, 1996; Lunn et al., 2002).
Although a Bayesian analysis for a population HIV dynamic model was investigated by Han,
Chaloner, and Perelson (2002) and Putter et al. (2002), they only used short-term viral load
data to estimate the parameters, and they also assumed that the drug efficacy was constant over
time.

We combine a Bayesian approach with mixed-effects modeling techniques to estimate both
population and individual dynamic parameters under a framework of the hierarchical Bayesian
nonlinear (mixed-effects) model. The advantages of the proposed approach include: (i) we
model the population viral dynamics and the within-subject and between-subject variations via
a hierarchical model framework; (ii) our models are flexible in dealing with both sparse and
unbalanced longitudinal data from individual subjects by borrowing information from all
subjects; (iii) the MCMC methods can be easily employed for computation, and thus closed-
form solutions to the model (a system of nonlinear differential equations with time-varying
coefficients) are not required; and (iv) because the posterior distributions for the unknown
parameters can be obtained, it is easy to conduct statistical inferences.

This article is organized as follows. We introduce the HIV dynamic system and propose a
simplified viral dynamic model with time-varying drug efficacy, which incorporates the effects
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of PK variation, drug resistance, and adherence in Section 2. A Bayesian approach implemented
using MCMC techniques is employed to estimate dynamic parameters in Section 3. The
simulation study is used to illustrate our methodologies in Section 4. The data for
pharmacokinetics, drug resistance, and adherence as well as the viral load data from an AIDS
clinical trial are described and the proposed methodology is applied to estimate the dynamic
parameters in Section 5. Finally, the article is concluded with some discussions in Section 6.

2. The Models for Long-Term HIV Dynamics
2.1 Antiviral Drug Efficacy Model

Recent treatment strategies usually include genotype or phenotype testing in order to determine
an individual’s susceptibility to antiretroviral agents before a treatment regimen is selected.
Here we use the phenotype marker IC50 (Molla et al., 1996), which represents the drug
concentration necessary to inhibit viral replication by 50%, to quantify agent-specific drug
sensitivity. Herein, we refer to this quantity as the median inhibitory concentration. To model
the within-host changes over time in IC50 due to the emergence of new drug-resistant mutations,
we used the following function (Huang et al., 2003)

(1)

where I0 and Ir are respective values of IC50(t) at baseline and time point tr . In clinical studies,
such as the one to be introduced in Section 5, it is common to measure IC50 values only at
baseline and failure time (Molla et al., 1996). Thus this simplified function of IC50(t) may serve
as a good approximation.

Poor adherence to a treatment regimen is one of the major causes for treatment failure (Besch,
1995). Patients may occasionally miss doses for various reasons. The deviation from prescribed
dosing affects drug exposure in predictable ways. For a time interval Tk < t ≤ Tk+1, the effect
of adherence can be defined as follows.

(2)

where 0 ≤ Rk < 1 with Rk indicating the adherence rate for drugs. Tk denotes the adherence
evaluation time at the kth clinical visit.

In recent years, antiretroviral drugs have been developed rapidly. In most previous viral
dynamic studies, investigators assumed that either drug efficacy was constant over treatment
time (Perelson and Nelson, 1999; Ding and Wu, 2001) or drugs had perfect effect in blocking
viral replication (Ho et al., 1995; Perelson et al., 1997; Putter et al., 2002). However, the drug
efficacy may change as concentrations of antiretroviral drugs and other factors (e.g., drug
resistance) vary during treatment (Perelson and Nelson, 1999), and thus the drugs may not be
perfectly effective. To model the relationship of drug exposure and resistance with antiviral
efficacy, we employ the following modified Emax model (Huang et al., 2003) to represent the
time-varying drug efficacy for two antiretroviral agents within a class (e.g., the two PI drugs
IDV and RTV in our clinical study introduced in Section 5),

(3)
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where  (i = 1, 2) denotes the inhibitory quotient (IQ) (Hsu et al., 2000);
 and  (i = 1, 2) are the trough levels of drug concentration in plasma (measured after

12 hours from doses taken) and the median inhibitory concentrations for the two agents,
respectively. Note that C12h could be replaced by other PK parameters such as the area under
the plasma concentration-time curve (AUC). Although IC50(t) can be measured by phenotype
assays in vitro, it may not be equivalent to the IC50(t) in vivo. Parameter f is used to quantify
the conversion between in vitro and in vivo IC50 that can be estimated from clinical data. γ(t)
ranges from 0 to 1. If γ(t) = 1, the drug is 100% effective, whereas if γ(t) = 0, the drug has no
effect. Note that, if , Ai (t), and  are measured from a clinical study and φ can be
estimated from clinical data, then drug efficacy γ(t) can be estimated during the course of
antiretroviral treatment. Similarly, we can model the combined drug efficacy of HAART
regimen with both PI and RTI agents.

2.2 HIV Dynamic Model
Basic models of viral dynamics describe the interaction between cells susceptible to infection
(target cells), infected cells, and free virus. The mathematical details of this model have been
presented elsewhere (Nowak and May, 2000). In practice, we will need to make a trade-off
between the model’s complexity and the identifiability of parameters based on available
measurements from clinical trials. If a model has too many components, it may be difficult to
analyze; many of the variables in the model may not be measurable and parameters may not
be identifiable. If a model is too simple, the model parameters can be identified and estimated;
however, some important clinical factors, such as pharmacokinetics, drug adherence and
resistance, and other biological mechanisms of HIV infection, cannot be incorporated. In order
to consider clinical factors and biological mechanisms of HIV infection, and to flexibly address
data analysis and parameter identifiability issues, we propose an extended antiviral response
model. Although our model includes the interaction of target uninfected cells (T), infected cells
that actively produce viruses (T*), and free virus (V ), it differs from previous developed models
in that it includes a time-varying parameter γ(t), which quantifies the antiviral drug efficacy.
The model is expressed in terms of the following system of differential equations under the
effect of an antiretroviral treatment

(4)

where λ represents the rate at which new T cells are created from sources within the body, such
as the thymus, ρ is the death rate of T cells, k is the infection rate of T cells infected by virus,
δ is the death rate for infected cells, N is the number of new virions produced from each of the
infected cells during their lifetime, and c is the clearance rate of free virions. The time-varying
parameter γ(t) denotes the antiviral drug efficacy as defined in the formula (3). If the regimen
is not 100% effective (not perfect inhibition), the system of ordinary differential equations
cannot be solved analytically. The solutions to equation (4) then have to be evaluated
numerically. Let β = (φ, c, δ, λ, ρ, N, k)T denote a vector of parameters, and log10Vij (β, t) denote
the common logarithm of the numerical solution of V(t) for the ith individual at time tj , which
is the viral load measured in plasma and will be used for parameter estimation.

As shown by Huang et al. (2003), if γ(t) > ec (ec = 1 − cρ/kN λ is a threshold of drug efficacy)
for all t, virus will be eventually eradicated. Otherwise, viral load may rebound before the viral
eradication (due to drug resistance, for example). Thus, the efficacy threshold ec may reflect
the ability of a patient’s immune system to control viral replication, and it is important to
estimate ec for each patient based on the clinical data.
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3. Bayesian Approach for Parameter Estimation
In order to apply the proposed mathematical models to study long-term HIV dynamics and
model viral responses, we need to resolve two important statistical problems: (i) how to
estimate the unknown parameters in HIV dynamic models and (ii) how to conduct inference
and handle the identifiability issue of model parameters. It is challenging to resolve these
problems for a system of nonlinear differential equations with time-varying parameters,
because there is no closed-form solution, and there are too many unknown parameters. In
addition, among the components involved in viral dynamics we usually only have viral load
data, whereas the CD4+ T cell count data are considered too noisy to be used in dynamic
parameter estimation. It is possible that we may not be able to identify all the unknown
parameters in model (4). To deal with the identifiability problem of parameter estimation,
mathematicians usually substitute some of the unknown parameters with their estimates from
previous studies (Perelson et al., 1997). Here we investigate a Bayesian approach to tackle this
difficulty. In Bayesian terminology, the information from previous studies is regarded as prior
knowledge, which is combined with clinical data to perform the statistical inference on
unknown parameters. A detailed description of the methodology is given below.

3.1 Hierarchical Bayesian Modeling Approach
Under the longitudinal dynamic system framework, the hierarchical Bayesian approach can be
used to incorporate a prior at the population level to estimate the dynamic parameters. We
denote the number of subjects by n and the number of measurements on the ith subject by mi.
For notational convenience, let μ = (log φ, log c, log δ, log λ, log ρ, log N, log k)T, θi = (log
φi, log ci , log δi, log λi, log ρi, log Ni , log ki )T , Θ = {θi, i = 1, …, n}, Θ{i} = {θl, l ≠ i}, and
Y = {yij, i = 1, …, n; j = 1, …, mi}. Let fij (θi, tj) = log10Vij(θi, tj), where Vij(θi, tj) denotes the
numerical solution of V(t) in the differential equation (4) for the ith subject at time tj.yij (tj) and
ei(tj) denote the repeated measurements of common logarithmic viral load and measurement
error with mean zero for the ith subject at times tj (j = 1, 2, …, mi), respectively. Note that the
log transformation of dynamic parameters and viral load is used to ensure positive estimates
of dynamic parameters and to help stabilize the variance, respectively. Then the Bayesian
nonlinear mixed-effects (BNLME) model can be written as the following three stages
(Davidian and Giltinan, 1995).

Stage 1—Within-subject variation: yi = fi(θi) + ei, [ei ∣ σ2, θi] ~  (0, σ2Imi), where yi =
(yi1(t1), …, yimi(tmi))

T, fi(θi) = (fi1(θi, t1), …, fimi (θi, tmi))
T, ei = (ei(t1), …, ei(tmi))

T, and the
bracket notation [A ∣ B] denotes the conditional distribution of A given B.

Stage 2—Between-subject variation: θi = μ + bi, [bi ∣ Σ] ~  (0, Σ).

Stage 3—Hyper-prior distributions: σ−2 ~ Ga(a, b), μ ~  (η, Λ), Σ−1 ~ Wi(Ω, ν), where the
mutually independent Gamma (Ga), Normal ( ), and Wishart (Wi) prior distributions are
chosen to facilitate computations (Gelfand et al., 1990; Davidian and Giltinan, 1995). Note
that the parameterization of the Gamma and Wishart distributions is such that Ga(a, b) has
mean ab and Wi(Ω, ν) has mean matrix νΩ. The hyper-parameters a, b, η, Λ, Ω, and ν are
known.

Following the studies in Davidian and Giltinan (1995) and Gelfand et al. (1990), it is shown
from the BNLME model that the full conditional distributions for the parameters σ−2, μ, and
Σ−1 can be written explicitly as
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(5)

where , B = nΣ−1 + Λ−1, , and
. The full conditional distribution of each θi, given the remaining

parameters and the data, cannot be written explicitly, but it can be seen that the density function
of the conditional distribution of [θi ∣ σ−2, μ, Σ−1, Θ{i}, Y] is proportional to

(6)

3.2 MCMC Implementation
To carry out the Bayesian inference, we need to specify the values of the hyper-parameters in
the prior distributions. In the Bayesian approach, we only need to specify the priors at the
population level, which are easy to obtain from previous studies or reference literature and
usually are accurate and reliable.

In principle, if we have reliable prior information for some of the parameters, then strong priors
with small variances may be used for these parameters. For other parameters such as φ, where
not enough prior information is available and where we intend to use the available clinical data
to determine them, then a noninformative prior with a large variance may be given for these
parameters. Generally, one usually chooses noninformative prior distributions for the
parameters of interest (Carlin and Louis, 1996).

After we specify the model for the observed data and the prior distributions for the unknown
parameters, we can draw statistical inference for the unknown parameters based on their
posterior distributions. In the above Bayesian modeling approach, evaluation of the required
posterior distributions in a closed-form solution is prohibitive. However, as indicated in Section
3.1, it is relatively straightforward to derive either full conditional distributions for some
parameters or explicit expressions, which are proportional to the corresponding full conditional
distributions for other parameters.

Under the Bayesian framework, MCMC methods enable us to draw samples from the target
distributions of interest or the posterior distributions of unknown parameters. In this article we
combine both the Gibbs sampler and the Metropolis–Hastings (M–H) algorithm to carry out
the MCMC procedure. See Gelfand et al. (1990) and Lunn et al. (2002) for more detailed
discussion of these specific MCMC algorithms. In our approach, the Gibbs sampling steps
update σ−2, μ, and Σ−1, while the M–H algorithm updates θi, i = 1, …, n. After collecting the
final MCMC samples, we are able to draw statistical inference for the unknown parameters.
In particular, we are interested in the posterior means and quantiles.

To implement the M–H algorithm, it is necessary to specify a suitable proposal density. Several
possible proposal density choices are discussed in the literature, and a popular choice is the
multivariate normal distribution, which results in the random-walk M–H algorithm (Roberts,
1996). In our implementation, the proposal density is chosen to be a multivariate normal
distribution centered at the current value of θi, as it can be easily sampled and is symmetric
(Roberts, 1996; Wakefield, 1996). An important issue regarding the random-walk M–H
algorithm is the choice of the dispersion of the proposal density. If the variance of the proposed
density is too large, then a large proportion of proposed moves will be rejected, and the Markov
chain will, therefore, produce many repeats and will result in inefficiency of the algorithm. On
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the other hand, if the variance of the proposed density is too small, then the chain will have a
high acceptance rate but will move around the parameter space slowly, again leading to
inefficiency (Carlin and Louis, 1996; Roberts, 1996). We consider this issue in the MCMC
implementation.

As suggested in Carlin and Louis (1996), one long run may be more efficient when considering
the following two points: (i) a number of initial “burn-in” simulations are discarded and (ii)
one may only save every kth (k being an integer) simulation samples to reduce the dependence
among samples used for parameter estimation. We use this strategy in our MCMC
implementation. See Huang, Liu, and Wu (2004) for the details of the iterative MCMC
algorithm including discussions of selecting the proposal density and other issues.

When the MCMC implementation is applied to the simulation study data and the actual clinical
data, an informal check of convergence is conducted based on graphical techniques according
to the suggestion of Gelfand and Smith (1990). An example of the graphical results will be
displayed in Section 4. Based on the results, we propose that, after an initial number of 30,000
burn-in iterations, every fifth MCMC sample was retained from the next 120,000 samples.
Thus, we obtained 24,000 samples of targeted posterior distributions of the unknown
parameters.

4. Simulation Study
In this section, we present one simulated numerical example to illustrate the introduced
Bayesian approach. The scenario we consider is as follows. We simulate a clinical trial with
20 HIV-infected patients receiving long-term antiviral treatment. For each patient, we assume
that measurements of viral load are taken at 25 time points ranging from day 0 to day 200 of
follow-up. The design of this experiment is similar to an actual AIDS clinical trial that we will
describe in detail.

A potential advantage of a Bayesian analysis over a likelihood method is that if an informative
prior is available, then Bayesian inferences can be obtained despite the fact that a model is not
identifiable from the perspective of the likelihood (Rannala, 2002). Based on this consideration,
we designed the following example to illustrate our approach in order to handle the problems
of parameter identifiability. In our model, it can be shown that the two parameters log c and
log δ can be identified (see Figure 1(a)) if we assume that the other five parameters (log φ, log
λ, log ρ, log N, log k) are constant. Because the classic methods of identifiability (Audoly et
al., 2001) for a system of nonlinear differential equations cannot be used, and the exact
identifiability checks for nonlinear differential equation models are unfortunately not available
(Audoly et al., 2001), an informal check of parameter identifiability based on graphical
techniques can be used by studying samples drawn from the MCMC sampling scheme for each
parameter. We can check the k-lag serial correlation of the samples for each parameter. If the
model is unidentifiable and the prior distribution is not informative, the k-lag serial correlation
tends to be large even for a large k. In this case, the trace plot usually lacks randomness, that
is, the consecutive samples move toward one direction. In practice, one can use these facts to
check the identifiability of parameters by carefully studying the samples drawn from the
MCMC scheme (Gelfand and Sahu, 1999). The sampling-based series correlation check can
not only detect the possible unidentifiability, but can also shed some light on the relationship
among unidentifiable parameters. We thus designed a simulation experiment to only estimate
the two parameters log c and log δ that are identifiable in our model, and assume that the other
five parameters are given as constants whose values are (log φ, log λ, log ρ, log N, log k) =
(2.5, 4.6, −2.3, 6.9, −11.0). These values were chosen from previous studies in the literature
(Perelson and Nelson, 1999; Nowak and May, 2000; Ding and Wu, 2001). Based on the
discussion in Section 3.2, the prior distribution for μ = (log c, log δ)T was assumed to be
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 with Λ being a diagonal matrix. The details of the prior construction for unknown
parameters are discussed in Huang et al. (2004). Thus, the values of hyper-parameters are
chosen as follows

Note that the noninformative priors are chosen for both log c and log δ. The values of the hyper-
parameters were determined based on several studies in the literature (Perelson et al., 1996;
Han et al., 2002). In addition, the data for the pharmacokinetic factor (C12h), phenotype marker
(baseline and failure IC50’s), adherence, and the baseline viral load (V0) were taken from an
AIDS clinical trial study (Section 5). The true individual dynamic parameters, log ci and log
δi, are generated by log ci = log c + b1i and log δi = log δ + b2i, where log c = 1.1 and log δ =
−1.0 are the true values of population parameters, and both b1i and b2i are random effects
following a normal distribution with mean 0 and standard deviation of 0.2.

Based on generated true parameters, known parameters, and data (C12h, IC50, and A(t)), the
observations yij (the common logarithm of total viral load) are generated by perturbing the
solution of the differential equation (4) with a within-subject measurement error, that is, yij =
log10Vij + ei , where Vij is the numerical solution of viral load to the differential equation (4)
for the ith subject at time tj . It is assumed that the within-subject measurement error ei is
normally distributed with (0, 0.152).

We apply the introduced Bayesian approach to estimate the dynamic parameters via
implementing the MCMC procedure using FORTRAN code that calls a differential equation
subroutine solver (DIVPRK) in IMSL Math/Library (1994), which uses the Runge–Kutta–
Verner fifth-order method. As discussed previously, the graphical check of the parameter
identifiability, based on the last 500 samples drawn from MCMC sampling scheme for both
parameters log c and log δ, is presented in Figure 1(a). It can be seen that the consecutive
samples move randomly toward different directions, which indicates that the MCMC sampler
is not “sticky” and the two parameters are regarded as identifiable.

Figure 2 displays the three representative individual fitted curves with generated viral load data
on log10 scale, the estimated drug efficacy  with threshold (ec), as well as observed
IC50(t) and adherence of the two PI drugs. It can be seen that the models provide a good fit to
the generated data. Notably, by comparing the plots of fitted curves and estimated drug efficacy

, it can be seen that if  falls below the threshold ec, viral load rebounds, and in contrast,
if  is above ec, the corresponding viral load does not rebound, which is consistent with our
theoretical analysis of the dynamic models (Huang et al., 2003). It is also important that we
can estimate the threshold of the drug efficacy (ec). The efficacy threshold may represent how
well the immune system of a patient can control viral replication. Thus, the efficacy threshold
(ec) is important for individual patients.

In Table 1, we summarize the generated true values of parameters (log c and log δ) and the
mean estimates with 40 replications for the 20 subjects, as well as the corresponding bias,
which is the difference between the mean estimate and the true value of parameters, and the
standard error (SE), defined as the square root of mean squared error. The percentage is based
on the absolute value of the true parameter. It can be seen from Table 1 that both the bias and
SE for population parameter estimates are very small. For individual parameter estimates, the
bias is also small, ranging from 0.001 to 0.243, and the SE (%) ranges from 0.6 to 25.7.

A common concern with Bayesian methods is their dependence on various aspects of the
modeling process. Possible sources of uncertainty include the prior distributions and the initial
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values. The basic tool for investigating model uncertainty is the sensitivity analysis. That is,
we simply make reasonable modifications to the assumptions in question, recompute the
posterior quantities of interest, and see whether they have changed in a way that significantly
affects the resulting interpretations or conclusions. If the results are robust against the suspected
assumptions, we can report the results with confidence and our conclusions will be solid.
However, if the results are sensitive to the assumptions, we choose to communicate the
sensitivity results and interpret the results with caution (Carlin and Louis, 1996). In order to
examine the dependence of dynamic parameter estimates on the prior distributions and initial
values, we carried out a sensitivity analysis. As an example, we followed the method proposed
by Raftery and Lewis (1992) to implement the MCMC sampling scheme and monitor several
independent MCMC runs, starting from different initial values. Those runs exhibited similar
and stable behavior. An informal check of convergence diagnostics based on graphical
techniques suggested by Gelfand and Smith (1990) was investigated. As an example, the
number of MCMC iterations and convergence with regard to three different initial values are
displayed in Figure 1(b). We summarize the sensitivity analysis results as follows: (i) The
estimated dynamic parameters were not sensitive to the priors and/or the initial values, and the
results were reasonable and robust. (ii) When different priors and/or different initial values
were used, the results were similar to those presented in Figure 2 and Table 1.

5. Application to an AIDS Clinical Trial Study
We apply the proposed methodology to the data from an AIDS clinical trial study. This study
was a Phase I/II, randomized, open-label, 24-week comparative study of the PK, tolerability,
and antiretroviral effects of two regimens of IDV and RTV on HIV-1-infected subjects failing
PI-containing antiretroviral therapies (Acosta et al., 2004). The 44 subjects were randomly
assigned to two treatments: Arm A (IDV 800 mg q12h + RTV 200 mg q12h) and Arm B (IDV
400 mg q12h + RTV 400 mg q12h). Out of the 44 subjects, 42 subjects are included in the
analysis; the remaining two subjects were excluded from the analysis because the PK and
IC50 data were not obtained. Plasma HIV-1 RNA (viral load) measurements were taken at days
0, 7, 14, 28, 56, 84, 112, 140, and 168 of follow-up. The study data for PK parameters (C12h),
phenotype marker (baseline and failure IC50’s), and adherence were also used in our modeling.
Adherence was determined by pill count data. A more detailed description of this study can be
found in Acosta et al. (2004).

Similar to the simulation example, the prior distribution for μ = (log φ, log c, log δ, log λ, log
ρ, log N, log k)T is assumed to be  with Λ being a diagonal matrix. We chose the values
of the hyper-parameters (Perelson et al., 1996; Nowak and May, 2000; Ding and Wu, 2001;
Han et al., 2002) as follows:

The MCMC techniques consisting of a series of Gibbs sampling and M–H algorithms were
used to obtain the results as presented in Huang et al. (2004). We found that the model provided
a good fit to the observed data for most of the subjects. In terms of the dynamic parameter
estimates, a large between-subject variation in the estimates of all individual dynamic
parameters was observed (data not shown here). The population posterior means and the
corresponding 95% equal-tail credible intervals for the seven parameters are summarized in
Table 2. As shown, the population estimates are 3.06 and 0.37 for c and δ, respectively, which
are the most important parameters in understanding viral dynamics. In comparison with
previous studies, our population estimate of c (3.06) is almost equal to the mean estimate of
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c, 3.07 in Perelson et al. (1996), and our population estimate of δ is consistent with the mean
value of δ, 0.37 in Klenerman et al. (1996). However, our population estimate of c is slightly
less than the mean estimate of c, 3.1 in Perelson and Nelson (1999) and is greater than the
population estimate of c, 2.81 obtained by Han et al. (2002). On the other hand, our population
estimate of δ (0.37) is less than the first-phase decay rate of 0.43 (Nowak and May, 2000), 0.49
(Perelson et al., 1996), and 0.5 (Perelson and Nelson, 1999). In addition, in two separate studies
by Markowitz et al. (2003) and Perelson et al. (1997), the mean values of 1.0 and 0.7 for δ were
obtained by holding the clearance rate c as constant with values of 23 and 3, respectively, and
these two values are substantially greater than our population estimate of 0.37 for δ. These
differences may be due to various reasons. For example, the analysis of those studies assumed
that viral replication was completely stopped by the treatment, and/or they used short-term
viral load data to fit their models. In addition, the first-phase decay rate, estimated from a
biexponential viral dynamic model (Ho et al., 1995; Perelson et al., 1996; Ding and Wu,
2001) under perfect treatment assumption, is not the true death rate of infected cells (δ) because
the current antiretroviral therapy cannot completely block viral replication (Perelson and
Nelson, 1999). In this study, we estimated the death rate of infected cells (δ) directly by
accounting for the nonperfect treatment with time-varying drug efficacy. Note that we are
unable to validate our results of the other parameter estimates, as no conclusive or comparable
estimates have been published to date.

6. Discussion
In this article, we proposed a concept of longitudinal dynamic system, in particular for
modeling HIV dynamics. Our models are simplified with the main goals of retaining crucial
features of HIV-1 dynamics and, at the same time, guaranteeing their applicability to typical
clinical data, in particular long-term viral load measurements. We investigated a hierarchical
Bayesian (mixed-effects) modeling approach to estimate dynamic parameters in the proposed
mathematical model for long-term HIV dynamics. Fitting of mathematical models using a
Bayesian approach is a powerful way to analyze data from studies of viral dynamics. First,
Bayesian modeling involves specifying prior distributions of model parameters to perform the
analysis. Thus, it cannot only incorporate the estimates of dynamic parameters from previous
studies, but also handle the parameter identifiability problems. Second, the Bayesian approach
allows the fitting of complex models and is more flexible than other methods such as the
nonlinear least squares (NLS) method. Third, the graphical output of simulation-based
Bayesian algorithms provides both informative diagnostic aids and easily understood
inferential summaries.

We have presented a simulation example and an actual AIDS clinical trial study to illustrate
how the Bayesian procedures can be applied to HIV dynamic studies. Both the population and
individual dynamic parameters can be estimated from the hierarchical Bayesian modeling
approach. For the simulation study, it was seen that the models provided a good fit to the data.
The bias estimates for both population and individual dynamic parameters were very small,
and the corresponding SEs (%) of the estimates were reasonable. Under this setup, one thus
might claim that both population and individual parameters would be identifiable by only
providing the population prior information under a framework of the hierarchical Bayesian
model based on our simulation study. For the actual AIDS clinical trial data set, the proposed
model fitted the clinical data reasonably well for most subjects in our study, although the fitting
for a few subjects (less than 10%) was not completely satisfactory due to unusual viral load
response patterns, inaccurate measurements of drug exposure, and/or adherence for these
subjects. For example, self-reported pill count measurements may not reliably reflect actual
adherence profiles for some subjects.
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Most of the previous studies have assumed perfect drug effect (Ho et al., 1995; Perelson et al.,
1996; Wu et al., 1998; Markowitz et al., 2003) or imperfect constant drug effect (Perelson and
Nelson, 1999; Ding and Wu, 2001) to estimate dynamic parameters with short-term viral load
data. These assumptions contributed to the limitations of those studies which might result in
inaccuracy of dynamic parameter estimation. Compared with those studies, our model
proposed in this article has the following features: (i) considers time-varying drug efficacy
during long-term treatment; (ii) provides more reasonable biological interpretation; (iii)
incorporates drug concentration, adherence, and resistance in the model; and (iv) provides a
good fit to the observed long-term viral load data (whole data). Thus, based on this model, the
results of estimated dynamic parameters should be more reliable and reasonable in the
interpretation of long-term HIV dynamics.

Although the analysis presented here used a simplified model, which appeared to perform well
in capturing and explaining the observed patterns and characterizing the biological mechanisms
of HIV infection under relatively complex clinical situations, our model is however limited in
several ways. Our mathematical model (4) is a simplified model among many variations of
viral dynamic models (Perelson and Nelson, 1999; Nowak and May, 2000). We did not consider
the compartments of productively infected cells, long-lived, and latently infected cells
separately (Perelson et al., 1997). Instead we pooled all the infected cell populations together.
The virus compartment was not further decomposed into infectious virions and noninfectious
virions as in Perelson et al. (1996). Thus, different mechanisms of nucleoside reverse
transcriptase inhibitor (NRTI) and PI drug effects were not modeled. In fact, we only considered
the PI drug effects in the drug efficacy model (3) because the information on NRTI drugs was
not collected in our study and the effect of NRTI drugs was considered less important compared
to the PI drugs. We modeled drug resistance using the phenotype IC50 values instead of
modeling viral genotype species separately (Nowak and May, 2000). One of the main reasons
is that genotypic assay results are hard to interpret due to the large number of mutations that
lead to resistance of antiretroviral drugs. Although more elaborate models with consideration
of more infected cell and virus compartments, more detailed drug effects, and specific drug-
resistant viral species may provide more accurate descriptions for long-term HIV dynamics,
they may give rise to the identifiability problems of model parameters due to the complexity
of the models, and thus limit the usefulness of these models. The trade-off between the
complexity and applicability of HIV dynamic models should be considered, and further studies
on this issue are definitely needed. Nevertheless, these limitations would not offset the major
findings from our modeling approach.

We assumed that the distribution of the random effects bi is normal. However, due to the nature
of AIDS clinical data, it is possible that the data may contain outlying individuals and, thus,
may result in a skewed distribution of individual parameters, that is, the random effects may
not follow a normal distribution. As Wakefield (1996) suggested, a t distribution may be used,
which is more robust to outlying individuals than the normal distribution. We plan to address
this issue and report the results in future studies.

In summary, the mechanism-based dynamic model is powerful and efficient in establishing
the relationship between antiviral response and drug exposure/drug susceptibility, although
some biological assumptions have to be made. The fitting of a model specified as a set of
differential equations is routinely done in many fields (in particular pharmacokinetics and
pharmacodynamics, which are closely associated with the analysis of clinical data considered
in this article). Our hope is that this work might stimulate the investigation of more realistic
models to analyze data from AIDS clinical trials with antiviral treatment which, in turn, would
help to better understand the biological mechanism of HIV infection, to study the pathogenesis
of AIDS progression, to guide the development of antiviral treatment strategies, and to take
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into account the roles of clinical factors in antiviral activities. We also expect that the proposed
longitudinal dynamic system concept can be applied to other biological processes.
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Figure 1.
(a) Trace plot to informally check parameter identifiability based on the last 500 samples drawn
from the MCMC sampling scheme (left panels). (b) Convergence diagnostics with respect to
three different initial values (right panels) in simulation example.
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Figure 2.
Individual fitted curves with generated viral load data in log10 scale, drug efficacy with
threshold (ec), as well as IC50(t) and adherence of the two PI drugs (IDV and RTV) for the
three representative subjects from the simulation example.
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Table 1
The true values and mean estimates of population (Pop) and individual dynamic parameters with 40 replications as
well as the corresponding bias and standard error (SE), defined as the square root of mean squared error. The percentage
of SE is based on the absolute value of the true parameter.

True value Mean estimate Bias SE (%)

log c log δ log c log δ log c log δ log c log δ

Pop 1.100 −1.000 1.107 −1.006 0.007 −0.006 3.02 3.00
Sub1 0.658 −0.778 0.684 −0.767 0.026 0.011 17.1 21.6
Sub2 0.851 −1.216 0.865 −1.125 0.014 0.091 22.4 22.3
Sub3 1.287 −0.833 1.153 −0.778 −0.134 0.055 12.8 9.6
Sub4 1.244 −0.875 1.303 −0.922 0.059 −0.047 10.4 17.0
Sub5 1.004 −0.704 1.206 −0.890 0.202 −0.186 27.1 12.0
Sub6 1.046 −1.095 1.056 −1.077 0.010 0.018 4.8 10.1
Sub7 1.032 −1.173 1.144 −1.117 0.112 0.056 12.6 19.2
Sub8 1.038 −1.332 1.126 −1.397 0.088 −0.065 19.9 15.0
Sub9 1.534 −0.848 1.523 −0.806 −0.011 0.042 2.3 34.5
Sub10 1.073 −1.037 1.077 −1.040 0.004 −0.003 4.7 25.7
Sub11 1.295 −1.080 1.152 −0.997 −0.143 0.083 13.4 14.1
Sub12 1.064 −1.101 1.115 −1.127 0.051 −0.026 7.2 10.5
Sub13 1.048 −0.928 1.054 −1.008 0.006 −0.080 6.1 17.8
Sub14 1.35 −0.934 1.352 −0.935 0.002 −0.001 0.6 6.3
Sub15 1.201 −1.101 1.197 −1.078 −0.004 0.023 7.5 15.4
Sub16 1.235 −0.855 1.230 −0.908 −0.005 −0.053 1.4 17.5
Sub17 0.853 −1.135 1.096 −1.210 0.243 −0.075 20.7 18.3
Sub18 1.024 −1.251 1.042 −1.131 0.018 0.120 6.3 18.4
Sub19 1.196 −0.962 1.144 −0.930 −0.052 0.032 7.6 16.9
Sub20 1.171 −0.834 1.165 −0.899 −0.006 −0.065 2.1 20.0
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Table 2
A summary of the estimated posterior means (PM) of population parameters and the corresponding 95% equal-tail
credible intervals, where LCI and RCI denote the left and right credible limits of 95% credible intervals

φ c δ λ ρ N k

PM 24.9 3.06 0.37 98.1 0.081 975.6 0.000017
LCI 10.6 2.79 0.33 89.1 0.073 886.3 0.000016
RCI 57.7 3.37 0.41 107.9 0.089 1074.2 0.000018
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