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Abstract: The aim of this paper is to develop a model for analyzing multiple
response models for count data and that may take into account complex cor-
relation structures. The model is specified hierarchically in several layers and
can be used for sparse data as it is shown in the second part of the paper. It
is a discrete multivariate response approach regarding the left side of models
equations. Markov Chain Monte Carlo techniques are needed for extracting
inferential results. The possible correlation between different counts is more
general than the one used in repeated measurements or longitudinal studies
framework.

Keywords: Multiple Count Data, Multivariate Poisson, Hierarchical Bayesian
Model, MCMC, Ranking.

1 Introduction

The possible correlation between different counts is not due to time and, in practice, it is a
more complex multivariate structure than repeated measurements or longitudinal studies
framework. Techniques for modelling multiple counts jointly have not been extensively
developed in the statistical literature, mainly because of the lack of multivariate discrete
distribution that could support complex correlation structures. Prior Bayesian and EB
research related to multiple response variables has been focused on longitudinal studies
for clinical trials or biostatistical data (Breslow and Clayton, 1993; Zeger and Karim,
1991; Gilks et al., 1996; Carlin and Louis, 1996).

In this paper a multiple response model for counts is developed. The model is applied
to a real-world set of data involving accident frequencies. It is specified hierarchically and
belongs to the fully Bayesian family. At the same time the hierarchical model investigated
here can be adapted to models other than multivariate count data.

The fitting is made possible by applying adequate Markov Chain Monte Carlo (MCMC)
methods. For the applied analysis the WinBUGS package was used, an excellent platform
for Bayesian modelling.

2 Bayesian Multivariate Poisson-log Normal Model

In this section, a discrete multivariate distribution is described as a feasible solution for
discrete data modelling with multiple responses. The idea is simple, Aitchison and Ho
(1989), but powerful MCMC computational methods are needed to put it into practice.
For allk ∈ {1, 2, . . . , N} andi ∈ {1, 2, . . . , M} we write

Yki | λki
ind∼ Pois(λki) (1)

(log(λk1), . . . , log(λkM))′ | µ, T
iid∼ NM(µ, T ) (2)
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whereT = Σ−1 is the precision matrix. The probability density function of theM -
dimensional log normal distribution is

p(λ | µ, T ) = (2π)−
M
2 (

M∏
i=1

λi)
−1|T | 12 exp

(
−1

2
(log λ− µ)′T (log λ− µ)

)
. (3)

The multivariate Poisson-log normal distribution, denoted subsequently byPΛM(µ, T ),
is the combination of independent Poisson distributions with multivariate log normal dis-
tribution for the Poisson means. The probability density function ofPΛM(µ, T ) is exactly
the marginal density ofY ’s conditioned onµ andT only

p(y1, . . . , yM | µ, T ) =

∫

RM
+

M∏
i=1

Pois(yi | λi)p(λi | µ, T )dλ1 · · · dλM (4)

wherey1, . . . , yM = 0, 1, . . .. The important moments of this distribution can be easily
calculated. IfΣ = (σij) then

E(Yi) = E(E(Yi | λi)) = exp(µi +
1

2
σii) = ai (5)

var(Yi) = E(var(Yi | λi)) + var(E(Yi | λi)) (6)

= ai + a2
i (exp(σii)− 1) > E(Yi)

cov(Yi, Yj) = E(cov(Yi, Yj | λ)) + cov(E(Yi | λi), E(Yj | λj)) (7)

= cov(λi, λj) = aiaj(exp(σij)− 1).

Some important immediate consequences are that there is overdispersion for the marginal
distributions, and

|corr(Yki, Ykj)| < |corr(λki, λkj)|, sgn(corr(Yki, Ykj)) = sgn(corr(λki, λkj))

which are special cases of the results of the mean-variance model. Negative and pos-
itive correlations are supported by this mixed distributions, which gives it an advantage
over other multivariate discrete distributions such as multinomial or negative multinomial.
However, the estimation of the parameters is not straightforward. For maximum likeli-
hood estimation, a re-parameterization and a mixture of Newton-Raphson and steepest
ascent methods are helpful but computationally intensive (see Aitchison and Ho, 1989).

In this paper we shall use MCMC methods (Metropolis-Hastings algorithm) to ob-
tain inference summaries about the parametersµ andT . In a fully Bayesian context,
further prior distributions, probably non-informative, are required forµ andT . The rec-
ommended parametric distributions are normal forµ and Wishart forT (Carlin and Louis,
1996; Gelman et al., 1995).

3 Data Analysis of Multiple Count Data

In this section the model introduced in the previous section is applied to a multiple count
dataset. The counts represent road accidents. The ability to model joint responses pro-
vides another dimension to statistical modelling. The advantage of using MCMC tech-
niques is that the same model output can be used to provide inference on several problems
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Table 1: Total number of accidents for each category of accidents

Severity Number of Total number
vehicles involved of accidents

fatal or serious 1 443

2 or more 852

slight 1 796

2 or more 2160

like model selection, goodness-of-fit, ranking the units of the analysis according to differ-
ent criteria, and so on.

3.1 Data

The data includes all accidents between 1984 and 1991 and the units of the analysis are
156 single carriageway link sites in Kent. The links are defined as road sections between
two major junctions, or between changes in carriageway type (single or dual), or between
changes in speed limits.

Because manual counts can be sparse in both location and time a simple linear re-
gression was used to fill in the missing years and account for some of the variation in
individual counts.

This set of data was provided by the Transport Management Research Centre at Mid-
dlesex University. The number of accidents at each site was disaggregated by accident
severity, having two levels KSI = fatal or serious and S = slight, and the number of vehi-
cles involved, with two levels, 1 vehicle and 2 or more vehicles. The cross-classification
gives four possibly correlated groups of observations. The observed number of accidents
in each group is provided in Table 1 where it can be seen that there are sites with zero
accidents for the total number of accidents and sites with zero counts for some types of
accident.

3.2 Statistical Inference Based on MCMC

The inference process is based on sample of 10000 values either after a burn-in of 40000
iterations from a single chain or after a burn in of 20000 iterations from two chains started
from dispersed initial points. The Brooks-Gelman-Rubin statistic, as calculated in Win-
BUGS was less than 1.05 for all parameters of the models investigated. However, even
after checking that the Markov chain has converged from an empirical point of view and
parameters are reliably estimated it is necessary to check the goodness-of-fit of the model
before applying the results. This was done using BayesianP -values, see Carlin and Louis
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(1996), for the Pearsonχ2 measure of discrepancy that is generally used in this area of
modelling.

3.3 Bayesian Inference

This section contains the results when applying the model as a hierarchical Bayesian
model. The model reveals qualitative and quantitative relationships between the counts of
different type.

The combination of a Poisson distribution with a multivariate log normal distribution
was described above by equation (4), as a discrete multivariate distribution for modelling
multiple counts. Starting from this multivariate Poisson-log normal distribution a hierar-
chical, fully Bayesian model is proposed as

Yki | λki
ind∼ Pois(λki (8)

(log(λki))i=1,...,4 | µ, T
iid∼ N4(µ, T )

µi
iid∼ N(0, 0.0001)

T ∼ Wishart(R, 4)

whereNM(µ, T ) is theM -dimensional multivariate normal distribution with mean vector
µ and withT the inverse of the covariance matrix. The hyper-prior parametersR and
π ≥ M are known, usually takingπ = M for vague priors. The parameterisation of the
Wishart probability density function is

f(X | R, π) ∝ |R|π2 |X|π−M−1
2

e−
1
2Tr(RX)

following Spiegelhalter et al. (1996). The Wishart prior is used for the inverse of the co-
variance matrices of multivariate normal distributions and becauseE(X) = πR−1, R−1

is best interpreted as the expected prior precisions of the random effectsµ. Small values
of π correspond to vaguer prior distributions and it is recommended (Spiegelhalter et al.,
1996) to takeπ = M .

The BayesianP values for the Pearsonχ2 measure of discrepancy, for each type of
accident, are 0.87 for KSI accidents with one vehicle, 0.77 for KSI accidents with two or
more, 0.71 for S accidents with one vehicle and 0.62 for S accidents with two or more
vehicles. It can be concluded that the data does not contradict the model so the inferences
are reliable.

The posterior estimates of the parameters of interest for the multivariate Poisson-log
normal model is given in Table 2. The covariance matrixΣ = T−1 is provided because it
makes a straightforward link with possible covariance structure of the observed data. The
matrix given by (9)

T =




4.42 −1.55 −1.65 −0.55
−1.55 3.76 −0.99 −1.52
−1.65 −0.99 3.18 −0.36
−0.55 −1.52 −0.36 2.44


 (9)

contains the posterior means of the elements ofT , the inverse covariance matrix. There
are weak partial correlations between KSI accidents with 1 vehicle and slight accidents



R. Tunaru 225

Table 2: Posterior estimation of parameters of multivariate Poisson-log normal model.

parameter mean sd 2.5% 97.5%

σ11 2.15 0.41 1.46 3.09
σ12 2.34 0.41 1.65 3.29
σ13 2.10 0.39 1.48 3.00
σ14 2.25 0.38 1.62 3.11
σ21 2.34 0.41 1.66 3.29
σ22 3.04 0.54 2.16 4.27
σ23 2.48 0.45 1.78 3.54
σ24 2.78 0.45 2.04 3.79
σ31 2.10 0.39 1.48 3.00
σ32 2.48 0.45 1.78 3.54
σ33 2.49 0.47 1.75 3.61
σ34 2.39 0.41 1.73 3.32
σ41 2.25 0.38 1.62 3.11
σ42 2.78 0.45 2.04 3.79
σ43 2.39 0.40 1.73 3.32
σ44 3.04 0.47 2.25 4.09
µ1 0.28 0.15 -0.03 0.56
µ2 0.67 0.16 0.34 0.97
µ3 0.79 0.16 0.46 1.08
µ4 1.65 0.15 1.35 1.94

with 2+ vehicles, between KSI accidents with 2+ vehicles and slight accidents with 1
vehicle and between slight accidents with 1 vehicle and slight accidents with 2+ vehicles.

3.4 Ranking the Sites

Identifying hazardous sites is vital since large amounts of money can be wasted just be-
cause the dangerous sites have not been identified as such. This is linked to the problem
of ranking the sites according to the severity they posed in terms of number of accidents
and severity.

3.4.1 Ranking by the Probability that a Site is the Worst

The posterior probability that the sitek is worse than all the others by a factor ofv, for
accident typei, is

pki(v) = Pr(λki > vλji for all j 6= k | y)

wherev > 0. For example, whenv = 1 this is the probability that the site is the worst one.
The factorv should be established prior to the analysis by the practitioner. The posterior
probability that is used as a criterion for ranking represents a measure of how much worse



226 Austrian Journal of Statistics, Vol. 31 (2002), No. 2&3, 221-229

one accident site is compared with all the others. In practice arbitrarily selectedv-values
like v = 1, 1.1, 1.25 are used.

Only the sites with corresponding probabilities larger than10−4 are presented in Ta-
ble 3 summarising the results.

By the measure studied in this section, it seems that there are not many dangerous sites
for slight accidents with only one vehicle. One reason might be that site 90 is so bad that
almost the whole probability is concentrated on this site, and there is not very much left
to distinguish between the others. This site is particularly interesting. It is the urban link
that runs along the sea front at the resort of Margate. Thus, there would be a high volume
of holiday makers both pedestrians and drivers. The high pedestrian flow distinguishes it
from the other links and special safety measures need to be implemented.

Table 3 corresponds to the first ranking criterion looking at the probability that a unit is
the worst. This can be used for long term projects. The practitioner then can see different
lists and make an ad-hoc decision accordingly. The point to bear in mind is that the list
of selected sites should not contain just a few sites or too many sites. The valuev = 1 is
always a good start and depending on the results obtained, the practitioner can modifyv
accordingly. Whenv = 1 it is true that

∑

k

pki(1) = 1

and this is convenient for checking that the calculations are correct.

3.4.2 Ranking by Posterior Distributions of Ranks

The second criterion for ranking sites investigated here is based on the ranksrki of the
mean parametersλki which are the site specific parameters. The ranking process can be
done again for each type of accidenti, but only the result for the first type of accidents
are shown here. The posterior meansE(λki | y) are optimal estimates when the aim is
to produce inference aboutλki. However, if the ranks ofλki are of interest, the condi-
tional expected ranks (or a discretized version of them when they are not integers) are
optimal. It is known that ranking the observed data or even the posterior means can per-
form poorly (Laird and Louis, 1989; Morris and Christiansen, 1996). Consequently, this
ranking method is developed using the posterior distribution of the ranks, that isp(r | y),
and not the posterior distributionp(λ | y). This differs than the approach proposed by
Schluter et al. (1997).

Ranks are notoriously uncertain and it is useful to know the uncertainty associated
with them. The approach followed here easily calculates the corresponding posterior
probability confidence intervals of the estimated ranks. The ranks will be estimated by
the posterior medians, mainly because they are easier to calculate. For each model and
each accident type, the posterior median ranks and the associated2.5%− 97.5% credible
intervals are plotted together for comparison. Sites with ranks to the far right are more
dangerous and sites with ranks to the far left are more safe.

The plot in Figure 1 illustrates the estimated statistics of the ranks of lambda’s for
the first type of accidents. The ranks are ordered and a leaf type shape can be noticed.
In addition, sites with the lowest and, respectively highest, rank values, have quite small
credible intervals.
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Table 3: Ranking probabilities of site with accidents.

Type 1 Type 2 Type 3 Type 4
Site No Pr Site No Pr Site No Pr Site No Pr

4 0.0018
11 0.0020 11 0.1252 11 0.0004

12 0.1194 12 0.1054
14 0.0076 14 0.2732 14 0.0008 14 0.0626
23 0.0002

24 0.0018 24 0.0220
38 0.0002
41 0.1332 41 0.0014 41 0.0010 41 0.2144
42 0.0004
46 0.0280 46 0.3228 46 0.0036
76 0.0004 76 0.0032 76 0.0022
77 0.0058
90 0.7934 90 0.0064 90 0.9946 90 0.5688
91 0.0004
95 0.0058

98 0.0348 98 0.0206
102 0.0028

118 0.0008 118 0.1070
143 0.0218

4 Conclusion

The multivariate normal distribution provides a sound base for statistical modelling of
multivariate continuous data. In spite of that, for multivariate counts, there is a lack
of discrete multivariate distributions that could play the role of Poisson distribution in
the univariate case. A consequence is that sometimes inappropriate methods employing
continuous multivariate distributions are proposed in order to support a complex structure.
The study of Amis (1996) is an example of a good applied statistical work that can be
further improved by applying the hierarchical Bayesian methodology proposed here.

In this paper we developed a multiple response model for counts that could support
complex correlation structures. This model has been fully Bayesian specified hierarchi-
cally in several stages. MCMC algorithms like the Gibbs sampler or the Metropolis-
Hastings can be used to obtain inferential results even for sparse data like road accidents
data.

The model has been used on a real-world set of data for ranking of units. The ranking
of observational units has been done according to two different criteria, one that can be
used for long term projects and looking at the probability that a unit is the worst and the
other that can be used for short term projects and looking at the ranks of the expected
number of counts.
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Figure 1: Ordered ranks for first type of accidents and multivariate Poisson-log normal
model

The inference process is quite complex and Markov Chain Monte Carlo methods were
needed. However, there is a bonus in that once the model has been fitted many interesting
questions were answered using the same output.
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