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Hierarchical Bivariate Time Series Models:

A Combined Analysis of the Effects of Particulate Matter on Morbidity and

Mortality

Dominici F., Zanobetti A., Zeger S.L., Schwartz J., and Samet J.M.

Abstract

In this paper we develop a hierarchical bivariate time series model to characterize the relationship

between particulate matter less than 10 microns in aerodynamic diameter (PM10) and both mor-

tality and hospital admissions for cardiovascular diseases. The model is applied to time series data

on mortality and morbidity for 10 metropolitan areas in the United States from 1986 to 1993. We

postulate that these time series should be related through a shared relationship with PM10.

At the first stage of the hierarchy, we fit two seemingly unrelated Poisson regression models to

produce city-specific estimates of the log relative rates of mortality and morbidity associated with

exposure to PM10 within each location. The sample covariance matrix of the estimated log relative

rates is obtained using a novel generalized estimating equation approach that takes into account

the correlation between the mortality and morbidity time series. At the second stage, we combine

information across locations to estimate overall log relative rates of mortality and morbidity and

variation of the rates across cities.

Using the combined information across the 10 locations we find that a 10 µg/m3 increase in

average PM10 at the current day and previous day is associated with a 0.26% increase in mortality

(95% posterior interval −0.37, 0.65), and a 0.71% increase in hospital admissions (95% posterior

interval 0.35, 0.99). The log relative rates of mortality and morbidity have a similar degree of

heterogeneity across cities: the posterior means of the between-city standard deviations of the

mortality and morbidity air pollution effects are 0.42 (95% interval 0.05, 1.18), and 0.31 (95%

interval 0.10, 0.89), respectively. The city-specific log relative rates of mortality and morbidity are

estimated to have very low correlation, but the uncertainty in the correlation is very substantial

(posterior mean = 0.20, 95% interval −0.89, 0.98).

With the parameter estimates from the model, we can predict the hospitalization log relative

rate for a new city for which hospitalization data are unavailable, using that city’s estimated

mortality relative rate. We illustrate this prediction using New York as an example.

Key Words: Generalized Estimating Equations, Generalized additive models, Hi-

erarchical models, Particulate matter, log relative rate, Air pollution.

Francesca Dominici, Scott L. Zeger, Department of Biostatistics, Jonathan M. Samet, Depart-

ment of Epidemiology, all at the Johns Hopkins Bloomberg School of Public Health. Antonella

Zanobetti, Department of Environmental Health, Joel Schwartz, Department of Environmental

Health, all at Harvard School of Public Health. Correspondence may be addressed to Dr. Francesca

1

Hosted by The Berkeley Electronic Press



Dominici, Department of Biostatistics, Bloomberg School of Public Health, 615 N. Wolfe Street,

The Johns Hopkins University, Baltimore, MD 21205-3179, USA. ph: 410-614-5107, fax: 410-955-

0958, e-mail: fdominic@jhsph.edu.

Acknowledgments: Research described in this article was partially supported by a contract and

grant from Health Effects Institute (HEI), an organization jointly funded by the Environmental

Protection Agency (EPA R824835) and automotive manufacturers. The contents of this article

do not necessarily reflect the views and policies of HEI, nor do they necessarily reflect the views

and policies of EPA, or motor vehicles or engine manufacturers. Funding for Francesca Dominici

was provided by a grant from the Health Effects Institute (Walter A. Rosenblith New Investigator

Award) and by NIEHS RO1 grant (ES012054-01). Funding was also provided by the NIEHS Center

in Urban Environmental Health (P30 ES 03819)

2

http://biostats.bepress.com/jhubiostat/paper11



1 Introduction

The potential for air pollution at high concentrations to cause excess deaths and morbidity was

firmly established in the mid-twentieth century by a series of well-documented air pollution “disas-

ters” in the US and Europe. By the early 1990’s, time series studies with data from single locations

(Dockery et al., 1993; Schwartz, 1994; American Thoracic Society, 1996a; Pope, 2000), showed that

air pollution, even at much lower concentrations than existed during the earlier disasters, was as-

sociated with increased rates of mortality and morbidity in cities in the United States, Europe,

and other developed countries (Pope and Dockery, 1999). One key limitation of these studies was

the use of data from a single, or at most a few locations of uncertain representativeness of broader

geographic regions. The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) ad-

dressed this limitation by assembling and analyzing a national data base that includes information

on mortality, morbidity, weather and air pollution for numerous metropolitan areas in the US.

The NMMAPS mortality analyses estimated associations between all-cause and cause-specific

mortality and particulate matter less than 10 microns in aerodynamic diameter (PM10) for 90

cities in the U.S. (Samet et al., 2000b; Dominici et al., 2002). The NMMAPS morbidity analyses

estimated associations between hospitalization in the elderly and PM10 for 14 cities in the U.S.

(Samet et al., 2000b; Schwartz, 2000; Zanobetti et al., 2000a). Methodological approaches and

substantive results of the separate mortality and morbidity analyses have been reported (Samet

et al., 2000a; Daniels et al., 2000; Zeger et al., 1999; Schwartz and Zanobetti, 2000; Schwartz, 2000;

Zanobetti et al., 2000b). The analyses showed that PM10 concentrations were positively associated

with mortality and morbidity outcomes on average across locations (Samet et al., 2000b; Dominici

et al., 2003a).

Poisson time series regression models (Liang and Zeger, 1986; Zeger and Liang, 1992; Fahrmeir

and Tutz, 2001; McNeney and Petkau, 1994; Albert, 1999) or generalized additive models (Hastie

and Tibshirani, 1990) have been widely used to analyze univariate time series data of air pollution

and health in selected locations (Dockery and Pope, 1994; Schwartz, 1995; American Thoracic So-

ciety, 1996a,b; Korrick et al., 1998). Critics of single-site studies questioned the choice of particular

cities and asked if models had been selected that gave estimates of effect that were biased upwards

(Lipfert and Wyzga, 1993; Li and Roth, 1995). These criticisms have been addressed by using

multi-site studies (Katsouyanni et al., 1997; Samet et al., 2000a; Hwang and Chan, 2001) in which

site-specific data on air pollution and health are assembled under a common framework.

Hierarchical models (DuMouchel and Harris, 1983; DuMouchel, 1990; Breslow and Clayton,

1993; Carlin and Louis, 1996) are a suitable approach for analyzing univariate time series data

from multiple locations (Dominici et al., 2000, 2002; Hwang and Chan, 2001). In comparison to

analyses of data from a single site, pooled analyses can be more informative about whether an

association exists, controlling for possible counfounders. In addition, pooled analyses can produce

estimates of the parameters at a specific site, which borrow strength from all other locations.
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Analyses with hierarchical univariate time series models to estimate associations between air

pollution and health have focused mainly on the estimation of the overall log relative rate of

mortality (or morbidity) associated with PM10, and their heterogeneity across locations. The

analyses have not explored whether cities where PM10 had greater or lesser effects on morbidity

also tended to have a similar pattern of PM10 effects on mortality. A correlation between levels

of effects for morbidity and mortality in a particular city would be anticipated if characteristics

of inhaled particles of the populations influenced risks for morbidity and mortality in a similar

fashion.

Our modeling approach extends previous work in two directions. First, within each city we

extend Poisson regression approaches for univariate time series to bivariate time series and we

estimate the log relative rates of mortality and morbidity by taking into account the correlation

between the mortality and morbidity time series. Second, we extend this bivariate time series model

in a hierarchical fashion, by combining relative rates of mortality and morbidity across locations in

order to characterize their relationship.

More specifically, at the first stage, we fit two seemingly unrelated Poisson regression models

to estimate the relative rates of mortality and hospitalization associated with exposure to PM10

(β̂c
M , β̂c

H) within each location c. We define these two Poisson regression models as seemingly

unrelated for the following two reasons. First, we estimate β̂c
M and β̂c

H under the working assump-

tion that the daily mortality and hospitalization time series are independent. Secondly, to take

into account the joint correlation function for the bivariate mortality and morbidity time series,

we estimate the sample covariance between β̂c
M and β̂c

H by using a novel generalized estimating

equations approach (Zeger et al., 1988).

At the second stage, we assume that the vector of true log relative rates of mortality and mor-

bidity (βc
M , βc

H) has a bivariate normal distribution with unknown means (αM , αH) and unknown

covariance matrix (Σ) which we then estimate using a Markov Chain Monte Carlo (MCMC) al-

gorithm. Although the sample covariance between β̂c
M and β̂c

H , and the correlation between the

mortality and morbidity time series within each location are of interest, here we focus on the

parameters at the second stage of the hierarchical model.

The hierarchical bivariate time series model discussed here can be used to facilitate prediction

of the log relative rates of mortality and morbidity for cities other than the 10 included in the joint

analysis. For example, consider New York for which we have mortality data, but we do not have

morbidity data. We can approximate the posterior predictive distribution of the log relative rate

of hospital admissions for New York (βNY
H ) conditional on the mortality data for New York, and

the mortality and morbidity data for the other 10 cities. In addition, we estimate the reductions in

the posterior variances of βc
M and βc

H obtained by using the time series data at location c relative

to ignoring this information. We report these reductions in posterior variances for all 10 locations

and New York.

A description of the database of air pollution, mortality, morbidity, and meteorological data for

4

http://biostats.bepress.com/jhubiostat/paper11



the 10 U.S. cities in this analysis is included in Section 2. These 10 cities were selected from the

larger group of cities in the NMMAPS data, because they have daily PM10 data as well as both

mortality and hospitalization data. In section 3, we describe the two-stage model for combining the

log relative rates of mortality and hospital admissions across locations. The generalized estimating

equation approach for estimating the sample covariance matrix of the estimates is explained in the

Appendix. Results and discussion follow in Sections 4 and 5.

2 Data

The database used for this analysis includes mortality, hospital admissions for cardiovascular dis-

ease, 24-hour average temperature, barometric pressure, relative humidity and 24-hour average

PM10 concentrations for 10 metropolitan areas in the United States (See Table 1). The general

observation period is 1986-1993, but varies across locations. The air pollution data were obtained

from the the Aerometric Information System (AIRS) data base maintained by the US Environmen-

tal Protection Agency. The daily time series of PM10 used for these analyses are the same as those

used for the morbidity analysis of the NMMAPS. Daily total mortality data, aggregated at the level

of the county, were obtained from the National Center for Health Statistics (NCHS). Daily counts

of hospital admissions were extracted from the files of the Health Care Financing Administration

(HCFA). The hourly temperature, barometric pressure and relative humidity for each site were ob-

tained from the Earth Info CD-ROM database (www.sni.net/earthinfo). A detailed description

of the data base is given elsewhere (Samet et al., 2000b,c). We have focused on cardiovascular

events because prior research has suggested these are the most strongly associated with variations

in air quality (Dockery et al., 1993; Samet et al., 2000c). These 10 metropolitan areas were chosen

from the 14 locations of the morbidity analyses with daily time series of mortality available for

the same time period of the daily time series of morbidity. Table 1 summarizes for each city: the

start and end dates of the PM10 monitoring; number of days with PM10 measurements; the 24-h

average PM10 concentrations; mean numbers of hospital admissions; and mean numbers of deaths

from cardiovascular diseases.

3 Methods

This section describes a two-stage hierarchical model for combining log relative rates of mortality

and hospital admissions across locations, taking into account the joint correlation function for

the bivariate mortality and morbidity time series when estimating the covariance of the two log

relative rates. The goals of our analysis are to estimate: 1) overall log relative rates of mortality and

hospital admissions from exposure to PM10; 2) heterogeneity of the log relative rates across cities;

3) correlation between the two log relative rates across cities; and 4) log relative rate of hospital

admissions for a city other than the 10 sampled using that city’s mortality time series data. The

5
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two stages of the hierarchical model are described below.

Within each city, two seemingly unrelated log-linear regressions are fitted to the mortality (M)

and hospital admissions (H) data bases. We assume

E(yM
t ) = µM

t , var(yM
t ) = wM

t = φMµM
t

log µM
t = XM

′

t θM

E(yH
t ) = µH

t , var(yH
t ) = wH

t = φHµH
t

log µH
t = XH

′

t θH

(1)

where: yM
t and yH

t are the mortality and hospital admissions daily time series; XM
t and XH

t are the

design matrices including average lag 0 and lag 1 PM10 daily time series and potential confounding

factors for the mortality and hospitalization data such as long-term trends, seasonality and weather

(Samet et al., 1995, 1997; Kelsall et al., 1997; Dominici et al., 2000; Samet et al., 2000a). Note that

XM
t might be the same as XH

t in some situations.

In this application, we specify model (1) as over-dispersed Poisson with a linear term for the

average PM10 on day 0 and 1, and smooth functions (natural cubic splines) of calendar time,

temperature and barometric pressure to adjust for time-varying confounding factors such as trend,

seasonality and weather. The model specification, including confounding factors and the rationale

for their inclusion in the model, is listed in Table 2.

Thus, the full vector of regression coefficients is denoted by θc
M (or θc

H ) in model (1), can be

decomposed as [βc
M , ηc

M ] (or [βc
H , ηc

H ]) where βc
M (βc

H) is the log relative rate of mortality (mor-

bidity) for increases in PM10 and ηc
M (or ηc

H) is the vector of nuisance parameters corresponding

to the confounding factors listed in Table 2. Finally, the parameters φM and φH are overdispersion

parameters.

Modeling strategies to reduce confounding bias in the air pollution effect estimates are among

the most discussed statistical issues in time series analyses of air pollution and health. In particular

the choice of the degrees of freedom (df) in the smooth functions of time and temperature is critical

because it determines the residual temporal variability in the daily deaths and pollution levels used

to estimate the pollution coefficient. As a baseline choice, we use 4 degrees of freedom per year

to adjust for trend and seasonality, and 3 df to adjust for temperature and barometric pressure.

These choices are made on the basis of our previously published results and on recent re-analyses

and sensitivity analyses (Schwartz et al., 2003; Dominici et al., 2003a). In the results section we

explore the sensitivity of the overall log relative rates to the df in the natural cubic splines of time,

temperature and barometric pressure.

We estimate the log relative rate parameters (β̂c
M , β̂c

H) for city c under the working assumption

that the daily mortality and hospitalization series are independent. Hence, two separate log-linear

regressions are estimated by maximum likelihood. This approach is sensible because our focus is on

the association between the log relative rates, rather than the association between the daily counts.

However, the correlation among the two series of counts will introduce correlation in the estimated
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log relative rates β̂c
M and β̂c

H for a given city. We estimate the sample covariance matrix V c, the

within-city correlation vc
MH/

√
vc
Mvc

H along with the overdispersion parameters using generalized

estimating equations (GEE). To do so, we apply formula (7) detailed in the appendix for lag L = 14.

The choice of L = 14 is based on the assumption that the mortality and morbidity time series are

likely to be uncorrelated at lag 14. The estimated V c were not sensitive to lag choices larger than

14.

Because the time series are relatively long (number of days with PM10 data available ≥ 1450),

the estimates of the mortality and morbidity log relative rates are approximately bivariate normal:

[
β̂c

M

β̂c
H

]
∼ N2

([
βc

M

βc
H

]
, V c

)
where V c =

[
vc
M vc

MH

vc
MH vc

H

]
(2)

Dominici et al. (2001) have shown that this approximation to the likelihood has little impact on

estimates of overall log relative rates on heterogeneity in rates across cities.

The second stage of the model describes variation among the true log relative rates βc
M and βc

H

across cities. We assume:
[

βc
M

βc
H

]
∼ N2

([
αM

αH

]
, Σ

)
where Σ =

[
σ2

M σMH

σMH σ2
H

]
. (3)

Here αM and αH denote the overall log relative rates of mortality and hospital admissions from

exposure to PM10; σ2
M and σ2

H are the variances in βc
M and βc

H , and ρMH = σMH/σMσH denotes

the correlation across cities between βc
M and βc

H . Larger values of ρ indicate that cities with higher

log relative rates of mortality are also more likely to have higher log relative rates of hospital

admissions.

The specification of this Bayesian hierarchical model is completed by assigning prior distribu-

tions for the parameters. For the mean parameters (αM , αH), we assume vague normal priors

having mean 0 with and large variance. Under the two-stage multivariate normal model (3), a

natural choice for the prior distribution on the covariance matrix is the conjugate prior inverse

Wishart distribution. Although the Inverse Wishart distribution is mathematically convenient for

the implementation of the simulation-based techniques (Gilks et al., 1996), this distribution is not

flexible enough to elicit non-informative priors on the variances and on the correlation coefficient

(Daniels and Kass, 1999; Daniels, 1999). Instead of the conjugate prior for the entire covariance

matrix, we assume that the two variance components σ2
M and σ2

H have a priori a half-normal

distribution on (0,∞) with mean zero and a large variance (here chosen to be 10), and that the

correlation coefficient ρ has a priori a uniform distribution in [−1, 1].

In Section 4 we explore the consequences of this assumption using a sensitivity analysis of the

posterior results to the prior specification.
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4 Results

We apply the methods described in the Appendix to estimate the sample covariance matrix V c

of the log relative rate estimates, β̂c
M and β̂c

H , within each city. Posterior distributions of all

parameters of interest are approximated by simulation-based techniques (Gilks et al., 1996).

Figure 1 shows the 10% highest likelihood density regions (solid lines) and 10% highest posterior

regions (shaded regions) of the mortality (x-axis) and hospitalization log relative rates (y-axis) for

each of the 10 cities. The Bayesian estimates were obtained under our “baseline prior” for Σ

specified in section 3.

Maximum likelihood and Bayesian estimates of the log relative rates are connected by arrows.

The shapes of the likelihood density regions indicate that within-city estimated statistical correla-

tions (vc
HM/

√
vc
HHvc

MM ) are small. The sample correlations range from −0.05 in Pittsburgh to 0.34

in Colorado Springs. Low values of the sample correlations indicate that the mortality and hospital

admissions time series are only weakly correlated. The city-specific estimates of the overdispersion

parameters (φ̂M , φ̂H) and of the within-city statistical correlations are listed on Table 3.

Maximum likelihood and Bayesian estimates of the log relative rates of mortality and hospital

admissions for the 10 locations with their 95% confidence intervals and 95% posterior regions are

also listed in Table 4. Results are also reported under a “separate analysis” which assumes that

mortality (morbidity) data do not provide any information on the log relative rates of hospital

admissions (mortality), i.e. ρ = 0. Note that the Bayesian estimates of the city-specific log relative

rates under a joint analysis are very similar to the estimates under a separate analysis, suggesting

that ρ is very small and/or poorly estimated.

Because of the small number of cities, inferences about the degree of heterogeneity in pollution

effects among cities are likely to be sensitive to the prior assumptions about Σ. Our strategy for

investigating the impact of the prior distribution on our results is based on inspecting the posterior

distributions of the parameters of interest under the following prior distributions for Σ: 1) Uniform

prior on Σ, i.e. uniform prior on all the entries of Σ with the condition that Σ is positive definite;

2) Jeffreys prior on Σ, i.e. p(Σ) ∝ |Σ|−3/2; and 3) Uniform prior on the shrinkage matrix B0,

where B0 = V
1/2
0 (V0 + Σ)−1V

1/2
0 , V0 = 1

10

∑10
c=1 V c, i.e. again uniform prior on all the entries of

the matrix B. Additional details on these prior distributions, including the definitions of the prior

densities and software implementations are in (Everson and Morris, 2000).

The posterior distributions of the overall log relative rates of mortality and hospital admissions

(αM , αH) (first row), and of the between-city standard deviations (σM , σH) (second row) under our

baseline prior defined in Section 3, and under the alternative “non informative” prior distributions

are shown in Figure 2. We found that the estimated overall relative rate of hospital admissions

associated with PM10 expressed as percentage increase in mortality per 10 µg/m3 PM10 increase

is 0.71 percent (95 percent posterior interval, 0.35 to 0.99). The estimated overall log relative rate

of mortality was 0.26 percent per 10 µg/m3 PM10 (95 percent posterior interval, -0.37 to 0.65).
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Posterior distributions of the among-city standard deviations indicate the degree of heterogeneity

of the mortality and morbidity log relative rates across cities. The distribution of the standard

deviation for mortality is similar to that for morbidity, with the posterior means of σM and of σH

equal to 0.42 (95 percent posterior interval, 0.05 to 1.18), and 0.31 (95 percent posterior interval,

0.10 to 0.89), respectively.

The posterior distributions of the between-city correlation coefficient ρ = σMH/σMσH are shown

on Figure 3. We found that log relative rates of mortality and morbidity are weakly correlated and

this correlation has large statistical uncertainty. The posterior mean of the correlation ρ between

the true βc
M and βc

H is 0.20 with 95% interval (−0.89, 0.98). Assuming a Uniform prior on Σ leads

to larger posterior means and variances of σ2
M and σ2

H , and to larger posterior variances of αM

and αH , but has little effect on ρ. The Jeffreys prior on Σ, and the Uniform prior on B0 give

nearly identical posterior inferences as we obtained with our baseline prior on Σ (half normal on

the variances and uniform on the correlation as specified in Section 3).

Generally, mortality time series data can be more readily assembled from publicly available

data bases than morbidity series. Therefore, it may be desirable to predict the log relative rate

of hospital admission for a city (other than the 10 sampled) which has mortality but not hospital

admission data available. We consider New York as an example. Using the model, we can also

estimate reductions in the posterior variances of the log relative rates of mortality and hospital

admissions in New York (βNY
M and βNY

H ) and compare the values with and without use of the

mortality time series for New York.

Figure 4 (left) shows the marginal posterior distribution of βNY
M using the New York mortality

data (solid line) and the posterior predictive distribution of βNY
M ignoring the NY mortality data.

The marginal posterior distribution of βNY
M (i.e. using the mortality data for NY) is obtained by

sampling from an univariate normal distribution with mean
(
1/σ2(j)

M + 1/vNY
M

)(
α

(j)
M /σ2(j)

M + β̂NY
M /vNY

M

)

where α(j) and Σ(j) are the samples from the marginal posterior distribution of α and Σ, and β̂NY
M

and vNY
M are the maximum likelihood estimate of the log relative rate of mortality and the sample

variance for NY . The predictive distribution of (βNY
M , βNY

H ) (ignoring the NY mortality data) is

obtained by sampling from the bivariate normal distribution N(α(j), Σ(j)). The predictive distribu-

tion of βNY
H (including the NY mortality data) is obtained by sampling from a normal distribution

with mean α
(j)
H + σ2(j)

MH/σ2(j)

M (βNY (j)

M − α
(j)
M ) where βNY (j)

M is a sample from the marginal posterior

distribution of βNY
M . As expected, use of data from New York improves the estimate of βNY

M with

a reduction in posterior variance of 65% (see also Table 5).

Figure 4 (right) shows the posterior predictive distribution of the hospital admission log relative

rate βNY
H using the NY mortality data (solid line) and the posterior predictive distribution of βNY

H

ignoring the NY mortality data (dotted line). In this case, the reduction in the posterior variance

of βNY
H obtained by taking into account the mortality data in New York is much smaller, and equal

to 15% (see also Table 6). The modest gain in precision of the Bayesian estimate of βNY
H obtained

by using the NY mortality data versus ignoring such information is due to the high imprecision in

9
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the estimation of the correlation coefficient ρ.

Table 5 shows reductions in posterior variances of βc
M and βc

H when including versus ignoring

time series data for city c. Percentage reductions in posterior variances of the log relative rates

of morbidity and mortality are slightly larger under the combined analysis than under a separate

analysis. This occurs because in the combined analysis, we use data for both the mortality and

morbidity to approximate the marginal posterior distribution of βc
M (βc

H), while under the separate

analysis only the mortality data (or morbidity data) are used.

Reductions in posterior variances of the log relative rates of morbidity and mortality are also

larger in the presence of greater heterogeneity across cities. This pattern is found because, when

the variance across cities is large then the Bayesian estimate of a city-specific log relative rate

draws more heavily on the data from that city, and therefore a larger reduction in the posterior

variances of the two log relative rates is obtained. For example, in New York under a uniform

prior on B0 which leads to larger estimates of σ2
M and σ2

H , the reductions in the posterior variances

of βc
M and βc

H , are 93% and 32%, as compared to 65% and 15% under the baseline prior for

which the estimates of the heterogeneity are smaller. Finally, percentage reductions in posterior

variances of the log relative rates of morbidity and mortality are more substantial in cities with

smaller statistical variances, var(β̂c
H | βc

H) say, of the relative rates. For example in Detroit, where

var(β̂c
H | βc

H) = 0.22, we estimate a 86% reduction in the posterior variance of βc
H whereas in

Canton where var(β̂c
H | βc

H) = 1.04, we estimate a 26% reduction in the posterior variance of βc
H ,

because of the high statistical uncertainty in β̂c
H .

Finally, to explore the sensitivity of our results to the adjustment for confounding factors,

we estimated overall log relative rates of mortality and morbidity (αM , αH) corresponding to five

alternative scenarios for adjustment for confounding factors. The five scenarios were defined by

multiplying the number of degrees of freedom of the smooth functions of time, temperature, and

barometric pressure (natural cubic splines as defined in Table 2), by a calibration parameter δ which

assumes values 1/3, 1/2, 1, 2 and 3 respectively. Note that δ = 1 is our baseline model and δ = 1/

3 and δ = 3 represents less and more dramatic adjustment for trend, seasonality, and weather.

Results for the mortality and morbidity analyses are shown in Figure 5. We found that the overall

log-relative rate of mortality is sensitive to the degree of adjustment for confounding factors and

loose significance when δ = 2 and δ = 3. In contrast , the log relative rate of morbidity is robust

to the specification of δ. The rationale behind the choice of these scenarios, and more extensive

results of the sensitivity of the overall log relative rate of mortality for the largest 90 cities, are

discussed and summarized in (Dominici et al., 2003b).

5 Discussion

While understanding of pathogenesis remains limited, abundant evidence indicates that current

levels of airborne particulate matter are associated with mortality counts and various indexes

10

http://biostats.bepress.com/jhubiostat/paper11



of morbidity (Pope and Dockery, 1999; Environmental Protection Agency, 2001). Time series

analyses have been carried out to characterize the effect of particulate matter on a variety of health

outcomes including mortality, hospitalization, emergency room visits, and clinic or physician visits.

In general, there is evidence linking particulate matter to increased risk for each of these outcome

measures. There is some overlap among the cities included in each of these different sets of analyses;

by design, some of the same cities are included in the NMMAPS and APHEA (Katsouyanni et al.,

1997, 2001) studies. However, patterns of correlation of effects among the cities for different health

outcomes have not yet been examined.

There are numerous hypotheses with regard to the nature of the processes underlying these

associations and with regard to characteristics of particles and their potential to initiate local and

systemic injury. In general, the same pathogenic mechanisms have been considered as responsible for

effects on either mortality or morbidity. Additionally, the same populations have been considered as

susceptible to the effects of particles, namely infants, the elderly and persons with chronic cardiac

and respiratory diseases. For these susceptible individuals, air pollution has been postulated as

worsening clinical status, and thereby increasing risk for hospitalization and ultimately death.

These biomedical considerations imply that levels of effect of particulate air pollution on morbidity

and mortality might be correlated. Unfortunately, the present analyses provide insufficient evidence

to test for these hypothesized correlations and methods should be applied to longer time series for

a larger number of cities.

Motivated by these general pathogenic considerations, we have developed a hierarchical bivariate

time series model to jointly assess the relationships between mortality and morbidity in 10 U.S.

cities. These cities were selected on the basis of data availability for PM10, hospitalization, and

mortality and they were not intended to be representative either of the NMMAPS data nor of the

United States. Nonetheless, the data came from cities of varying characteristics scattered across the

United States and we were unable to gain insights concerning the correlation between log relative

rates of morbidity and mortality among cities.

Our modeling approach extended Poisson regression analyses of univariate time series data on

air pollution and health to multivariate health outcomes. Within each city, we fitted two seem-

ingly unrelated Poisson regression models to estimate log relative rates of mortality and morbidity

(β̂c
H , β̂c

M ). In addition, we have developed a novel generalized estimating equations approach to

estimate the sample covariance matrix of the relative rates (V c) by using the bivariate time series

on hospital admission and mortality [yc
tH , yc

tM ], directly. We then extended this bivariate Poisson

time series model in an hierarchical fashion to combine the vector of the city-specific estimates

of the relative rates of mortality and morbidity across cities. Although it is important to take

into account the correlation between the mortality and morbidity time series within each city, we

focused our analysis on making inferences on the parameters at the second stage of the hierarchical

models and on approximating the marginal posterior distributions of the overall log relative rates

of mortality and morbidity, their between-city variances, and their correlation across cities.
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The combined analysis approach has several useful features: 1) by estimating the covariances

between the log relative rates (vc
HM ), it takes into account correlation between the mortality and

morbidity time series; 2) it provides more efficient estimates of the relative rates than would separate

analyses, because it uses data for both mortality and morbidity to approximate the marginal

posterior distribution of βc
H (βc

M ), while under the separate analysis only the morbidity (mortality)

data are used; 3) it can be used for prediction of a hospitalization log relative rate for an additional

city using mortality data which might be needed for policy purposes; and finally 4) for a city of

interest c
′

, it quantifies the reduction in the variance of βc
′

H and βc
′

M which can be obtained by

collecting time series data for c
′

with respect to predicting βc
′

H and βc
′

M based on the data from the

other cities.

The application of our two-stage bivariate normal-normal model to daily time series data on

mortality and morbidity in 10 cities are consistent with results of previous studies of morbidity and

mortality separately. Overall log-relative rates of mortality and morbidity obtained by combining

information across the 10 cities were similar to those reported in the recent NMMAPS re-analysis

for 90 and 14 cities (Dominici et al., 2003a), but with larger posterior intervals due to the smaller

number of cities analyzed here. As expected, the overall log-relative rate of morbidity was larger

and less heterogeneous than the overall log-relative rate of mortality. Unfortunately because of

the large statistical uncertainty within each city the correlation coefficient ρ was estimated very

poorly, thus providing very weak information on the overall association between log-relative rates

of mortality and morbidity. With the methods developed we should gain further insights on this

issue by applying our modeling strategy to longer time series on pollution, mortality and morbidity

and to a larger number of cities. Because of the strong biological basis for postulating a correlation

between morbidity and mortality effects, such additional exploration is needed, given our initial

findings.

Recent contributions on semi-parametric regressions could also be used to extend our modeling

approach. For example, we could have used a Bayes approach via MCMC sampling for inference in

generalized additive models with city-specific random effects as suggested by Fahrmeir and Lang

(2001). This approach would have avoided our reliance on the assumption of normality at the

first stage of the hierarchical model. At the other end, to estimate properly the sample covariance

between the estimated log relative rates for mortality and morbidity, further method development

is needed to extend Generalized Additive Models with random effects to multivariate outcomes.

6 Appendix: estimating the sample covariance matrix

In this section we describe the estimation procedure for the sample covariance matrix V c. In what

follows, we drop the index c for notational convenience.

Let ξ = [θM , θH ] be the full vector of the coefficients, where θM and θH are q dimensional

vectors, θM = [βM , ηM ] and θH = [βH , ηH ]. Our goal is to estimate the 2q × 2q covariance matrix

12
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V ar(ξ̂), where ξ̂ is the full vector of the maximum likelihood estimates (MLE) estimates of the

coefficients. Note that an estimate of the sample covariance matrix V can be obtained by taking

the [1, 1]-th, [1, q]-th and [q, q]-th elements of V̂ ar(ξ̂).

Assume that θ = θM (or θH), and let U(θ) =
∑T

t=1

(
∂µt

∂θ

)′

w−1
t (yt − µt) be the estimating

function for θ (Zeger et al., 1988). Under an overdispersed Poisson model we have (∂µt/∂θ)
′

=

wtφ
−1X

′

t , leading to:

U(θ) = φ−1
T∑

t=1

X
′

t(yt − µt)

where by definition U(θ̂) = 0.

The first order Taylor series expansion of U(θ) about the MLE θ̂ is:

U(θ) ≃ U(θ̂) +
∂U(θ)

∂θ
|ˆθ(θ − θ̂)

from which we obtain:

√
T (θ − θ̂) ≃

(
∂U(θ)

∂θ
|ˆθ/T

)
−1

U(θ)/
√

T

For θ = θ0, the true value U(θ0)/
√

T converges to a Gaussian random variable with mean 0 and

variance, denoted by B, which converges to a constant. Hence
√

T (θ̂ − θ0) converges to a normal

random variable with mean zero and variance:

V ar(
√

T (θ̂ − θ0)) →
(
E ∂U(θ)

∂θ
|ˆθ/T

)
−1

V ar(U(θ)/
√

T )
(
E ∂U(θ)

∂θ
|ˆθ/T

)
−1

=

→ T
(
E ∂U(θ)

∂θ
|ˆθ

)
−1

V ar(U(θ))
(
E ∂U(θ)

∂θ
|ˆθ

)
−1

=

→ TA−1BA−1 for T → ∞

(4)

From the asymptotic result (4) it follows that:

V ar(θ̂) → A−1BA−1 (5)

where:

• A = E ∂U(θ)

∂θ
|ˆθ = −φ−1

∑T
t=1 X

′

tµtXt, i.e. the Fisher information under the independence

assumption.

• B = V ar(U(θ)) = φ−2
∑T

t=1 X
′

tV ar(yt − µt)Xt.

Let AMM , AHH , BMM , BHH , BMH be the matrices defined above as functions of the mortality (M)

and hospital admission time series (H). From ξ = [θM , θH ] and (5), the covariance matrix V ar(ξ̂)

is equal to:

V ar(ξ̂) =

[
A−1

MM 0

0 A−1
HH

][
BMM BMH

BHM BHH

] [
A−1

MM 0

0 A−1
HH

]
=

=

[
A−1

MMBMMA−1
MM A−1

MMBMHA−1
HH

A−1
HHBHMA−1

MM A−1
HHB−1

HHA−1
HH

] (6)
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Finally, we need to estimate the A and B matrices by using the output of the Poisson regressions

(1). For AMM and BMH we use the estimators:

• ÂMM =
(
φ̂M

)
−1 ∑T

t=1 XM
′

t µ̂tX
M
t

• B̂MH =
(
φ̂M φ̂H

)
−1

E
[∑

s XM
′

s (yM
s − µ̂M

s )
∑

l X
H

′

s (yH
l − µ̂H

l )
]

where µ̂M
t (µ̂H

t ) are the fitted values from the Poisson models applied to the mortality (M)

and hospital admissions (H) time series, and φ̂M (φ̂H) are the estimates of the overdispersion

parameters. We estimate E
[∑

s XM
′

s (yM
s − µ̂M

s )
∑

l X
H

′

s (yH
l − µ̂H

l )
]

by using:

∑

s

s+L∑

l=(s−L)

XM
′

s XH
l h

(
(yM

s − µ̂M
s )(yH

l − µ̂H
l )

)
, (7)

where we assume that Cov(yM
t , yH

t ) = 0 for |s − l| > L and h
(
(yM

s − µ̂M
s )(yH

l − µ̂H
l )

)
is a smooth

function applied to the cross products.
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Table 1: Start and end dates of the PM10 monitoring, number of days with PM10 samples, 24-h average

PM10, mean hospital admissions, and mean mortality for cardiovascular diseases by city (number).

Cities Start Date End Date # days PM10 available PM10 average CVD (H) CVD (M)

Birmingham (1) 3/1/87 12/31/93 2485 34.8 24 6

Canton (2) 1/1/88 12/31/93 1750 28.4 10 3

Colorado Springs (3) 7/1/87 12/31/93 2310 27.5 3 2

Minneapolis/Saint Paul (4) 2/1/87 12/31/93 2488 28.1 22 10

Seattle (5) 1/1/86 12/31/93 2913 32.2 20 9

Spokane (6) 1/1/86 12/31/93 2778 42.9 6 3

Chicago (7) 1/1/88 12/31/93 2058 36.3 114 48

Detroit (8) 4/1/86 12/31/93 2517 36.7 53 23

New Haven (9) 1/1/88 12/31/91 1450 28.6 19 8

Pittsburgh (10) 1/1/86 12/31/93 2918 36.0 51 16

New York 1/1/87 12/31/94 489 28.8 NA 108
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Table 2: Model specification for estimating city-specific log relative rates associated with current day and

previous day particulate air pollution levels, including potential confounding factors and the rationale for

their inclusion in the model. We used an overdispersed Poisson regression model and specified the smooth

functions of time and temperature variables as natural cubic splines.

Predictors Primary reasons for inclusion

Average PM10 at lag 0 and at lag 1 (linear term) To estimate log-log relative rates of mortality associated with

short-term increase in air pollution levels

Indicator variables for the day of the week (linear terms) Allow different baseline log mortality rate within each day

of the week

Smooth functions of time (4df × year) To adjust for long term trend and seasonality

Smooth functions of temperature at lag 0 and lag 1 (3df) To control for the known effects of weather on mortality

Smooth functions of barometric pressure and relative humidity (3df) To control for the known effects of humidity on mortality
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Table 3: Estimates of the city-specific overdispersion parameters and city-specific statistical corre-

lations between β̂c
M and β̂c

H .

City φ̂M φ̂H vc
MH/

√
vc
Mvc

H

Birmingham (1) 0.84 0.93 0.11

Canton (2) 0.82 0.96 0.07

Chicago (3) 0.91 1.21 0.34

Colorado Spring (4) 0.89 0.89 -0.02

Detroit (5) 0.83 1.01 0.14

Minneapolis (6) 0.82 0.94 0.18

New Haven (7) 0.84 0.89 0.17

Pittsburgh (8) 0.86 1.02 -0.02

Seattle (9) 0.85 0.97 0.10

Spokane (10) 0.88 0.87 -0.05
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Table 4: Maximum Likelihood and Bayesian estimates (posterior means) of the log relative rates of mortality

and hospital admissions for cardiovascular diseases in the 10 locations. Between parentheses () are the 95%

confidence intervals and 95% posterior regions, respectively. Results are reported for the combined analysis

and for the separate analysis which assumes that ρ = 0.

Log Relative Rates of Mortality Log Relative Rates of Morbidity

Cities MLE Bayes (combined) Bayes (separate) MLE Bayes (combined) Bayes (separate)

1 -0.13 ( -1.38,1.12) 0.17 (-0.57,0.90) 0.20 (-0.52,0.92) 0.28 ( -0.28,0.84) 0.55 (0.08,1.02) 0.48 (-0.01,0.96)

2 0.86 ( -2.00,3.72) 0.31 (-0.72,1.34) 0.32 (-0.58,1.23) 0.59 (-1.46,2.64) 0.70 (0.00,1.39) 0.67 (-0.13,1.47)

3 0.44 (-0.13,1.02) 0.35 (-0.09,0.79) 0.36 (-0.07,0.78) 0.99 (0.50,1.48) 0.84 (0.49,1.19) 0.85 (0.45,1.25)

4 0.11 (-2.71,2.92) 0.23 (-0.80,1.26) 0.27 (-0.58,1.13) 0.47 (-1.51,2.45) 0.70 (0.01,1.39) 0.67 (-0.13,1.46)

5 0.33 (-0.20,0.87) 0.33 (-0.10,0.75) 0.33 (-0.09,0.74) 0.63 (0.15,1.11) 0.69 (0.33,1.04) 0.66 (0.28,1.04)

6 1.07 (0.03,2.10) 0.56 (-0.19,1.32) 0.56 (-0.18,1.30) 0.32 (-0.60,1.24) 0.63 (0.08,1.17) 0.54 (-0.07,1.15)

7 0.07 (-1.65,1.78) 0.23 (-0.62,1.08) 0.23 (-0.57,1.02) 1.36 (0.26,2.47) 0.87 (0.32,1.41) 0.89 (0.18,1.60)

8 0.36 (-0.30,1.03) 0.36 (-0.12,0.83) 0.33 (-0.16,0.82) 0.91 (0.48,1.35) 0.82 (0.50,1.13) 0.84 (0.47,1.21)

9 0.30 (-0.44,1.04) 0.30 (-0.22,0.82) 0.28 (-0.23,0.80) 0.71 (0.10,1.33) 0.73 (0.33,1.12) 0.70 (0.23,1.17)

10 -0.29 (-1.32,0.73) 0.07 (-0.66,0.80) 0.09 (-0.63,0.81) 0.14 (-0.64,0.93) 0.54 (-0.07,1.15) 0.47 (-0.13,1.06)

New York 0.70 (-0.18,1.58) 0.52 (-0.10,1.14) 0.46(-0.19,1.12) - 0.61 (-0.33,1.55) -

overall 0.26 (-0.37,0.65) 0.28 (-0.12,0.63) 0.71 (0.35,0.99) 0.69 (0.33,1.06)
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Table 5: Percent reductions in the posterior variances of the log relative rates of mortality and mor-

bidity under a combined analysis for mortality and morbidity: d denotes the MLEs β̂
c
=

[
β̂c

M , β̂c
H

]

and the sample covariance matrices V c for the 10 cities; d−c is the same as d, but without the

estimates for city c; dM (dH) denotes the MLEs β̂c
M (β̂c

H) and the sample variances vc
M (vc

H) for

the 10 cities; d−c
M and d

−c
H are the same as dM and dH , but without the estimates for city c; dNY

M

denotes the MLE β̂NY
M and the sample variance vNY

M for New York.

Combined Analysis

Mortality Morbidity

Cities 1 − v(βc
M | d)/v(βc

M | d−c) 1 − v(βc
H | d)/v(βc

H | d−c)

1 0.59 0.68

2 0.23 0.26

3 0.86 0.83

4 0.34 0.26

5 0.87 0.81

6 0.62 0.60

7 0.51 0.56

8 0.84 0.84

9 0.80 0.76

10 0.66 0.38

1 − v(βNY
M | dNY

M , d)/v(βNY
M | d) 1 − v(βNY

H | dNY
M , d)/v(βNY

H | d)
NY (Baseline) 0.65 0.15

NY (Uniform on Σ) 0.92 0.45

NY (Jeffrey) 0.94 0.49

NY (Uniform on B0) 0.93 0.32
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Table 6: Percent reductions in the posterior variances of the log relative rates of mortality and mor-

bidity under a separate analysis for mortality and morbidity: d denotes the MLEs β̂
c

=
[
β̂c

M , β̂c
H

]

and the sample covariance matrices V c for the 10 cities; d−c is the same as d, but without the

estimates for city c; dM (dH) denotes the MLEs β̂c
M (β̂c

H) and the sample variances vc
M (vc

H) for

the 10 cities; d−c
M and d

−c
H are the same as dM and dH , but without the estimates for city c; dNY

M

denotes the MLE β̂NY
M and the sample variance vNY

M for New York.

Separate Analysis

Mortality Morbidity

Cities 1 − v(βc
M | dM )/v(βc

M | d−c
M ) 1 − v(βc

H | dH)/v(βc
H | d−c

H )

1 0.52 0.72

2 0.16 0.22

3 0.81 0.81

4 0.24 0.31

5 0.82 0.85

6 0.47 0.58

7 0.45 0.48

8 0.74 0.84

9 0.74 0.77

10 0.49 0.56

1 − v(βNY
M | dNY

M , dM )/v(βNY
M | dM ) 1 − v(βNY

H | dH)/v(βNY
H | dH)

NY (Baseline) 0.67 0
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Figure 1: 10% Highest Likelihood Density regions (solid lines) and 10% Highest Posterior Density regions

(shaded regions) of the log relative rates of Total mortality and Hospital admissions for cardiovascular dis-

eases. Maximum Likelihood estimates and Bayesian estimates are connected with arrows. For cities, refer

to numbers given in Table 1. The Bayesian estimates were obtained under our “baseline prior” for the

covariance matrix Σ.
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Figure 2: Top left: marginal posterior distributions of the overall log relative rates of mortality (αM ) and

overall log relative rate of hospital admissions (αH). Top right: marginal posterior distributions of standard

deviations (σM ) and (σH). The filled triangles are placed at the posterior means.

26

http://biostats.bepress.com/jhubiostat/paper11



-1 -0.5 0 0.5 1

Baseline
Uniform
Jeffrey
Uniform on B0

ρ

Figure 3: Marginal posterior distribution of the correlation coefficient (ρ = σMH/σMσH). The filled triangle

is placed at the posterior mean.
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Figure 4: Left: marginal posterior distribution of βNY

M
considering the NY mortality data (solid line) and

posterior predictive distribution of βNY

M
ignoring the NY mortality data. Right: predictive distribution of

βNY

H
considering the NY mortality data (solid line) and posterior predictive distribution of βNY

H
ignoring the

NY mortality data (dotted line).
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Figure 5: Left: Overall log relative rates of mortality and hospital admissions (αH , αH) plotted in corre-

spondence of five alternative scenarios for adjustment for confounding factors. On the x-axis are plotted the

values of calibration parameter (δ) which multiply all df in the smooth functions of time, temperature, and

barometric pressure. Our “baseline” model corresponds to δ = 1.
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