
Hierarchical-Block Conditioning
Approximations for High-Dimensional

Multivariate Normal Probabilities

Jian Cao, Marc G. Genton, David E. Keyes and George M. Turkiyyah1

January 9, 2018

Abstract

This paper presents a new method to estimate large-scale multivariate normal probabilities. The

approach combines a hierarchical representation with processing of the covariance matrix that

decomposes the n-dimensional problem into a sequence of smaller m-dimensional ones. It also

includes a d-dimensional conditioning method that further decomposes the m-dimensional prob-

lems into smaller d-dimensional problems. The resulting two-level hierarchical-block conditioning

method requires Monte Carlo simulations to be performed only in d dimensions, with d� n, and

allows the complexity of the algorithm’s major cost to be O(n log n). The run-time cost of the

method depends on two parameters, m and d, where m represents the diagonal block size and

controls the sizes of the blocks of the covariance matrix that are replaced by low-rank approxi-

mations, and d allows a trade-off of accuracy for expensive computations in the evaluation of the

probabilities of m-dimensional blocks. We also introduce an inexpensive block reordering strat-

egy to provide improved accuracy in the overall probability computation. Numerical simulations

on problems from 2D spatial statistics with dimensions up to 16,384 indicate that the algorithm

achieves a 1% error level and improves the run time over a one-level hierarchical Quasi-Monte

Carlo method by a factor between 5 and 10.
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1 Introduction

The computation of high-dimensional multivariate normal (MVN) probabilities is required for

a variety of applications. For example, in spatial extreme statistics, the commonly used pa-

rameterizations of the max-stable process involve the multivariate normal distribution (Smith

et al., 1990; Schlather, 2002; Brown and Resnick, 1977). Moreover, the multivariate t-distribution

probability can be transformed into a multivariate normal probability (Genz and Bretz, 2009)

and the multivariate skew-normal distribution (Genton, 2004; Azzalini and Capitanio, 2014) is

defined based on the multivariate normal distribution, both of which have important applications

in science and engineering (Gupta and Brown, 2001; Kotz and Nadarajah, 2004).

The multivariate normal probability is defined as:

Φn(a,b; Σ) =

∫ b

a

1√
(2π)n|Σ|

exp

(
−1

2
xTΣ−1x

)
dx, (1)

where a and b are integration bounds, Σ is a positive-definite matrix produced by a covariance

function, and n is the problem size. Because most covariance functions in spatial statistics are

smooth at points excluding 0, the blocks of the covariance matrix that represent the correla-

tion between two groups of well-separated variables are usually well approximated by low-rank

blocks. This approximation provides the potential for using the hierarchical matrix (H matrix)

representation (Hackbusch, 2015) for the covariance matrix, Σ, which substantially reduces the

complexity of the matrix-associated operations.

MVN probabilities are generally not analytically tractable and various approximation meth-

ods have been studied to generate reliable estimations. Genz (1992) used separation of variables

to transform the integration region to the unit hypercube in which a Monte Carlo simulation is

performed. Niederreiter (1992), Caflisch (1998) and Owen and Zhou (2000) studied more efficient

sampling methods for Monte Carlo simulation. Genz and Bretz (2009) provided a summary of

recently developed methods for estimating MVN probabilities. Two state-of-the-art methods,

among others, are the bivariate conditioning method (Trinh and Genz, 2015) and the hierar-
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chical Quasi-Monte Carlo method (Genton et al., 2018). The bivariate conditioning method

provides insights into estimating high-dimensional MVN problems with low-dimensional Monte-

Carlo simulations but the univariate reordering has a complexity of O(n3) which makes working

in high dimensions difficult. The hierarchical Quasi-Monte Carlo method utilizes the hierarchical

representation of the covariance matrix and reduces the complexity of one Monte Carlo sample

to O(mn + kn log(n/m)) from O(n2), where m and k represent the diagonal block size and the

rank of the off-diagonal blocks, respectively.

The purpose of this paper is to generalize the bivariate conditioning method to a d-dimensional

conditioning method and combine it with the hierarchical representation of the covariance matrix.

Through this combination, we introduce a two-level hierarchical-block conditioning method. In

addition, we develop a reordering scheme with a complexity of O(m2n) that can maintain the

low-rank feature of the off-diagonal blocks, thus making it applicable to high-dimensional MVN

problems. The downside of conditioning methods, including this one, is that error estimates of

the computed MVN probability approximations are not generated as part of the computations.

As a result, apriori assessments are needed to insure that the method is reliable in the contexts

where it will be used (Trinh and Genz, 2015).

The remainder of the paper is organized as follows. In Section 2, we introduce the construction

of the hierarchical covariance matrix. In Section 3, we propose a generalized d-dimensional

conditioning algorithm and present the derivation of the truncated normal expectations and the

numerical simulation results for different d. In Section 4, we combine the conditioning method

with the hierarchical representation of the covariance matrix to develop a two-level hierarchical-

block conditioning method that speeds up the MVN integration problem relative to the one-level

hierarchical Quasi-Monte Carlo method. In Section 5, we introduce a block-wise reordering

scheme that significantly improves the accuracy level with negligible run-time cost. We discuss

our experimental results in Section 6.
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2 Building Hierarchical Representations

2.1 Generating a hierarchical covariance matrix

Hierarchical covariance matrices are shown in Figures 1(a) and 1(b). The number of diagonal

blocks, denoted by r, expands with a factor of 2 while the off-diagonal part has a total number

of r − 1 low-rank blocks. In actual construction and storage, the H-matrix assumes a quad-tree

structure in which each parent node has two child nodes as well as two low-rank matrices. The

green blocks are low-rank representations and the blue blocks signify dense matrices. Hierarchical

representation enables faster matrix arithmetic and decreases the storage costs. These improve-

ments are especially significant for high-dimensional problems. Specifically, when two groups are

well separated in space, the corresponding off-diagonal block usually has few singular values that

are larger than the machine precision. However, the low-rank feature depends on the separation

of samples. When the samples are not very distant, the ranks of the off-diagonal blocks grow.

Even so, the hierarchical representation still delivers significant computational savings relative

to the standard dense representation.

Building a hierarchical covariance matrix requires the input of a covariance model, the spatial

geometry of the samples and the indices of the samples. For general covariance models, the low-

rank representation of off-diagonal blocks is generated from the dense representation through

singular value decomposition (Hackbusch, 2015). This is computationally expensive but achieves

the goal of examining the efficiencies of different algorithms for solving the MVN problem in high

dimensions. We can use the orthonormal polynomial expansions of common covariance functions

as an approximation to generate the low-rank representation directly. Both methods approximate

the off-diagonal blocks individually and thus require validation for positive-definiteness. In the

case where a non-positive-definite approximation is produced, we can decrease the error tolerance

level, ‖L −UVT‖/‖L‖, where L is some matrix block, UVT is the low-rank approximation of

L, and ‖ · ‖ denotes a valid norm for matrices, or we can increase the number of terms in the

orthonormal polynomial expansions.
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Figure 1: Hierarchical covariance matrices and Cholesky factors. The green blocks are approxi-
mated by low-rank matrices while the blue blocks are stored in the dense form. (a) and (b) are
hierarchical matrices with maximum tree depth equal to 2 and 3. (c) and (d) are hierarchical
Cholesky factors with maximum tree depth equal to 2 and 3.

2.2 Hierarchical Cholesky factorization

Both the conditioning method and the Quasi-Monte Carlo method require the Cholesky factor of

the covariance matrix. The dense Cholesky factorization has a complexity of O(n3) and requires

O(n2) amount of memory, which becomes prohibitive on typical workstations when n is much

larger than 104. Hierarchical Cholesky factorization is much faster even under a strong spatial

correlation structure. Table 1 compares two implementations of dense Cholesky factorization
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Table 1: Time required for Cholesky factorization (seconds). The covariance matrix is generated
from the exponential covariance function with β = 0.3, based on n points uniformly distributed
in the unit square indexed with Morton’s order. chol refers to the Cholesky factorization imple-
mented in R. dpotrf is the Cholesky factorization from the LAPACK library. choldecomp hmatrix
is the hierarchical Cholesky factorization from the H2Lib library.

n 256 1,024 4,096 16,384

chol 0.004 0.23 12.66 737.0

dpotrf 0.001 0.02 0.61 41.5

choldecomp hmatrix 0.003 0.03 0.46 9.3

and one of hierarchical Cholesky factorization under different matrix dimensions, n. We selected

a 2D exponential covariance structure, corr(x,y) = exp(−‖x − y‖/β), where β is set to 0.3,

to compare the time required for these three Cholesky factorization methods. The underlying

geometry consists of n points evenly distributed on a grid in the unit square and indexed with

Morton’s order (Morton, 1966). Three implementations, namely the chol from R (R Core Team,

2016), the dpotrf from LAPACK (Anderson et al., 1999), and the choldecomp hmatrix from

H2Lib (Hackbusch, 2015), are compared as run on an Intel Xeon(R) E5-2680 CPU.

Since we focus on high-dimensional problems, we can reasonably conclude that hierarchical

Cholesky factorization is the most efficient among the three although dpotrf is highly optimized.

The commonly used function, chol from R, has a much slower performance than the other two.

The cost of hierarchical Cholesky factorization depends on the ranks of the off-diagonal blocks,

which usually grow at a much slower rate than O(n) under 2D geometries. The algorithm

may involve truncation of the off-diagonal blocks to maintain the low-rank feature. This would

introduce little error compared with the overall estimation method discussed in the paper. The

resulting hierarchical Cholesky factor has the hierarchical structure shown in Figures 1(c) and

1(d).
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3 d-dimensional Conditioning Approximation

With knowledge of the hierarchical Cholesky factor, L, the n-dimensional MVN problem can

be separated into r m-dimensional MVN problems through the change of variable Y = LX.

For each m-dimensional problem, the Cholesky factor of its covariance matrix is already given

from the diagonal blocks of L. In this section, we extend the bivariate conditioning method

of Trinh and Genz (2015) to a d-dimensional conditioning method and use it to compute the

m-dimensional MVN probabilities and truncated expectations that become the building blocks

for solving the n-dimensional MVN problem. To avoid confusion, we will add a tilde to the

notations in the n dimension to represent the counterpart in the m dimension. For example, X̃

represents the normal random variables in the m dimension.

3.1 d-dimensional LDL decomposition

LDL decomposition is a generalization of the classical Cholesky factorization. In fact, we can

produce the Cholesky factors from LDL decomposition and vice versa without tracing back to

the original covariance matrix. In calculating MVN probabilities, the variable transformation

using the Cholesky factor can make the new integration variables independent from each other.

Similarly, transformation with the L̃ matrix in LDL decomposition can generate integration

variables that are block-wise independent. The bivariate conditioning method from Trinh and

Genz (2015) applied the 2-dimensional LDL decomposition and separated the m integration

variables into uncorrelated blocks of size 2. We use the LDL decomposition in dimension d to

separate the m integration variables into uncorrelated blocks of size d. When m is a multiple of

d, the matrices L̃ and D̃ can be written as

L̃ =


Id Od · · · Od

L̃2,1
. . . . . .

...
...

. . . Id Od

L̃s,1 · · · L̃s,s−1 Id

 , D̃ =


D̃1 Od · · · Od

Od
. . . . . .

...
...

. . . D̃s−1 Od

Od · · · Od D̃s

 ,
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Algorithm 1 LDL decomposition

1: procedure LDL(Σ̃)
2: L̃← Im, D̃← Om

3: for i = 1 : d : m− d+ 1 do
4: D̃[i : i+ d− 1, i : i+ d− 1]← Σ̃[i : i+ d− 1, i : i+ d− 1]
5: L̃[i+ d : m, i : i+ d− 1]← Σ̃[i+ d : m, i : i+ d− 1]D̃−1[i : i+ d− 1, i : i+ d− 1]
6: Σ̃[i + d : m, i + d : m] ← Σ̃[i + d : m, i + d : m] − L̃[i + d : m, i : i + d − 1]D̃[i :
i+ d− 1, i : i+ d− 1]L̃T [i+ d : m, i : i+ d− 1]

7: if i+ d < m then
8: D̃[i+ d : m, i+ d : m]← Σ̃[i+ d : m, i+ d : m]
9: end if

10: end for
11: return L̃ and D̃
12: end procedure

where s = m
d

, Od and Id are zero and unit matrices of dimension d, D̃i, i = 1, . . . , s, are positive-

definite matrices, and L̃ij, i = 2, . . . , s, j = 1, . . . , s− 1, are matrix blocks. If m is not a multiple

of d, then the last row of L̃ and D̃ has the dimension of the remainder. The algorithm for LDL

decomposition is outlined as Algorithm 1. With the change of variable Ỹ = L̃X̃, we can rewrite

an m-dimensional MVN probability as the product of s d-dimensional MVN probabilities

Φm(x̃; ã, b̃, Σ̃) =

∫ b̃′
1

ã′
1

φd(ỹ1; D̃1)

∫ b̃′
2

ã′
2

φd(ỹ2; D̃2) · · ·
∫ b̃′

s

ã′
s

φd(ỹs; D̃s) dỹs · · · dỹ2 dỹ1, (2)

where ã′i = ãi−
∑i−1

j=1 L̃ijỹj, b̃′i = b̃i−
∑i−1

j=1 L̃ijỹj, ãi and b̃i, i = 1, . . . , s, are the corresponding

segments of ã and b̃.

3.2 d-dimensional truncated expectations

The integration limits in Equation (2) depend only on the integration variables to their left. The

conditioning method separates the m-dimensional integration into d-dimensional integrations

and updates the integration limits with the truncated expectations of the integration variables

on the left side. When d = 2, Trinh and Genz (2015) employed the method in Muthen (1990)

to calculate the bivariate truncated expectations. In this paper, we generalize the truncated

normal expectation formula to d-dimensions based on the work of Kan and Robotti (2017). The
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truncated expectation is expressed as

E(X̂ej) =
1

Φd(â, b̂; µ̂, Σ̂)

∫ b̂

â

x̂jφd(x̂; µ̂, Σ̂) dx̂, (3)

where X̂ is a d-dimensional MVN random vector, φd(·) denotes the d-dimensional normal proba-

bility density, ej is a unit vector of length d with 1 in the jth position and 0 elsewhere, and X̂ej

denotes the jth random variable in X̂. Here, â and b̂ are the corresponding lower and upper

integration bounds of dimension d. In this section, we add a hat to the notations to signify the

counterparts in d-dimensions. We define

F d
j (â, b̂; µ̂, Σ̂) =

∫ b̂

â

x̂jφd(x̂; µ̂, Σ̂) dx̂,

which is the numerator of Equation (3). A recurrence relation for F d
j can be derived by dif-

ferentiating the MVN density function, φd(x̂; µ̂, Σ̂), with respect to x̂, then multiplying x̂j on

both sides and integrating the random vector, x̂, from â to b̂. The detailed derivation of the

recurrence relation can be found in Kan and Robotti (2017). We use parentheses around the

subscript to denote the exclusion of the element from the subscript set. Following this relation,

we deduce that

F d
j (â, b̂; µ̂, Σ̂) = µ̂jΦd(â, b̂; µ̂, Σ̂) + eTj Σ̂c, (4)

where c is a vector with the lth coefficient defined as

cl = φ1(âl; µ̂l, σ̂
2
l )Φd−1(â(l), b̂(l); µ̌

1
l , Σ̌l)− φ1(b̂l; µ̂l, σ̂

2
l )Φd−1(â(l), b̂(l); µ̌

2
l , Σ̌l),

µ̌1
l = µ̂(l) + Σ̂(l),l

âl − µ̂l
σ̂2
l

, µ̌2
l = µ̂(l) + Σ̂(l),l

b̂l − µ̂l
σ̂2
l

, Σ̌l = Σ̂(l),(l) −
1

σ̂2
l

Σ̂(l),lΣ̂l,(l).

When d = 2, µ̂ = 0 and σ̂l = 1, l = 1, . . . , d, the above formula turns into the bivariate version

used by Trinh and Genz (2015). The computation of the d-dimensional truncated expectation

requires the computation of the (d−1)-dimensional MVN probability for 2d times which becomes

the major computational cost for the conditioning algorithm and for the two-level hierarchical-
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block conditioning algorithm introduced later. Future developments for efficiently estimating the

truncated normal expectations would substantially improve the performance of this algorithm.

3.3 The d-dimensional conditioning algorithm

In the m-dimensional MVN probability problem represented by Equation (2), the d-dimensional

conditioning method iterates through s integrations from the left to the right while updating the

integration limits after each iteration. The d-dimensional conditioning algorithm is presented as

Algorithm 2: A minor change is needed to the algorithm when the remainder of m divided by d

is not 0. In the algorithm, Φd(Y
′; ã′, b̃′, D̃′) is approximated with Quasi-Monte Carlo simulation

and E[Ỹ′] is computed from Equations (3) and (4). Since (d−1)-dimensional MVN probabilities

are generated through Quasi-Monte Carlo simulations, the result unavoidably introduces a small

error that can be made negligible compared with the error from the conditioning method.

To illustrate the improved accuracy and the effect on computation time when d becomes

larger, we simulate 250 MVN problems for different values of m and d. The covariance matrix,

Σ̃, is simulated through Σ̃ = Q̃J̃Q̃T , where Q̃ is simulated from the Haar distribution over

the orthogonal matrix group (Stewart, 1980) and J̃ is a diagonal matrix with the diagonal

coefficients independently drawn from U(0, 1). The integration limits are set with ã = 0 and b̃
i.i.d∼

Algorithm 2 d-dimensional conditioning algorithm

procedure cmvn(Σ̃, ã, b̃, d)
ỹ← 0 and P ← 1
[L̃, D̃] = LDL(Σ̃) as in Algorithm 1
for i = 1 : s do

j ← (i− 1)d
g̃← L̃[j + 1 : j + d, 1 : j]ỹ[1 : j]
ã′ ← ã[j + 1 : j + d]− g̃
b̃′ ← b̃[j + 1 : j + d]− g̃
D̃′ ← D̃[j + 1 : j + d, j + 1 : j + d]
P ← P · Φd(Ỹ

′; ã′, b̃′, D̃′)
ỹ[j + 1 : j + d]← E[Ỹ′]

end for
return P and ỹ

end procedure
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Table 2: Errors and execution times of the d-dimensional conditioning method. The upper half
of the table reports results of the non-reordered conditioning method and the lower half reports
the results of the reordered conditioning method. The correlation matrix is randomly generated
from the correlation matrix space. The absolute error and the time cost are shown for each
combination of m and d based on 250 replicates.

Without univariate reordering

(m, d) 1 2 4 8 16

16
2.6%
0.00s

3.6%
0.00s

2.9%
0.04s

1.5%
0.28s

0.0%
2.32s

32
2.8%
0.00s

4.7%
0.01s

4.3%
0.07s

3.5%
0.55s

2.2%
4.69s

64
2.6%
0.00s

4.0%
0.02s

3.7%
0.13s

3.4%
1.08s

2.7%
9.23s

128
2.8%
0.00s

4.3%
0.04s

4.2%
0.24s

3.9%
1.88s

3.3%
16.17s

With univariate reordering

16
0.1%

0.001s
0.1%

0.005s
0.0%

0.042s
0.0%

0.285s
0.0%

2.318s

32
0.0%

0.003s
0.0%

0.011s
0.0%

0.076s
0.0%

0.560s
0.0%

4.682s

64
0.0%

0.008s
0.0%

0.025s
0.0%

0.144s
0.0%

1.092s
0.0%

9.222s

128
0.0%

0.029s
0.0%

0.069s
0.0%

0.270s
0.0%

1.907s
0.0%

16.15s

U(0,m) which correspond to the conditions used in Trinh and Genz (2015) for straightforward

comparison. Our simulation results are presented in the upper half of Table 2, where the relative

errors are benchmarked against the Quasi-Monte Carlo results. The estimation error is reduced

when d increases and whenm remains unchanged because less correlation information is discarded

by conditioning when d becomes larger. In the extreme case where m = d, we perform the Quasi-

Monte Carlo simulation in m-dimensions to approximate the MVN probability directly and no

error is caused by the loss of correlation information. The time cost grows close to a linear

fashion with m. However, the curse of dimensionality is significant when d increases since the

simulation is performed in dimension d.
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3.4 Reordered d-dimensional conditioning

Trinh and Genz (2015) found that reordering of the integration variables can improve the estima-

tion accuracy of the conditioning method. The reordering precedes the running of Algorithm 2

and arranges the integration variables with smaller truncated probabilities on the left side. Since

the integration limits are affected only by the integration variables to their left as shown in

Equation (2), intuitively the integration variables further to the left have more impact on the

estimation accuracy. Univariate reordering is preferred to multivariate reordering because the

marginal improvement for the multivariate reordering is insignificant but the increased compu-

tational complexity is substantial. The univariate reordering algorithm is presented as Algo-

rithm 2.2 in Trinh and Genz (2015). Here, we extract and rephrase the univariate reordering

algorithm for completeness. The d-dimensional conditioning method with univariate reordering

is presented as Algorithm 3 here.

The lower half of Table 2 presents the results for the d-dimensional conditioning algorithm

with preceding reordering. The simulation conditions are the same as in the upper half of the

Algorithm 3 d-dimensional conditioning algorithm with univariate reordering

1: procedure rcmvn(Σ̃, ã, b̃, d)
2: ỹ← 0, C̃← Σ̃
3: for i = 1 : m do
4: if i > 1 then
5: ỹ[i− 1]← φ(ã′)−φ(b̃′)

Φ(b̃′)−Φ(ã′)

6: end if

7: j ← arg mini≤j≤m

{
Φ

(
b̃[j]−C̃[j,1:i−1]ỹ[1:i−1]√

Σ̃[j,j]−C̃[j,1:i−1]C̃T [j,1:i−1]

)
− Φ

(
ã[j]−C̃[j,1:i−1]ỹ[1:i−1]√

Σ̃[j,j]−C̃[j,1:i−1]C̃T [j,1:i−1]

)}
8: Σ̃[:, (i, j)]← Σ̃[:, (j, i)], Σ̃[(i, j), :]← Σ̃[(j, i), :]
9: C̃[:, (i, j)]← C̃[:, (j, i)], C̃[(i, j), :]← C̃[(j, i), :]

10: ã[(i, j)]← ã[(j, i)], b̃[(i, j)]← b̃[(j, i)]

11: C̃[i, i]←
√

Σ̃[i, i]− C̃[i, 1 : i− 1]C̃T [i, 1 : i− 1]

12: C̃[j, i]← (Σ̃[j, i]− C̃[i, 1 : i− 1]C̃T [j, 1 : i− 1])/C̃[i, i], for j = i+ 1, . . . ,m
13: ã′ ← (ã[i]− C̃[i, 1 : i− 1]ỹ[1 : i− 1])/C̃[i, i]
14: b̃′ ← (b̃[i]− C̃[i, 1 : i− 1]ỹ[1 : i− 1])/C̃[i, i]
15: end for
16: CMVN(Σ̃, ã, b̃, d) as in Algorithm 2
17: end procedure
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table. Reordering results in significant improvement in estimation accuracy if we compare the

errors from the non-reordered conditioning method with those from the reordered conditioning

method in Table 2. The time cost for the univariate reordering is approximately 0.06s when

m = 128, which accounts for only a small proportion of the total time cost. The complexity

of univariate reordering is O(m3) assuming that the complexity of the matrix multiplication,

M1
m1×m2

M2
m2×m3

, is O(m1m2m3). Although this complexity increases rapidly as m increases,

the size of each diagonal block in the hierarchical covariance matrix, H, is usually much smaller

than the problem size, n, in high-dimensional cases, which makes univariate reordering a feasible

option for solving the small MVN problem presented by each diagonal block.

4 The Hierarchical-Block Conditioning Method

The simulations for the d-dimensional conditioning method in Section 3 indicate that the algo-

rithm coupled with univariate reordering could be an efficient alternative to Monte-Carlo-based

methods. Genton et al. (2018) found that building the Quasi-Monte Carlo method on top of

a hierarchical representation reduces the computational complexity per sample from O(n2) to

O(mn + kn log(n/m)), which is especially significant when the problem size, n, is large. As an

additional benefit, the memory required for storage is also minimized when a hierarchical repre-

sentation is used. In this section, we solve the n-dimensional MVN problem with the hierarchical

covariance matrix and compare the efficiency of using the d-dimensional conditioning method

with that of the Monte-Carlo-based method for solving the m-dimensional MVN problems pre-

sented by the diagonal blocks.

4.1 The hierarchical-block conditioning algorithm

The hierarchical-block conditioning method uses the conditioning technique with the hierarchi-

cal representation of the covariance matrix, which decomposes the n-dimensional integration into:
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Φn(a,b,Σ) =

∫ b′
1

a′
1

φm(x1; B1B
T
1 )

∫ b′
2

a′
2

φm(x2; B2B
T
2 ) · · ·

∫ b′
r

a′
r

φm(xr; BrB
T
r ) dxr · · · dx2 dx1, (5)

where a′i and b′i, i = 1, . . . , r, are the corresponding segments of the updated a and b. Truncated

expectations are computed for each diagonal block, BiB
T
i , and used for updating the integration

limits to the right as shown in Equation (5). The hierarchical-block conditioning algorithm is

presented as Algorithm 4. It transforms the n-dimensional MVN problem into r m-dimensional

problems. For clarity of presentation, we assume that n and m are both powers of 2. The

dimension function, dim, therefore returns an integer and the offset refers to the number of rows

or columns leading the matrix block, Ui−1V
T
i−1. The function choldecomp hmatrix implements

the hierarchical Cholesky factorization and returns B and UVT as a vector of matrices. A slight

modification is needed when n and m assume arbitrary values from the set of positive integers.

To compute the MVN probability and truncated expectations in m-dimensions, we can either

perform the Monte-Carlo-based method directly or use the d-dimensional conditioning algorithm

introduced in Section 3 as a second level of conditioning. In fact, the former method is a special

Algorithm 4 Hierarchical-block conditioning algorithm

1: procedure hcmvn(a,b,Σ, d)
2: x← 0 and P ← 1
3: [B,UV]← choldecomp hmatrix(Σ)
4: for i = 1 : r do
5: j ← (i− 1)m
6: if i > 1 then
7: or ←row offset of Ui−1V

T
i−1, oc ←column offset of Ui−1V

T
i−1

8: l← dim(Ui−1V
T
i−1)

9: g← Ui−1V
T
i−1x[oc + 1 : oc + l]

10: a[or + 1 : or + l]← a[or + 1 : or + l]− g
11: b[or + 1 : or + l]← b[or + 1 : or + l]− g
12: end if
13: ai ← a[j + 1 : j +m], bi ← b[j + 1 : j +m]
14: P ← P · Φm(Xi; ai,bi,BiB

T
i )

15: x[j + 1 : j +m]← B−1
i E[Xi]

16: end for
17: return P
18: end procedure
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case of the latter when d = m and has much higher complexity because the simulations are

performed in m-dimensions. The latter method further transforms each m-dimensional MVN

problem into s d-dimensional MVN problems as shown in Equation (2) although additional error

can be introduced by the conditioning technique on the second level. In Sections 4.2 and 4.3,

we compare the two methods for solving the m-dimensional problem under simple covariance

structures.

4.2 Simulation with a constant covariance matrix

We first use the constant covariance structure to compare the performance of applying the

d-dimensional conditioning method with that of the Monte-Carlo-based method to each m-

dimensional MVN problem. The covariance matrix is ideal for hierarchical representation because

any off-diagonal block can be written exactly as the product of two rank-1 matrices. However,

the correlation does not decay with the distance between indices and a stronger correlation usu-

ally leads to a larger error for the conditioning method (Trinh and Genz, 2015). In this section,

we progressively define three methods to highlight the efficiencies gained from the conditioning

method and the accuracy gained from the univariate reordering. Method 1 applies Equations (3)

and (4) to compute the m-dimensional MVN probability and truncated expectations directly.

Method 2 employs the d-dimensional conditioning method as described in Algorithm 2 to com-

pute the m-dimensional MVN probability and truncated expectations. Method 3 begins with

univariate reordering as described in Algorithm 3 and then uses the d-dimensional conditioning

method. We select d = 4 for Method 2 and Method 3 because it provides a more balanced

tradeoff between the error and the computation time given the results in Table 2.

In this experiment, the correlation of the constant covariance matrix is set at 0.7 for a

medium correlation strength. The lower integration bound, a, is set at −∞ and the upper

bound is independently generated from U(0, n), which makes the expectation of the simulated

probability roughly 0.7. The upper half of Table 3 summarizes the time and relative error of the
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Table 3: Errors and execution times under the constant covariance structure and 1D exponential
covariance structure. Method 1 depends on the Monte-Carlo-based method for the MVN prob-
ability and truncated expectations. Method 2 applies the d-dimensional conditioning method.
And Method 3 employs the d-dimensional conditioning method with univariate reordering. The
constant correlation is set at 0.7. The time and absolute error are based on 20 replicates.

Constant covariance structure

m 16 32 64
n 512 1,024 2,048 512 1,024 2,048 512 1,024 2,048

M1
11.9%
7.6s

13.6%
14.7s

10.9%
30.7s

11.8%
16.7s

13.6%
33.0s

10.9%
59.9s

11.9%
41.2s

13.6%
78.1s

10.9%
133.3s

M2
11.9%
0.1s

13.6%
0.3s

10.9%
0.7s

11.8%
0.1s

13.7%
0.3s

10.9%
0.6s

11.9%
0.1s

13.7%
0.3s

11.0%
0.6s

M3
11.9%
0.1s

13.6%
0.3s

10.9%
0.7s

11.8%
0.1s

13.7%
0.3s

10.9%
0.6s

11.9%
0.2s

13.6%
0.3s

11.0%
0.6s

1D exponential covariance structure

M1
8.0%
21.4s

8.5%
42.7s

8.7%
76.8s

4.3%
40.3s

5.2%
83.4s

3.3%
153.9s

1.7%
74.0s

2.8%
144.1s

1.4%
298.7s

M2
19.9%
0.5s

20.5%
0.9s

25.8%
1.8s

20.4%
0.5s

20.9%
0.9s

25.7%
1.8s

20.6%
0.4s

20.5%
0.8s

25.6%
1.7s

M3
7.0%
0.5s

8.3%
0.9s

8.7%
1.8s

4.4%
0.4s

5.2%
0.9s

3.3%
1.8s

1.8%
0.4s

2.6%
0.8s

1.3%
1.9s

three methods under the constant covariance structure based on 20 replicates. We use 20 as the

sample size instead of 250 as in Table 2 because the covariance structure is fixed, leading to a

much smaller standard deviation for the estimators. Unlike for other covariance structures, the

benchmark for the constant correlation case can be accurately calculated with a 1-dimensional

integration

Φn(X;−∞,b,Σconst) =
1√
2π

∫ ∞
−∞

e−
1
2
x2

n∏
i=1

Φ1

(
bi +
√
θx

1− θ

)
dx,

where θ is the constant correlation coefficient. The estimation errors from the three methods are

very close under the same set of constant-covariance MVN problems, indicating that the dominant

error comes from the first level of conditioning and the d-dimensional conditioning methods can

estimate the MVN probability of size m almost as accurately as the Quasi-Monte Carlo method.

Thus the estimation accuracy of the three methods cannot be clearly distinguished. By comparing

the time costs, we can conclude that the d-dimensional conditioning method leads to significant

15



Table 4: Complexity decomposition of the three methods. Method 1 depends on the Monte-
Carlo-based method for the MVN probability and truncated expectations. Method 2 applies the
d-dimensional conditioning method. Method 3 employs the d-dimensional conditioning method
with univariate reordering. The three parts of the complexity are the calculation of the MVN
probability (MVN prob), the calculation of the truncated expectations (Trunc exp), and the
update of the integration limits with truncated expectations (Upd limits). The latter two share
the same asymptotic order in all three complexity terms. The updating cost is independent of
the method.

MVN prob Trunc exp Upd limits

M1 n
m
M(m) 2nM(m) +O(nm2) O(mn+ kn log(n/m))

M2 n
d
M(d) +O(m2n) 2nM(d) +O(nd2) O(mn+ kn log(n/m))

M3 n
d
M(d) +O(m2n) 2nM(d) +O(nd2) O(mn+ kn log(n/m))

efficiencies. In addition, the complexities of all methods appear to be in a linear relationship

with n while the complexities of Method 2 and Method 3 are not sensitive to m.

For a clearer comparison of the complexities, we decompose the complexity of Algorithm 4 into

three parts and list the complexity for each part in Table 4, where M(·) denotes the complexity of

the Quasi-Monte Carlo simulation in the given dimension. Table 4 shows that the time efficiency

of the d-dimensional conditioning algorithm mainly comes from lowering the dimension in which

the Quasi-Monte Carlo simulation is performed. The complexity of the univariate reordering is

O(m2n), the same as the complexity of computing the MVN probabilities in Method 2, resulting

in an identical major complexity component for Method 2 and Method 3. Since Methods 2 and

3 perform the Quasi-Monte Carlo simulation in d-dimensions, these two methods are not greatly

affected by the choice of m.

4.3 Simulation with 1D exponential covariance matrix

The second covariance structure used for comparing the accuracy and efficiency of the three

methods is the 1D exponential covariance structure. Under this structure, the correlation is

ρ(Xi, Xj) = exp(−dij/β), where dij is the distance between Xi and Xj, and β is the coefficient

controling the correlation decay rate. After the random variables are indexed with a geometrically

increasing order, the off-diagonal blocks can be written accurately as the product of two rank-
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1 matrices as in the case of the constant covariance. However, unlike the constant covariance

example, the 1D exponential correlation decays quickly along with the distance between indices.

In this experiment, n points are selected on the real line with neighboring distance 1, β is set to

10. Here, a,b and d are selected in the same fashion as in Section 4.2. Results from the Quasi-

Monte Carlo simulation with standard error smaller than 5×10−3 are used as the benchmark for

calculating the absolute errors. The lower half of Table 3 describes the average time and error

of the three methods based on 20 replicates.

We find that the errors of the three methods under the 1D exponential structure fall into two

bins. The error from Method 1 is close to that from Method 3, and both are much smaller than

that from Method 2, indicating that univariate reordering effectively reduces the estimation error

and even makes up for the loss of information resulting from the second level of conditioning.

In contrast, under the constant covariance structure, a relatively large error is already generated

from the first level of conditioning, which makes the improvement from univariate conditioning

insignificant. Since there are two levels of conditioning in Method 2 and Method 3, we refer to

both methods as two-level hierarchical-block conditioning methods hereafter. A similar conclu-

sion about algorithmic efficiencies can be drawn from the results of the 1D exponential covariance

structure that Methods 2 and 3 are more efficient. However, it is worth noting that the compu-

tation time for the same combination of (n,m) and the computational method is smaller under

the 1D exponential covariance structure, probably because the Quasi-Monte Carlo simulation is

faster under the weaker covariance structure. By comparing the results of the two covariance

structures in Table 3, we may also conclude that increasing the diagonal block size, m, reduces

the estimation error under a decaying correlation structure because, intuitively, a larger m cap-

tures more correlation information. This is less obvious for Method 2 and Method 3, however,

because the second level of conditioning unavoidably causes some of the correlation information

within each diagonal block to be discarded.

Based on the results from the constant covariance structure and the 1D exponential covariance
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structure, we argue that Method 3 has the best combination of efficiency and accuracy. Hence

from this point on, we consider only Method 3, the two-level hierarchical-block conditioning

method proceded by univariate reordering for each diagonal block. We compare results from

Method 3 with those from the hierarchical Quasi-Monte Carlo method (Genton et al., 2018),

which could be considered the state-of-the-art technique for high-dimensional MVN problems at

the time of this writing. To test the efficiencies of both methods on general MVN problems, we

use a covariance structure in two dimensions.

4.4 Simulation with a 2D exponential covariance matrix

The covariance matrix from 1-dimensional geometry has a bounded rank for off-diagonal blocks

under most covariance models because the sample points are distinctly separable. However, in

two and higher dimensions, a proper indexing scheme needs to be implemented to maintain the

locality of the samples despite the fact that the rank of the off-diagonal blocks usually grows in

a log fashion. Morton’s order is extensively used for reducing the dimensionality of data to one

while leaving the sample points in the geometric vicinity still closer in indices. In this section, we

assume a 2D exponential covariance structure and use Morton’s order for indexing the sample

points on the plane. As a result, the ranks of the off-diagonal blocks grow with their block

sizes but at a much slower rate than O(n). This is visible in the second column of Table 5.

The diagonal block size m and the second conditioning dimension, d, collectively determine the

amount of correlation information that is captured. Here, m reduces the estimation error at the

cost of increased univariate reordering time for each diagonal block while d improves the result

by performing Quasi-Monte Carlo simulation in higher dimensions. In Sections 4.2 and 4.3, we

found that the two-level hierarchical-block conditioning methods are insensitive to the choice of

m. We therefore fix m = 64 for the 2D covariance structure in this section and examine the

effectiveness of our algorithm when the second conditioning dimension, d, is set to 2, 4, and 6.

To test the sensitivity with respect to the correlation strength, we perform the estimation under
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Table 5: Performance of the two-level hierarchical-block conditioning method without reorder-
ing. The covariance matrix is generated from the exponential covariance function based on n
points randomly distributed in the unit square indexed with Morton’s order. The Quasi-Monte
Carlo method (mvn), the hierarchical Quasi-Monte Carlo method (hmvn) and the two-level
hierarchical-block conditioning method (hccmvnd) with d = 2, 4 and 6 are compared.

β = 0.3

n kmin, kavg, kmax H(Megabytes) mvn hmvn hccmvn2 hccmvn4 hccmvn6

256 15, 20, 31 0.22
0.4%
0.3s

0.4%
0.6s

22.2%
0.1s

20.3%
0.2s

20.5%
1.0s

1,024 14, 24, 60 1.58
0.7%
2.1s

0.7%
2.7s

27.0%
0.5s

25.1%
1.1s

25.0%
5.0s

4,096 14, 26, 116 11.67
0.8%
30.8s

0.8%
20.0s

37.3%
2.9s

36.1%
5.2s

36.6%
25.6s

16,384 13, 26, 222 87.05
0.8%

1255.5s
0.8%
91.5s

45.2%
14.1s

44.6%
25.9s

44.4%
121.5s

β = 0.1

n kmin, kavg, kmax H(Megabytes) mvn hmvn hccmvn2 hccmvn4 hccmvn6

256 14, 18, 28 0.21
0.2%
0.3s

0.2%
0.6s

10.5%
0.1s

8.5%
0.2s

9.0%
0.7s

1,024 12, 23, 58 1.55
0.5%
2.0s

0.5%
2.5s

20.8%
0.5s

18.2%
1.1s

18.4%
4.8s

4,096 14, 26, 117 11.83
0.7%
27.0s

0.7%
11.2s

30.0%
2.2s

28.3%
4.6s

28.9%
20.6s

16,384 13, 27, 229 89.75
0.8%

1219.3s
0.9%
53.9s

41.5%
10.1s

39.3%
19.6s

39.3%
87.8s

β = 0.03

n kmin, kavg, kmax H(Megabytes) mvn hmvn hccmvn2 hccmvn4 hccmvn6

256 9, 12, 18 0.18
0.0%
0.3s

0.0%
0.6s

0.9%
0.1s

0.6%
0.2s

0.7%
0.7s

1,024 12, 20, 50 1.39
0.2%
2.0s

0.2%
2.6s

5.3%
0.4s

4.1%
1.0s

4.2%
3.7s

4,096 13, 25, 111 11.22
0.4%
26.7s

0.4%
11.2s

13.2%
2.2s

11.3%
4.6s

11.6%
18.9s

16,384 14, 27, 227 88.90
0.5%

1225.1s
0.5%
43.2s

24.7%
9.5s

21.2%
19.2s

21.7%
83.5s

β = 0.3, 0.1, and 0.03, representing strong, medium, and weak correlation strengths.

Table 5 presents the results for the two-level hierarchical-block conditioning method. The

algorithm is implemented in C++ and compared with that in Genton et al. (2018). Table 5

shows the relative error and time, averaged from the same set of 20 problem replicates for each
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dimension n. For each replicate, the upper bound, b, is generated from U(0, n) and the lower

bound a is assumed to be −∞ as in Trinh and Genz (2015). We construct the hierarchical

covariance matrix, H, prior to Cholesky factorization, and we use an adaptively decreasing

tolerance level, starting at 5× 10−4, for building H to guarantee the positive-definiteness of H.

The second column describes the ranks of the off-diagonal blocks of H that grow approximately

in a log n fashion. The last five columns correspond to the error and time for the three techniques

evaluated in this section, namely the Quasi-Monte Carlo method, the hierarchical Quasi-Monte

Carlo method, and the two-level hierarchical-block conditioning method with d = 2, 4, and 6.

The two-level hierarchical-block conditioning method performs the worst, providing an extremely

poor estimation despite having a higher computational efficiency. After comparing the estimation

errors under the three types of correlation strengths, we conclude that increasing the second-level

conditioning dimension, d, can slightly improve the estimation accuracy and that the conditioning

method is more sensitive to the correlation strength than the Monte-Carlo-based methods. For

example, the estimation error for the conditioning method is negligible under n = 256 and

β = 0.03 but grows more rapidly than the other two methods when n or β increases. In fact,

the correlation strength is essentially increased when n increases while β remains unchanged.

The method, when used with general covariance matrices without a reordering strategy, does not

produce sufficiently accurate results. This motivated the development of the reordering strategy

described in the next section. We note that the time difference between this paper and Genton

et al. (2018) for the Quasi-Monte Carlo method and the hierarchical Quasi-Monte Carlo method

is due to different hardware and machine-level implementations.

5 Block Reordering

In the context of conditioning algorithms, the integration variables on the farther left, which

also have higher priority in terms of calculation, tend to have more impact on the accuracy

of the estimation. Univariate reordering can effectively reduce the estimation error for low-
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Algorithm 5 Block-wise reordering

1: procedure blockreorder(G, ρ, a,b,m, ind)
2: for i = 1 : m : n−m+ 1 do
3: subind← ind[i : i+m− 1]
4: A← ρ(G, subind)
5: a′ ← a[subind]
6: b′ ← b[subind]
7: P = [P,RCMVN(A, a′,b′, 1).P ] as in Algorithm 3
8: end for
9: sort(ind,P,m)

10: return ind
11: end procedure

dimensional MVN problems (Trinh and Genz, 2015) but applying it to n integration variables

has a complexity of O(n3) and is likely to spoil the low-rank feature of the off-diagonal blocks,

which is not desirable for an efficiency-oriented algorithm. The construction of the hierarchical

covariance matrix essentially assumes that the correlation within eachm-sized block of variables is

strong while the correlation between these blocks is weak. Building on this idea, we rearrange the

diagonal blocks of size m with their probabilities increasing from left to right, which is consistent

with the idea of univariate reordering. The reordering of the blocks is implemented only once

instead of recursively due to the high complexity of calculating the truncated expectations in m-

dimensions. The probability for each block is estimated with the conditioning method introduced

in Algorithm 2 and d is set to 1. Hence, the univariate reordering is performed at the same time.

The algorithm for the block-wise reordering is summarized as Algorithm 5. For clarity, we use

ρ(G, ind) for constructing a correlation matrix based on the correlation function, ρ, geometry,

G, and indices, ind. Here, sort(ind,P,m) stands for rearranging the size-m segments of ind

based on the vector, P, in an increasing order.

To examine the increased accuracy from the preceding block reordering, we implemented the

2D exponential experiments the same way as in Section 4.4 with an extra reordering layer before

the two-level hierarchical-block conditioning algorithm. Table 6 compares the reordered condi-

tioning algorithm with the Monte-Carlo-based algorithms and the additional time cost from block
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Table 6: Performance of the two-level hierarchical-block conditioning method with reordering.
The covariance matrix is generated from the exponential covariance function based on n points
randomly distributed in the unit square indexed first with Morton’s order and then with block
reordering as in Algorithm 5. The Quasi-Monte Carlo method (mvn), the hierarchical Quasi-
Monte Carlo method (hmvn) and the two-level hierarchical-block conditioning method (hccmvnd)
with d = 2, 4 and 6 are compared. MB in the third column is short for megabytes.

β = 0.3

n kmin, kavg, kmax H(MB) mvn hmvn hccmvn2 hccmvn4 hccmvn6 reorder

256 11, 20, 37 0.22
0.4%
0.3s

0.4%
0.6s

1.0%
0.1s

1.0%
0.2s

1.0%
0.9s

0.00s

1,024 1, 20, 82 1.71
0.7%
2.1s

0.7%
2.7s

2.8%
0.5s

2.7%
1.1s

2.7%
5.0s

0.01s

4,096 1, 22, 151 13.94
0.8%
30.8s

0.8%
20.0s

2.1%
2.5s

2.1%
5.2s

2.1%
25.0s

0.03s

16,384 1, 24, 287 114.14
0.8%

1255.5s
0.8%
91.5s

3.0%
13.1s

3.0%
24.1s

3.0%
114.9s

0.14s

β = 0.1

n kmin, kavg, kmax H(MB) mvn hmvn hccmvn2 hccmvn4 hccmvn6 reorder

256 10, 18, 35 0.22
0.2%
0.3s

0.2%
0.6s

0.3%
0.1s

0.3%
0.2s

0.3%
0.7s

0.00s

1,024 1, 19, 82 1.70
0.5%
2.0s

0.5%
2.5s

0.9%
0.5s

0.8%
1.0s

0.8%
4.4s

0.01s

4,096 1, 22, 151 14.03
0.7%
27.0s

0.7%
11.2s

0.3%
2.0s

0.3%
4.4s

0.3%
19.5s

0.03s

16,384 1, 25, 287 115.75
0.8%

1219.3s
0.9%
53.9s

0.6%
10.1s

0.6%
19.7s

0.6%
86.6s

0.13s

β = 0.03

n kmin, kavg, kmax H(MB) mvn hmvn hccmvn2 hccmvn4 hccmvn6 reorder

256 6, 12, 24 0.19
0.0%
0.3s

0.0%
0.6s

0.0%
0.1s

0.0%
0.1s

0.0%
0.5s

0.00s

1,024 1, 16, 82 1.59
0.2%
2.0s

0.2%
2.6s

0.0%
0.4s

0.0%
0.9s

0.0%
3.6s

0.01s

4,096 1, 20, 151 13.70
0.4%
26.7s

0.4%
11.2s

0.0%
1.9s

0.0%
4.1s

0.0%
18.0s

0.03s

16,384 1, 25, 287 115.74
0.5%

1225.1s
0.5%
43.2s

0.0%
9.3s

0.0%
18.5s

0.0%
78.9s

0.09s

reordering is measured separately and shown in the last column. The original Morton’s order is

disturbed by the block reordering. As a result, the ranks and the memory cost of the off-diagonal

blocks increase as indicated in the second and third columns. The resulting estimation error for

the two-level hierarchical-block conditioning method is significantly reduced by the preceding
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block reordering. The error is below 3% overall with strong correlation, β = 0.3, while below

1% with medium and weak correlations. Errors of such magnitude can make the conditioning

method a good substitute for Monte-Carlo-based methods. The run time costs for the two-level

hierarchical-block conditioning method are not sensitive to the ranks of the off-diagonal blocks.

Columns 6 to 8 of Table 6 indicate similar time performance compared with Table 5 because each

matrix-vector multiplication is performed only once in the conditioning algorithm as described in

Algorithm 4. Since the choice of d has little impact on the estimation accuracy when the preced-

ing block reordering exists, we use d = 2 as the benchmark for comparing the time efficiencies of

the hierarchical-block conditioning method and the hierarchical Quasi-Monte Carlo method. On

average, the two-level hierarchical-block conditioning method, hccmvn, is five times faster than

the hiararchical Quasi-Monte Carlo method, hmvn, but slightly more sensitive to the correlation

strength. The extra time used for block reordering is negligible compared with the overall time

costs of the conditioning methods.

6 Discussion

We presented a d-dimensional conditioning algorithm as an extension of the bivariate conditioning

algorithm from Trinh and Genz (2015) and, based on it, we described a hierarchical-block condi-

tioning method for estimating MVN probabilities that is suitable for high-dimensional problems.

The d-dimensional conditioning algorithm delivers more accurate estimation under randomly

generated covariance structures as d increases. The hierarchical technique takes advantage of the

low-rank features of the common covariance models used in spatial statistics, which significantly

reduce the computation time and the storage cost. We also introduced a block reordering scheme

that preserves the low-rank feature and significantly improves the estimation accuracy with little

additional cost. Combining the three, we introduced a two-level hierarchical-block conditioning

algorithm that can further shorten the computation time of MVN probabilities based on the

hierarchical Quasi-Monte Carlo method. There are two parameters for the algorithm, namely
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the diagonal block size, m, and the conditioning dimension, d, which collectively control the ac-

curacy and the complexity of the algorithm. The dimension, m, should be large enough to yield

savings from low-rank structures in the off-diagonal blocks yet not too large to make computation

of the diagonal blocks too costly. The dimension, d, increases the estimation accuracy for the

probability and truncated expectations within each diagonal block but also increases the com-

plexity quickly because of the calculations of truncated expectations. A value of 2 or 4 for d can

produce a sufficiently small error when a block reordering is performed. The algorithm provides

a practical method for calculating the MVN probabilities in tens of thousands of dimensions.

The estimation for the truncated expectations makes up the largest computational complexity

in the current algorithm and is calculated based on Equations (3) and (4). Future progress in

estimating the truncated expectations of MVN random variables is expected to reduce the run

time of this algorithm significantly.
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